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Recent experimental advances have reignited theoretical interests in heavy-flavor hadrons. In this work,
we study the magnetic moments of the spin-1=2 singly charmed baryons up to the next-to-leading order in
covariant baryon chiral perturbation theory (BChPT) with the extended-on-mass-shell renormalization
(EOMS) scheme. The pertinent low energy constants (LECs) g1–4 are fixed with the help of the quark
model and the heavy quark spin flavor symmetry, while the remaining d2, d3, d5, and d6 are determined by
fitting to the lattice QCD pion-mass dependent data. With the LECs so determined, we predict the magnetic
moments of the spin-1=2 singly charmed baryons and compare them with those of other approaches, and
find that our predictions are in general smaller in absolute values than those of other approaches, which are
tied to the lattice QCD data we fitted. More studies are therefore needed to clarify this situation and to better
understand the nature of the singly charmed baryons.
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I. INTRODUCTION

In the last two decades, tremendous progress has been
made in our understanding of heavy-flavor hadrons, thanks
to the experimental discoveries by collaborations such as
LHCb, BELLE, and BESIII and the related theoretical
studies. In the charmed baryon sector, 24 singly charmed
baryons and two doubly charmed baryons are listed in the
current version of the review of particle physics [1]. Among
them, the newest members include the Λcð2860Þ [2], the
five Ωc states [3], and the Ξþþ

cc [4]. Inspired by these and
other experimental discoveries, there have been extensive
theoretical and lattice QCD studies on their nature and their
decay and production mechanisms (see, e.g., Refs. [5–12]
and references cited therein).
The magnetic moment of a baryon plays an extremely

important role in understanding its internal structure.
Historically, the experimental measurements of the mag-
netic moments of the proton and the neutron revealed that
they are not point-like particles. The subsequent studies
helped the establishment of the quark model as well as the
theory of the strong interaction, quantum chromodynamics.
Unlike those of the ground-state baryons, the magnetic

moments of the spin-1=2 singly charmed baryons have
not been measured experimentally. Nevertheless, they have
been studied in a variety of phenomenological models
[13–21], QCD sum rules [22,23], the heavy baryon chiral
perturbation theory (HB ChPT) [24,25], and lattice QCD
simulations [26–29]. In Ref. [24], the low energy constants
(LECs) are determined by the quark model and the heavy
quark spin flavor symmetry and by fitting to the lattice
QCD data extrapolated to the physical point.1 In this work,
we will study the magnetic moments of the spin-1=2 singly
charmed baryons up to the next-to-leading order (NLO)
in covariant baryon chiral perturbation theory (BChPT)
with the extended-on-mass shell (EOMS) renormalization
scheme. The unknown LECs g1;2;3;4 will be determined by
the quark model and the heavy quark spin flavor symmetry,
and the LECs d2, d3, and d5 and d6 by directly fitting to the
lattice QCD data at unphysical pion masses [26–29]. We
note that many previous studies, such as Refs. [30,31],
have shown that the EOMS BChPT can provide a better
description of the lattice QCD quark-mass dependent
data than its noncovariant counterpart (at the same chiral
order). It will be interesting to check whether the same
happens in the case of the magnetic moments of singly
charmed baryons.
Chiral perturbation theory (ChPT) [32], as a low-energy

effective field theory of QCD, is an appropriate framework
to study the magnetic moments of hadrons, particularly,
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their light quark mass dependence. It provides a systematic
expansion of physical observables in powers of ðp=ΛχÞnχ ,
where p is a generic small quantity, either meson four
momenta or baryon three momenta or light quark masses,
Λχ is the chiral symmetry breaking scale, and nχ is the
chiral order, defined as nχ ¼ 4L − 2NM − NB þP

kkVk

for a Feynman diagram containing L loops, NMðNBÞ
internal meson (baryon) propagators, and Vk vertices from
kth order Lagrangians. However, its application to the one-
baryon sector encountered a difficulty; i.e., a systematic
power counting (PC) is lost due to the large nonvanishing
baryon mass m0 in the chiral limit. Over the years, three
approaches were proposed to overcome this issue, i.e., the
HB [33,34], the infrared (IR) [35], and the EOMS [36]
schemes. Compared to the HB ChPT, the IR and the EOMS
schemes remove the power-counting breaking (PCB) terms
but retain a series of nominally higher order terms to keep
Lorentz invariance [35,36]. A brief summary and compari-
son of these three approaches can be found in Ref. [37].
In the present work, our main purpose is to study the

lattice QCD data on the magnetic moments of singly
charmed baryons [26–29] and perform chiral extrapolations
using the EOMS BChPT, while in Refs. [26–29], the chiral
extrapolations were performed with a phenomenological
approach. We note that in two recent works [38,39], the
lattice QCD results on the magnetic moments of the Ξcc
baryons have been studied using the EOMS BChPT.
This work is organized as follows. In Sec. II, we provide

the effective Lagrangians and calculate the relevant
Feynman diagrams up to Oðp3Þ. Results and discussions
are given in Sec. III, which is followed by a short summary
in Sec. IV.

