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The influence of finite-volume effects on dynamical chiral symmetry breaking of thermal QED3 is
investigated. We show that the chiral symmetry gets restored at all temperatures when the size of system is
less than some certain value L0

c ¼ 189; the critical temperature of chiral phase transition generally increases
with the size of the system and the critical temperature when the system volume tends to infinity is slightly
less than that in the case of infinite volume.
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I. INTRODUCTION

Quantum electrodynamics in 2þ 1 dimensions (QED3)
has been widely studied for many years in the case of
Abelian systemwhich exhibits some typical nonperturbative
features, such as dynamical chiral symmetry breaking
(DCSB) and confinement [1–10]. In addition, because of
the superrenormalizable nature and the absence of self-
coupled boson, the calculation in QED3 is relatively simple.
Hence, it is treated as a toy model of quantum chromody-
namics. Moreover, the model has been applied to the study
of some system in condensed matter physics. Especially,
QED3 can be regarded as a model for the high-Tc super-
conductivity and fractional quantum Hall effect [11–14].
Since the discovery of graphene, QED3 has been a great
success in explaining the planar system [15–19].
The study of DCSB in QED3 has been an active subject

for the past 30 years since Appelquist et al. found that the
DCSB of QED3 at zero temperature and density disappears
when the number of massless fermion flavors exceeds a
critical number Nc ≈ 3.24 [20]. They reached this con-
clusion by solving the lowest order of Dyson-Schwinger
equation (DSE) for the fermion propagator. Later, extensive
analytical and numerical investigations showed that the
DCSB in QED3 still remains after including higher order
corrections to the DSE andNc lies between 3 and 4 [21–23].
To further verify thevalue ofNc, in recent years somegroups
have used other methods to obtain Nc values exceeding 2.8
[24–26].Nevertheless, the conclusions above are obtained at
infinite volume and may change at finite size. Due to the
finite volume of physical objects in reality, the effect of finite
volume on phase transition could be of particular impor-
tance. A breakthrough in the study of chiral phase transition
(CPT) in QED3 at finite volume was illustrated in the paper

of Ref. [27]. The authors adopted the DSE with rainbow
approximation and found that the critical number of fermion
flavors in QED3 at finite volume reduces to the value below
1.5 which is significantly less than that in infinite volume. It
should be noted here that Ref. [27] only dealswith the effects
of the finite volume on the CPT of QED3 in the case of zero
temperature, so a natural problem arises:whatwill happen to
the finite temperature situation?
It is worth mentioning that with the finite temperature

involved and mandated by the well-known Coleman-
Mermin-Wagner theorem [28], there is no DCSB in thermal
QED3 and hence no rigorous CPT, which is well defined in
(3þ 1)-dimensional system at finite temperature. This
theorem is usually interpreted as the absence of any crystals
in a two-dimensional system. Here, it should be noted that
the theorem is only proved to hold in an infinite volume.
For the case of a finite size system, it may no longer hold.
Actually, a recent research indicates that, in a small two-
dimensional system with only a few hundred particles,
the crystals do exist [29]. As the system size increases, the
disorder of the particle position enlarges and eventually the
long-lived crystals are destroyed. This is to say, the con-
tinuous symmetry breaking can exist in a two-dimensional
systemwith finite size. Thus, theDCSBmay occur in a finite
size thermal QED3 system as well.
Based on the above considerations, we investigate the

CPT of thermal QED3 in finite volume. This paper is
organized as follows: in Sec. II, we introduce the DSEs
formulation of QED3 at finite temperature and volume;
Sec. III is devoted to the discussion of boson polarization in
the finite volume. We then present our numerical results in
Sec. IV. Finally, we conclude in Sec. V.

