
 

Structure functions at small x from worldlines: Unpolarized distributions

Andrey Tarasov and Raju Venugopalan
Physics Department, Brookhaven National Laboratory, Bldg. 510A, Upton, New York 11973, USA

(Received 26 April 2019; published 10 September 2019)

The worldline representation of quantum field theory is a powerful framework for the computation of
perturbative multileg Feynman amplitudes. In particular, in gauge theories, it provides an efficient way, via
point particle Grassmann functional integrals, to compute spinor and color traces in these amplitudes.
Further, semiclassical approximations to quantum mechanical worldline trajectories provide useful
intuition in a wide range of dynamical problems. We develop here the worldline approach to compute
deeply inelastic structure functions in the small x Regge limit of QCD. In a shockwave approximation valid
in this limit, we show how one recovers the well-known dipole model for unpolarized structure functions.
In a follow-up work, we will discuss the worldline computation of polarized structure functions at small x.
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I. INTRODUCTION

In quantum field theory, one and higher loop effective
actions can be rewritten as quantum mechanical point
particle path integrals [1], with internal degrees such as
spin and color expressed as Grassmann degrees of freedom
(d.o.f.) [2–8]. An elegant feature of the formalism is that the
point particle d.o.f. can be thought of as worldlines tracing
paths in the presence of background fields. Indeed, the
pseudoclassical Bargmann-Michel-Telegdi (BMT) equa-
tion [9] for spinning particles in background fields and
the Wong equations [10] for their color charge counterparts
are straightforwardly obtained by taking the saddle points
of the respective QED and QCD one-loop worldline path
integrals; in gravity, the worldline counterparts are the
Papapetrou equations [5,11]. Because of the semiclassical
intuition provided by worldlines, they are a powerful tool in
first principles derivations of phase space distributions [2].
This has been exploited in developing kinetic descriptions
in QED and QCD at finite temperature and density [12–15].
In QED, the worldline formalism is one loop exact; in

QCD, it can be derived in a systematic perturbative
expansion of the effective action. Indeed, the worldline
framework provides an elegant and efficient way to
compute Feynman amplitudes [16–25]. In the case of
QCD for instance, there is an equivalence [16] between
this approach and the rules derived by Bern, Dixon,
Dunbar, and Kosower [26,27] from string theory to
compute one-loop gauge theory amplitudes. A further

important development has been the application of world-
line techniques to describe soft gluon resummation and
exponentiation in QCD. The exponentiation of a class of
soft graphs called “webs” [28] finds an elegant description
in the worldline approach [29–31]. In fact, this exponen-
tiation can be understood as the cloud of soft radiation
dressing the trajectories of hard worldline charges and is
deeply related to the infrared finiteness of S-matrix ele-
ments in high energy scattering [32–35].
In this work, we will apply the worldline formalism to

deeply inelastic scattering (DIS) in the Regge limit of fixed
Q2 ≫ Λ2

QCD and Bjorken x → 0. In this limit, soft radiation
is dominated by large logs αs lnð1=xÞ ∼Oð1Þ, where αs is
the QCD coupling. The resummation of these leading
logarithms in x (LLx), to all orders in perturbation theory,
is described1 by the Balitsky-Fadin-Kuraev-Lipatov
(BFKL) equation [37,38]; the LLx resummation was sub-
sequently extended to next-to-leading-logarithmic accuracy
[39]. This small x resummation leads to a rapid growth of
parton distributions; in fact, for eachQ2, there is a value of x
below which the phase space density of partons on the light
front has maximal occupancy of order 1=αs. This phenome-
non is called gluon saturation and the emergent scaleQsðxÞ
where it occurs is called the saturation scale [40,41]. In
the Regge limit, Qs ≫ ΛQCD; the coupling is weak, with
αs ≡ αsðQsÞ. The dynamics of gluon saturation is, however,
nonperturbative due to the large gluon occupancy.
The physics of this weakly coupled albeit nonperturba-