II. THEORETICAL FORMALISM

The magnetic moments of singly charmed baryons are
defined via the matrix elements of the electromagnetic
current Jμ as follows:

hψðpfÞjJμjψðpiÞi

¼ ūðpfÞ
�
γμFB

1 ðq2Þ þ
iσμνqν

2mB
FB
2 ðq2Þ

�
uðpiÞ; ð1Þ

where ūðpfÞ and uðpiÞ are the Dirac spinors, mB is the
singly charmed baryon mass, and FB

1 ðq2Þ and FB
2 ðq2Þ

denote the Dirac and Pauli form factors, respectively.
The four-momentum transfer is defined as q ¼ pf − pi.
At q2 ¼ 0, FB

2 ð0Þ is the so-called anomalous magnetic
moment, κB, and the magnetic moment is μB ¼
mN
mB

ðκB þQBÞ, where QB is the charge of the singly
charmed baryon, mN ¼ 940 MeV is the nucleon mass.
Note that the magnetic moments of the singly charmed
baryons μB obtained in the Lattice QCD studies of
Refs. [26–29] are given in units of μN . Therefore, for

the sake of convenience, we also take μN as the units of μB
when performing fits to the lattice QCD data and compar-
ing with other predictions.
The five Feynman diagrams contributing to μB up to

Oðp3Þ are shown in Fig. 1. The leading order contribution
of Oðp2Þ is provided by the following Lagrangian:

Lð2Þ
33 ¼ d2

16m3̄

TrðB̄3̄σ
μνFþ

μνB3̄Þþ
d3

16m3̄

TrðB̄3̄σ
μνB3̄ÞTrðFþ

μνÞ;

Lð2Þ
66 ¼ d5

8m6

TrðB̄6σ
μνFþ

μνB6Þþ
d6
8m6

TrðB̄6σ
μνB6ÞTrðFþ

μνÞ;

ð2Þ

where the numbers in the superscript are the chiral
order, σμν ¼ i

2
½γμ; γν�, Fþ

μν ¼ jejðu†QhFμνuþ uQhFμνu†Þ,
Fμν ¼ ∂μAν − ∂νAμ, and Qh ¼ diagð1; 0; 0Þ is the charge
operator of the charmed baryon, u ¼ exp½iΦ=2Fϕ�, with
the unimodular matrix containing the pseudoscalar nonet
Φ, and Fϕ the pseudoscalar decay constant. In the follow-
ing analysis, we take Fπ ¼ 92.4 MeV, FK ¼ 1.22Fπ, and
Fη ¼ 1.3Fπ .

2 In the SU(3) flavor representation, there are
three kinds of singly charmed baryons, which are denoted
as B3̄, B6, and B�μ

6 , respectively,

(a)

(b) (c)

(d) (e)

FIG. 1. Feynman diagrams contributing to the singly charmed
baryon magnetic moments up to NLO. Diagram (a) contributes at
LO, while the other diagrams contribute at NLO. The solid,
dashed, and wiggly lines represent singly charmed baryon,
Goldstone bosons, and photons, respectively. The heavy dots
denote the Oðp2Þ vertices.

2The differences compared with the use of the chiral limit
pseudoscalar decay constant are of higher chiral order.
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B3̄ ¼

0
B@

0 Λþ
c Ξþ

c

−Λþ
c 0 Ξ0

c

−Ξþ
c −Ξ0

c 0

1
CA; B6 ¼

0
BBB@

Σþþ
c

Σþ
cffiffi
2

p Ξ0þ
cffiffi
2

p

Σþ
cffiffi
2

p Σ0
c

Ξ00
cffiffi
2

p

Ξ0þ
cffiffi
2

p Ξ00
cffiffi
2

p Ω0
c

1
CCCA;

B�μ
6 ¼

0
BBB@

Σ�þþ
c

Σ�þ
cffiffi
2

p Ξ�þ
cffiffi
2

p

Σ�þ
cffiffi
2

p Σ�0
c

Ξ�0
cffiffi
2

p

Ξ�þ
cffiffi
2

p Ξ�0
cffiffi
2

p Ω�0
c

1
CCCA: ð3Þ

The spin of the B3̄ and B6 states is 1=2, while the spin of the
B�μ
6 states is 3=2.
In the numerical analysis, we take the average of the

masses for each flavor multiplet, i.e., m3̄ ¼ 2408 MeV,
m6 ¼ 2535 MeV, and m6� ¼ 2602 MeV [1]. The mass
differences are δ1¼m6−m3̄¼127MeV, δ2 ¼ m6� −m3̄ ¼
194 MeV, and δ3 ¼ m6� −m6 ¼ 67 MeV.3

The loop diagrams arising at NLO are determined in

terms of the lowest order LECs from Lð1Þ
B þ Lð1Þ

MB þ Lð2Þ
M ,

which are,

Lð1Þ
B ¼ 1

2
Tr½B̄3̄ði=D −m3̄ÞB3̄� þ Tr½B̄6ði=D −m6ÞB6� þ Tr½B̄�μ

6 ð−gμνði=D −m6� Þ þ iðγμDν þ γνDμÞ − γμði=Dþm6� ÞγνB�ν
6 �;

