
 

Gluon radiation from a classical point particle
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We consider an initially at rest colored particle which is struck by an ultrarelativistic nucleus. The
particle is treated classically with respect to both its motion and its color charge. The nucleus is treated as a
sheet of colored glass within the context of the color glass condensate framework. We compute both the
momentum and coordinates of the struck classical particle and the emitted radiation. Our computations
generalize the classic electrodynamics computation of the radiation of an accelerated charged particle to
include the radiation induced by the charged gluon field. This latter contribution adds to the classic
electrodynamics result and produces a gluon rapidity distribution that is roughly constant as a function of
rapidity at rapidities far from the fragmentation region of the struck particles. These computations may
form the basis of a first principles treatment for the initial conditions for the evolution of matter produced in
the fragmentation region of asymptotically high energy collisions.
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I. INTRODUCTION

This article will study gluon production in the target
fragmentation region of a very high energy hadronic
collision. The goal is to reformulate the very early
phenomenological ideas of Anishetty, Koehler, and
McLerran [1] (see also [2–4]) in the spirit of the theory
of color glass condensate (CGC) [5]. These descriptions
make use of the effects of gluon saturation to provide a
computational framework for the treatment of high energy
QCD processes [6–8].
In Ref. [1], one considered a situation in which an

ultrarelativistic nucleus collides with a hadron of radius
RA at rest and imparts a rapidity y (longitudinal velocity =
tanh y) to each of the quarks in the stationary target.
A simple calculation then shows that while the whole
system has been accelerated to rapidity y, its rest frame
length is e−y2RA, and it has been compressed by a factor ey.
In Ref. [2], this estimate was converted into initial con-
ditions of hydrodynamic evolution of energy momentum
and baryon number. Very recently, in Ref. [9] it was shown

that this compression argument holds quantitatively and
quantum mechanically in the CGC picture.
In addition to compressing the baryonic system, the

acceleration of the system will cause radiation of gluons.
As an initial stage of computing this process we shall in this
article consider the problem of a single color charged
particle interacting with a sheet of color glass condensate;
i.e., we have a large nucleus moving along the positive
longitudinal direction and colliding with a static or slowly
moving quark. This discussion will later be extended to the
fully physical situation of collisions of nuclei in the
fragmentation region of the nucleus. While this extension
is straightforward, the problem of the single charged
particle is sufficiently involved that it is useful to do it first.
There is extensive literature on the computation of gluon

production in collisions of large nuclei at very high energies
[10–22]. The beam fragmentation region can also be
studied as a forward limit [17,18]. Both beam and target
then move on the light cone, but in our case we consider the
target to be at rest.
We can understand why the fragmentation region of high

energy collisions is distinctively different from the central
region. Let us consider an asymmetric collision between
a large particle, which we will call a nucleus, and a small
particle such as a small nucleus, or a proton or for that
matter a quark or gluon. The current for the sheet of colored
glass we shall refer to as that of the nucleus. This current
generates a strong field with a characteristic momentum
scale associated with the average density of charges on it,
Qsat. If a particle with transverse momenta kT interacts with
the nucleus, it scatters with high probability for kT < Qsat,
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and above this scale the nucleus becomes increasingly
transparent.
The saturation momentum scale may be evaluated to

be [7,8]

Q2
sat ¼ αsNc

1

πR2
A

dN
dy

; ð1Þ

where αs is the strong coupling constant, Nc is the color
factor, and dN=dy is the rapidity density of gluons. This
rapidity density should grow as eκαsy at large rapidities far
from that of the projectile nucleus.1

Now consider the fragmentation region of the smaller
particle. The saturation momentum of the smaller particle
has not evolved since it is not being evaluated at a rapidity
scale far from its own fragmentation region. On the other
hand, at the fragmentation region of the smaller particle,
one is many units of rapidity away from that of the
projectile nucleus, and the saturation momentum of the
projectile nucleus at asymptotically high energies evaluated
at these scales can become asymptotically large. We
therefore have that the saturation momentum projectile
and target in the fragmentation region of the target satisfy

Qtarg
sat ≪ Qproj

sat : ð2Þ

It can be shown that the majority of particles are
produced in the kinematic region where the produced
particle transverse momentum satisfies

Qtarg
sat ≪ pT ≪ Qproj

sat ð3Þ

and that in this region the gluon field of the produced gluon
is large enough so that it can be treated classically but small
enough so that the gluon field equation may be treated as a
linear equation [11,12],

1 ≪ Aμ
gluon ≪ 1=g: ð4Þ

This observation about the gluon field strength is at the
heart of the computation we present here. We will work to
all orders in the strength of the color field of the nucleus but
to lowest order in the field strength of the target particle.
This will allow us to compute the trajectory of the struck
target particle and the induced gluon radiation associated
with this collision.

II. REVIEW OF THE PROPERTIES OF A COLOR
FIELD OF A SHEET OF COLORED GLASS

Color glass condensate refers to an ensemble of classical
charge on a sheet at x− ¼ 0. For an arbitrary four-vector
xμ ¼ ðxþ; x−;xÞ we choose light cone coordinates as

x� ¼ t� zffiffiffi
2

p ; ð5Þ

where z≡ xL ¼ ðxþ − x−Þ= ffiffiffi
2

p
is the longitudinal coordi-

nate and x ¼ ðx1; x2Þ is the transverse position, with jxj ¼
xT . We use the mostly plus metric gþ− ¼ g−þ ¼ −1, g11 ¼
g22 ¼ þ1 so that the scalar product of 2 four-vectors is

a · b ¼ −aþb− − a−bþ þ a · b: ð6Þ

What we gain hereby is that we need not worry about
the sign change in transverse components, ai ¼ ai; it is
easier to remember the sign in aþ ¼ −a−. With these
conventions, the mass shell constraint p2 ¼ −m2 is
pþ ¼ m2

T=2p
−, with the definition m2

T ¼ p2
T þm2.

