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We consider the Lagrange density of nonrelativistic quantum chromodynamics expanded up to order
1/m?, where m is the heavy quark mass, and compute several matching coefficients up to two-loop order.
Our results are building blocks for next-to-next-to-next-to-leading logarithmic and next-to-next-to-next-to-
next-to-leading order corrections to the threshold production of top quark pairs and the decay of heavy
quarkonia. We describe the techniques used for the calculation and provide analytic results for a general

covariant gauge.
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I. INTRODUCTION

Nonrelativistic quantum chromodynamics (NRQCD) [1]
has proven to provide accurate predictions for systems
of two heavy quarks, which move with a small relative
velocity. Among them are decay rates and binding energies
of quarkonia and the threshold production of top quark
pairs in electron positron annihilation. For comprehensive
compilations of results we refer to the review articles [2—4]
and restrict ourselves here to recent next-to-next-to-next-to-
leading order (N*LO) results. These include predictions for
top quark pair production [5],' the decay of the Y(1S)
meson [8], and energy levels of heavy quarkonia ground
and excited states [9—11] together with phenomenological
applications [12,13].

Despite the high accuracy reached for a number of
observables, it is desirable to extend the precision of the
predictions. For example, the perturbative uncertainty of
the N3LO top quark threshold prediction of about 3% will
constitute the main uncertainty in the top quark mass value
extracted from the comparison with future cross section
measurements (see, e.g., Ref. [14]). Furthermore, the
dominant source of uncertainty in the determination of
the charm and bottom quark masses from bound state
energies originates from the renormalization scale depend-
ence, due to unknown higher order corrections [11,12].

'In Ref. [6] next-to-next-to-leading logarithmic (NNLL) cor-
rections have been obtained; see also [7].
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Currently a complete next-to-next-to-next-to-next-to-
leading order (N*LO) calculation is out of reach; note,
however, that the completion of the ingredients necessary
for the N°LO predictions took more than ten years and the
combined effort of several groups (see, e.g., Ref. [4]). It is
thus reasonable to proceed in a similar way at N*LO and
gradually provide the individual building blocks required.
In this work we compute two-loop matching coefficients
which are building blocks of the NRQCD Lagrange density
at N*LO.

A further and more short-term motivation of our work is
the construction of logarithmically enhanced contributions
which complement the N*LO predictions. The potential
NRQCD (pNRQCD) Lagrange density relevant for S-wave
states with next-to-next-to-next-to-leading logarithmic
(N°LL) accuracy has been constructed in Ref. [15] up to
a few missing contributions to the so-called soft running.
Among them are the coefficients d,; and d,, (see the next
section for a precise definition) which are computed in this
work. Note that for P-wave states the N°LL pNRQCD
Lagrange density is complete and can be found in Ref. [16].

The main purpose of this paper is the computation of the
matching coefficients between QCD and NRQCD to two-
loop order. We concentrate on the four-fermion operators
but also compute the matching coefficients for gluon-quark
interactions (cp, cp, and cg) which are needed to obtain
gauge invariant results. The corresponding one-loop results
have been obtained in Refs. [17,18], respectively (see also
Ref. [4]). The gauge dependence has its origin in the
nonminimality of the operators entering the NRQCD
Lagrange density. In fact, some of the effective operators
can be absorbed into other operators by using the equation
of motion or field redefinitions. The relevant equation of
motion in our calculation is that which relates some of the
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FIG. 1. Sample Feynman diagrams contributing to d,,.

four-fermion operators and the gluon-quark interaction
[19], and thus only a particular combination is gauge
invariant (see, e.g., Ref. [20]). In this paper, we perform
our calculations in the general covariant gauge and present
results for an arbitrary gauge parameter £ We check the
cancellation of £ in the proper combination of the matching
coefficients entering physical quantities. The computation
of d,, requires a precise definition of the Pauli matrices in
d = 4 — 2¢ dimensions, which we discuss in detail.

The calculation of the matching coefficients for four-
fermion operators is naturally divided into two parts, which
we call the annihilation and the scattering channel. The
tree-level contribution of the former originates from the
diagrams where a quark-antiquark pair annihilates into a
(virtual) gluon which subsequently “decays” into a quark-
antiquark pair (cf. Fig. 1). The corresponding one- and two-
loop sample diagrams are shown in Figs. 1 and 3. In the
case of the scattering channel one considers the scattering
of a quark and an antiquark, which may have different
flavors and thus also different masses.

The remainder of the paper is organized as follows: In the
next section we provide the relevant parts of the NRQCD
Lagrange density and define the matching coefficients which
we want to compute. In Sec. III we concentrate on the four-
fermion matching coefficients and provide details of our two-
loop calculation. Section IV is devoted to the computation of
the gluon fermion form factor and the extraction of the
corresponding matching coefficients. The main results of the
paper are presented in Sec. V where we provide analytic
expressions for the four-fermion matching coefficients. In
the appendixes we provide additional material such as the
matching coefficients needed for the redefinition of the gluon
operators. Furthermore, analytic results for all two-loop
master integrals are given in Appendix A.

1I. ‘CNRQCD

The NRQCD Lagrange density to order 1/m? which we
use for our calculations is given by (see, e.g., Refs. [2,4])

£NRQCD :£9+£l+£‘l/+£){+£v/){’ (1)

1
= ——GMGY, +

Eg 1 2 gfabc Gu Gﬂb Gree,

(2)

n; o 1
L= Z q;iPq; + O(ﬁ)
i-1

L,= [1D0+2 D’ +g‘2—0 B+g38 b (D-E-E-D)
+igs%5-(5xﬁ—ﬁxl3 +0( ) v, (4)

m
L,=-L, with y -y, iD° > —iD° E' - —E' (5)
where iD = iV + g, A, El = G, B/ = —£;yG" /2, with

G/ being the field strength tensor, and n; is the number
of light quarks. In order to arrive at the canonical kinetic
term of the gluon (2), one has to apply the field redefinition
and the rescaling [21] (see also Appendix B). The main
purpose of this work is the computation of the matching
coefficients of L, (see below). However, in order to
construct a gauge invariant combination we also need
cp, which we discuss in Sec. IV. Results for ¢z and cg
are presented in Appendix C.
The interaction of four heavy quarks is given by

dy, d,
L: — ss T T sV = T =
W —mlmzll/l’lfl)fzﬂfz+—m1m2'l’1"’l/1)(2‘7)(2
d a a d a
+m1 w Ty 3T b & — l//lT Gy AT Gy,

(6)

where y; (,) are Pauli spinors annihilating a heavy quark
with mass m; (m,), and y; (y,) are Pauli spinors creating a
heavy antiquark with mass m; (m,). In this work we will
identify the two masses and write m = m; = m,. We
furthermore use the notation for the subscripts which is
usually used in the literature: The first index in the
matching coefficients d,, refers to the color (“s” for singlet
and “v” for octet) and the second denotes the singlet (“s”)
and tnplet (“v”) quark-antiquark state.