Lð1Þ
MB ¼ g1

2
Tr½B̄6=uγ5B6� þ

g2
2
Tr½B̄6=uγ5B3̄ þ H:c:� þ ig3

2Fϕm�
6

Tr½∂αB̄�μ
6 γαμν∂νΦB6 þ H:c:�

þ ig4
2Fϕm�

6

Tr½∂αB̄�μ
6 γαμν∂νΦB3̄ þ H:c:� þ g5

2
Tr½B̄�μ

6 =uγ5B
�
6μ� þ

g6
2
Tr½B̄3̄=uγ5B3̄�;

Lð2Þ
M ¼ F2

ϕ

4
Tr½∇μUð∇μUÞ†�; ð4Þ

with

DμB ¼ ∂μBþ ΓμBþ BΓT
μ ;

Γμ ¼
1

2
ðu†∂μuþ u∂μu†Þ −

i
2
ðu†vμuþ uvμu†Þ ¼ −ieQhAμ;

uμ ¼ iðu†∂μu − u∂μu†Þ þ ðu†vμu − uvνu†Þ;
U ¼ u2 ¼ e

iΦ
Fϕ ; ∇μU ¼ ∂μU þ ieAμ½Ql;U�; ð5Þ

where vμ stands for the vector source, and the charge matrix
for the light u, d, s quarks is Ql ¼ diagð2=3;−1=3;−1=3Þ.
The total spin of the light quarks is 0 for the singly charmed
baryon in the B3̄ state. Considering parity and angular
momentum conservation, the B̄3̄B3̄Φ vertex is forbidden,
i.e., g6 ¼ 0. Here, we would like to stress that for the
Lagrangians of B̄�

6B6=3̄Φ, we choose to work with the so-
called “consistent” couplings, introduced in Refs. [40,41].
In Ref. [42], it was shown that for the octet baryon
magnetic moments, the use of the consistent couplings
allowed one to obtain both a proper description of the
experimental data and a proper convergence behavior.
Indeed, we find that in the present work it also provides
a better description of the lattice QCD magnetic moments
of singly charmed baryons, but the improvement is not that
dramatic as in the case of the ground state octet baryons.
For the B3̄ and B6 states, the tree level contributions of

the magnetic moments can be easily obtained from Eq. (2),
which are:

κða;2Þ
3̄

¼ α3̄d2 þ β3̄d3; κða;2Þ6 ¼ α6d5 þ β6d6: ð6Þ

The values of α3̄, β3̄, α6, and β6 are tabulated in Tables I
and II. The four LECs d2, d3, d5, and d6 will be determined
by fitting to the lattice QCD data of Refs. [26–29].

3In the heavy quark limit, these mass differences vanish.

TABLE I. Coefficients of the tree level contributions of Eq. (6)
for the B3̄ states.

Λþ
c Ξþ

c Ξ0
c

α3̄
1
2

1
2

0
β3̄ 1 1 1

TABLE II. Coefficients of the tree level contributions of Eq. (6)
for the B6 states.

Σþþ
c Σþ

c Σ0
c Ξ0þ

c Ξ00
c Ω0

c

α6 1 1
2

0 1
2

0 0
β6 1 1 1 1 1 1
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AtOðp3Þ, the loop contributions to the magnetic moments, which come from diagrams (b), (c), (d), and (e) of Fig. 1, are
written as,

κð3Þ
3̄

¼ 1

4

� X
ϕ¼π;K

g22
F2
ϕ

ξð3;bÞB3̄ϕ;δ1
HðbÞ

B3̄
ðδ1; mϕÞ þ

X
ϕ¼π;K

g24
F2
ϕ

ξð3;cÞB3̄ϕ;δ2
HðcÞ

B3̄
ðδ2; mϕÞ

þ
X

ϕ¼π;K;η

g22
F2
ϕ

ξð3;dÞB3̄ϕ;δ1
HðdÞ

B3̄
ðδ1; mϕÞ þ

X
ϕ¼π;K;η

g24
F2
ϕ

ξð3;eÞB3̄ϕ;δ2
HðeÞ

B3̄
ðδ2; mϕÞ

�
;

κð3Þ6 ¼ 1

4

� X
ϕ¼π;K

g21
F2
ϕ

ξð3;bÞB6ϕ
HðbÞ

B6
ð0; mϕÞ þ

X
ϕ¼π;K

g22
F2
ϕ

ξð3;bÞB6ϕ;δ1
HðbÞ

B6
ðδ1; mϕÞ

þ
X
ϕ¼π;K

g23
F2
ϕ

ξð3;cÞB6ϕ;δ3
HðcÞ

B6
ðδ3; mϕÞ þ

X
ϕ¼π;K;η

g21
F2
ϕ

ξð3;dÞB6ϕ
HðdÞ

B6
ð0; mϕÞ

þ
X

ϕ¼π;K;η

g22
F2
ϕ

ξð3;dÞB6ϕ;δ1
HðdÞ

B6
ðδ1; mϕÞ þ

X
ϕ¼π;K;η

g23
F2
ϕ

ξð3;eÞB6ϕ;δ3
HðeÞ

B6
ðδ3; mϕÞ

�
; ð7Þ

with the coefficients ξð3;b;c;d;eÞB3̄ϕ;δi
and ξð3;b;c;d;eÞB6ϕ;δi

listed in
Tables III and IV. The explicit expressions of the loop

functions Hðb;c;d;eÞ
B3̄

ðδi; mϕÞ and Hðb;c;d;eÞ
B6

ðδi; mϕÞ can be
found in the Appendix.
Once we obtain the loop functions in the EOMS scheme,