The classical Yang-Mills equations of motion in the
presence of an external current Jν are given by

DμFμν ¼ Jν; ð7Þ

where the covariant derivative and the field strength are

Dμ ¼ ∂μ − igAμ; ð8Þ

Fμν ¼
i
g
½Dμ; Dν� ¼ ∂μAν − ∂νAμ − ig½Aμ; Aν�; ð9Þ

and Aμ ¼ Aa
μTa are the matrix valued gauge fields. The

SU(Nc) gauge algebra is

½Ta; Tb� ¼ ifabcTc; ð10Þ

where fabc are the totally antisymmetric structure constants
and Ta

bc ¼ −ifabc for adjoint representation.
Under a unitary gauge transformation UðxÞ, the gauge

field transforms as

Aμ → A0
μ ¼ UAμU† þ i

g
U∂μU† ð11Þ

or, equivalently,

Dμ → D0
μ ¼ UDμU†: ð12Þ

The field strength and the current transform covariantly:

Fμν → F0
μν ¼ UFμνU†; ð13Þ

1There is only one factor of αs in this equation because the
scale at which unitarity in scattering sets is involves scattering
from all the gluons from the rapidity of interest to that of
the projectile, and the integration over rapidity converts
α2s

R
dydN=dy ∼ αsdN=dy, because of the exponentially growing

gluon density. We see that at very high energies the saturation
momentum of the nucleus can become very large.
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Jμ → J0μ ¼ UJμU†: ð14Þ

We often also use a matrix-vector notation for trans-
formations of a color vector Fa, a ¼ 1;…; N2

c − 1. If we
have a dR × dR dimensional representation of the gener-
ators Ta, normalized by TrTaTb ¼ TRδab, then a matrix
representation of the transformation F0 ¼ UFU† can as
well be written as F0 ¼ VF or in component form

F0
a ¼

1

TR
TrðTaUTbU†ÞFb ¼ VabFb: ð15Þ

Thus V is an adjoint matrix, and Ta, U are dR × dR
dimensional matrices.
The sheet of colored glass may for many purposes be

treated as an infinitesimally thin sheet, with color charges

ρaðx−;xÞ ¼ δðx−ÞρaðxÞ ð16Þ

on the sheet. A crucial assumption here is that there is no xþ
dependence in Eq. (16). The physical basis for this is time
dilatation, and the fast degrees of freedom are effectively
frozen. In some circumstances it is useful to spread out the
charge in Eq. (16) over an interval

0 < x− < x−0 ; ð17Þ

where x−0 is assumed to be very small. This regularizes our
computations and may be thought of as arising from the
rapidity distribution of gluons between that of the frag-
mentation region of the nucleus and that where the gluon
distribution is measured. The spatial rapidity is therefore
spread over a finite interval. The color current associated
with this source is taken to be

Jμaðx−;xÞ ¼ δμþρaðx−;xÞ: ð18Þ

When computing physical quantities one computes
fields in the presence of the sources, and then averages
over the sources. When the distribution of the sources is
chosen to be Gaussian, this is the McLerran-Venugopalan
model [5].
There are two gauges, both subclasses of the A− ¼ 0

gauge, in which the solution of the classical Yang-Mills
equations with the current Eq. (18) is usually discussed,
either Aμ ¼ ðAþðx−;xÞ; 0; 0; 0Þ or Aμ ¼ ð0; 0; Aiðx−;xÞÞ
(for reviews, see [23,24]). The solution for the field
corresponding to the nucleus is most easily found in the
gauge where the field is entirely in the þ direction. Since
there is no xþ dependence in the current Eq. (18), the only
nonzero components of Fμν are

Fiþ
a ¼ −Fþi

a ¼ ∂iAþ
a ð19Þ

and the equations of motion reduce to

∂2
TA

þ
a ¼ ρaðx−;xÞ: ð20Þ

From this one can then gauge transform Aþ to zero,
which then generates a transverse Aiðx−;xÞ where the
only nonzero components of the field strength are now

Fiþ
a ¼ −Fþi

a ¼ ∂−Ai
a: ð21Þ

Usually this transverse field is further chosen so that it is
zero before the sheet at x− < 0 and nonzero after it, for
x0 < x−. Asymptotically this sheet is essentially a step
function θðx−Þ that is a nonzero constant for x− > 0 (see
Fig. 12 of [23]).
In what follows, we will actually find it convenient to use

a gauge in which Ai ∼ θð−x−Þ, i.e., vanishes after the sheet.
The geometry of the process we are studying is shown in
Fig. 1. A particle initially at rest at ðxL ¼ 0;x ¼ 0Þ collides
with a sheet of colored glass moving along x− ¼ 0 with
the current Eq. (18), and we are interested in the radiation
field produced. Thus we need the fields far in the future so
that, for simplicity, it is convenient to have the field of the
nucleus vanish after the collision x− > 0. Because the
collision is singular at x− ¼ 0, the choice where the gauge
field is entirely Aþ is perhaps not optimal either (though
it can be used to study similar processes [19–22]). We
therefore will work in the gauge for the scattering problem
where the field is entirely a two-dimensional transverse
field for x− < 0, Ai

aðx−;xÞ approximately constant as a
function of x− and vanishes for x− > 0.

FIG. 1. Longitudinal kinematics of the process. Nucleus A
moving along the light cone with color current δμþδðx−ÞρðxÞ
meets with a stationary quark and is excited into a classical
background Yang-Mills configuration Aμ ¼ ð0; 0; Aiθð−x−ÞÞ. In
region I, for x− < 0, the background field is vacuum equivalent
transverse field (26) and the fluctuation field δAi ≡ ai is a gauge
rotated Coulomb field of the stationary quark (75). In II and III
there are no background fields, and the fluctuation fields contain
electrodynamicslike radiation caused by quark acceleration (81)
and radiation from the quark-nucleus interaction (108).
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In this gauge, because the single particle source is at rest
before the collision, we have that the single particle source
is not rotated in the background field of the nucleus,

DμJμ ¼ ∂μJμ − ig½Aμ; Jμ� ¼ ∂þJþ ¼ 0: ð22Þ

Thus the single particle source before the collision is time
independent.
Let us then construct explicitly the gauge rotation that

connects the Aþ gauge to the Ai gauge. To transform Aþ to
zero the gauge rotation matrix U must solve

Uð∂þ − igAþÞU† ¼ 0 ð23Þ

or

∂−U† ¼ −igAþU†: ð24Þ

A solution where the matrix U is one for x− positive and
outside the thin sheet at 0 < x− < x0 for x0 → 0 is

Uðx−;xÞ ¼ P exp

�
−ig

Z
∞

x−
dy−Aþðy−;xÞ

�
; ð25Þ

where P is the path-ordering operator. When x− < 0, one
gets the entire contribution of the sheet and U is constant
in x−. The two-dimensional gauge field associated with this
rotation is

AjðxÞ ¼ i
g
UðxÞ∂jU†ðxÞ ð26Þ

and, as constructed, is nonzero and constant at x− < 0; it
vanishes for x− > x0 → 0.

