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We derive the light-front wave function (LFWF) representation of the γ�γ� → ηcð1SÞ; ηcð2SÞ transition
form factor FðQ2

1; Q
2
2Þ for two virtual photons in the initial state. For the LFWF, we use different models

obtained from the solution of the Schrödinger equation for a variety of cc̄ potentials. We compare our
results to the BABAR experimental data for the ηcð1SÞ transition form factor, for one real and one virtual
photon. We observe that the onset of the asymptotic behavior is strongly delayed and discuss applicability
of the collinear and/or massless limit. We present some examples of two-dimensional distributions for
FðQ2

1; Q
2
2Þ. A factorization breaking measure is proposed and factorization breaking effects are quantified

and shown to be almost model independent. Factorization is shown to be strongly broken, and a scaling of
the form factor as a function of Q̄2 ¼ ðQ2

1 þQ2
2Þ=2 is obtained.
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I. INTRODUCTION

The description of the hadronic structure in terms of the
quark and gluon degrees of freedom is one of the main
goals of quantum chromodynamics (QCD). During the last
years, our understanding about the partonic distributions
has been substantially improved by the experimental data
obtained in ep and pp colliders. Complementary informa-
tion about the internal structure of mesons can be accessed
by the study of the electromagnetic form factors and the
meson-photon transition form factors. There has been a lot
of interest recently in the exclusive production of mesons
via photon fusion processes studied mainly at the eþe−
colliders [1]. Such studies are strongly motivated by the
expectation that at large photon virtualities the measure-
ments of the cross sections will provide strong constraints
in the probability amplitude for finding partons in the
mesons [2–4]. The meson-photon transition form factors

are also of interest because of the role they play in the
hadronic light-by-light contribution to the muon anomalous
magnetic moment [5].
During the last years, a lot of attention has been paid to

the case of pseudoscalar light meson-photon transition
form factors [6,7], mainly motivated by the experimental
data from the CLEO, BABAR, Belle, and L3 collaborations
for the π0, η, and η0 production in eþe− collisions. These
collaborations have extracted the transition form factor
from single-tag events where only one of the leptons in the
final state is measured. In this case, one of the photons is far
off the mass shell, while the other is almost real. Such data
have allowed testing of the collinear factorization approach
and the onset of the asymptotic regime, as well as motivated
the improvement of theoretical approaches. Similar results
have been obtained for ηc production. In this case, the ηc
mass provides a hard scale that justifies the use of a
perturbative approach even for zero virtualities. In the past
this transition form factor was studied in different
approaches, (although often only for one virtual photon),
such as perturbative QCD [8,9], lattice QCD [10,11],
nonrelativistic QCD [12,13], QCD sum rules [14], as well
as from Dyson-Schwinger and Bethe-Salpeter equations
[15]. In the light-front quark model (LFQM) the case of one
virtual and one real photon has been studied in [16,17].
In the present paper we will treat the heavy meson-

photon transition form factor, focusing our analysis on the
pseudoscalar charmonium state ηcð1SÞ and its radial
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excitation ηcð2SÞ. Here we will focus on calculating the
transition form factor for both virtual photons, which was
not studied so far in the light-front approach. These double
virtual transition form factors can be measured in eþe−

collisions in the double-tag mode, where both the electron
and the positron are detected in the final state. Recent
results for the η0 production by the BABAR Collaboration
[18] have demonstrated that this study is feasible. Our study
is motivated by the possibility of an accurate measurement
of the double virtual transition form factors considering
the high luminosity expected at Belle2. This may open new
possibilities, such as the issue of factorization breaking
of the transition form factors, which will be addressed in
this paper. Regarding the wave functions of the quarkonia,
we wish to use also cc̄ wave functions obtained from
realistic potential models. Here we will make use of the
solutions obtained in [19]. We shall investigate how well
they can describe the recent BABAR data [20] for γγ� →
ηcð1SÞ. We shall also calculate transition form factors for
γγ� → ηcð2SÞ, not yet measured, but could be considered
for the Belle 2 program.
The paper is organized as follows. In Sec. II, we present

the light-front formalism that is used for computations of
the γ�γ� → ηc form factor. Here, we provide the details
of the light front ηcð1S; 2SÞ wave function calculations in
the framework of the Schrödinger equation with a chosen
set of cc̄ interaction potentials, as well as derive the basic
relations for the corresponding amplitude and the transition
form factor. In Sec. III, we discuss the most relevant
numerical results on the ηc wave functions and the
transition form factors for different cc̄ potentials, which
are also compared to the existing BABAR data for the
ηcð1SÞ state. Section IV summarizes the most important
results of our analysis.

II. THE LIGHT-FRONT FORMALISM FOR
THE γ�γ� → ηc FORM FACTOR

Our goal in this section is to describe the γ�γ� → ηc form
factor, which can be measured in eþe− collisions using
two-photon events in which both photons are far off the
mass shell. The typical diagram is represented in Fig. 1.
We will consider the light-front formalism, which allows us
to describe the meson in terms of the quark degrees of
freedom. Let us first start from general kinematical
considerations.
The amplitude for the photon fusion γ�γ� → ηc has the

general form dictated by the JPC ¼ 0−þ quantum numbers
of the ηc:

Mμνðγ�ðq1Þγ�ðq2Þ → ηcÞ
¼ 4παemð−iÞεμναβqα1qβ2FðQ2

1; Q
2
2Þ: ð2:1Þ

HereQ2
i ¼ −q2i ≥ 0, i ¼ 1, 2 are the virtualities of photons,

which we take both to be spacelike. The form factor

FðQ2
1; Q

2
2Þ above is the object of interest in this paper.