we can easily obtain their HB counterparts by performing
1=m0 expansions. We have checked that our results agree
with those of Ref. [24]. In the following section, for the
sake of comparison, we study also the performance of
the HB ChPT in describing the lattice QCD data of
Refs. [26–29]. It should be noted that in the following
section, unless otherwise stated, the HB ChPT results refer
to the ones obtained in the present work, not those of
Ref. [24]. In the present work, due to the limited lattice
QCD data [26–29], we will treat the differences between

the results of the HB ChPT and those of the EOMS BChPT
as our estimates of inherent systematic uncertainties origi-
nated from chiral truncations.

III. RESULTS AND DISCUSSIONS

In this section, we determine the LECs d2, d3, d5,
and d6 by fitting to the lattice QCD data of Refs. [26–29],
which are collected in Table V for the sake of easy
reference. Because of the limited lattice QCD data, the
other LECs g1−4 are fixed by the quark model and the
heavy quark spin flavor symmetry. Their values are

TABLE III. Coefficients of the loop contributions of Eq. (7) for
the B3̄ states.

Λþ
c Ξþ

c Ξ0
c

ξð3;bÞB3̄π;δ1
0 1 −1

ξð3;bÞB3̄K;δ1
1 0 −1

ξð3;cÞB3̄π;δ2
0 1 −1

ξð3;cÞB3̄K;δ2
1 0 −1

ξð3;dÞB3̄π;δ1
6 1

2
1

ξð3;dÞB3̄K;δ1
1 5 1

ξð3;dÞB3̄η;δ1
0 3

2
0

ξð3;eÞB3̄π;δ2
6 1

2
1

ξð3;eÞB3̄K;δ2
1 5 1

ξð3;eÞB3̄η;δ2
0 3

2
0

TABLE IV. Coefficients of the loop contributions of Eq. (7) for
the B6 states.

Σþþ
c Σþ

c Σ0
c Ξ0þ

c Ξ00
c Ω0

c

ξð3;bÞB6π
1 0 −1 1

2
− 1

2
0

ξð3;bÞB6K
1 1

2
0 0 − 1

2
−1

ξð3;bÞB6π;δ1
2 0 -2 1 -1 0

ξð3;bÞB6K;δ1
2 1 0 0 -1 -2

ξð3;cÞB6π;δ3
1 0 -1 1

2
− 1

2
0

ξð3;cÞB6K;δ3
1 1

2
0 0 − 1

2
-1

ξð3;dÞB6π
3 2 1 1

4
1
2

0

ξð3;dÞB6K
1 1

2
0 5

2
1
2

1

ξð3;dÞB6η
2
3

1
3

0 1
12

0 0

ξð3;dÞB6π;δ1
2 2 2 1

2
1 0

ξð3;dÞB6K;δ1
2 1 0 1 1 2

ξð3;dÞB6η;δ1
0 0 0 3

2
0 0

ξð3;eÞB6π;δ3
3 2 1 1

4
1
2

0

ξð3;eÞB6K;δ3
1 1

2
0 5

2
1
2

1

ξð3;eÞB6η;δ3
2
3

1
3

0 1
12

0 0
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g1 ¼ 0.98, g2 ¼ −
ffiffi
3
8

q
g1 ¼ −0.60, g3 ¼

ffiffi
3

p
2
g1 ¼ 0.85, and

g4 ¼ −
ffiffiffi
3

p
g2 ¼ 1.04 [43,44].4 In our least-squares fit, the

χ2 as a function of the LECs is defined as

χ2ðCXÞ ¼
Xn
i¼1

ðμthi ðCXÞ − μLQCDi Þ2
σ2i

; ð8Þ

where CX denote all the LECs, σi correspond to the
uncertainty of each lattice QCD datum, μthi ðCXÞ and
μLQCDi stand for the magnetic moments obtained in the
BChPTand those of the lattice QCD in Table V, respectively.
In order to decompose the contributions of loop dia-

grams, we will consider two cases. In case 1, all the allowed
intermediate baryons are taken into account, while in
case 2, only intermediate baryons of the same type as

those of the external baryons are considered, namely, there
are no loop contributions to the magnetic moments of the
triplet baryons, while in calculating the loop contributions
to the magnetic moments of the sextet baryons, only
intermediate sextet baryons are considered. Fitting to the
lattice QCD data of Table V and with g1–4 fixed, the
resulting LECs and χ2=d:o:f: are listed in Table VI.
The predicted magnetic moments as a function of m2