The effective Lagrange density in Eq. (6) can be
rewritten with the help of Fiertz transformations to arrive at
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ds, ds,
L, = +
v m l//u(z;(zwl P ‘//15)(2)(261//1
dg e,
+ W T T, + wlT“asz“mm,
mymy
(7)

which is better suited for the annihilation part of the
matching calculation, whereas we prefer version (6) for
the scattering part. The relations between the coefficients in
Egs. (6) and (7) are given by [17]

d :_ﬁ_%_N%_ldc _3N2_1dc
s T TON, 2N, T 4Nz “m T oz G
ds d, N?:-1 NZ-1
b =3 Tan. " anz ity G
c C C
ds,  3dS,
dzs = _dfs _3d§b +2]1V + 21\;1 ,
dys  dyy
dw__dgs"i_dgb +2]i/ ﬁ7 (8)

where N, = 3 corresponds to QCD. We compute the one-
and two-loop four-quark amplitudes in Sec. III and provide
results for d,, in Sec. V.

Let us now describe the procedure which is used to
obtain the NRQCD matching coefficients. We consider
QCD with n;, = 1 heavy quarks and n, light quarks, and we
compute the four quark scattering amplitudes [see Egs. (15)
and (16) below], the vertex corrections [see Eq. (31)], and
the corrections to the matching coefficients in the gluon
sector [see Eq. (B1)]. The ultraviolet (UV) renormalization
is done in the (n; + ny,)-flavor theory. The relation between
the bare coupling constant @ and the MS renormalized
coupling constant a,(u) reads

€ € 2¢ y1
+ O(as(1)?). )
1
Po= ECA 3 = (ny+ny) Tk,
br=alcr— (2ch4sce )+ n)Tr (10)
1—24 1D -AT 4 %F np+np)lp,

where u is the renormalization scale, and the color factors
for the SU(N,) gauge group are given by

1 N2-1
Tr==, Cp=-——10,
) F= 72N,

Cy=N,. (11

The heavy quark mass and wave function are renormalized
on-shell. The renormalization constants are well known in
the literature (see, e.g., Refs. [22,23]). We recompute them
here in order to retain the exact € dependence. Note that the
wave function renormalization of the gluon is given by
1/ \/Z—(; because we use the background field method [24].

We first compute F|(0), F»(0) (see Sec. IV), and d|, d,
(see Appendix B). After UV renormalization, we convert
the four-component Dirac spinors to the two-component
Pauli spinors, and the Dirac matrices y* to the Pauli
matrices ¢/ assuming the nonrelativistic limit. We then
canonicalize the gluon sector (see Appendix B) and
simultaneously decouple the heavy quark in the gluon

wave function. Finally, we express ai" "™ () = o\ (1)
(4) by using the relation (for the bare

in terms of a\™
version see Ref. [25])
") a1 el
ag"f)(ﬂ) T 3¢
(ny) 2 2
5 1 —el
) <aA <u>> - [r# ely)

4 9¢?

5 e(4e’ + 42— 11e—10)13
+Cy +
" 24e ' 8(e—2)(2e + 1)(2¢ +3)

()|

+O(a?), (12)

with Iy = (e —1)I{, where I{ is given in Eq. (A2).
Equation (12) is exact in €; e-expanded versions can be
found in Refs. [26,27]. In order to keep the expressions in
this paper simple we provide the results in terms of a(m),
which means that the renormalization scale y is set to m.
Using the renormalization group equations it is possible to
reexpress a,(m) by a,(u). After expanding Eq. (12) in e
one obtains log u?>/m? terms which we abbreviate by

2
U
L zlogW. (13)

II1. FOUR-FERMION MATCHNG
COEFFICIENTS

In this section we describe the calculation of the full-QCD
amplitudes which are needed for the matching coefficients
d,y and df, defined in Egs. (6) and (7). They are obtained
from the four-quark amplitude

71(p) + @:(p) = a:1(p) + &(p) (14)

with the special kinematics indicated in the arguments of
the quark fields ¢g; and ¢,. Sample Feynman diagrams,
which one has to consider at one- and two-loop order,
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are shown in Fig. 1. In general one can subdivide them
into “annihilation” (top row) and “scattering” contribu-
tions (bottom row). Note that in the case that the two
heavy quarks have different flavors (and thus also
different masses) only scattering diagrams contribute,
whereas in the equal-mass case also the annihilation
diagrams are needed. In this paper we consider only the
limit that both quarks have equal masses. Nevertheless
we discuss the two contributions separately.

A. Matching

Let us in the following briefly describe the individual
steps which are necessary to perform the matching
between QCD and NRQCD. The general idea is to
consider the four-fermion amplitude in QCD in the limit
of a heavy quark mass and compare to the corresponding
expression in NRQCD, which provides results for d,,
and dy,.

We start with the QCD amplitudes which for the
scattering and annihilation channel have the form

24
s =3 (CyjaB uoBP v+ C, jaTB urT B v),
=1

(15)

24
s =37 (¢, 5B uaBPv + 5 ;o BY unT B v),
j=1

(16)

where u (v) is the quark (antiquark) spinor and 27 are
the Gell-Mann matrices. The superscript “c” in Eq. (16)
denotes that the result is matched to the Lagrange
density (7), whereas in the scattering channel we match
our expressions to Eq. (6). The coefficients Cg, ; and
Cg/o_ i where and “o” refer to singlet and octet color

states, are determined by an explicit calculation of the
amplitude in Eq. (14). In calculating the QCD amplitude,
we treat the y matrices as d-dimensional objects which
satisfy

69
S

{rry=2¢"  g¢,=d (17)
Unlike the case of four-dimensional y matrices, products
of more than four d-dimensional y matrices cannot be
expressed in terms of simpler products of y matrices, and
we have to treat all such products as independent basis
elements. Taking into account this fact, we consider the
following basis elements:

*Note that Bglz) ® B(222>, B(213) ® Bg), and Bg‘) ® Bgi) do not
enter our calculation since, up to two-loop order, at most five y
matrices are present in one-fermion line. Nevertheless, for
symmetry reasons, we provide also these basis elements.