tive gluon saturation regime of QCD is captured by an
effective field theory (EFT), the color glass condensate
(CGC) [42–45] where the d.o.f. are static color sources at
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1For a derivation of the BFKL equation in a framework where
the motion of hard color charged particles is described by Wong’s
equations, see Ref. [36].
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large x and dynamical fields at small x. As first noted in
[46–48], because of the large gluon occupancy, the CGC is
a classical EFT. Remarkably, Wilsonian renormalization
group (RG) computations show that the structure of the
classical field reproduces itself with decreasing x, while the
distribution of color sources is modified with each step in x;
the corresponding RG equations for the sources are called
the Jalilian-Marian-Iancu-McLerran-Weigert-Leonidov-
Kovner (JIMWLK) equations [49–53].
In DIS at small x, the problem can be formulated

equivalently as the fluctuation of the virtual photon into
a quark-antiquark pair that scatters off the “shockwave”
classical background field of a nucleus and is color rotated
in the process [54,55]. In general, the RG that emerges can
be understood as generating a hierarchy of equations for
products of lightlike Wilson lines (and their Hermitian
conjugates) representing the color rotation of the quark,
antiquark and additional partons from the projectile in the
shockwave background. The resulting Balitsky hierarchy
[56] is identical [57] to that generated by the JIMWLK RG
equation. For the RG evolution of the quark-antiquark
dipole, one obtains a closed form expression, the Balitsky-
Kovchegov (BK) equation, in a mean field large Nc
approximation [56,58].
In this paper, we will provide a first demonstration of the

power of the worldline approach in computations at small x.
While the worldline approach is equivalent to the standard
formulation of QCD, it provides an alternative representa-
tion which is useful not only for perturbative calculations
but also for nonperturbative problems in QCD. From the
perspective of perturbative calculations, the worldline
approach at small x has several attractive features relative
to the standard formalism of Feynman diagrams. First, the
worldline framework is formulated in coordinate space,
which allows one to introduce the shockwave representation
of small x gauge fields as an instantaneous interaction of the
worldline with the background gauge field. Further, the
interaction terms of theworldline action immediately lead to
gauge invariant expressions which are constructed from the
field strength tensor and Wilson lines of the background
field. In the standard perturbative approach, such a formu-
lation is a consequence of the resummation of a large
number of diagrams from different orders of expansion in
the background field and reorganization of these diagrams
into gauge invariant objects. The realization of this oper-
ation in the worldline approach is more transparent, arising
directly from the structure of the worldline Hamiltonian.
This is especially important at small x because all twists in
the expansion of background field are equally important.
Another interesting feature of the worldline approach is

the explicit separation between fermionic and bosonic d.o.f.
already at the level of the worldline action. This makes the
worldline approach very powerful for the study of spin
effects. In Feynman diagram calculations, these d.o.f. are
mixed. In particular, in this paper, we derive the structure of

the interaction current of the worldline with the shockwave
background and observe that it has a spin-dependent term.
This term in the current is specified by the shock-wave
approximation. In the derivation, we used the properties of
Grassmann variables that describe the transition of polari-
zation from the first nontrivial correction to the background
field to the fermion d.o.f. While similar structures have
been observed before [59–62] in the Feynman diagram
computations at small x, we believe that our result is the
first derivation, valid in all orders of perturbation theory,
that demonstrates that the structure of the spin-dependent
interaction at small x is a direct consequence of the
instantaneous nature of the interaction with the back-
ground. In a forthcoming publication [63] (paper II in this
series), we will use the structure of the spin-dependent
current to derive the form of the structure function g1 at
small x and introduce the notion of the polarized dipole.
Finally, the worldline approach is ideally suited to

address the subtle issues regarding the role of nonpertur-
bative effects at small x [13,14]. In particular, it can
potentially provide insight into the role of the chiral
anomaly in polarized DIS at small x [64–66]. Another
interesting possibility is that the worldline approach may
allow one to use a quantum computer to determine structure
functions at small x in arbitrary nonperturbative back-
ground fields. A paper outlining the power of the worldline
framework in quantum computation is in preparation [67].
In this paper, for a first application of the worldline