It is normalized such that the two-photon decay-width of
the meson is obtained from

Γðηc → γγÞ ¼ π

4
α2emM3

ηc jFð0; 0Þj2: ð2:2Þ

For further calculation it is useful to choose a frame in
which incoming photon four-momenta have the form

q1 ¼ qþ1 n
þ þ q1⊥; q2 ¼ q−2 n

− þ q2⊥: ð2:3Þ

Here

n� ¼ 1ffiffiffi
2

p ð1; 0; 0;�1Þ; ð2:4Þ

and we will denote the transverse vectors by boldface
vectors, e.g.,

qi⊥ ¼ ð0; qi; 0Þ; q2i⊥ ¼ −q2i : ð2:5Þ

As the polarization vectors of off-shell photons we will
choose nþ and n− for the first and second photon,
respectively. The four-momenta of photons satisfy
nþ · q1 ¼ n− · q2 ¼ 0.1 We finally note that the transverse
momentum of the meson is P ¼ q1 þ q2, and the photon
light-front momenta fulfill

2qþ1 q
−
2 ¼ M2

ηc þ P2: ð2:6Þ

Projected onto the photon polarizations, the amplitude
takes the simple form

nþμn−νMμνðγ�ðq1Þγ�ðq2Þ → ηcÞ
¼ 4παemð−iÞ½q1; q2�FðQ2

1; Q
2
2Þ; ð2:7Þ

where ½q1; q2� ¼ qx1q
y
2 − qy1q

x
2.

FIG. 1. The ηc production by the interaction of two virtual
photons in eþe− collisions.

1Notice, that these polarizations are precisely the polarizations
which dominate at high energies; see the diagram represented in
Fig. 1. (See e.g., chapter 8 of [21].)
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A. Light-front wave function of ηc
We treat the ηc as a bound state of a charm quark and

antiquark, thus assuming that the dominant contribution
comes from the cc̄ component in the Fock-state expansion:

jηc;Pþ;Pi ¼
X
i;j;λ;λ̄

δijffiffiffiffiffiffi
Nc

p
Z

dzd2k
zð1 − zÞ16π3Ψλλ̄ðz; kÞ

× jciλðzPþ; pcÞc̄jλ̄ðð1 − zÞPþ; pc̄Þi þ…

ð2:8Þ

Here the c-quark and c̄-antiquark carry a fraction z and
1 − z respectively of the ηc’s plus-momentum. The light-
front helicites of quark and antiquark are denoted by λ, λ̄,
and take values �1. The transverse momenta of quark and
antiquark are

pc ¼ kþ zP; pc̄ ¼ −kþ ð1 − zÞP: ð2:9Þ

The contribution of higher Fock states is expected to be
suppressed at large Q2. Moreover, the fact that nonrela-
tivistic potential models are able to describe the quarkonia
properties implies that the valence cc̄ Fock state probability
of ηc is almost 1 (see e.g., [8,22]). In Ref. [16], the authors
have assumed the ηc wave function is a combination of the
uū, dd̄, ss̄, and cc̄ Fock states. The resulting predictions for
the ηc form factor become dependent on the assumptions
for the mixing angles, but are similar to those obtained
assuming that the ηc is a pure cc̄ state. Therefore, our
assumption for the ηc wave function as a pure cc̄ state is a
very good approximation. The light-front wave function
encodes all the necessary information on the bound state.
Recently there has been a lot of interest in calculating light-
front wave functions of heavy quarkonia; see for example
[23–25]. Here we follow a different approach which relies
on a prescription due to Terentev [26], valid for weakly
bound nonrelativistic systems, which expresses the light-
front wave function in terms of the rest-frame Schrödinger
wave function.
In the 2Sþ1LJ ¼1 S0 state the wave function of the two-

body system for canonical spin-projections σσ̄ of quark and
antiquark has the form

Ψσσ̄ðp⃗Þ ¼
1ffiffiffi
2

p χ†σiσ2 χσ̄ϕðpÞY00

�
p⃗
p

�

¼ 1ffiffiffi
2

p χ†σiσ2 χσ̄
uðpÞ
p

1ffiffiffiffiffiffi
4π

p : ð2:10Þ

Here χ†, χ are the Pauli spinors, and p ¼ jp⃗j. The
normalization condition readsZ

d3p⃗
X
σσ̄

jΨσσ̄ðp⃗Þj2 ¼ 1;
Z

∞

0

dpu2ðpÞ ¼ 1: ð2:11Þ

In order to apply Terentev’s transformation, we first
introduce the relative momentum p⃗ of quark and antiquark
in the center-of-mass frame at fixed invariant mass Mcc̄,

p ¼ k; pz ¼
�
z −

1

2

�
Mcc̄; ð2:12Þ

so that

p⃗2 ¼ 1

4
ðM2

cc̄ − 4m2
cÞ ¼

1

4

�
k2 þm2

c

zð1 − zÞ − 4m2
c

�
: ð2:13Þ

We then decompose the helicity dependent light-front wave
function into a spin/momentum and radial part as