BV@BY =1®1,

BV ®BY =¢®1,

B @B =10}

B ®B) =f®.

B ® B =1 ®71,.

B @ BY =1/ @ 1.

By ® BY =" ® 1,1

B ® BY =¥ @ 1,1

By ® BY = y'r* @ v1,.

Bl ® By =7 f ® 1.1,

BY ® Bi = v @ v

By ® BY = r'rf @ 1.1,

BY ® BY =r'rr @ 1un1,

BYY ® By = V'r'v'¥ ® 1,1,

BYY ® BYY =1'r1” @ vunt,t,

Bl ® By =1"7'1"f ® 1,11,

B ® BY = 711" ® vutit v

BY ® B =111 ® 1,01,

Bl ® B = r'r'v’y” ® 1unutplel-

BY) ® BY = 1711 ¥ ® 1.1t ol

BY ® BS = 1" v"1°r* ® 1,1t ol

BY) ® BY) = r'r'v' v p @ 1,01 1ot

BY) ® BY = 1'r vt @ vuvvpterat

BY) ® BY) = y'rv’ v i @ varrptorst. (18)
where ¥ = py/m and the superscript refers to the fermion
line. We have explicitly introduced the external momen-
tum p since we do not use the Dirac equation in the
course of the computation of the Feynman diagrams.

In matching to the NRQCD amplitude, we use the
following representation of the y matrices:

T A

in terms of (d — 1)-dimensional Pauli matrices which
satisfy

{6/, 6"} =25k, 8 =d-1. (20)
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In particular, we do not use the commutation relation of the
Pauli matrices at this point.

The NRQCD amplitudes for the scattering and annihi-
lation channels can be written as

2

Sioep = (V2m)* > (e = ' =

k=0
a 1 a 2
+eoxd T g Ty, (21)

2
nni / c c,(1 c,(2
NRaep = ( 2m)* Z(Cs,knTZk< )¢¢T2k( )’7
k=0
+ Cg,k’/ﬂ- TazZa(l)(p(ﬁi'Tazza(z)n)’ (22)

where ¢ and 5 are two-component spinors which in the
limit of vanishing three-momentum are related to the # and
v spinors in full QCD via

) =van( ). o =van()). e

The factor v/2m for each external quark appears due to our
convention for the normalization of the nonrelativistic
quark fields [4]. Note that in Egs. (21) and (22) different
bases have been introduced for the scattering and annihi-
lation channels [see also Egs. (6) and (7)]. In d =4 —2¢
dimensions the basis elements are related to the Pauli
matrices as

% @) =1®1.
1. . . P
Zgl) ®252) _ _g[al’dj] ® [0-”61],

| o
ZE”@Z?=6—4[0’,6’][0k701]®[0’,0/][0",Gl],

2(c).(1> ®2(c).(2> o ®0,
1 .. o
2?(1) ®Z?(2) = —g[o'l,ﬁj](fk ® [O'laaj}akv

C C 1 7 i [ i
22’(1) ®22’(2> :a[d’,cﬂ][ak,a[]a” ® [6',07][c%, 6]

(24)

For the two-loop calculation of d,, and df, only %; and Xf
with i =0, 1, 2 are needed. At three loops basis elements
constructed from products of more than five Pauli matrices
are necessary.

In order to obtain the matching coefficients in Egs. (6)
and (7), one has to reduce the structure of the Pauli matrices
to 1 ® 1 and 6/ ® o/ instead of those in Egs. (24). In other
words, one has to take the limit d — 4. There are different
prescriptions to do this; one can use the commutation
relation [0}, 6] = 2iej0; assuming e/Xe/X = (d - 2)5"

[17], or e/Xe/i" = 26" Since it is unclear which prescrip-
tion should be used, we provide the d-dimensional results
in the basis of Egs. (24). Nevertheless, it is useful to have
the conventional matching coefficients d,,. For this pur-

pose we adopt e/Xe/k = 25" and obtain

r' e’ = ed
Ve =319 1-20 ® o,
20 et -311-20 ® o/,
sV = 6191+70 ®@c.  (25)

In the following, we refer to this prescription as “taking the
limit d — 4.7

At this point it is convenient to discuss the scattering
and annihilation channels separately. In the former case
one has to consider y#! - - - y#» sandwiched between i and u
or ? and v, which means that only diagonal parts of
y#1 - - -y contribute. Then we obtain

2
a(p)B u(p)o(p)B v(p) =D R s ' =n. (26)
k=0

where the Rf are given in Table 1. In order to obtain the

table entries one can use the equation of motion for the
external fermions

fv(p) = —v(p). (27)

Afterwards, we insert the explicit expressions for the
spinors u# and v in terms of ¢ and 5 [cf. Eq. (23)]. After
substituting Eq. (26) into Eq. (15) and comparing with
Eq. (21), we obtain the relations between NRQCD coef-

ficients ¢/, and QCD coefficients Cy, ;:

24
Csjok = ZR;?CS/OJ' (28)
=

In the case of the annihilation channel y#!--.y# is
sandwiched between v and u or i and v, and thus only the
off-diagonal parts contribute, which means that one needs
an odd number of 7 matrices. In analogy to Eq. (26) we can
write

2
o(p)B u(p)a(p)B v(p) = > RSy Vpgsr P,
k=0
(29)

where Rj-’k are given in Table II. Substituting Eq. (29)
into Eq. (16) and comparing with Eq. (22) leads to the
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TABLE I. The coefficients Rj? introduced in Eq. (26) for the
matching of the scattering amplitude.

TABLE II. The coefficients R;'k introduced in Eq. (29) for the
matching of the annihilation amplitude.