III. FIELD OF AN ISOLATED PARTICLE AND
WONG’S EQUATIONS

The single particle is at rest before the collision. This is
because the field strength Fμν vanishes except in the thin
sheet of colored glass. When it hits the colored glass, it is
accelerated and begins to radiate. After the collision, it has
a constant velocity to leading order in the strength of the
small radiated field. We want to construct both the radiation
field and the motion of the charged particle.
In the construction of the field of the charged particle, the

extended current conservation law can cause a potential
problem associated with the induced field of the classical
particle rotating the current of the sheet of colored charge.
We deal with this by working in the gauge for the small
fluctuation field

δA− ≡ a− ¼ 0: ð27Þ

In this gauge, combined with our choice for the gauge of
the background field of the nucleus discussed above, the

charges of both the nucleus and the single particle do not
precess. This is since the only nonzero precession term is of
order the single particle field times the source of the single
particle field; this is second order in the strength of the
single particle field, and we work only to first order. Note
that one might be worried about some rotation induced
while the charged particle traverses the sheet, but this
occurs in a short time; in our gauge, none of the fields
diverge in the limit of infinitesimal sheet, and it therefore
induces insignificant rotation.
So with these concepts in mind, let us now compute

the trajectory of the single color charged particle as it
traverses the sheet, determined by Wong’s equations
[25,26]. The classical particle in a colored field has a
classical color vector QaðτÞ, a trajectory xμðτÞ, and
momentum pμðτÞ. Here uμ ¼ dxμ=dτ and pμ ¼ muμ.
The equation of motion is2

dpμ

dτ
¼ gQ · Fμνuν ≡ gQaFμν

a uν: ð28Þ

Due to the asymmetry of Fμν this explicitly conserves
the square of the particle four-momentum p, i.e.,
dðpμpμÞ=dτ ¼ 0. By demanding covariant conservation
DμJμ ¼ 0 of the current

JμðxÞ ¼
Z

dτQðτÞuμðτÞδð4Þðx − yðτÞÞ; ð29Þ

one sees that the equation for the precession of the colored
charge matrix Q is

dQ
dτ

¼ −ig½Q; u · A�; ð30Þ

or in component form

dQa

dτ
¼ −gfabcQcAb

μuμ: ð31Þ

A formal solution of this first-order matrix equation is the
path ordered adjoint exponential

QðxÞ ¼ P exp

�
ig
Z

x

0

dxμAμ

�
Qð0Þ; ð32Þ

where the path ordered integration over x is over the
trajectory of the particle.
Now before the collision, the integration above is entirely

timelike, and the fields are two-dimensional (2D) transverse,
so the integration over this part of the path vanishes,
dxiAi ¼ 0. Near x− ¼ 0, there is the integration across
the sheet, but in our gauge the vector potential of the
background field is so mildly singular, Ai ∼ θð−x−Þ, that

2Here we have used the notation Q · F≡QaFa ¼ 2TrðQFÞ.
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there is no contribution in the limit the sheet shrinks to zero.
We ignore the contribution of the induced field produced by
the single charged particle. Similarly, after the collision there
is no contribution, since the background field from the
nucleus vanishes there. Therefore, within the approximation
of the infinitely thin sheet we consider, the color of the
particle does not precess.
Consider then the motion of the particle as given by

Wong’s equations in Eq. (28). Since in our gauge
F−i ¼ F−þ ¼ 0, the simplest equation is the one with
μ ¼ −,

dp−

dτ
¼ 0; ð33Þ

so that p−=m ¼ u− ¼ dx−=dτ is a constant, x−ðτÞ ¼ u−τ,
and τ is effectively the same as x−. Further, we have
Fiþ ¼ F−i ¼ ∂−Ai and uþ ¼ −u− so that the μ ¼ i equa-
tion gives

dpi

dτ
¼ u−

dpi

dx−
¼ −gQ · ð∂−AiÞu−: ð34Þ

In this equation, the vector potential is evaluated at
x ¼ 0, and since Q is the color charge at x ¼ 0, the overall
result is gauge invariant; gauge rotations at x ¼ 0 cancel
each other. Before the sheet at x− < 0, Ai is nonzero but
effectively constant so that pi is constant. After the sheet at
x− > 0, Ai ¼ 0 so that again pi is constant. Taking pi ¼ 0
before the sheet and integrating Eq. (34) across x− ¼ 0
gives the particle a kick of magnitude

pi ¼ −gQ · discAi: ð35Þ

Finally, Wong’s equations explicitly conserve the mass
shell condition p2 ¼ −m2 from which

p− dp
þ

dτ
¼ pi dp

i

dτ
¼ −gpiQ · ð∂−AiÞu−; ð36Þ

and the μ ¼ þ equation simply enforces the mass shell
condition.
We expect that the magnitude of the final transverse

momentum into which the static quark is scattered is of the
order of the relevant dynamical scale, the nuclear saturation
momentum, pipi ¼ p2

T ∼Q2
sat. A rough estimate could

be p2
T ∼ h∂iU∂iU†i ∼Q2

sat logð1=ðΛQCDrÞ, where r is the
transverse separation of the twoUðxÞmatrices and we used
a standard formula [23] for the UU† correlator. This
expression diverges in the limit that we take the size of
the particle probing our system to zero. This is an artifact of
the high momentum divergence for the average transverse
momentum squared associated with the 1=p4

T behavior of
large angle scattering.

The current for the single particle may be computed from
the constant trajectory uμ ¼ dxμ=dτ ¼ pμ=m and is for
x− > 0 specified as3

JμðxÞ ¼ Q
Z

dτuμδð4Þðx − uτÞθðx−Þ ð37Þ

¼ Quμ
Z

dτδðx− − u−τÞδðxþ − uþτÞδð2Þðx − uτÞθðx−Þ

ð38Þ

¼ Q
pμ

p− δ

�
xþ −

pþ

p− x−
�
δð2Þ

�
x −

p
p− x

−
�
θðx−Þ: ð39Þ

Notice that the delta function of involving x− simply sets
the momentum space rapidity of the scattered particle
logðpþ=p−Þ=2 equal to its coordinate space rapidity
logðxþ=x−Þ=2. In momentum space this current is

JμðkÞ¼
Z

d4xeiðkþx−þk−xþ−kixiÞJμðxÞ¼ Qpμ

iðp ·k− iϵÞ : ð40Þ

Similar expressions are valid for x− < 0; the sign of
Eq. (40) and the sign of ϵ are then changed.