Ψλλ̄ðz; kÞ ¼
Γλλ̄ðz; kÞ
N ðz; kÞ ϕðz; kÞ: ð2:14Þ

To obtain the helicity dependent part of the LFWF one
needs to transform the rest-frame spinors to the light-front
spinors, which is effected by means of a Melosh transform
[27]. This has been done e.g., in Ref. [28], and the helicity-
dependent vertex reads

Γλλ̄ðz; kÞ ¼ ūλðzPþ; kÞγ5vλ̄ðð1 − zÞPþ;−kÞ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1 − zÞp fλmcδλ−λ̄ − λ

ffiffiffi
2

p
k · eð−λÞδλλ̄g;

ð2:15Þ

where eðλÞ ¼ −ðλex þ ieyÞ=
ffiffiffi
2

p
. The normalizing function

N is

N ðz; kÞ ¼
�X

λλ̄

Γλλ̄ðz; kÞΓ�
λλ̄
ðz; kÞ

�
1=2

¼
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

c

zð1 − zÞ

s
¼

ffiffiffi
2

p
Mcc̄: ð2:16Þ

Then, if we take the meson state to obey the canonical
relativistic normalization

hηc;P0þ;P0jηc;Pþ;Pi ¼ 2Pþð2πÞ3δðP0þ − PþÞδð2ÞðP0 − PÞ;
ð2:17Þ

the radial light-front wave function ϕðz; kÞ will be norma-
lized as

Z
1

0

dz
zð1 − zÞ

Z
d2k
16π3

jϕðz; kÞj2 ¼ Ncc̄ ¼ 1: ð2:18Þ

To relate the radial LFWF to the rest-frame wave function,
we should still take into account a jacobian from changing
the integration measure
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dzd2k
zð1 − zÞ ¼ 4

d3p⃗
Mcc̄

; ð2:19Þ

so that we obtain the identification

ϕðz; kÞ ¼ π
ffiffiffiffiffiffiffiffi
Mcc̄

p uðpÞ
p

: ð2:20Þ

To lighten up the notation of the amplitude, we also use

ψðz; kÞ ¼ ϕðz; kÞ
N ðz; kÞ ¼

πffiffiffiffiffiffiffiffiffiffiffi
2Mcc̄

p uðpÞ
p

; ð2:21Þ

which we also refer to as the radial wave function.
Let us now present the details of computation of the

radial wave function by means of the Schödinger equation
with a set of chosen cc̄ interaction potentials. For reviews
on these topics, see e.g., Refs. [29,30].

B. Schrödinger equation and cc̄ interaction potentials

The charmonium wave function is found in the quark-
antiquark rest frame by solving the Schrödinger equation
which for the radial wave function ψðrÞ can be written as
(for more details see the appendix in Ref. [19])

∂2uðrÞ
∂r2 ¼ ðVeffðrÞ − ϵÞuðrÞ;

uðrÞ ¼
ffiffiffiffiffiffi
4π

p
rψðrÞ;Z

∞

0

juðrÞj2dr ¼ 1; ð2:22Þ

where

VeffðrÞ ¼ mcVðrÞ þ
lðlþ 1Þ

r2
; ϵ ¼ mcE; ð2:23Þ

in terms of the interaction cc̄ potential, VðrÞ. Here, we
briefly describe several models for VðrÞ chosen for our
analysis.

(1) Harmonic oscillator:

VðrÞ ¼ 1

2
mcω

2r2; ð2:24Þ

where for charmonia we adopt

ω ¼ 1

2
ðM2S −M1SÞ ≃ 0.3 GeV;

mc ¼ 1.4 GeV: ð2:25Þ

For such a simple choice of the interaction potential
one finds an analytic solution of the Schrödinger
equation (2.22)

uðrÞ ¼ exp

�
−
1

4
mcωr2

�
; ð2:26Þ

yielding a Gaussian shape of the wave function.
(2) Cornell potential [31,32]:

VðrÞ ¼ −
k
r
þ r
a2

; k ¼ 0.52; a ¼ 2.34 GeV−1;

ð2:27Þ

and the charm quark mass is fixed to mc ¼
1.84 GeV.

(3) Logarithmic potential [33]:

VðrÞ¼−0.6635GeVþð0.733GeVÞlogðr ·1GeVÞ;
ð2:28Þ

with mc ¼ 1.5 GeV.
(4) Effective power-law potential [34,35]:

VðrÞ ¼ −6.41 GeVþ ð6.08 GeVÞðr · 1 GeVÞ0.106;
ð2:29Þ

assumes mc ¼ 1.334 GeV [36].
(5) Buchmüller-Tye (BT) potential [37]:

VðrÞ ¼
8<
:

k
r −

8π
27

vðλrÞ
r ; r ≥ 0.01 fm

− 16π
25

1
r lnwðrÞ

�
1þ 2ðγE þ 53

75
Þ 1
lnwðrÞ −

462
625

ln lnwðrÞ
lnwðrÞ

�
; r < 0.01 fm;