J k J k
0 0
1 -1 1
2 -1 2
3 1 3
4 1 4
5 1 5 -1
6 1 6 -1
7 -1 7 1
8 -1 8 1
J k Jj k
0 1 0 1
9 —d 2 9 2
10 —d 2 10 2
11 d -2 11 -2
12 d -2 12 -2
13 3d -2 -6 13 —d-2 )
14 3d -2 -6 14 —d -2 2
15 —3d +2 6 15 d+2 -2
16 —3d +2 6 16 d+2 -2
J k j k
0 1 2 0 1 2
17 —d?—4d+ 4 4d + 8 —4 17 4d -8
18 —d?—4d+4 4d + 8 —4 18 4d -8
19 & +4d—-4 —4d -8 4 19 —4d 8
20 & +4d—-4 —4d -8 4 20 —4d 8
21 542 — 4 —20d 20 21 —d?>—8d+4 4d + 16 -4
22 5d2 — 4 —20d 20 22 —d*—8d+4 4d + 16 —4
23 —5d* + 4 20d 20 23 d*> +8d—4 —4d - 16 4
24 —5d% + 4 20d 20 24 d*+8d-4 —4d - 16 4

relations between NRQCD coefficients cg/o,k and QCD

coefficients C¢ Joj:

24
¢ _ c.k e
Cs/o.k - ZRJ Cs/o,j' (30)

Jj=1

Results up to two loops for ¢/, and cg/o « are presented
in Sec. V.

B. Loop integrals

In the following we briefly describe the workflow of
our calculation. We first generate the full QCD amplitudes
with QGRAF [28] and map the output to general four-point
families which have four and nine independent propa-
gators at one and two loops, respectively. Next, we apply
projectors to obtain the coefficients of the basis elements

B; which leads us to scalar expressions. Afterwards, we
specify the kinematics given in Eq. (14). At two loops this
leads to five (instead of nine) linearly independent propa-
gators. One has to apply a partial fraction decomposition in
order to obtain integral families which can be reduced to
master integrals using FIRE [29] and LiteRed [30].

In an alternative approach, which we use for some of the
integral families, we specify only some of the kinematic
relations such that the propagators are still linearly inde-
pendent. Then we perform an integration-by-parts reduc-
tion, apply the full kinematic information of Eq. (14) to
the resulting master integrals, perform a partial fraction
decomposition to these masters, and perform a further (very
simple) reduction in order to arrive at the same set of master
integrals as in our standard approach. Note that in all cases
the reduction problem is quite simple and takes at most,
even for a general QCD gauge parameter, a few minutes on
a desktop computer.
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FIG. 2. One- and two-loop irreducible master integrals. At two-loop order, there are also three reducible master integrals:
(19)%,1¢1%, (15)*. Solid and dashed lines represent massive and massless lines, respectively. Each external line carries the momentum p.
For the scattering channel only 11, I§, I’g . IS are needed, and in the annihilation contribution all master integrals appear.

Our final result for the QCD amplitude can be expressed in
terms of 2 one-loop and 10 two-loop master integrals
(cf. Fig. 2). We retain the exact ¢ dependence up to this
point and provide the corresponding results in an ancillary file
[31]. Most of the master integrals are available in the literature
[32-34]. However, not all of them are known analytically, and
for some higher orders in € are needed. Furthermore, to our
knowledge the box-type integral I§ is not available in the
literature so far. For this reason we (re)compute those
integrals analytically and present the results in Appendix A.

After inserting the master integrals into the four-fermion
amplitudes we use Eqs. (28) and (30), expand in € and thus
obtain the matching coefficients ¢/, ; and cf ok Analytic
results are presented in Sec. V. Let us mention that the color
and Lorentz part of the QCD amplitude factorizes such that
they can be computed independently.

IV. GLUON FERMION MATCHING
COEFFICIENTS

The purpose of this section is the computation of cp
which has to be combined with d, in order to cancel the &
dependence. Since the calculation of ¢y and cg proceeds
among similar lines, we compute all three matching coef-
ficients simultaneously and present results up to two loops.

The matching coefficients cp, cp, and cg can be
extracted from the gluon-quark vertex function which we

parametrize as
2
q
= ,
2 <m2> :| u (p)

(31)

where p (p') is the outgoing (incoming) quark (antiquark)
momentum and ¢ = p — p’. The quark momenta are on-
shell; i.e., p> = (p')> = m? and we have ¢ = i[y*,y"]/2.
The fundamental indices in the matrix 7¢ are suppressed.

The calculation is performed in the background field
method [24] where the gauge parameter & enters via the
gluon propagator

io"q,

2
A q
Iy =ig,u(p’)T° {7”171 (W) + m

—i

M AV
(=%
q
and the vertex of the background gluon and two quantum
gluons, which contains a factor 1/(1 — &£). Note that the &
dependence is treated exactly throughout the calculation.
For the matching calculation it is sufficient to consider
' in the limit of small gluon momentum g. In fact, after
considering the nonrelativistic limit in Eq. (31) the com-
parison to the tree-level Feynman rules from £,, in Eq. (4)
leads to

¢ tie

Dy (q) (32)

&r =1+ F5(0),
164,
d, ’

&5 = 1+ 2F,(0), (33)

where the prime indicates the derivative with respect to
the argument and d, d, can be found in Appendix B. Note
that we have ¢y = 2¢ — 1 which follows from reparamet-
rization invariance [18,35]. The tilde in Eq. (33) indicates
that no rescaling of the gluon field has been performed.
Thus, in order to obtain the matching coefficients present in
the Lagrange density (4) one has to apply Eq. (BS) in
Appendix B. Note that d; = 1 + O(a,) and d, = O(a;),
and thus d,/d, — d, at one-loop order. We can Taylor
expand the form factors F'; and F, in the gluon momentum
and are left with one- and two-loop on-shell integrals which
are well studied in the literature (see, e.g., Refs. [36,37]).

In the following we provide results for the form factors
and their derivatives for g> = 0. We parametrize the form

factors as
n;+n
(Xg 1 h)
V4

F=Y (m)>"(r/;_22>f€F§j).

Jj1
Note that the F; still contain poles and also have an explicit
u dependence. Below we show the e-expanded expressions
and provide the e-exact results in an ancillary file [31]. Our
results for F(0) and F,(0) read

(34)
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Fi(D(0) = Cy :—&—11—6] +Cp [—é—a + O(e),
FV(0)=c, 4i€+ﬂ +(;F+O( ),
o065 2 v [ 1)
T e
+C2{1282+_%e_%_1515§2 59% ﬁ_%Jr%” logz}jLCA”hTF[ 7210e %_% %

ele 113y 33 e 1 5 +l§+n2+283
A\80e 600) " F 256 ruT “36¢2 T108¢ 736 754 T 1296

5 N 103 5B 522 1357 L),

288¢2 ' 864¢ 288 ' 432 ' 5184

@) , 13¢5 31 572 I, C3 7 341 1
FOO) =223 -2 420 210g2| 4+ C,C T 2log2
2 (0) F[4 16 12 2% o8| T Calr 8 BEREVREVTERTRE

+ CAI’ZITF |:—

1 35 112 ¢ 657> 859 1 25 119 71.2
A= L2 R o+ alog2 T T
+CA{ 12¢2 T Tade T 06 8 576 T432 127 8 } 36 CruTE +CrmiTr| 20—

1 7 149 1 13 1 7% 299
Tol——P2+7 — Y .
+Camy F{ 24" 16 216]+CA & F[242 144 24 36 432]+O() (35)

Our two-loop result for F,(0) agrees with Refs. [27,38] and the QED paurt3 of F'(0) can be found in [39,40]. The two-
loop QCD corrections to F|(0) are new.