IV. THE COULOMB POTENTIAL
IN δA− = 0 GAUGE

We have chosen the background color field of the
nucleus to be of the form Aμ ¼ ð0; 0; AiÞ. In general, when
discussing the total nucleus-quark system we will use the
A− ¼ 0 gauge. We will write the total field in the form
Aμ þ δAμ ≡ Aμ þ aμ, where δAμ ¼ aμ is of lower order.
Before scattering off the sheet of colored class, the field

of our classical particle is Coulombic. We have, with
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2L þ x2T

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ − x−Þ2=2þ x2T

p
,

aμCoul ¼
1

4πr
δμ0; aþ ¼ a− ¼ 1ffiffiffi

2
p 1

4πr
; ð41Þ

where the color matrix gTa which multiplies the charge has
been suppressed. This field is shifted into the light cone
gauge a− ¼ 0 by an infinitesimal gauge transformation
U ¼ eigΛ ≈ 1þ igΛ,

aμ → aμ þDμðAÞΛ; Dμ ¼ ð∂þ; ∂−; ∂i − igAiÞ; ð42Þ

where for future use we have included the background
gauge Ai we shall use. For Ai the transformation is, in
component form,

3As argued above, for an asymptotically thin sheet the color
charge matrix Q does not rotate.
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a− →
1ffiffiffi
2

p 1

4πr
þ ∂−Λ ¼ 0; ð43Þ

aþ →
1ffiffiffi
2

p 1

4πr
þ ∂þΛ; ð44Þ

ai → 0þDiΛ: ð45Þ

We are actually only concerned with this field for x− < 0,
since the field for xþ > 0 will include the radiation field
and will be determined by solving a boundary value
problem at x− ¼ 0 with boundary conditions determined
by the field for x− < 0.
The fieldΛ (related to the infinitesimal transformation) is

determined from Eq. (43),

Λ ¼ −
Z

dx−
1

4π
ffiffiffi
2

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ − x−Þ2=2þ x2T

p : ð46Þ

This gives

Λ¼ 1

4π
ln

�
1

xT

�
ðxþ − x−Þ=

ffiffiffi
2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ − x−Þ2=2þ x2T

q ��
:

ð47Þ

Note that ∂−Λ ¼ −∂þΛ ¼ ∂−Λ, where the first equality
is general for light-cone coordinates, and the second holds
since Λ depends on the difference xþ − x−. This yields for
the þ component

aþ ¼
ffiffiffi
2

p

4πr
: ð48Þ

Concerning the i component, consider first the vacuum
case so that Di ¼ ∂i. Then

ai ¼ ∂iΛ ¼ −
1

4π

xi

x2T

xL
r
¼ 1

∂−
xi

4π
ffiffiffi
2

p
r3

¼ 1

∂þ
∂i 1

4π
ffiffiffi
2

p
r
:

ð49Þ

We have included some explicit relations which come in
handy later. These fluctuation fields satisfy further

∂þaþ þ ∂iai ¼ 0; ð−2∂þ∂− þ ∂i∂iÞai ¼ 0;

∂iaj − ∂jai ¼ 0: ð50Þ

The last equation means that there is no longitudinal
magnetic field.
One may ask whether there is residual gauge freedom in

the transverse fields ai. In fact, one can still do a U(1) gauge
transformation (C ¼ const)

ai → aiþ ∂iχ; χ ¼C logxT; ∂iχ ¼C
xi
x2T

; ∂2
Tχ ¼ 0:

ð51Þ

This transformation is the same as

Λ → Λþ C log xT; ð52Þ

and the two-divergence of ai is invariant under it,

∂iai ¼
xL
4πr3

→ ∂iðai þ ∂iχÞ ¼ ∂iai: ð53Þ

For the vacuum case, no nuclear background field, we
now have the full set aμ ¼ ðaþ; 0; aiÞ. One can check
that this form reproduces the desired structure for Fμν as it
must. This is nothing but the standard three-dimensional
(3D) radial electric field EðrÞ ¼ er=ð4πr3Þ, with r as
defined above.
We will later need the Fourier transform of ∂þai of the

transverse vacuum field ai along the line x− ¼ 0. Using the
result of Eq. (49) we find

Z þ∞

−∞
dxþd2xeþiðk−xþ−k·xÞ∂þai

¼
Z þ∞

−∞
dxþd2xeþiðk−xþ−k·xÞ −xi

4π
ffiffiffi
2

p
r3
: ð54Þ

The integration over the two-dimensional transverse space
can easily be performed by first noting that

Z
d2xe−ik·xxifðxÞ ¼ −2iπ

ki

kT

Z
∞

0

dxTx2TfðxÞJ1ðkTxTÞ;

ð55Þ

where J1 is the Bessel function. By taking f ¼ 1=r3 at
x− ¼ 0 we obtain

Z
d2xe−ik·x

xi

½ðxþÞ2=2þ x2T �3=2
¼ −2iπ

ki

kT
e
−kT jxþjffiffi

2
p

: ð56Þ

Thus the Fourier transform integral in Eq. (54) can be
written as

Z þ∞

−∞
dxþd2xeþiðk−xþ−k·xÞ∂þai

¼ þiki

2
ffiffiffi
2

p
kT

�Z
0

−∞
dxþeðik

−þkTffiffi
2

p Þxþ þ
Z

∞

0

dxþeðik
−−kTffiffi

2
p Þxþ

�
:

ð57Þ
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From this expression the remaining xþ integral can be done
analytically, giving

Z þ∞

−∞
dxþd2xeþiðk−xþ−k·xÞ∂þai ¼

þiki

k2T þ 2ðk−Þ2 : ð58Þ

V. FIELD OF TEST QUARK IN A STRONG
BACKGROUND FIELD

For the non-Abelian problem, one has to generalize
the Coulomb solution to the case where for x− < 0 there
is a strong background field −igAi ¼ U∂iU†, a two-
dimensional gauge transform of vacuum. Here U is the
gauge transformation matrix Eq. (25) transforming from
the Aþ gauge to the Ai gauge.
In a strong background field the Coulomb solution for

x− < 0 is then

a0Coul ¼
1

4πr
UðxÞT̄; ð59Þ

where we have defined T̄ as

T̄ ¼ U†ð0ÞT ð60Þ

so that the Coulomb potential at x ¼ 0, where the quark is
sitting, is T=ð4πrÞ without any rotation.4 The field in the
gauge a− ¼ 0 is as before obtained by a small gauge
transformation with

∂−Λ ¼ −
1ffiffiffi
2

p
4πr

UðxÞT̄ ð61Þ

so that

aþ ¼ 1ffiffiffi
2

p a0Coul − ∂−Λ ¼
ffiffiffi
2

p
a0Coul ð62Þ

and

ai ¼ DiΛ ¼ U∂iðU†ΛÞ ¼ −
1ffiffiffi
2

p Di 1

∂− a
0
Coul

¼ −
1ffiffiffi
2

p UðxÞ 1

∂− ∂i T̄
4πr

: ð63Þ

Here Eq. (63) for the transverse fluctuation field ai can be
rewritten as

ai ¼ −
1ffiffiffi
2

p UðxÞU†ð0Þ 1

∂− ∂i T
4πr

¼ UðxÞU†ð0Þaivac; ð64Þ

where the relation ∂iU†ð0Þ ¼ 0 has been used, and aivac,
given in Eq. (49), satisfy the vacuum case (i.e., no nuclear
background field).
Let us now check that the solution in Eq. (64) indeed

satisfies the correct equation of motion for the fluctuation
field ai at x− < 0. The fluctuation equation for the trans-
verse field ai in the Ai gauge is given by [see Eq. (98)
below]