II. ORDER OF CHIRAL PHASE TRANSITION

The Lagrangian for massless QED3 with a general
covariant gauge in Euclidean space can be written as
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L ¼ ψ̄ð=∂ þ ie=A −mÞψ þ 1

4
F2
σν þ

1

2ξ
ð∂σAσÞ2; ð1Þ

where the four-component spinor ψ is the massless fermion
field, ξ is the gauge parameter. In the absence of the mass
term mψ̄ψ , this system has chiral symmetry and the
symmetry group is Uð2Þ. The original Uð2Þ symmetry
reduces to Uð1Þ ×Uð1Þ when the massless fermion
acquires a nonzero mass due to nonperturbative effects
and order parameter for the CPT no longer equals zero. At
zero temperature and density, the parameter in infinite
volume is defined trivially via

hψ̄ψi¼Tr½Sðx≡0Þ� ¼
Z

d3p
ð2πÞ3

4Bðp2Þ
A2ðp2Þp2þB2ðp2Þ : ð2Þ

The two functions Aðp2Þ and Bðp2Þ in the above equation
are related to the inverse fermion propagator

S−1ðpÞ ¼ iγ · pAðp2Þ þ Bðp2Þ: ð3Þ

To obtain the fermion propagator, we employ the non-
perturbation DSE method and numerically solve the
fermion gap equation

S−1ðpÞ ¼ iγ · pþ
Z

d3k
ð2πÞ3 γρSðkÞγνDρνðp − kÞ; ð4Þ

where the natural unit e2 ¼ 1 is used.
Apart from zero temperature and zero density, the O(3)

symmetry of the system reduces to O(2). Without regard to
chemical potential, the fermion propagator is generally
written as

S−1ðT; PÞ ¼ iγ⃗ P⃗ AkðP2Þ þ iϖnγ0A0ðP2Þ þ BðP2Þ; ð5Þ

where ϖn ¼ ð2nþ 1ÞπT.
Now, let us give a short review of some studies on the

effect of the wave function renormalization factor Ak
and A0. In the past, the lowest order approximation,
i.e., Ak ¼ A0 ¼ 1, is often adopted to calculate the critical
fermion flavor, and the results show that although the
influence of Ak; A0 can change the numerical results, the
low order approximation of DSE of fermion propagator
still contains qualitative nonperturbative properties of
QED3 at zero temperature. However, just as the
Refs. [30,31] suggested, one should treat renormalization
factor Ak and A0 carefully at finite temperature. Indeed, it
is important to obtain Ak; A0 beyond the lowest order
approximation in the case of finite temperature. But the
numerical calculation is complex, and it is difficult to
obtain stable solutions. Therefore, as the first step to study
the CPT at finite volume and to obtain qualitative results,
the lowest order approximation Ak ¼ A0 ¼ 1 will still be
adopted in this work.

At infinite volume, the integral equation for the dynami-
cally generated fermion self-energy function of thermal
QED3 reads

BðP2Þ ¼
X
n

Z
d2K
ð2πÞ2

2TBðK2Þ
½ϖ2

n þ E2ðK2Þ�½Q2 þ ΠðQ2Þ�

¼
Z

d2K
ð2πÞ2

BðK2Þ tanh EðK2Þ
2T

EðK2Þ½Q2 þ ΠðQ2Þ� ; ð6Þ

where EðK2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ B2ðK2Þ

p
and the Matsubara fre-

quency is summed analytically. The corresponding boson
polarization is given as

ΠðQ2Þ ¼ T
π

Z
1

0

dx ln

 
4cosh2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞQ2

p
2T

!
: ð7Þ

Based on the iterative technique of numerical calculation,
we find that the value of BðP2Þ in Eq. (6) vanishes at T∞

c ≈
2.47 × 10−2 [32].
As the volume of the system becomes limited, the photon

and fermion fields will be confined in a potential well in
spatial directions. To discuss the volume effect, we set the
well to be of equal length in the two dimensions,
L1 ¼ L2 ¼ L. Following the discussion in Ref. [27], we
adopt the antiperiodic boundary conditions for the fermion
fields and write the momentum integral as a sum of
Matsubara modes. Then, the lowest order of DSE of the
fermion propagator at finite volume is written as

Bðω2
m1;ω

2
m2Þ¼

1

L2

XM
n1;n2¼−M

Bðω2
n1;ω

2
n2ÞtanhEðω2

n1;ω
2
n2Þ

2T

Eðω2
n1;ω

2
n2Þ½Q2

vþΠðQ2
vÞ�

; ð8Þ

with ωn¼ð2nþ1Þπ=L and Q2
v¼ðωm1−ωn1Þ2þðωm2−ωn2Þ2.