We can now use Eq. (33), apply the rescaling of Eq. (BS), and decouple the heavy quark in the gluon wave function and the
coupling constant” in order to compute cp, cr, and cg. In the following we present one- and two-loop expressions for ¢, and
postpone ¢ and cg to Appendix C. By parametrizing the matching coefficients cy as

as J 2\ je .
cX_1+Z< ) (%) A (36)

j=>1

we obtain for cp

—————— ———+0(e),

(1)_C 1 1 4CF 4}’1th
A 3¢ 15

- 1052 o | o
+CACFLL€2—|—%2;% 1;1” 5f§3+%+%—%ﬂ210g2]
- S P O S L Sme
+§[CA(2(1) 11530> T 33(;2%@ " Fﬁgs 33]+CA"h F[ %ﬁi*%}*o@- (37)

Note the £ dependence in the second to last line which is inherited from F/ (2)(0) and d, according to Eq. (33).

The QED result is obtained for C, =0, Cr =1, Ty = 1, n; =0, n, = 1, and the coupling constant renormalized in the on-shell
scheme.

*Note that we apply the decoupling also to the factor g, in Eq. (4).
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V. RESULTS FOR THE FOUR-FERMION
MATCHING COEFFICIENTS

In this section we present first our results in d dimensions
and afterwards take the limit d — 4. We discuss both the
scattering and the annihilation channel.

A. NRQCD four quark coefficients in d dimensions

We parametrize the matching coefficients as follows:

(1) J+1
=2 (55)

(m)
>0
and use an analogous expansion for ¢ Jok At tree level we

ay u
b4
have

2\ Jje .
0)
_2) Cs/o,k ’

(38)

m

) _

S = -1, (39)
and all the other coefficients are zero. We have obtained
exact results in d dimensions both at one and two loops and
provide the corresponding results in an ancillary file [31].

Below we show the e-expanded expressions.

1. One-loop results

Our one-loop results for the scattering channel are
given by

=S [ +3] 0,

el =5+ 0

-3 o] 0

e =y [— i - %] +2Cr + Oe). (40)

Note that c§]2> = 0 and 6(01% = 0 since at one-loop order at
most two ¢ matrices are present in a spinor line. In the
literature, the factor 1/N, in the color singlet matching
coefficients are expressed as (C, —2Cr). Here and in the
following, we use 1/N, in order to have more compact
expressions.

For the annihilation channel we have

e (1 Cr |2 im 2log2

CS,(())ZN—F[g-l—?— 3 :|+O(€),

ey _ Cr |1 ir_log2

TN, [3 6 3| Ok

o(1) 145 in 20 4iz 8log2] 8n,T 5 iz 2log2
=Cy|-—= Lt log2| +Cp| =+ 25— Tel>+2 - Oe),

0,0 A[ 36 o T log }—k FL—!— 3 3 | t—g Tulrlgt3 3 | T (€)

c. 1 iz log2 4 2izr 4log2

Co.(ll)_CA|:_§_Z 2} CF|:§ 3 T3 ]WLO(G)’ (41)

where we have again c?‘él) =0 and cZ:(zl) =0.

2. Two-loop results

At two-loop order the matching coefficients obtained from the scattering process read

2 2 2 2
o G [ 322 33, B2 63 21 Cony Ty 22 20
St ) I X Pega| 4 I 2
€50 Nc[ 6e 16 48 4 TNt 9Ty
8 4772 2
CaCr [ 112+—§—19—2+111,,_503§3 173927 809 19
N, | 24e e 24 64 | 576 | 24 32
CmTp[1 7 1, 22 19
L e T2 L o),
N, [662 e 69 9| TO
2 _Ci[57  27¢ 452 5 31 log? _5anhTF+4anlTF
STTN 2478 16 127 12 N, N,
CiCr [11z> 8975 292 17 55
O 2 2og2| 4 Oe),
TN, {966 3 72 36 4t 082 TOE
2 2 2 2 2
o Gz 3¢ 29722 1 7, CiCr[ 7 90 4122 1 13,
D) _ZF| 2263 T 1 L a6g0 e P P 2ioe2| 4+ Oe),
“2 TN [166 6 " a8 T2 87 082 TN | Teae Tea Toz 4 T 32" log?| + 0L
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972 171, 19322 63 1 522 1289
COZ.SZC%|:—1—6€+ 163+ 43 —56+§ﬂ'210g2:| +CAnhTF|:—§—1—8+ 6751|
7 =Y_SE 12 12114 229327 2683 127
C.Cr|—— 18 96 "o 3 =" 21 2
TCa F{ T T T TR T
49 Z4+B7 55 6335, 150527 3269 37
2 18 64 _ 2 p 3 _ _ 2
+Ca [48&+ e T®m"TTe T e T Tm” logZ}

2 14 2, 42 76]  _[3C 13 1
ComT|os— =2 228 D0 25 o (2 2
T Cr F{s& 9% 3% 9 9}*5[32 * A<150 2()e>”h F]
4z 80 5 35 55 522 77
2 O T | =+ 2 2 T L T L 0e),
]+ ATl F{ 12e2+36e+12+18+18}+ (€)
2 2 2
o W [57 T 1212 11109 35«
=2 T T Plog2| + Cany T |2 =T
1 F{Se 8 T2 "6 12T g TCamiElr TR
32

1 N 83(; 929 5 229 ]

C,C — 2 T P log2
+AF{ 16 144 36 247 %

71’2
+C§[é+ﬁ_”zz_l3%+955”2 5 103 ]

¢ 8%~ 796 tgea “0s dg ” g2
—%OCFnhTF—I—MCF+TF+CAn,Tp[—é—Fé—l—%—Ff—;—%}—I—O(e),

@ = %E—’;—%‘ %gz %—%ﬂzlog2]+CACF{—§—;Z+%—%—Z—1+?—;ﬂ210g2

+ 4 [%—%JF%JF%—gnzlogz} + O(e). (42)