π

are plotted in Figs. 2 and 3 in comparison with the lattice
QCD data for the antitriplet and sextet baryons, respec-
tively. At first sight, the EOMS BChPT descriptions of the
lattice QCD data seem to be better than those of the HB
ChPT in both cases, consistent with previous studies
[30,31]. Nevertheless, because of the limited lattice QCD
data and the relatively large number of unknown LECs,
the statistical significance of such an improvement is
not very significant. As a result, the differences between
both results may better be viewed as inherent systematic
uncertainties originated from chiral truncations. In addition,
we note that the contributions of the diagrams where the
photon couples to intermediate baryons, which appear
only at NNLO in HB ChPT, are indeed relatively small.5

As shown in Table VI and Figs. 2 and 3, in general the
description of the lattice QCD data is better in case 2 than
in case 1. Furthermore, the convergence pattern in case 2 is
also better than that in case 1,6 with probably the exception
of Σ0

c, as has been noted in Ref. [24] as well. Therefore, we
decide to take the predictions of case 2 as our final results.7

In Figs. 4 and 5, we compare the predicted magnetic
moments of all the singly charmed baryons at the physical
point with those obtained in other approaches. The shaded
light-blue bands indicate the statistical uncertainties origi-
nated from the fitted LECs with their 1σ confidence
intervals. For the sake of comparison, we also give the

TABLE V. Magnetic moments of singly charmed baryons at differentmπ [26–29], in units of nuclear magneton, μN .

mπ (MeV) Ξþ
c Ξ0

c Σþþ
c Σ0

c Ξ0þ
c Ξ00

c Ω0
c

Phys. � � � � � � 1.499 (202) −0.875 ð103Þ � � � � � � −0.667 ð96Þ
156 0.235 (25) 0.192 (17) � � � � � � 0.315 (141) −0.599 ð71Þ −0.688 ð31Þ
300 � � � � � � 1.867 (388) −0.929 ð206Þ � � � � � � −0.640 ð55Þ
410 � � � � � � 1.591 (358) −0.897 ð223Þ � � � � � � −0.621 ð44Þ
570 � � � � � � 1.289 (161) −0.724 ð80Þ � � � � � � −0.658 ð46Þ
700 � � � � � � 1.447 (125) −0.757 ð67Þ � � � � � � −0.701 ð56Þ

TABLE VI. LECs d2, d3, d5, and d6 determined by fitting to the
lattice QCD data, with g1–4 fixed. The numbers in the brackets are
the statistical uncertainties at the 68% confidence level originated
from the uncertainties of the lattice QCD data. In case 1 all the
allowed intermediate baryons in the loop diagrams are taken into
account, while in case 2 only intermediate baryons of the same
type as those of the external baryons in the loop diagrams are
considered.

Case 1 Case 2

EOMS 1 HB 1 EOMS 2 HB 2

d2 −1.49ð15Þ −2.32ð15Þ −1.78ð15Þ −1.78ð15Þ
d3 0.63(4) 0.65(4) 0.49(4) 0.49(4)
d5 8.28(34) 13.49(34) 5.38(34) 8.69(34)
d6 −4.17ð5Þ −4.93ð5Þ −2.83ð5Þ −3.40ð5Þ
g1 0.98 0.98 0.98 0.98
g2 −0.60 −0.60 0 0
g3 0.85 0.85 0.85 0.85
g4 1.04 1.04 0 0

χ2min=d:o:f: 5.63 14.56 1.93 3.82

4If we used the lattice QCD determination of g4 ¼ 0.71� 0.13
[45,46] and the heavy quark symmetry to obtain g1, g2, and g3, we
would have obtained smaller loop corrections and thus a better
convergence pattern, but all our conclusions would remain
essentially unchanged.

5Note that we do not fit to the lattice QCD data obtained at
mπ ¼ 700 MeV, which are probably out of the range of validity of
NLO ChPT. Furthermore, as can be seen in Fig. 3, the difference
between the lattice QCD value and the ChPT prediction for μΞ00

c

is somehow relatively large. Thus, we do not include the lattice
QCD magnetic moment of Ξ00

c in our fitting as well.
6The convergence will be even better if the g2 and g4 couplings

are smaller than we used as indicated by the lattice QCD data.
7Again, the differences between case 1 and case 2 may be

taken as systematic uncertainties.
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results obtained in the present work using the HB ChPT.
Note that our present study is at Oðp3Þ, while that of
Ref. [24] is at Oðp4Þ. In addition, we have chosen different
strategies to determine some of the LECs. In Ref. [24], the
lattice QCD extrapolated data were used to determine d2,
d3, d5, and d6, while in our work we have used the lattice
QCD data at unphysical baryon masses. We note that the
results of different approaches are rather scattered. Clearly,
further experimental or lattice QCD studies are needed to
discriminate between different theoretical approaches.
For both the antitriplet and sextet baryons, our predic-

tions are in most cases smaller in absolute values than those
obtained by other approaches. In addition, because case 2
is in fact a tree level study, therefore, our HB and EOMS
results are the same. However, our results for the sextet
baryons are in better agreement with those of the HB ChPT
of Ref. [24], despite the differences pointed out above.
On the other hand, there are some sizable differences

between the results obtained in the present work in the
EOMS scheme and those in the HB scheme, reflecting the
fact that relativistic corrections are sizable, which could be
taken as systematic uncertainties.
We should mention that for the results of Lattice QCD

appearing in Fig. 4 and Fig. 5 we only used their physics
values obtained from linear extrapolations, although they
performed fits both linear and quadratic in m2

π .