Once the polarization of the photon is obtained, we can
calculate the fermion self-energy equation by the iteration
method to analyze the chiral phase transition of ther-
mal QED3.

III. BOSON POLARIZATION IN FINITE VOLUME

To obtain the boson polarization at finite volume, we first
revisit the boson polarization tensor in one-loop order at
zero temperature and zero density at infinite volume

ΠσνðqÞ ¼ −
Z

d3k
ð2πÞ3 Tr

�
γσð−i=kÞγνð−i=pÞ

k2p2

�

¼ 4

Z
d3k
ð2πÞ3

�
kσpν þ kνpσ − pkδσν

k2p2

�
;

where q ¼ p − k. Setting u ¼ kþ qx, we can write the
above equation as
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Πm0
σν ¼ 4

Z
d3k
ð2πÞ3

Z
1

0

dx
Iσν

½u2 þ xð1 − xÞq2�2 ; ð9Þ

where

Iσν¼ 2xð1−xÞðq2δσν−qσqνÞ− ½u2þxð1−xÞq2�δσν
þ2uσuνþð1−2xÞðuσqνþuνqσ −uqδσνÞ: ð10Þ

At finite temperature, u¼ðu0;UÞ, u0 ¼ 2ðnþ xm0 þ 1
2
ÞπT.

Following the approximation in the chiral limit [30], we
also keep the zero frequency value of the polarization
(q0 ¼ 0) and then arrive at

ΠðQÞ ¼ 4T
Z

d2U
ð2πÞ2

Z
1

0

dx
X
n

�
1

u20 þU2 þ xð1 − xÞq2

−
2½U2 þ xð1 − xÞq20� − ð1 − 2xÞu0q0

½u20 þ U2 þ xð1 − xÞq2�2
�

¼ 2

Z
d2U
ð2πÞ2

Z
1

0

dx

�
tanhð y

2TÞ
y

−
U2

y2

�
tanhð y

2TÞ
y

−
sech2ð y

2TÞ
2T

��
;

with y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ xð1 − xÞQ2

p
.

As the system shape becomes a square box with side
length of L, the photon polarization of the system trans-
forms into the following form:

ΠðQ2
vÞ¼Π0ðω02

m1;ω
02
m2Þ¼

2

L2

XM
n1;n2¼−M

Z
1

0

dx

×

�
tanhð y0

2TÞ
y0

−
U02

y02

�
tanhð y0

2TÞ
y0

−
sech2ð y0

2TÞ
2T

��
; ð11Þ

with U02 ¼ ω2
n1 þ ω2

n2, Q2
v ¼ ω02

m1 þ ω02
m2 and y0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U02 þ xð1 − xÞQ2
v

p
. Unlike the behavior of fermion,

the photon at finite volume reveals the periodic
boundary conditions and the Matsubara frequency gives
ω0
m ¼ 2mπ=L. In a finite volume, boson is equivalent to

being in a one-dimensional infinite potential well for any
dimension and the minimum energy of boson should not be
zero, which means that the corresponding Matsubara
frequency of the boson should not be zero, i.e., m ≠ 0.
The corresponding photon polarization value will depend
on a series of discrete points. As a general discussion, we
choose two lengths L ¼ 500 and 2000, and discuss the
photon polarization values calculated with different upper
bounds. The typical dependence on the Q2

v can be found in
Fig. 1. We can see that the photon polarization with finite
volume in the small momentum region are almost equal to
that in the infinite volume. However, in the large momen-
tum region, the small upper bound yields a numerical result
that the photon polarization value deviates significantly

from Eq. (7); as the upper bound of the sum increases, the
value becomes closer to the case of infinite volume.
Further, we choose the upper limit M ¼ 250 of the
summation and calculate the dependence of photon polari-
zation on different sizes and plot the results in Fig. 2. We
find that the boson polarization in the small momentum

Π
Π

FIG. 1. The dependence of boson polarization value on the
summation upper limit at L ¼ 500 (top) and L ¼ 2000 (bottom)
at T ¼ 0.01. As a general discussion, we only give the points
when m1 ¼ m2 of ΠðQ2

vÞ, and the solid line Linf illustrates the
behavior of Eq. (7).