All six coefficients are new and not yet present in the literature. This is also true for the following six matching
coefficients obtained from the annihilation-type diagrams:

2 2 2 2
c,(2):& 4 _E L 401log?2 z 2 loe? 4 i 11z _@ 7 Cpn,Tr
€50 NC[ Loyttt Tgrleeatin| qgrmg 27N,
CaCp [19¢; 751 657 1llog?2 1201log2 8 , . (1201 109z*> 11log2
1763 100 _ —°2log?2 _ _
N, {32 08t am o T i T TR T T 9
CemTp [ 32 52> 4log?2 32log2 . [4log2 16
SFUTFE |04 O _0 Ole).
N, [ 2772717 9 y Ty )| O
2 2 2 2
o) _CH[ 36 19 47 log2 1 (1 22 Cpn, Ty
— 22 __ _ 2 2 —_— T
€l NC[ 8 6 9 3 18" T\ TgTm 54N,
CiCr[5¢; 535 1322 1llog?2 86log2 5 , (43 522 1llog2
053, P00 — — 22loe? D0t
TN, {8 216 216 ' 18 7 T T T T T
CenTe [ 16 52> 2log*2 l6log2+ . (2log2 8 o)
CenTp (16 5o _ ; _3
N. | 7277547 9 27 "\T9 "7 &

2 2 2
e _Crll 1 m 2log2 1, (1 %
€s2 NC[4+3+9 3 o et
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16in
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2
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|

27
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+im| ——
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4log?2

[_

4772
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81 ' 9 9 27
43¢, 341

c,(2)

+in'<

11log?2  95log2

n= 5log2
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219 o
13 3172

27

95 11log?2

12
1925 617°

= (2
A[144 18

853

22log*2  931log2

12
72 288 36

n?log2
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)
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—n*log?2
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931 1972
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22log?2
)

235+ 5
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40

12

147  8log2 din

S
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2
—ﬂ' CFnhTF + CFanF

9
1072
27

27 27
[8 572

1
——x*Cyn, T Cin,T
nCanplp + Conyl g 9" 36

36
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3

c,(2)

co,2

4 3

56, _5_s  Slog2
18

8 6 3 18
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144~ 4 36"
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Note that for the annihilation channel, products of 2 one-
loop diagrams also have to be taken into account. Fur-
thermore, two-loop vertex corrections as shown in Fig. 3(a)
contribute to the color-octet vector current. After adapting
the color factors, we have cross-checked these contribu-
tions against the explicit results provided in Ref. [33].

In the next subsection we use the results presented above
in order to obtain the four-quark matching coefficients
present in Lxrocp-

5¢3
16 + i

64 8log?2 64log?2

log?2 8log2

2
+1+——210g2—§ﬂ210g2+m

5
+-—n*log2+in

9

ny 8log2 32
77 in
9
2

5 "
4 log2
+i7z( g
1 -2
2 5

7))
§_T)] +0(),
)
(%3]

72
)] +oe.

S
144

B. NRQCD four quark coefficients

in four dimensions

(

2
(43)

In the following we use the expressions from the
previous subsection and apply [o;,0,] = 2ig; 0, and
e/Meikl = 26! Using Eq. (25) one obtains the following
linear combinations of ¢/, , which provide the matching
coefficients present in the NQRCD Lagrange density of

Eq. (6):
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FIG. 3. (a) Examples of two-loop vertex corrections to the color-octet vector current and (b) the diagram responsible for the divergence
n,Tr(Cy —2Cx) /€ in dSP.

dys = cy0 + 3¢y, for €% in three dimensions has been used [cf. discussion
do—c 043¢ between Egs. (24) and (25)] which leads to different
v Tol 0:2° relations compared to those in Eq. (44).
dg, = ¢y1 — 2¢50, By denoting the loop corrections as
dvv =Co1 — 2C0.2' (44) a(”1> (m) i+ Nje
m dy =) 7 ( ) (”2> dy.  (45)
Note that at one-loop order we have ¢, Jo2 = 0, and thus the 70 n m

relations are trivial. The e-exact one-loop expressions agree
with Ref. [4]. Note that in Ref. [17] a different prescription  the two-loop scattering coefficients are given by

62 18 6 9 9

9 27

PO C%[3C3 57 55::2] +CpanF{1 7 Lo 19} Crny Tr {;;2 20}
N.[2 47 24

o 4 N, N,

CACp[ 11 =3-1Z 112 119 685722 791 5
- _ e 221022 + O(e),

TN, { %E e T T Tie T ass Toa Tt g2 10

2 2 2 2 2
o G [z 15 712 115, SCrm, Ty CuCp [T 5S¢ 722 1 1,
g =S| 106 T 2D D o 6e0) - s L 2 0g2
TN, [126 4 48 12 6" 8 N, N. |48 T 2 T2g3 3637 8

4Cpn,T

+ 084 Oe),

9N,

103 22772 5 35 SB 522 77
diy) = Cr [953 ——+—ﬂ} + CaniTr [— 2y 2T ]

Y 12 736 T 12 718 T8

g M
I aam

+ O(e),

+CuC [37’56‘4‘14 138€3 - 13376”2 +% +%7£2 logZ}

+Ci{é+ﬁ—%lﬁ—% %—%—%ﬁlog%

+ Cyn, Tk [; %] + CunTr [_é—i_%&—i_%—i_%_%] + Oe). (46)

SAt one-loop order one has db,’ = (1- e)dfﬁ'm) with x € {s, v}.
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The relations between ¢ Jok and df, are also obtained
from Eq. (25) and are given by

c _ 2.C c
dss - 305,1 - 6cs,2’

c _ 2.C c
dvs - 3C0.1 - 6C0,2’

c _ .c c c
dsv =Cs0— 2cs,1 + 7Cs,2’

di‘v = C(C),O - 2C(C),l + 702,2' (47)

At tree level, c¢ =0 and the relations are

s/ol — 65/0.2
trivial. ‘

We define the coefficients d5,”) in analogy to Eq. (45)
and obtain for the one-loop annihilation matching
coefficients

_ Gl 215 23 2n?
8 2 ' 3

1 25
+—+510g2+5ﬂ210g2+iﬂ(ﬂ———>} +

1110g?2  1991og?2

oy C '
dl = FF {1 +%—log2] +O(e).
sV =0
(1) 3 3in  3log2
dvv =Cyl—=——
‘ A[ 274 T
+ Cp(4 +2ir —4log2) + O(e),
, 109C 8n;, T
d;;(l) _ _ A 4c ht F
’ 36 F
5 im 2log2
Tr|=+—— Oe). (48
3+ 5 -2 o, @)