IV. HEAVY QUARK SPIN FLAVOR SYMMETRY
AND ITS BREAKING

In this section, we discuss the heavy quark spin flavor
symmetry and its breaking and their impact on the magnetic
moments of the antitriplet and sextet baryons at Oðp3Þ. In
Tables VII and VIII, we decompose the loop contributions
into those from the intermediate 3̄, 6, and 6� states,
respectively. We note that the HB ChPT contributions to

FIG. 3. Magnetic moments of the singly charmed sextet baryons as a function ofm2
π . The solid black nablas refer to the corresponding

lattice QCD data fitted. The hollow nablas stand for the lattice QCD physical values. The blue nablas denote the lattice QCD data not
used in our fitting.

FIG. 2. Magnetic moments of the singly charmed antitriplet baryons as a function of m2
π . The solid black nablas represent the

corresponding lattice QCD data that are fitted.
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the triplet baryons from the intermediate 6 and 6� baryons
almost cancel each other at Oðp3Þ. Thus, at this order, the
net loop corrections are quite small. As a matter of
fact, the nice cancellation exhibited by the HB ChPT is a
direct consequence of heavy quark spin symmetry. In the

heavy quark limit, i.e., δ1 ¼ δ2 ¼ 0, the cancellation will
be exact.
On the other hand, in the EOMS scheme, because of the

existence of higher order (compared to HB ChPT) relativ-
istic corrections, heavy quark spin flavor symmetry is
explicitly broken by terms of 1=mn

3̄
with n ≥ 1. For the

diagrams with a photon coupling to an intermediate baryon,
the contributions start at 1=m3̄. As a result, these diagrams
give vanishing contributions in the HB scheme, while in
the EOMS scheme, they are finite (though relatively small)
as shown below8:

g22 ·H
ðdÞ
B3̄
ð0; mϕÞ

¼ g22m3̄ ·

�logðm2
3̄

m2
ϕ
Þ − 2

4π2m3̄

þO
�

1

m2
3̄

��
;

g24 ·H
ðeÞ
B3̄
ð0; mϕÞ

¼ 3g22 ·H
ðcÞ
B3̄
ð0; mϕÞ

¼ g22m3̄ ·

�48 logðm2
3̄

m2
ϕ
Þ þ 156 logðμ2m2

3̄

Þ − 1

864π2m3̄

þO
�

1

m2
3̄

��
:

ð9Þ
For the diagrams with a photon coupling to an intermediate
meson, the contributions have the following form:

g22 ·H
ðbÞ
B3̄
ð0;mϕÞ

¼g22m3̄ ·
�
−
mϕ

4π
þ
2logðm

2
3̄

m2
ϕ
Þ−1

4π2m3̄

m2
ϕþO

�
1

m2
3̄

��
;

g24 ·H
ðcÞ
B3̄
ð0;mϕÞ

¼3g22 ·H
ðcÞ
B3̄
ð0;mϕÞ

¼g22m3̄ ·
�
mϕ

4π
−
9logðm

2
3̄

m2
ϕ
Þþ33logðμ2m2

3̄

Þþ59

432π2m3̄

m2
ϕþO

�
1

m2
3̄

��
:

ð10Þ
It is clear that at the order of 1=m0

3̄
, the contributions from

the 6 state and 6� state are the same but of opposite signs,
while at 1=m3̄, they are different and break the nice
cancellation exhibited in the HB scheme.

V. SUMMARY

Motivated by the recent experimental progress on heavy
flavor hadrons, we have studied the magnetic moments of
the singly charmed baryons in the covariant baryon chiral
perturbation theory (BChPT) with the extended-on-mass-

FIG. 4. Magnetic moments of the antitriplet baryons obtained
in different approaches. The light-blue bands denote the un-
certainties of the EOMS BChPT originated from the fitted LECs
within their 1σ confidence intervals. The others are taken from the
independent-quark model [13] (N. Barik et al., 83), the relativistic
quark model [14] (B. Julia-Diaz et al., 04), the effective mass and
screened charge scheme [15] (S. Kumar et al., 05), the relativistic
three-quark model [16] (A. Faessler et al., 06), the hyper central
model [17] (B. Patel et al., 08), the chiral constituent quark
model [18] (N. Sharma et al., 10), the bag model [19]
(A. Bernotas et al., 12), and the HB ChPT [24] (HB ChPT, 18).