ð2:30Þ

where γE ¼ 0.5772 is the Euler constant, and the function vðxÞ is known numerically from Ref. [37], and

wðrÞ ¼ 1

λ2MSr
2
; λMS ¼ 0.509 GeV; k ¼ 0.153 GeV2; λ ¼ 0.406 GeV: ð2:31Þ

Here, the charm quark mass is taken to bemc ¼ 1.48 GeV. One notices that the BT potential at small r has a Coulomb-like
behavior, while at large r it has a stringlike behavior such that its difference from the Cornell potential is mainly at
small r.
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C. Light-front representation of the amplitude and transition form factor

Our calculation follows the standard procedure of perturbative QCD for exclusive processes. We regard the γ�γ� → cc̄
transition as a hard, perturbatively calculable process and convolute the amplitude with the bound state wave function. We
will assume later that the charm quark mass mc by itself is large enough to justify perturbation theory and apply our results
even in the limit of vanishing photon virtualities. Following [38] [see Eq. (A7) therein], the photon fusion amplitude can be
expressed as

Mμνðγ�ðq1Þγ�ðq2Þ → ηcÞ ¼
Tr1colorffiffiffiffiffiffi

Nc
p

Z
dzd2k

zð1 − zÞ16π3
X
λλ̄

Ψ�
λλ̄
ðz; kÞMμνðγ�ðq1Þγ�ðq2Þ → cλðz; pcÞc̄λ̄ð1 − z; pc̄ÞÞ: ð2:32Þ

Here

Mμνðγ�ðq1Þγ�ðq2Þ → cλðz; pcÞc̄λ̄ð1 − z; pc̄ÞÞ

¼ 4παemūλðzPþ; pcÞ
�
γμ

p̂c − q̂1 þmc

t −m2
c

γν þ γν
p̂c − q̂2 þmc

u −m2
c

γμ

�
vλ̄ðð1 − zÞPþ; pc̄Þ; ð2:33Þ

where p̂≡ pμγμ is the standard Feynman amplitude including the t-channel and u-channel exchange of a quark. We can
express the denominators of the propagators though LF variables:

u −m2
c ¼ −

1

1 − z
½l2A þ μ2�;

t −m2
c ¼ −

1

z
½l2B þ μ2�: ð2:34Þ

Here we introduce the notation

lA ¼ pc̄ − ð1 − zÞq1 ¼ −kþ ð1 − zÞq2;
lB ¼ pc − zq1 ¼ kþ zq2; ð2:35Þ

and

μ2 ¼ zð1 − zÞq21 þm2
c: ð2:36Þ

Contracting the Feynman amplitude with nþμ n−ν allows us to reduce the amplitude to a form where only simple spinor
products of the form ūn̂þv; ūn̂−u; v̄n̂−v need to be performed. Using the spinors from Ref. [38], we obtain then2

nþμn−νMμνðγ�ðq1Þγ�ðq2Þ → ηcÞ

¼ 4παem
Tr1colorffiffiffiffiffiffi

Nc
p ð−2Þ

Z
dzd2kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

zð1 − zÞp
16π3

	�
1

l2A þ μ2
−

1

l2B þ μ2

� �
i½k; q1�ðΨ�þ−ðz; kÞ −Ψ�

−þðz; kÞÞ

−
ffiffiffi
2

p
m
�
ðeð−Þq1ÞΨ�þþðz; kÞ þ ðeðþÞq1ÞΨ�

−−ðz; kÞ
��

þ
�
1 − z
l2A þ μ2

þ z
l2B þ μ2

�
i½q1; q2�ðΨ�þ−ðz; kÞ − Ψ�

−þðz; kÞÞ


:

ð2:37Þ

Here, subscripts � of the wave functions stand for helicities � 1
2
of (anti)quarks. Inserting the explicit expressions for the

helicity dependent wave functions given in Eq. (2.15), we observe that there is a large cancellation between the parallel and
antiparallel helicity configurations, and only the last term ∝ ½q1; q2� survives. It is then straightforward to read off our result
for the γ�γ� → ηc form factor by comparing to Eq. (2.7):

FðQ2
1;Q

2
2Þ ¼ e2c

ffiffiffiffiffiffi
Nc

p
4mc ·

Z
dzd2k

zð1− zÞ16π3 ψðz;kÞ
	

1− z
ðk− ð1− zÞq2Þ2 þ zð1− zÞq21 þm2

c
þ z
ðkþ zq2Þ2 þ zð1− zÞq21 þm2

c



:

ð2:38Þ

2We have dropped the terms ∝ Ψ�þ− þ Ψ�
−þ, which vanish for the pseudoscalar state; see Eq. (2.15).
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and then to perform the integration over the azimuthal angle of k. Using

Z
2π

0

dϕ
2π

1

Aþ B cosϕ
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 − B2
p ; ð2:39Þ

we can obtain

FðQ2
1; Q

2
2Þ ¼ e2c

ffiffiffiffiffiffi
Nc

p
4mc ·

Z
dzkdk

zð1 − zÞ8π2 ψðz; kÞ
	

1 − zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2 −m2

c − zð1 − zÞq21 − ð1 − zÞ2q22Þ2 þ 4k2ðm2
c þ zð1 − zÞq21Þ

p
þ zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk2 −m2
c − zð1 − zÞq21 − z2q22Þ2 þ 4k2ðm2

c þ zð1 − zÞq21Þ
p 


: ð2:40Þ

This form puts into evidence, that the invariant form factor
FðQ2

1; Q
2
2Þ is a function of Q2

1 ¼ q21 and Q2
2 ¼ q22 only.