formalism to DIS at small x, we will only consider
unpolarized structure functions and shall derive the dipole
model for these structure functions from first principles. As
we will describe, it is sufficient for our purposes to treat the
CGC shockwave field as the background field in this
formalism. The RG evolution is contained in the evolution
of the classical shockwave with decreasing x or increasing
center-of-mass energy. Our approach is similar in spirit to
that developed in [68,69], albeit the latter is couched in the
language of Feynman diagrams. We will establish a primer
between the two descriptions. As noted, in the follow-up
paper II, wewill use theworldline techniques adapted here to
describe theRegge limit to study the corresponding spinning
dipole model for polarized parton distributions [63].
The paper is organized as follows. In the next section, we

will begin with some preliminaries on definitions of
structure functions and relate these to the imaginary part
of the time ordered product of electromagnetic currents.
These currents are obtained from varying the effective
action with respect to the electromagnetic background
field. This is the starting point for the application of the
worldline formalism to DIS. In Sec. III, we will provide an
introduction to the formalism for the general reader. We
start with scalar QED and then generalize to full QED. This
provides us with the ingredients to compute the vacuum
polarization tensor. The polarization tensor in the gluon
shockwave background field is discussed in Sec. IVand the
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dipole model derived in Sec. V. We end with a summary
and conclusions.
For the interested reader, the Appendixes provide useful

and, in some instances, novel information. In Appendix A,
we introduce the method of Grassmann coherent states to
derive the worldline path integral for spinning particles.
Thus one effectively replaces spinor traces with quantum
mechanical Grassmann integrals. A similar procedure can
be followed to compute color traces. We do not discuss this
here but note some of the relevant references in this regard
to be [14,15,17–20,70,71]. Appendixes B and C discuss the
computation of scalar and Grassmann functional integrals,
respectively. An excellent review for this purpose can be
found in [22]. Specifically, we here make use of the
expressions for the boson and fermion worldline Green’s
functions on a closed loop discussed previously in [16]. A
key observation is that the semiclassical expressions for the
worldline functional integrals are exact in the shockwave
approximation. In Appendix D, we reformulate the coor-
dinate space expressions for worldline functional integrals
in momentum space. This has the advantage that a simple
mnemonic can be used to describe one-loop integrals with
an arbitrary number of external currents. That is not the
case for the coordinate space equivalent. Further, while the
representation of proper time integrals is long known to be
equivalent to the Feynman parameter representation of
propagators, we highlight subtle features of the worldline
representation. Finally, in Appendix E, we discuss the
dictionary between Feynman diagrams and worldline path
integrals. We discuss some subtleties in matching spinor
currents in the two approaches that will be relevant in future
discussions of polarized parton distributions.

II. DEEP INELASTIC SCATTERING,
STRUCTURE FUNCTIONS, AND SMALL x

The subject of our interest is inclusive deeply inelastic
lepton-hadron scattering, summarized by the expression

lðlÞ þ NðPÞ → lðl0Þ þ X; ð1Þ
where the interaction between the lepton (l) and the hadron
(N) is viewed as the exchange of a virtual photon γ� of
momentum q ¼ l − l0. The DIS cross section can be
factorized into a convolution of the lepton tensor corre-
sponding to the γ� emission by the electron and the hadron
tensor describing the interaction of the virtual photon with
the parton constituents of the hadron. The hadron tensor is
the matrix element of the product of two electromagnetic
currents jμ ¼ efψ̄γμψ sandwiched between hadron states
with momentum P and spin S:

Wμνðq; P; SÞ ¼ 1

2π

Z
d4xeiq·xhP; SjjμðxÞjνð0ÞjP; Si: ð2Þ

It can be expressed as the sum of its symmetric and
antisymmetric parts,

Wμνðq; P; SÞ ¼ W̄μνðq; PÞ þ iW̃μνðq; P; SÞ; ð3Þ

where the symmetric part W̄ does not depend on the
hadron’s spin unlike the antisymmetric part W̃. Each term
in Eq. (3) can be decomposed into all possible Lorentz
structures, and after further considerations of gauge invari-
ance, parity and time reversal invariance can be expressed
in terms of Lorentz invariant structure functions as