The e-exact expressions agree with Ref. [4] and the
expanded expressions with Ref. [17]. The two-loop anni-
hilation matching coefficients read

ﬂchnhTF
8 2 18N,

13

CiCr [0 589 5
N, |16 7272 6

L 199 137> 1llog2
"\ 36 ~ 48 6

161log?2

—n?log?2

18 12

CrnTg [57[2 16 2log?2
N,

: 3¢5
N, | 2 18

CACF |:% 9 7T2

TN |6

216_:3 8772

18 9 3+9

. (2log2 8
—l—m( 3 —§>}—I—O(e),

C? 2 1 4r?
=_F [———3+ﬂ——|—810g2—|—§ﬂ210g2+in(%—4>}

+-—-—=3lo 2—i 2log2 +i S + O(e)
8 48 YR A ’

6

2 2
45 = 2 [_ —5 46+ —-+20log2 + 27’ log2 + ir (% - 10)} + §;ﬂanhTF

2
31545 2105 3172

22log?2  1111log2 53

n*log?2

C,C
+AF{16 36 18

(1177 2210g2
"\ 36 48 3

8 5x? 8log?2
+ CAnZTF |:— - i + 10g22 — o8

3 12
371
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3 18

4
+ iﬂ<§—log2>}

13722 11log?2  61log2
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+—nr*log2

-
+C [ 24
177>

32
+ iir(—ﬂ +—5
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48 4

3 8

111log2 1
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4172 75 5

2
c,(2) o |7 74’3
dvv =C

[65 2 79 Ta73

4 2
————ﬂ210g2+2410g2+i7r<%— 12)}

+CACF[1”—22€+¥—21772”2+2%4+§n210g2—201og2+m<1o—109—”2)]

+C3 {—g—%—%—%+inzlog2+271312g2+iﬂ(zjgz—%)}

+ CrpnTr [—53 —%4— 13160g2 - 13”} + nhn,T% [32;‘%2 —%— 1;;”]

+ Cany T :1”—;+%+73—’;2+%—%n210g2]

+CAn,TF{74E+%—§ lo 22——13321;)g2+iﬂ<%—§—log2>}

+niT} {_§+%2_4109g’22 + 20;;g2 + iﬂ(4 l(;gz —gﬂ +0(e). (49)

Note that all two-loop coefficients are £ independent

except dfs). In fact, the gauge parameter dependence cancels

in the combination (a,/ ﬂ)cg) + d'?) which enters physical

quantities.

The imaginary parts of d5P o and a9 are
calculated in the context of the heavy quarkonium inclusive
decays [41], and our results agree with the literature.

All the matching coefficients from the annihilation
process are finite after the UV renormalization except

dﬁ;@. The remaining divergences originate from diagrams
shown in Figs. 3(a) and 3(b). They are well studied in the
literature [42] where it is shown that the divergences from
the purely hard regions, which are contained in our
expressions, are canceled against contributions from the
potential region. We have confirmed this cancellation for
the contribution from Fig. 3(b) where explicit results for the
different regions are given in Ref. [42].

VI. CONCLUSIONS AND OUTLOOK

In this paper we compute two-loop corrections to the
matching coefficients dg,, d,,, d,, d,,, d5s, d5,, d, and
dS, of the operators in the NRQCD Lagrange density
involving four heavy quarks. We carefully discuss the
treatment of the Pauli matrices in a noninteger number of
dimensions which leads to an enlargement of the basis and
6 (instead of 4) two-loop coefficients in intermediate steps
(see Sec. VA). The results for d,, and df,, which are
obtained after using the usual commutation relations
between the Pauli matrices, are given in Sec. V B.

Our calculation is performed in the covariant R; gauge
with a general gauge parameter £ One observes that
starting from two loops the coefficient d, is £ dependent
which arises from our nonminimal choice of the operator

|
basis in Lyroep- We check the & dependence by computing

two-loop corrections to the heavy-quark-gluon vertex func-
tions. We extract the related matching coefficients, in

particular ¢p, and show that the combination (a/ ﬂ)cg) +

dg) is independent of £. Note that in Feynman gauge the
one-loop results cg) and divls) are individually & indepen-
dent. However, the gauge dependence can be observed by
comparing to the results in Coulomb gauge [20].

The results obtained in this paper enter as building
blocks various physical quantities involving two slowly
moving heavy quarks at the N’LL and N*LO accuracy.

The annihilation channel only contributes to the case
where the two heavy quarks in Ly, [cf. Eq. (6)] have the
same flavor. On the other hand, for different quark flavors
the matching coefficients d,, receive contributions only
from the scattering channel. We use the same mass for
quarks and antiquarks and provide only results for this
equal-mass case. A possible next step would thus be the
extension of our calculation of the scattering contribution to
the case of different quark masses. A further next step is the
computation of two-loop corrections to the matching
coefficient of the operator with two heavy and two light

quarks usually denoted by ¢ (see, e.g., Ref. [15]).
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APPENDIX A: MASTER INTEGRALS

In this appendix we collect analytic results for the
master integrals which we need for the computation of
|

Jo N dk -1

e ind? k2 — m?

e / dk -1 ~1

: in? k* (k+2p)*’

the matching coefficient. Most of them are already needed
for two-loop matching coefficients between QCD and
NRQCD of the vector, axial-vector, scalar, and pseudo-
scalar currents [32,33,43] and the integrals have been
studied in the literature [34] (see also Refs. [44,45]). Note,
however, that for /5§ the e expansion was not sufficiently
deep and the € was only known numerically. Furthermore
I‘Z] was (to our knowledge) not available in the literature.
The master integrals are defined as (cf. Fig. 2)

I“—Aﬁ/ &% d¢ -1 -1 -1

27 m? ) in®2inP iR —m? 2 (k+ ¢+ p)?
Ib_/\ﬁ/ dk dl¢ -1 -1 -1

20 m? ) in2 g2k —m? 2 —m? (k€ + p)—m?’
IC/\LZ/ dk diz -1 -1 -1

27 m? ] i iR —m (k+ £+ 2p) —m2
Id/\ﬁ/ dk iz -1-1 -1

272 | a2 a1 (k+ €+ 2p)?