Notice that by Bose symmetry, the form factor must be a
symmetric function of Q2

1; Q
2
2. This is evidently not

obvious from the representations Eq. (2.38) or
Eq. (2.40), as the integrand is manifestly asymmetric in
q1, q2. However, as will be demonstrated below by the
numerical results, our representation has the required
symmetry. In particular, in the limit of one on-shell photon,
one must have that FðQ2Þ≡ FðQ2; 0Þ ¼ Fð0; Q2Þ, and the
two different integral representations for FðQ2Þ which
follow from Eq. (2.38) coincide with the ones found in
Ref. [17], where their equivalence was also demonstrated
numerically.
A number of limits of Eq. (2.38) are interesting. First, the

value Fð0; 0Þ for two on-shell photons is related to the two-
photon decay width by Eq. (2.2). Note that

Fð0;0Þ¼e2c
ffiffiffiffiffiffi
Nc

p
4mc ·

Z
dzd2k

zð1−zÞ16π3
ψðz;kÞ
k2þm2

c
: ð2:41Þ

Let us write this result as an integral over the three-
momentum p⃗ and the radial wave function uðpÞ:

Fð0; 0Þ

¼ e2c
ffiffiffiffiffiffi
Nc

p
4mc

Z
4d3p⃗

Mcc̄16π
3

ψðz; kÞ
k2 þm2

c

¼ e2c
ffiffiffiffiffiffiffiffi
2Nc

p mc

π

Z
∞

0

dppuðpÞffiffiffiffiffiffiffiffi
M3

cc̄

p
ðp2 þm2

cÞ

Z
1

−1

d cos θ
1 − β2cos2θ

¼ e2c
ffiffiffiffiffiffiffiffi
2Nc

p 2mc

π

Z
∞

0

dppuðpÞffiffiffiffiffiffiffiffi
M3

cc̄

p
ðp2 þm2

cÞ
1

2β
log

�
1þ β

1 − β

�
:

ð2:42Þ

Here we used that in polar coordinates k2 ¼ p2sin2θ, hence
k2 þm2

c ¼ ðp2 þm2
cÞð1 − β2cos2θÞ, where we introduced

β ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

c

p ; ð2:43Þ

the velocity v=c of the quark in the cc̄ center of mass frame.
Similar results for the relativistic corrections to the decay
width exist in the literature; see e.g., Ref. [39] and
references therein. Notice that in these approaches typically
the running of the mass Mcc̄ with p is neglected.
In the nonrelativistic (NR) limit, where p2=m2

c ≪ 1;
β ≪ 1, the invariant mass Mcc̄ approaches Mcc̄ ¼ 2mc. If
we neglect the binding energy, and identify 2mc ¼ Mηc, we
obtain

Fð0; 0Þ ¼ e2c
ffiffiffiffiffiffi
Nc

p ffiffiffi
2

p 4

π
ffiffiffiffiffiffiffiffi
M5

ηc

q Z
∞

0

dppuðpÞ

¼ e2c
ffiffiffiffiffiffi
Nc

p 4Rð0Þffiffiffiffiffiffiffiffiffiffiffi
πM5

ηc

q : ð2:44Þ

Here Rð0Þ is the value of the radial wave function RðrÞ ¼
uðrÞ=r at the origin. This yields the well-known result for
the γγ width (see e.g., Table 2.2 in Ref. [40])

Γðηc → γγÞ ¼ 4α2eme4cNc

M2
ηc

jRð0Þj2; ð2:45Þ

which serves as a check on our normalization. In the same
limit, which amounts to an expansion around k ¼ 0 and
z ¼ 1=2 in Eq. (2.38), we can derive the transition form
factor in the NRQCD-limit,

FðQ2
1; Q

2
2Þ ¼ e2c

ffiffiffiffiffiffi
Nc

p 4ffiffiffiffiffiffiffiffiffiffiffi
πMηc

p 1

Q2
1 þQ2

2 þM2
ηc

Rð0Þ:

ð2:46Þ

Still another interesting limit exists; namely at very large
Q2

i , the k-smearing becomes unimportant, and one can
neglect k in the hard matrix element of Eq. (2.38). Then
only the LFWF appears under the k integral, and the hard
scattering factorization in terms of the distribution ampli-
tude emerges. We introduce the distribution amplitude
(DA) at a scale μ20 as
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fηcφðz; μ20Þ ¼
1

zð1 − zÞ
ffiffiffiffiffiffi
Nc

p
4mc

16π3

Z
d2kθðμ20 − k2Þψðz; kÞ:

ð2:47Þ

The DA is conveniently normalized as

Z
1

0

dzφðz; μ20Þ ¼ 1; ð2:48Þ

so that we can extract the so-called decay constant fηc from
the integral over z in Eq. (2.47). The transition form factor
simplifies to

FðQ2
1;Q

2
2Þ ¼ e2cfηc ·

Z
1

0

dz

	 ð1− zÞφðz;μ20Þ
ð1− zÞ2Q2

1þ zð1− zÞQ2
2þm2

c

þ zφðz;μ20Þ
z2Q2

1 þ zð1− zÞQ2
2þm2

c



: ð2:49Þ

This representation is valid in the limit of large photon
virtualities Q2

1; Q
2
2.