DμDμai ¼ ð−2∂þ∂− þDjDjÞai
¼ −2∂þ∂−ai þU∂2

TðU†aiÞ

¼ Uji −U∂i

�
U† 1

∂− Uj−
�
; ð65Þ

where

jμ ¼ U†ð0ÞTuμδðxþ − x−Þδð2ÞðxÞ; with

u� ¼ 1; ui ¼ 0; ð66Þ

is a current representing a color source at ðxL ¼ 0;x ¼ 0Þ
in the Aþ gauge, in which there is no transverse background
field. Multiplying from the left by U† and noting that
∂−U ¼ 0 (i.e., there is no xþ dependence in the matrix U)
shows that U†ai satisfies the equation

ð−2∂þ∂− þ ∂2
TÞU†ai ¼ −∂i 1

∂− j
− ≡ jeff : ð67Þ

The general solution of the fluctuation equation above
can be written down as

U†ðxÞai ¼ aiin þ
Z

d4yGRðx − yÞjeffðyÞ; ð68Þ

where the retarded Green’s function, in the light-cone
coordinates, is given by

GRðxÞ ¼
Z

d4k
ð2πÞ4

eik·x

k2 − ik−ϵ
¼ −

1

2π
θðxþÞδðx2Þ ð69Þ

with x2 ¼ −2xþx− þ x2T , and the solution of the homo-
geneous equation, aiin, vanishes since there are no incoming
fields (quark is at rest). In order to evaluate the integral in
Eq. (68), we first notice that it is helpful to multiply
Eq. (67) by ∂−. This gives

U†ðxÞ∂þai ¼ −U†ð0Þ T
2π

Z
dyþdy−d2yθðxþ − yþÞ

× δððx − yÞ2Þδðyþ − y−Þ∂iδð2ÞðyÞ; ð70Þ

4The point of redefining T by an overall rotationU†ð0ÞT is that
if we do not include it, the fluctuation field UðxÞai at the position
of the quark is proportional toUð0ÞgT and thus fluctuates withU.
Physically one does not want this since it should be fixed to gT.
This is accomplished by setting the state as UðxÞU†ð0Þai.
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where ðx − yÞ2 ¼ −2ðxþ − yþÞðx− − y−Þ þ jx − yj2. Per-
forming the integrals over the y− and y we find

U†ðxÞ∂þai ¼ U†ð0Þ T
2π

∂i

Z
xþ

−∞
dyþδð−2ðxþ − yþÞ

× ðx− − yþÞ þ x2TÞ: ð71Þ

Using the properties of the delta function

δð−2ðxþ − yþÞðx− − yþÞ þ x2TÞ

¼ 1

2ðyþðþÞ − yþÞ δðy
þ − yþð−ÞÞ; ð72Þ

where we have defined

yþð�Þ ¼
1ffiffiffi
2

p
�
xþ þ x−ffiffiffi

2
p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ðxþ − x−Þ2 þ x2T

r �
ð73Þ

with yþðþÞ > xþ, gives

U†ðxÞ∂þai ¼ U†ð0Þ T
2π

∂i 1

2ðyþðþÞ − yþð−ÞÞ

¼ U†ð0Þ T

4π
ffiffiffi
2

p ∂i 1

r
ð74Þ

or

aiðxþ; x−;xÞ ¼ UðxÞU†ð0Þaivacðxþ; x−;xÞθð−x−Þ: ð75Þ

Here we have inserted a theta function to remind us that this
discussion is relevant at x− < 0. This result, as it should be,
is the same as Eq. (64).
One consequence of the appearance of U in Eq. (75) is

that the two-divergence is modified by a coupling to the
background field Ai:

∂iai ¼ ð∂iUðxÞÞU†ð0Þavaci þUðxÞU†ð0Þ∂iavaci

¼ igAiai þ UðxÞU†ð0Þ TxL
4πr3

; ð76Þ

where we inserted ∂iU ¼ igAiU. Also a longitudinal
magnetic field is generated:

ϵLij∂iaj ¼ ϵijð∂iUðxÞÞU†ð0Þavacj ¼ igϵijAiaj: ð77Þ

These equations are important since they give the first
derivatives of the transverse radiation field, which are
needed to solve the radiation equations; see Sec. VIII
below. We also remind the reader that the ath color
component of the vector igAa is ðigAaÞa ¼ gfabcAbac.

VI. RADIATION FROM A POINT PARTICLE
CROSSING A SHEET, QED, AND RAPIDITY

In this section we review the computation of the radiation
from a charged electromagnetic particle getting an impulse
kick at x− ¼ 0. This review will make the discussion of
the non-Abelian problem more transparent.
Let us assume we have a particle that is at rest at the origin

for t < 0 and is spontaneously accelerated to a particle with
constant momentum pμ at t ¼ 0. The current is

Jμ ¼ e

�
δμ0

Z
0

−∞
dτδðt− τÞδð3Þðx⃗Þ þ uμ

Z
∞

0

dτδð4Þðx− uτÞ
�
:

ð78Þ

Here uμ ¼ pμ=m is the four velocity of the particle after the
collision. In light cone gauge A− ¼ 0 the solution for the
vector potential is

Aþ ¼ 1

∂−

�
∇ · Aþ 1

∂− J
−
�

ð79Þ

and

∂μ∂μAi ¼ Ji −
∂i

∂− J
−: ð80Þ

If we rewrite this in Fourier space, then the distribution of
radiation is

16π3k
dN
d3k

¼ lim
k2→0

k4AiðkÞAið−kÞ

¼
�
JiðkÞ − ki

k−
J−ðkÞ

��
Jið−kÞ − ki

k−
J−ð−kÞ

�
:

ð81Þ
In the following, we will assume k2 ¼ 0. Up to a term that
vanishes when k2 ¼ 0, upon use of current conservation
k · J ¼ 0, the right-hand side is algebraically identical to