Π

FIG. 2. The boson polarization value with a range of volume at
the summation upper limit M ¼ 250 at T ¼ 0.01.
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region is in good agreement with the numerical results of
Eq. (7), while the finiteness of the upper bound results in
large deviations at large momentum region. This suggests
that for a larger L, we should choose a larger value for M
accordingly to preserve the numerical accuracy of Eq. (11).
We expect that as the upper bound of the sum increases to
infinity, the photon polarization at finite volume can be
described by an expression under infinite volume, the
difference being that the corresponding momentum is
continuous at L → ∞, while the momentum under finite
volume is discrete.

IV. NUMERICAL RESULTS

To analyze the CPT of thermal QED3 at finite size, we
next calculate the self-energy with Eq. (8) by iteration
method. In the calculation, we need to select an upper limit
of the summation. Based on the finding at the end of
previous section, we choose a size-related sum of the upper
limit M ¼ M1 ¼ L

2π. The dependence of fermion self-
energy on the selection of the upper bound of the
summation can be seen in Fig. 3. We can see that as we
increase the upper bound of the summation, the calculated
self-energy also increases. However, when the upper limit
of the sum exceeds M1, the self-energy solution starts to

converge. Moreover, under the influence of the finite
volume effect, the fermion self-energy still decreases with
the increase of momentum. Therefore, the value of self-
energy B00 ≡ Bðω2

0;ω
2
0Þ can also be treated as the order

parameter to determine CPT.
On the basis of selecting M1 as the upper limit of the

sum, we calculate the self-energy of fermion at (1) different
L’s with same T and (2) different T’s with same L. The
typical behavior of self-energy with momentum depend-
ence can be seen in Fig. 4. We can find that as the size of the
system decreases, the corresponding fermion self-energy
value decreases. When the size drops to a critical value Lc,
the self-energy decreases to zero. Similarly, the dependence
of self-energy on temperature is analyzed at a fixed size in
the lower plot of Fig. 4. We find that as the temperature
rises, the self-energy diminishes to zero at the critical
temperature Tc.
Based on the above discussion, we studied the effect of

size on critical temperature. The result can be seen in the
Fig. 5. We find that for any size, as the temperature rises,
B00 diminishes to zero at critical temperature Tc. The value
of Tc is obviously dependent on the size L, i.e., the larger
the size the higher the Tc. Further, we analyzed the
influence of the size change on DCSB at different

FIG. 3. The dependence of fermion self-energy on the sum-
mation upper limit L ¼ 300 (top) and L ¼ 1000 (bottom) at
T ¼ 0.01 (where ω1 ¼ ω2 is adopted).

FIG. 4. The typical dependence of fermion self-energy on the
volume size at T ¼ 0.01 (top) and on temperature at L ¼ 300
(bottom), where the solid line Linf gives the behavior of B at
infinite volume.
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temperatures. From Fig. 5, we see that for any temperature,
B00 gradually decrease as the size decreases, and it reduces
to zero at a critical value Lc.
Finally, we give the critical temperature of chiral phase

transition of the thermal QED3 at finite size in Fig. 6. From
the figure, we can see that when L is less than a critical
value L0

c ≃ 189, the chiral symmetry of thermal QED3

restores for any temperature. As the size exceeds 189, the

critical temperature of the system starts to rise. Near
L0
c ¼ 189, the critical temperature increases rapidly with

the size of the system. As the size increases further, the
increase in critical temperature become slower. An inter-
esting phenomenon is that in a relatively large size, there is
an approximate linear relationship between the reciprocal
of the system size and the critical temperature. When
1=L → 0, i.e., the size tends to infinity, we find that the
critical temperature tends to Tv

c ≈ 2.42 × 10−2 which is
slightly less than T∞

c .

V. CONCLUSIONS

In this paper, we adopt the Dyson-Schwinger equation to
study the influence of finite size effect on chiral phase
transition in thermal QED3. Our results show that the
critical temperature of chiral phase transition decreases
significantly with the decrease of the system size.
Especially, when the system size is less than a critical
value, the chiral symmetry of the system will no longer be
broken. This finding verifies Weinberg’s view that sym-
metry breaking can only occur in systems with a certain
large size [33]. On the other hand, as the size increases, the
critical temperature rises, but the magnitude of the increase
gradually decreases, and tends to the critical temperature
value in the infinity volume.
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