III. NUMERICAL RESULTS

In this section we will present our results for the doubly
virtual transition form factor, which will be calculated
for the different models for the meson wave function.
A comparison with the current experimental data will be
presented and the onset of the asymptotic regime will be
discussed. Moreover, in order to estimate the factorization
breaking in the transition form factor we will also estimate
the normalized form factor, defined by

F̃ðQ2
1; Q

2
2Þ ¼

FðQ2
1; Q

2
2Þ

Fð0; 0Þ ; ð3:1Þ

which nicely quantifies the deviation from pointlike cou-
pling. A popular model for the transition form factor is
based on the vector dominance model (VDM) (see e.g.,
Ref. [20]), and reads

F̃ðQ2
1; Q

2
2Þ ¼

M2
J=Ψ

Q2
1 þM2

J=Ψ
·

M2
J=Ψ

Q2
2 þM2

J=Ψ
: ð3:2Þ

It features a factorized dependence on the photon virtual-
ities, which we expect to be broken. In our analysis, we will
quantify the factorization breaking of the transition form
factor by estimating the quantity defined by

RðQ2
1; Q

2
2Þ ¼

F̃ðQ2
1; Q

2
2Þ

F̃ðQ2
1; 0ÞF̃ð0; Q2

2Þ
: ð3:3Þ

A. cc̄ wave functions of ηcð1SÞ and ηcð2SÞ
Our wave functions uðpÞ were obtained by Fourier

transform from the r-dependent cc̄ wave functions
obtained as a solution of the Schrödinger equation
with different, realistic potentials from the literature as
described in the previous section. In Fig. 2 we show the
wave function uðpÞ for different potentials for the 1S state
(upper panel) and for the 2S radial excitation (lower
panel). We have that the different models predict similar
shapes for the wave functions, but they differ in their
predictions for the position of the peaks and the approach
to the large momentum limit.
Using the Terentev prescription [see Eq. (2.12)] we

obtain wave functions in the light-front variables z and
kT ¼ jkj. In Fig. 3 we show as an example the light-
front wave function of Eq. (2.21) in the ðz; kTÞ space
for the Buchmüller-Tye potential. As expected, the
wave function is strongly peaked at z ≈ 1=2 and is
strongly suppressed in the endpoints. These properties
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FIG. 2. Momentum space wave function uðpÞ for ηcð1SÞ (top)
and ηcð2SÞ (bottom) for different potentials.
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are shared by all wave functions for the potentials
used by us. The Cornell potential wave function some-
what stands out as it has the hardest tail at large
momenta.

B. γ�γ� transition form factor

We start the presentation of our results from the value of
Fð0; 0Þ for ηcð1SÞ and ηcð2SÞ obtained from the different
potential model wave functions. The obtained results for

z

0.2
0.4

0.6
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FIG. 3. The light-front radial wave function ψðz; kÞ of Eq. (2.21) in the (z; kT) space for Buchmüller-Tye potential for ηcð1SÞ and
ηcð2SÞ, respectively. Here kT ¼ jkj.

TABLE I. Transition form factor jFð0; 0Þj for ηcð1SÞ at Q2
1 ¼ Q2

2 ¼ 0.

Potential type mc [GeV] jFð0; 0Þj [GeV−1] Γγγ [keV fηc [GeV]

Harmonic oscillator 1.4 0.051 2.89 0.2757
Logarithmic 1.5 0.052 2.95 0.3373
Powerlike 1.334 0.059 3.87 0.3074
Cornell 1.84 0.039 1.69 0.3726
Buchmüller-Tye 1.48 0.052 2.95 0.3276

Experiment � � � 0.067� 0.003 [41] 5.1� 0.4 [41] 0.335� 0.075 [42]

TABLE II. Transition form factor jFð0; 0Þj for ηcð2SÞ at Q2
1 ¼ Q2

2 ¼ 0.

Potential type mc [GeV] jFð0; 0Þj [GeV−1] Γγγ [keV] fηc [GeV]

Harmonic oscillator 1.4 0.03492 2.454 0.2530
Logarithmic 1.5 0.02403 1.162 0.1970
Powerlike 1.334 0.02775 1.549 0.1851
Cornell 1.84 0.02159 0.938 0.2490
Buchmüller-Tye 1.48 0.02687 1.453 0.2149

Experiment [41] � � � 0.03266� 0.01209 2.147� 1.589

TABLE III. R(0) and γγ width for ηcð1SÞ derived in the nonrelativistic limit.