16π3k
dN
d3k

¼ JμðkÞJμð−kÞ; ð82Þ

which is the ordinary textbook expression.
We can now compute the Fourier transform of the

current as

Jμ ¼ e

�
δμ0

1

ik0
− uμ

1

ðik · uÞ
�
: ð83Þ

After a little algebra, we find that

J2 ¼ e2v2
1

k2
sin2 θ

ð1 − v cos θÞ2 ; ð84Þ

where the angle θ is between that of the three-dimensional
velocity vector v⃗ ¼ p⃗=E of the particle and the emitted
photon ðk ¼ jk⃗j ¼ ωÞ.
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Although we are mainly interested in a stationary initial
quark, it may be useful to give some expressions for a more
general radiation process with momenta q → kþ p and
write them in terms of rapidities,

kμ ¼ kT

�
1ffiffiffi
2

p ey;
1ffiffiffi
2

p e−y; cosϕ; sinϕ

�
;

qμ ¼
�
mTqffiffiffi
2

p eyq;
mTqffiffiffi
2

p e−yq ; qT cosϕq; qT sinϕq

�
; ð85Þ

where m2
Tq ¼ m2 þ q2T , and similarly for pμ. The radiation

current in Eqs. (40) and (83) for instantaneous acceleration
q → p at x− ¼ 0 is

JμðkÞ ¼ þiT

�
qμ

q · k
−

pμ

p · k

�
: ð86Þ

Using the kinematic relation jki − k−pi=p−j2 ¼
−2ðk−=p−Þp · k, this gives

−k2AiðkÞ ¼ JiðkÞ − ki

k−
J−ðkÞ

¼ 2iT

� ki − k−
q− q

i

jki − k−
q− q

ij2 −
ki − k−

p− pi

jki − k−
p− pij2

�
; ð87Þ

where the first term corresponds to θð−x−Þ and the second
to θðx−Þ. The ratio k−=p− is the fractional light cone energy
taken by the photon from the emitting charge. The
multiplicity can now be computed from Eq. (81) or
Eq. (82). For a massless quark one has

dN
dyd2k

¼ g2TaTa

ð2πÞ3
1

k2T

coshðyp − yqÞ − cosðϕp − ϕqÞ
ðcoshðy − yqÞ − cosðϕ − ϕqÞÞðcoshðy − ypÞ − cosðϕ − ϕpÞÞ

: ð88Þ

Integration over the azimuthal angle of the produced gluon
produces dN=dydk2T . This can also be done analytically
using

Z
2π

0

dϕ
ðcosh y1 − cosðϕ − ϕ1Þðcosh y2 − cosðϕ − ϕ2Þ

¼ 2πðcoth y1 þ coth y2Þ
coshðy1 þ y2Þ − cosðϕ1 − ϕ2Þ

: ð89Þ

Initial static quark, the case we are interested in, is
obtained from the general formulas in the limit of large
mass, m ≫ qT; pT and yq ¼ 0. If the static quark is
accelerated into rapidity yp, the gluon distribution is

dN
dyd2k

¼ g2TaTa

ð2πÞ3
1

2k2T

�
sinhðypÞ

coshðy − ypÞ coshðyÞ
�

2

: ð90Þ

The distribution, plotted in Fig. 2 is symmetric around
y ¼ yp=2 and has a broad plateau around the maximum.
The maximum value is 4 tanh2 yp

2
, and the value at y ¼ 0 or

y ¼ yp is tanh2 yp. For large yp and small y, in the “target
fragmentation region,” the distribution grows as

�
2

1þ e−2y

�
2

: ð91Þ

VII. BOUNDARY CONDITIONS

We have now discussed the transverse fluctuation field
ai at x− > 0 before the arrival of the nucleus as well as
the classical radiation from the acceleration of the quark.
What is missing is ai after the nucleus has passed.
However, we have fixed the gauge so that there is no
background field at x− > 0. The solution thus is a free
plane wave and one only needs the boundary conditions
at x− ¼ 0.
Actually we already know the boundary condition for ai

when approaching from the direction of x− < 0; according
to Eq. (75) the value on the surface x− ¼ 0 is

aSi ðxþ;xÞ≡ aiðxþ; x− ¼ 0;xÞ
¼ UðxÞU†ð0Þavaci ðxþ; x− ¼ 0;xÞ: ð92Þ

yp=10

5 10
y

1

2

3

4

N(y)

FIG. 2. Rapidity distribution [bracketed factor in Eq. (90) is
plotted] of gluons emitted in an acceleration of a static quark to
rapidity yp ¼ 10 by the nucleus. The maximum is at yp=2 ¼ 5
and the curve is symmetric around the maximum value.
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But are there discontinuities on the nuclear sheet at x− ¼ 0?
By studying fluctuation equations we shall show that there
is a discontinuity in aþ but not in a− or ai.
The equation for the small fluctuation field is

D2aμ −DμðD · aÞ − 2igFμνaν ¼ Ujμ: ð93Þ

The only place where one might generate a discontinuity of
the field a is when a derivative with respect to x− multiplies
a field Ai. This only occurs in the plus component of the
equation of motion:

D2aþ −DþðD · aÞ − 2igFþiai ¼ Ujþ; ð94Þ

which can be rewritten as

U∂2
TðU†aþÞ þ ∂−ð−∂þaþ þDiai þ 2igAiaiÞ
− 2igAi∂−ai ¼ Ujþ: ð95Þ

Collecting all the terms containing ∂− in the þ equation
one sees that they are

∂−ð−∂þaþ þDiai þ 2igAiaiÞ − 2igAi∂−ai: ð96Þ

The discontinuity in Diai combines with that in the next
term and any discontinuity in Ai can be canceled by a
discontinuity in ∂þaþ:

disc∂þaþ ¼ ig discðAiÞai: ð97Þ

In the i component, there is no such term (in the gauge
a− ¼ 0 in which we work). This equation forces ai to be
continuous.
The radiation may be computed by knowing the asymp-

totic behavior of the field ai, which satisfies the fluctuation
equation

D2ai −DiðD · aÞ ¼ Uji: ð98Þ

For x− > 0, where the matrix U ¼ 1, this equation sim-
plifies to

∂2ai − ∂iðD · aÞ ¼ ji: ð99Þ

Further, using the equation for the minus component of
the current,

∂−ðD · aÞ ¼ −j−; ð100Þ

we find that for x− > 0 the equation for ai simply is

∂2ai ¼ ji − ∂i 1

∂− j
−: ð101Þ

VIII. RADIATION FROM THE QUARK-NUCLEUS
INTERACTION

The transverse radiation field is

aiðxþ; x−;xÞ ¼
Z

d4k
ð2πÞ4 e

−iðkþx−þk−xþ−k·xÞaiðk−; kþ;kÞ;