Ie—Nz/ d% di¢ -1 -1 -1 -1
2 ind2 igd/2 k2 — 2 (f+p)2 (f_p)z(kJrf)z’
d% di¢ -1 -1 -1 -1 -1
i (¢ + p)* (¢ = p)* (k+p)* —m? (k= p)* —m* (k+¢)* -

Ié—/\/zmz/, y
in

-1 -1

(k+ p)2 > —m?> (€ + p)? (k+6)*

(A1)

. We normalize the master integrals such that they have the mass dimension zero. Our results read

49
— - C%)
240

24 2

A d% di¢ -1 -1 -1
in?? ig/? k2 — m?
where N = (p?e’%)¢
= (”—zen> T(e—1)
m
o ﬁe” ¢ e (1 —¢€)*T(e)
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2\ 2
w1 1/5 19 137° 5
I5=1|— = —2log2 — ————+4log"2 —8log2
2 <m2) {2€2+ <2 og >+ > B + 4log og

<65 77¢(3) 472 16log®2
€ —

13
- - - 16log?2 — 241og2 + —n*log 2
> G B 3 + 16log og2+ 5 7 log >

{ +4r(1 —log2) + €<12ﬂ —%+ 8rlog?2 — 16ﬂ10g2)] + O(ez)},

6

For the integral /§ we derive a Mellin-Barnes representation
with nonzero parameter € and use MB.m [46] to analytically
continue to € — 0. The resulting (at most) two-dimensional
Mellin-Barnes integrals are reduced to one-dimensional
Mellin-Barnes integrals with the help of the generalized
Barnes lemma [47,48]. The one-dimensional integrals can
be evaluated numerically with a very high precision, and
we apply the PSLQ algorithm [49] to obtain the analytic
results.

Using the Mellin-Barnes method for I leads to a
complicated four-dimensional Mellin-Barnes integral, and
we adopt a different strategy for its computation. Note that /5
is a finite integral and we require only the €’ term. This
means we can set € = 0 from the very beginning of our
computation. We use the Lee-Pomeransky representation
[50] which turns out to be useful since the integrand is
now a simple rational function. We can perform most of
the integrations analytically and remain only with a two-
dimensional integral with good convergence properties.
Thus, numerical integration leads to sufficiently high pre-
cision such that the PSLQ algorithm can be applied. We
cross-check all master integrals with the help of FIESTA [51].

APPENDIX B: GLUON FIELD REDEFINITION

In Ref. [3] the NRQCD Lagrange density has been
defined such that the kinetic term of the gluon field has a
canonical normalization which has been achieved by a
redefinition of the gluon field. The procedure is presented
in Ref. [21]. As a consequence the constants d; and d,
appear on the right-hand side of the formula for ¢, in
Eq. (33). In this section we provide analytic expressions for
dy and d, up to two-loop order.

Our starting point is the following Lagrange density
which describes the interaction of the heavy quarks with a
gluon before the redefinition of the gluon field

dl a (apy d2 a apv
5££I£IRQCD = —ZGW,G # + WGIU/DZG H

d : ) 1
+ _zizgsfuhL GZDGb'uaGwa +0 <_4) ’ (Bl)
m m

1
< ) { ﬂlogZ——C3+lé 3+(9()}
#= (o

) { b log2—753+ll >+ O(e )} (A2)

|
where G, is the gluon field strength tensor and a, b, c are
colour indices. The matching coefficients d; and d, can be
computed from the hard contribution of the gluon two-
point function. For convenience we provide the results
which we parametrize by

(ny+ny) J 2\ J
a " m)\ (N )
=) <f> (W) d;”, (B2)

Jj=0
and dgo) =1, dgo) = 0. Up to two-loop order our results
read
m _ 1
dl = gl’lthlﬂ + O(€),
y  mTp
d) = o).
I, 15 51, 2
d( ) = CFnhTF|: + 16:| + CAnhTF|: 36 1/24 12 9i|
1 1
+3 T+ + §nhan%l,2, + O(e),
o) 41Cpn, Ty 1 4957
dY == E L o T | —— —
2 648 AT 9606 T 259200
1 nyn,T>
L Tzl Wit F
180" F T 506
velod (L - Bt v o0, B3
A\320e ~ 2400) """ F

Note that the external gluon fields have been renormalized
in the MS scheme.

It is common practice to perform a redefinition of the
gluon field as

2d,
A—>A+

D%, G
dm[

anl- (B4)

which eliminates the second term in Eq. (B1). A subsequent
rescaling of the form
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1
A B5
TVt (B)
leads to the canonical factor “—1/4” in the first term of Eq. (B1).
APPENDIX C: RESULTS FOR c; AND cg
In this appendix we provide analytic results for ¢, and cg up to two loops. Our results read
m_e Lo 1], Cr
cr = Ca _4€+2] +5 0L,
0 1
cg' =Cy %+1 + Cr + Oe),
_ > 2
o 1 35 112 ¢y 6527 859 5 119 =
=C% |- -2 4 4 ?log2| 4+ Cpn,,T —
=T e Tase T o6 T8 576 4327L wlogs ] T CrmlE |35 T3
25 572 149 1 13 1 7 299
- = CnT T - P
36 CrlE T Cam F[n 216]+CA”’ F[24€ 144¢ 24" " 36 432]
3¢, 31 5722 1 1 ¢ 7% 341 7log2
Cr| =2 -+ — —2?log2| + CuCp | — =2+ O(e).
- F[4 16 12 27 08T T alrge 8+12+144+ n | To©
2 2
2 135 112 ¢ 6522 859 1 e 119 272
=Ci |-t log2| + Cpn,T
[62+72€ 48 4288 T216 6" &S| TEMmIr|Tg T
25 572 149 113 1 7 299
= Cpm Ty + Can, T — | +CunTp|l——— =12 - -
TR e T Cart F[36 108]+ ATl F[12€2 72 127718 216}
3¢, 31 572 ¢ mr 341
Cr| =2 -+ = —r?log2| + C,C LR B 2log2| + 0O Cl1
F[z 56 ”Og]JFAFL 4+6+72+6ﬂ0g +0e). (1)

The one-loop results agree with Refs. [4,18]; the two-loop results are new. Note that the chromomagnetic interaction
coefficient C,, (see, e.g., Ref. [27]) is obtained from c after performing the renormalization in the effective theory, which
we refrain to do in this paper. We have checked that the one- and two-loop results from Eq. (14) of [27] are reproduced after

adding the missing counterterm.
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