8Note that them3̄ in the above equations outside the brackets is
from the baryon field normalization.
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FIG. 5. Same as Fig. 4, but for the sextet baryons. Additional data are taken from the QCD sum rules [22] (S.-L. Zhu et al., 97), the
light cone QCD sum rules [23] (T. M. Aliev et al., 15), the mean-field approach [20] (G.-S. Yang et al., 18), the self-consistent SU(3)
chiral quark-soliton model [21] (J. Y. Kim et al., 18), lattice QCD simulations [26] (LQCD, 14), and [29] (LQCD, 15).

TABLE VII. Decomposition of the loop contributions to the magnetic moments of singly charmed baryons calculated with the central
values of the LECs given in Table VI. The subscript 3̄, 6, and 6� denote the loop diagrams with the intermediate 3̄, 6, and 6� states at
Oðp3Þ, respectively.

EOMS 1 HB 1

Oðp2Þ Oðp3Þ3̄ Oðp3Þ6 Oðp3Þ6� μtot Oðp2Þ Oðp3Þ3̄ Oðp3Þ6 Oðp3Þ6� μtot LQCD [26,29]

B3̄ μΛþ
c

0.35 � � � −0.05 0.08 0.38 0.19 � � � −0.26 0.28 0.21 � � �
μΞþ

c
0.35 � � � 0.12 −0.23 0.24 0.19 � � � −0.17 0.22 0.24 � � �

μΞ0
c

0.25 � � � 0.16 −0.22 0.19 0.25 � � � 0.43 −0.50 0.19 � � �
B6 μΣþþ

c
2.27 −0.25 −0.44 0.13 1.71 3.92 −0.32 −0.99 0.29 2.90 1.499(202)

μΣþ
c

0.36 −0.11 −0.09 0.04 0.20 1.04 −0.24 −0.35 0.09 0.54 � � �
μΣ0

c
−1.55 0.04 0.26 −0.04 −1.29 −1.83 −0.17 0.29 −0.11 −1.82 −0.875ð103Þ

μΞ0þ
c

0.36 0.12 0.11 −0.04 0.55 1.04 0.08 −0.15 0.05 1.02 � � �
μΞ00

c
−1.55 0.24 0.38 −0.10 −1.03 −1.83 0.16 0.49 −0.14 −1.32 � � �

μΩ0
c

−1.55 0.45 0.51 −0.15 −0.74 −1.83 0.49 0.70 −0.18 −0.82 −0.667ð96Þ
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shell (EOMS) scheme up to the next-to-leading order.
Using the quark model and the heavy quark spin flavor
symmetry to fix the low energy constants g1;2;3;4, we
determined the rest, i.e., d2, d3, d5, and d6, by fitting to
the lattice QCD data. We compared our results with those
of the heavy baryon (HB) ChPT and found that at NLO the
lattice QCD quark mass dependent data can be better
described by the EOMS BChPT, consistent with previous
studies, though only marginally.
In addition, we notice that for the antitriplet baryons, the

contributions of intermediate 6 and 6* baryons exhibit a
nice cancellation in the HB ChPT, while such a cancellation
was not there in the EOMS BChPT because of the
appearance of higher order relativistic corrections. The
better agreement of our Oðp3Þ EOMS results with those of
HB ChPT up to Oðp4Þ of Ref. [24] might indeed indicate
that these corrections are relatively important.
We have treated the intermediate 6* baryons using the

so-called “consistent” coupling scheme and found indeed
that it can provide a better description of the lattice QCD
data compared to the conventional coupling scheme, but
only moderately, different from the case of the ground-state
octet baryons.
Compared with the results of other approaches, our

predicted magnetic moments for both the antitriplet and
the sextet baryons are relatively small in absolute
values. Apparently, this is tied to the lattice QCD data of

Refs. [26–29], to which we fitted to fix the unknown low
energy constants. It is not clear how to understand such a
pattern at present. We hope that future lattice QCD and/or
experimental studies can help us gain more insight into these
important quantities and to better understand the nature of
the singly charmed baryons. In addition, once more data
become available, it might be worthwhile to perform a more
rigorous study of the theoretical uncertainties, while the
present work should be better seen as an exploration.
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APPENDIX: LOOP FUNCTIONS

Here, we provide the pertinent loop functions appearing
in Eq. (7), corresponding to those Feynman diagrams of
Fig. 1, regularized with the gMS scheme and with the PCB
terms removed. All the loop functions, contributing either
to the antitriplet or to the sextet singly charmed baryons,
can be reduced to four common ones. More specifically, for
the antitriplet baryons, we have

HðbÞ
B3̄
ðδ1; mϕÞ ¼ HðbÞðm3̄; δ1; mϕÞ; HðcÞ

B3̄
ðδ2; mϕÞ ¼ HðcÞðm3̄; δ2; mϕÞ;