ð102Þ

and radiation is computed from k2aiðk−; kþ;kÞ. We know
that ai is a free field at x− > 0, and further we know its
boundary value Eq. (92) at x− ¼ 0. With this information
we can construct the full solution.
First, from the fact that one has a free solution for x− > 0

one can conclude that

aiðk−; kþ;kÞ ¼
i

kþ − k2T
2k− þ iϵ

aiðk−;kÞ

¼ −2ik−

k2 þ iϵ
aiðk−;kÞ: ð103Þ

Inserting this to Eq. (102) gives

aiðk−; x−;kÞ ¼ θðx−Þ exp
�
−i

k2T
2k−

x−
�
aiðk−;kÞ; ð104Þ

where k−aiðk−;kÞ is the Fourier transform of the boundary
value UðxÞU†ð0Þi∂þavaci ðxþ; 0;xÞ in Eq. (92)

k−aiðk−;kÞ

¼
Z

dxþd2xeiðk−xþ−k·xÞUðxÞU†ð0Þi∂þavaci ðxþ; 0;xÞ

ð105Þ

¼
Z

d2q
ð2πÞ2 Uðk − qÞU†ð0Þ −qi

ðq2T þ 2ðk−Þ2Þ : ð106Þ

The Fourier transformation was taken from Eq. (58). From
Eq. (103)

ik2aiðk−; kþ;kÞ ¼ 2k−aiðk−;kÞ: ð107Þ

Radiation from the quark-sheet collision is then computed
from (color vector T is now explicitly written)

16π3
dN

dyd2k

¼
	





Z
d2q
ð2πÞ2Uðk − qÞU†ð0ÞT −2qi

q2T þ 2ðk−Þ2





2
�

ρ

;

ð108Þ

which, together with radiation from acceleration of the
quark, is the main result of this article. For quantitative
evaluation one first has to compute the convolution in
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Eq. (108) and then perform the quantum average over an
ensemble of color density distributions, denoted by h� � �iρ.
We remind the reader that an essential ingredient in the

above derivation was our gauge choice: we have a vanishing
background field Ai ¼ 0 after the collision, while the more
usual choice is to have a vanishing Ai before the collision.
The computation of the convolution and color ensemble

averaging is a challenging task, and we shall here only show
how the result approaches the Gunion-Bertsch formula
[10,27] for small pT particle production in the central region.
Note first that Eq. (106) contains part of the electrody-

namic (ED)-like radiation solution discussed in Sec. VI. To
avoid double counting, this should be eliminated. To this
end, write

ai ¼ βi1 þ βi2: ð109Þ
We let β1 be the solution to the free equations of motion in
the presence of the current, that is, the analog of the
electrodynamics problem for all x−:

∂μ∂μβi1 ¼ ji −
∂i

∂− j
−; ð110Þ

where the current is Eq. (78) with e replaced by the
unrotated color vector T. The solution is precisely the
solution Eq. (83) to the electrodynamics problem of
radiation from a charged particle.
We let β2 be the solution of the free zero external current

wave equation ∂μ∂μβi2 ¼ 0 subject to the boundary con-
dition

βi2jx−¼0 ¼ UðxÞU†ð0Þavaci jx−¼0 − βi1jx−¼0

¼ UðxÞU†ð0Þavaci jx−¼0 − avaci jx−¼0: ð111Þ
This solution for x− > 0 will satisfy correct equations of
motion with the proper boundary conditions at x− ¼ 0.
Here one has subtracted the contribution of βi1 at the surface
x− ¼ 0 which is simply the Coulomb solution at x− ¼ 0,
avaci , the solution with unrotated charge vector T.
To compute the convolution Eq. (106) we construct a

derivative or momentum expansion as follows. Write the
boundary or surface value in the form

aSi ¼ aiðxþ; x− ¼ 0;xÞ
¼ UðxÞU†ð0Þavaci ðxþ; x− ¼ 0;xÞ
¼ ∂iηþ ϵij∂jχ: ð112Þ

The two functions η and χ can be projected out
(ϵ12 ¼ −ϵ21 ¼ 1) as

∂2
Tη ¼ δir∂rai ¼ ∂iaSi ; ∂2

Tχ ¼ ϵir∂raSi : ð113Þ
Solving η, χ from here and inserting back into Eq. (112)
give the identity

aSi ¼ ðδijδsr þ ϵijϵsrÞ
1

∂2
T
∂j∂raSs : ð114Þ

This is an identity valid for 2D vector fields; note that aSi
is on both sides. It generates the δδþ ϵϵ tensor appearing
in [12]. In the last term one can write

∂raSs ¼ ∂rUU†ð0Þavacs þ UU†ð0Þ∂ravacs

¼ igArUU†ð0Þavacs þ UU†ð0Þ∂ravacs

¼ igAravacs þ ∂ravacs þOðUU†ð0Þ − 1Þ: ð115Þ

We remind the reader that in our color structure notation
ðigAaÞa ¼ gfabcAbac. Inserting this back into Eq. (114)
gives the approximation

aSi ¼ ðδijδsr þ ϵijϵsrÞ
1

∂2
T
∂jðigAravacs Þ þ avaci : ð116Þ

The last term just goes through Eq. (114) unchanged, but
disappears when the inhomogeneous solution is subtracted
as in Eq. (111). In Fourier space we thus have

ik2aSi ¼ ðδijδsr þ ϵijϵsrÞgfabc
kj
k2T

×
Z

d2q
ð2πÞ2 A

b
rðk − qÞacsðk−;qÞ2k−: ð117Þ

Squaring this and summing over i involves the tensorial
structure

X2
i¼1

ðδijδsr þ ϵijϵsrÞkjArasðδiαδβγ þ ϵiαϵβγÞkαAβaγ

¼ k2TA
2
Ta

2
T ð118Þ

so that

dN
dyd2k

¼ g2

16π3
fabcfab̂ ĉ

1

k2T

Z
d2q1d2q2
ð2πÞ4 Ab

r ðk − q1Þ

× Ab̂
r ðk − q2Þacsðk−;q1Þaĉsðk−;q2Þð2k−Þ2:

ð119Þ

To proceed further one must go beyond the classical
approximation by introducing quantum expectation values
[23] of the background field correlator

hAa
i ðk1ÞAb

j ðk2Þi ¼ δabð2πÞ2δð2Þðk1 − k2Þg2μ2
ki1k

j
2

k21Tk
2
2T

:

ð120Þ

Using the Fourier transformation of Eq. (58) along the line
x− ¼ 0 gives
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2k−avaci ðk−;qÞ ¼ −2qi

q2T þ 2ðk−Þ2 : ð121Þ

For the color factors one can write fabcfabĉTcTĉ ¼
NcTĉTĉ ¼ NcNg. With these simplifications Eq. (119)
reduces to the form

dN
dyd2k

¼ g4μ2

16π3
NcNg

1

k2T

Z
d2q
ð2πÞ2

1

jki − qij2
q2T

ðq2T þ 2ðk−Þ2Þ2 :