Potential type R(0) [GeV3=2] Γγγ [keV] M ¼ Mηc Γγγ [keV] M ¼ 2mc

Harmonic oscillator 0.6044 5.1848 5.8815
Logarithmic 0.8919 11.290 11.157
Powerlike 0.7620 8.2412 10.297
Cornell 1.2065 20.660 13.568
Buchmüller-Tye 0.8899 11.240 11.409
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Fð0; 0Þ, together with the resulting decay width into
photons Γγγ , are collected in Table I for the ηcð1SÞ and
Table II for the ηcð2SÞ, respectively. Rather different results
are obtained for different potentials, and they are not always
consistent with the one obtained from radiative decay width
Γγγ, rather well known from recent experiments [41]. It is

interesting to compare these—fully relativistic—results to
the ones obtained from the wave function at the origin
collected in Tables III and IV respectively for ηcð1SÞ and
ηcð2SÞ. We observe that the relativistic corrections are
fairly strong, especially for the Cornell potential.
Also shown in Tables I and II are the values for the

so-called decay constant fηc . In the case of the 1S state,
the agreement with a value extracted by the CLEO
Collaboration [42] is generally quite good. We wish to
point out that the decay constant fηc is not directly related
to the two-photon decay width Γγγ . Such a relation only
exists in the nonrelativistic limit, where both quantities are
expressed in terms of the wave function at the origin.
In the upper panel of Fig. 4 we show our results for the

normalized γ�γ → ηc transition form factor F̃ðQ2; 0Þ as a
function of photon virtuality (Q2) for different potential
models. Below we will also use the notation FðQ2Þ ¼
FðQ2; 0Þ ¼ Fð0; Q2Þ, when one of the photons is on shell.

TABLE IV. R(0) and γγ width for ηcð2SÞ derived in the
nonrelativistic limit.

Potential type
R(0)

[GeV3=2]
Γγγ [keV]
M ¼ Mηc

Γγγ [keV]
M ¼ 2mc

Harmonic oscillator 0.7402 5.2284 8.8214
Logarithmic 0.6372 3.8745 5.6946
Powerlike 0.5699 3.0993 5.7594
Cornell 0.9633 8.8550 8.6493
Buchmüller-Tye 0.7185 4.9263 7.4374
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FIG. 4. The dependence of the normalized transition form
factor F̃ðQ2; 0Þ on spacelike photon virtuality for ηcð1SÞ and
ηcð2SÞ. For the case of the ηcð1SÞ, the BABAR experimental data
[20] are shown for comparison.
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For reference we also show the BABAR experimental
data [20]. The oscillator and power-law potentials give
the best description of the BABAR data. This appears to be
related to the lower value of mc used with these potentials.
A modification of the quark mass to mc ¼ 1.3 GeV in the
hard matrix element in fact leads to a much better agree-
ment with the BABAR data.
The γ�γ transition form factor for the ηcð2SÞ is shown

in the lower panel of Fig. 4. In this case the F̃ðQ2; 0Þ ¼
F̃ð0; Q2Þ has a somewhat harder tail as a function of Q2

than for the ηcð1SÞ.
In Fig. 5 we show the rate of approaching ofQ2FðQ2Þ to

its asymptotic value predicted by Brodsky and Lepage [38].
For the asymptotic distribution amplitude φðz; μ2Þ ¼
6zð1 − zÞ, one would obtain Q2FðQ2Þ ¼ 8

3
fηc . Therefore

the horizontal lines 8
3
fηc are shown for reference [upper

panel: ηcð1SÞ; lower panel: ηcð2SÞ], considering the values
for fηc presented in Tables I and II. We do not observe
approaching towards BL asymptotic value for Q2 ≤
50 GeV2. While our results flatten out at large Q2, their
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FIG. 6. Distribution amplitudes for different wave functions for
ηcð1SÞ (top) and for ηcð2SÞ (bottom).

TABLE V. Extracted coefficients anðμ0Þ, for the Buchmüller-
Tye potential.

n anðμ0Þηcð1SÞ anðμ0Þηcð2SÞ
2 −0.284 −0.0765
4 0.0635 −0.1627
6 −0.008157 0.128
8 −0.000619 −0.049
10 0.000216 0.0088
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FIG. 7. Q2FðQ2Þ for ηcð1SÞ (top) and ηcð2SÞ (bottom) as a
function of photon virtuality. The horizontal line is the limit for
Q2 → ∞, calculated for the Buchmüller-Tye potential. The red
dashed line (via LFWF) was obtained according to Eq. (2.38).
The black dashed-dotted curve (via DA) and the blue solid curve
(via DA, evolution) were calculated with Eq. (3.4) respectively
with and without evolution of Gegenbauer coefficients an.
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asymptotic value is much smaller then the one predicted
within the hard scattering formalism.
In order to understand the results for Q2FðQ2Þ shown

above, let us discuss the applicability of a collinear
approach, commonly used for light pseudoscalar mesons,
for the ηc case. From Eq. (2.49), one has that the collinear
formula with the correct asymptotics reads

FðQ2;0Þ ¼ Fð0;Q2Þ

¼ e2cfηc

Z
1

0

dz

	
zφðz;μ2Þ
z2Q2 þm2

c
þ ð1− zÞφðz;μ2Þ
ð1− zÞ2Q2 þm2

c



:

ð3:4Þ

The evolution with the factorization scale is easily imple-
mented in the formalism of distribution amplitudes. This is
routinely done for light pseudoscalar mesons (π0, η; η0); see
e.g., a recent NLO analysis [43]. For cc̄ (or bb̄) quarkonia
the situation is much more complicated and quark mass
effects and/or higher twists must be included. In Fig. 6
we show the distribution amplitude at a factorization scale
μ ¼ 3 GeV calculated from our wave functions for both
ηcð1SÞ and ηcð2SÞ. To perform the evolution with the hard
scale, the distribution amplitude is expanded with the help
of the Gegenbauer C3=2

n polynomials:

φðz;μ2Þ¼6zð1−zÞð1þa2ðμ2ÞC3=2
2 ð2z−1Þþ���Þ: ð3:5Þ

We extract the Gegenbauer coefficients by means of

anðμ0Þ ¼
2ð2nþ 3Þ

3ðnþ 1Þðnþ 2Þ ·
Z

1

0

dzφðz; μ0ÞC3=2
n ð2z − 1Þ:

ð3:6Þ
They evolve according to

anðμÞ ¼ anðμ0Þ ·
�
αsðμÞ
αsðμ0Þ

�
γn=β0

; ð3:7Þ

with the anomalous dimensions γn, which can be found for
example in Ref. [38].
For ηcð1SÞ, the a2 coefficient dominates and is typically

−0.3 at the initial evolution scale. For the ηcð2SÞ the n ¼ 4,
6 coefficients dominate. We show the Gegenbauer coef-
ficients at the scale μ0¼ 3 GeV for both ηcð1SÞ and ηcð2SÞ
in Table V.
In Fig. 7 we illustrate the effect of evolution on

Q2FðQ2Þ. We compare the result obtained with our original
formula, given by Eq. (2.38). In addition, we show results
obtained with the collinear formula (3.4) using distribution
amplitudes obtained from our light-front wave functions
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(see Fig. 6). There is only some difference at low Q2.
Finally we show also the result obtained within a collinear
approach with QCD evolution of distribution amplitudes
built in, starting from μ0¼ 3 GeV. The effect of evolution is
very weak. The reader is asked to notice a much broader
range of Q2 in the figure compared to that in previous
figures. Summarizing, the effect of evolution can be safely
neglected for Q2 < 100 GeV2, i.e., in the range of our
interest, i.e., where FðQ2Þ can be measured.
Now we wish to present also two-dimensional distribu-

tions for the γ�γ� transition form factor as a function of the
photon virtualities Q2

1 and Q2
2. As an example in Fig. 8 we

again show our results for the Buchmüller-Tye potential. To
investigate the scaling properties, we show the transition
form factor as a function of the variables

ω ¼ Q2
1 −Q2

2

Q2
1 þQ2

2

and Q̄2 ¼ Q2
1 þQ2

2

2
: ð3:8Þ

One can see that F (and F̃) is almost independent of the
asymmetry parameter ω. For comparison, in the γ�γ� → π0

transition discussed in Ref. [44,45], the dependence on ω is
somewhat stronger. Note that for the VDM ansatz (3.2)
some dependence on ω would be obtained. Future inves-
tigation of the slow ω dependence would be in our opinion
an interesting task for Belle2.
In Fig. 9 we show deviations from the factorization

breaking [see Eq. (3.3)], for the Buchmüller-Tye potential.
We observe that Rð0; Q2

2Þ ¼ RðQ2
1; 0Þ ¼ 1. The factoriza-

tion breaking pattern looks very similar for different
potentials (not shown explicitly here).

IV. CONCLUSIONS

The description of transition form factors is directly
related to our understanding of the structure of bound states
in QCD. In the present paper we have studied the transition
form factors for γ�γ� → ηcð1S; 2SÞ for two spacelike virtual
photons, which can be accessed experimentally in future

measurements of the cross section for the eþe− → eþe−ηc
process in the double-tag mode. The light-front wave
function representation of these observables has been
derived and discussed.
We have calculated the transition form factor for

different wave functions obtained as a solution of the
Schrödinger equation for the cc̄ system for different
phenomenological cc̄ potentials from the literature. The
rest-frame momentum space wave functions have been
transformed to the light-front representation using the
Terentev prescription. First, we have presented the tran-
sition form factor for only one off-shell photon as a
function of its virtuality and compared to the BABAR data
for the ηcð1SÞ case. We have also presented the delayed
convergence of the form factor to its asymptotic value 8

3
fηc

as predicted by the standard hard scattering formalism. Our
results for Q2FðQ2Þ approach to a lower asymptotic value.
The Brodsky-Lepage limit can only be obtained after
including QCD evolution of the distribution amplitudes
for massless quarks, but appears irrelevant in the accessible
kinematic domain. We conclude that it is not necessary
to include the QCD evolution for Q2 < 100 GeV2. This
justifies, a posteriori, our results obtained within the
approach using cc̄ wave functions. Furthermore, we have
presented two-dimensional distributions in the virtualities
of photons of the γ�γ�ηc transition form factor for ηcð1SÞ
and ηcð2SÞ. We have predicted a very slow dependence
on the asymmetry parameter ω, which could be verified
experimentally at Belle2. We have also defined a measure
of factorization breaking and have calculated it for different
potentials as a function of ðQ2

1; Q
2
2Þ. The results on the

Q2
1; Q

2
2 dependence are almost model independent.

Finally, it is important to emphasize that the ηc produc-
tion in hadronic collisions is dominated, at lowest order, by
the g�g� → ηc subprocess, which is identical (up to global
color factors) to the γ�γ� → ηc amplitude derived in this
paper. Consequently, our results can also be useful to
estimate the ηc production at the LHC, which is currently a
theme of intense debate (see e.g., Refs. [46–48]).
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