HðdÞ
B3̄
ðδ1; mϕÞ ¼ HðdÞðm3̄; δ1; mϕÞ; HðeÞ

B3̄
ðδ2; mϕÞ ¼ HðeÞðm3̄; δ2; mϕÞ; ðA1Þ

where the functions Hðb;c;d;eÞ are given below. For the sextet baryons, we have

HðbÞ
B6
ð0; mϕÞ ¼ HðbÞðm6; 0; mϕÞ; HðdÞ

B6
ð0; mϕÞ ¼ HðdÞðm6; 0; mϕÞ;

HðbÞ
B6
ðδ1; mϕÞ ¼ HðbÞðm6;−δ1; mϕÞ; HðdÞ

B6
ðδ1; mϕÞ ¼ HðdÞðm6;−δ1; mϕÞ;

HðcÞ
B6
ðδ3; mϕÞ ¼ HðcÞðm6; δ3; mϕÞ; HðeÞ

B6
ðδ3; mϕÞ ¼ HðeÞðm6; δ3; mϕÞ: ðA2Þ

TABLE VIII. Same as Table VII, but for case 2.

EOMS 2 HB 2

Oðp2Þ Oðp3Þ3̄ Oðp3Þ6 Oðp3Þ6� μtot Oðp2Þ Oðp3Þ3̄ Oðp3Þ6 Oðp3Þ6� μtot LQCD [26,29]

B3̄ μΛþ
c

0.24 � � � � � � � � � 0.24 0.24 � � � � � � � � � 0.24 � � �
μΞþ

c
0.24 � � � � � � � � � 0.24 0.24 � � � � � � � � � 0.24 � � �

μΞ0
c

0.19 � � � � � � � � � 0.19 0.19 � � � � � � � � � 0.19 � � �
B6 μΣþþ

c
1.69 � � � −0.44 0.13 1.38 2.70 � � � −0.99 0.29 2.00 1.499 (202)

μΣþ
c

0.32 � � � −0.09 0.04 0.27 0.72 � � � −0.35 0.09 0.46 � � �
μΣ0

c
−1.05 � � � 0.26 −0.04 −0.83 −1.26 � � � 0.29 −0.11 −1.08 −0.875ð103 Þ

μΞ0þ
c

0.32 � � � 0.11 −0.04 0.39 0.72 � � � −0.15 0.05 0.62 � � �
μΞ00

c
−1.05 � � � 0.38 −0.10 −0.77 −1.26 � � � 0.49 −0.14 −0.91 � � �

μΩ0
c

−1.05 � � � 0.51 −0.15 −0.69 −1.26 � � � 0.70 −0.18 −0.74 −0.667ð96Þ
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The two common functions Hðb;dÞ are,

HðbÞðmB;�δ; mϕÞ ¼
ðmB þmiÞ2
16π2m4

B

2
64ðmB −miÞm3

i log

�ðm2
B −m2

i Þ2
m2

i m
2
ϕ

�
−m2

ϕ

�
2m2

B þ ðmimB þM2Þ log
�
m2

i

m2
ϕ

��

þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmB −miÞ2 −m2

ϕ

q
ðm2

ϕðmimB −M2Þ −m3
i ðmB þmiÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðmB þmiÞ2 −m2
ϕ

q

× log

0
B@�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 3m2

i − λ1=2ðm2
B;m

2
ϕ; m

2
i Þ

M2 þ 3m2
i þ λ1=2ðm2

B;m
2
ϕ; m

2
i Þ

vuut
1
CA
3
75; ðA3Þ

HðdÞðmB;�δ; mϕÞ ¼
ðmB þmiÞ2
16π2m4

B

2
64ðm2

B −m2
i Þ2 log

�
m2

i m
2
ϕ

ðm2
B−m

2
i Þ2
�

1þmB=mi
−m2

ϕ

�
2m2

B þ ðM2 þm2
B þmBmiÞ log

�
m2

i

m2
ϕ

��

−
2ððmB −miÞ2 −m2

ϕÞ
�
miðm2

B−m
2
i Þ2

mB−mi
−m4

ϕ þmiðmB þ 2miÞm2
ϕ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−λðm2

B;m
2
ϕ; m

2
i Þ

q cos−1
�
M2 þ 3m2

i

2mimϕ

�375; ðA4Þ

with

λða; b; cÞ ¼ a2 þ b2 þ c2 − 2ab − 2ac − 2bc; M2 ¼ m2
ϕ − 2m2

i −m2
B; mi ¼ mB þ δ; δ > 0: ðA5Þ

It should be noted that HðbÞðmB; 0; mϕÞ and HðdÞðmB; 0; mϕÞ can easily be obtained by taking the limit of δ → 0 from

Eqs. (A3), (A4). On the other hand, HðcÞðmB; δ; mϕÞ and HðeÞðmB; δ; mϕÞ correspond to mBþδ
12π2

· ðHðaÞ −HðaÞ
PCÞ and

mBþδ
12π2

· ðHðbÞ −HðbÞ
PCÞ, which are explicitly given in the Appendix of Ref. [42]. Here, the PCB terms HðaÞ

PC and HðbÞ
PC can

be derived by expanding mϕ up to Oðp0Þ. Note that in removing the PCB terms, we have kept the δ corrections up to all
orders [42].
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