ð122Þ

If y is the gluon rapidity, 2ðk−Þ2 ¼ k2Te
−2y. At large y away

from the fragmentation region at y ¼ 0 this vanishes and
the momentum integral in Eq. (122) approaches the
standard GB form

1

k2T

Z
d2q
ð2πÞ2

1

jki − qij2
1

q2T
: ð123Þ

Consider then including the last term avaci in Eq. (116),
which was subtracted as part of the inhomogeneous
solution. Due to the antisymmetric tensor fabc in the first
term, upon squaring the interference term vanishes anyway.
The square of this term gives the gluon distribution

dN
dyd2k

¼ g2

16π3
TaTa

4k2T
ðk2T þ 2ðk−Þ2Þ2

¼ g2

16π3
TaTa

1

k2T

�
2

1þ e−2y

�
2

: ð124Þ

This is precisely the fragmentation region radiation in the
limit of large quark mass, computed in Eq. (91).
Our final result for gluon production is obtained by

taking ik2ai from Eqs. (106) and (107) for the homo-
geneous β2 contribution (quark-sheet collision) and from
Eq. (87) for the inhomogeneous β1 contribution (quark
acceleration), summing and absolute squaring. In the above
discussion, we have ignored the contribution for a possible
interference term. This term vanishes. This follows because
the color structure of the sum is ðUðxÞU†ð0Þ − 1ÞT þ T so
that the interference is ∼ðUðxÞU†ð0Þ − 1ÞT · T. When this
interference contribution is averaged over ρ, the only
possible nonzero contractions of the field are at x ¼ 0
since this is where the field sits for the emission from the
current. In the weak field approximation Eq. (117) the
interference term is ∼fabcTaTc ¼ 0 and vanishes on tree
level. Gluon production therefore arises from two non-
interfering contributions: one that is the generalization of
the QED radiation process (type β1), and another that is
unique to QCD and arises from the disturbance of a
Coulomb field composed of colored gluons that is dis-
turbed during the collision process (type β2).

IX. RAPIDITY AND kT DISTRIBUTION

Our goal is to study the fragmentation region so we are
interested in the rapidity dependence of the produced
radiation. The ED-like radiation from the acceleration of
the quark when crossing the nuclear sheet was studied in
Sec. VI; see Fig. 2 for distribution at fixed kT and fixed
acceleration. This is the inhomogeneous solution of the
radiation equation and depends on the path of the accel-
erated quark. The homogeneous solution depends on the
color charge distribution of the sheet colliding with the
quark and in Eq. (122). Its rapidity dependence is built in
2ðk−Þ2 ¼ k2Te

−2y. To see what it is quantitatively, we have
to introduce an IR divergence regulator mass m in the
momentum integral in Eq. (122). It can then be written in
the form

1

k2T

Z
d2q
ð2πÞ2

1

jki − qij2 þm2

q2

ðq2 þm2 þ k2Te
−2yÞ2 ð125Þ

¼ 1

4πk4T

Z
∞

0

du
u

ðuþ M̂2Þ2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1− uÞ2 þ 2m̂2ð1þ uÞ þ m̂4
p

¼ 1

2πk4T

�
log

kT
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2=k2T þ e−2y

p −
1

2
þO

�
m2

k2T

��
; ð126Þ

where M̂2 ¼ m2=k2T þ e−2y, m̂ ¼ m=kT . The integral can
be done in closed form and expressed rather compactly by
introducing v2 ¼ 1þ 2m̂2 þ 2M̂2 þ ðM̂2 − m̂2Þ2. What is
relevant is the limit m ≪ kT shown in Eq. (126). The result
has the following characteristic features:

(i) The kT distribution of the quark-sheet collision goes
as logðkTÞ=k4T while that from the quark acceleration
goes as 1=k2T . Different variations in different ranges
of kT are discussed, for example, in [12].

(ii) The rapidity distribution of the quark-sheet collision
includes a target fragmentation region for y <
logðkT=mÞ, m ¼ IR regulator, within which the
distribution shows a linear increase, Fig. 3, beyond
which there is a plateau extending arbitrarily. The
distribution following from quark acceleration has a
natural large y cutoff given by the momentum of the
accelerated quark.

At first sight, the different kT dependences of these two
processes seems alarming. It should not be so. The kT
dependence of 1=k2T is only valid for the direct charged
particle emission and in the range where kT ≪ Qproj

sat , that is,
when the typical transverse momentum of the emitted
gluon is small compared to the typical momentum kick
the charged particle gets from scattering from the nucleus.
At higher momentum, we simply must modify the compu-
tation to take into account the charged particle recoil. In this
region the production cross section will fall as 1=k4T ,
although our method of computation presented here will
fail in this region.
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For the Gunion-Bertsch contribution, we explicitly
worked in the region where kT ≫ Qproj

sat . In this region
the nonlinearities of the projectile color field are unim-
portant. Our approximations are valid in this region since
no large recoil of the charged particle is required, and this
region provides a useful check of our computations.
The interesting region of computation is when Qtarg

sat ≪
kT ≪ Qproj

sat . This is where most of the particle production
takes place. In this region, the Gunion-Bertsch computation
is not sufficient, and the full nonlinearity of the projectile
color field must be properly taken into account, i.e., a more
accurate evaluation of the expectation value in Eq. (108) is
needed.

X. CONCLUSIONS

We have in this article computed gluon production in a
collision of an ultrarelativistic nucleus and a static quark.

The result consists of two parts, an ED-like inhomogeneous
contribution from quark acceleration [Eqs. (81) and (87)]
and a homogeneous contribution from the interaction
between the nuclear sheet and the quark [Eq. (108)].
This interaction term corresponded to a homogeneous
solution of the radiation equation due to a special gauge
choice (25) in which the gauge field vanished after the
passage of the sheet.
This is only the first step toward the final goal, making

predictions for target fragmentation dynamics of ultra-
relativistic nuclear collisions. The next step involves
performing the transverse momentum convolution and
the color ensemble averaging in Eq. (108). Here they were
carried out only for dilute systems. Next these gluonic
results should be combined with those for quarks in [9] to
give initial values for energy momentum and baryon
number. This is analogous with the very early work in
[2]. Finally, one should numerically go through hydro-
dynamic evolution in analogy with [28] and prepare
predictions for experiments—which hopefully some day
will well extend to the fragmentation region.
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