1

2
W̄μνðq; PÞ ¼

�
−gμν þ

qμqν
q2

�
F1ðx;Q2Þ

þ
��

Pμ −
P · q
q2

qμ

��
Pν −

P · q
q2

qν

��

×
F2ðx;Q2Þ

P · q
; ð4Þ

1

2
W̃μνðq; P; SÞ ¼

M
P · q

ϵμναβqα
�
Sβg1ðx;Q2Þ

þ
�
Sβ −

ðS · qÞPβ

P · q

�
g2ðx;Q2Þ

�
: ð5Þ

We have used here the conventions ϵ0123¼−1,Q2¼−q2>0,
and introduced the Bjorken variable x ¼ Q2=ð2P · qÞ.
One can invert Eqs. (4) and (5) and instead write down

the structure functions in terms of the hadron tensor as

F1 ¼ Πμν
1 W̄μν; F2 ¼ Πμν

2 W̄μν; ð6Þ

where

Πμν
1 ¼ 1

4

�
1

a
PμPν−gμν

�
; Πμν

2 ¼ 3P ·q
4a

�
PμPν

a
−
1

3
gμν

�
ð7Þ

are kinematic projectors, and a ¼ P·q
2x þM2 ≃ P·q

2x . Similar
relations for spin dependent structure functions can be
found in Ref. [72].
In computing the hadron tensor, it is convenient to use its

relation to the imaginary part of the forward Compton
scattering amplitude,

Wμν ¼ 1

π
ImTμν; ð8Þ

where Tμν is defined as the time ordered product

Tμνðq;P;SÞ¼ i
Z

d4xeiq·xhP;SjTfjμðxÞjνð0ÞgjP;Si: ð9Þ

Since QCD is intrinsically nonperturbative, one cannot
compute the nonlocal matrix element in Eq. (9) directly.
One can, however, make progress by writing this matrix
element as a Taylor expansion when xμ → 0, as the
convolution of short distance perturbative coefficients
Cnðx2; μÞ and long distance matrix elements of local
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operators hOμν
n ð0; μÞi separated at a factorization scale μ; in

this operator product expansion (OPE),

TfjμðxÞjνð0Þg ∼
X
n

Cnðx2; μÞ ⊗ hOμν
n ð0; μÞi; ð10Þ

where n here collectively denotes the spin of the local
operator as well as the different operators having the same
Lorentz structure.
The structure of Eq. (10) can be understood from the

point of view of the separation of kinematic modes with
distinct timescales. Indeed a high energy scattering reaction
is a combination of different subprocesses, each with its
own spacetime scale. For example, in the OPE, the DIS
interaction of the virtual photon with the target is deter-
mined by the large virtuality Q2 which defines the size of
the interaction area as ∼1=Q. At the same time, the cross
section depends on the structure of the target as well, whose
QCD dynamics is controlled by the nonperturbative scale
ΛQCD. The coefficients Cn contain the dynamics of the
“fast” modes defined by the kinematics of the incoming
photon and the matrix elements of local operators hOni of
nonperturbative interactions inside the target hadron.
Practical realizations of this factorization philosophy of
the separation of kinematic modes can be far more involved
and depend strongly on the process under consideration.
In this paper, we wish to compute structure functions

at small x where the usual OPE of DIS breaks
down [73], but there nevertheless exists a strong separation
of fast and slow modes in the rapidity variable. To under-
stand this better, it is convenient to choose a frame for
DIS where the target has zero transverse momentum and
the longitudinal momentum component Pþ is large:
P ¼ ðPþ;M2=2Pþ; 0⊥Þ ≃ ðPþ; 0; 0⊥Þ. For the photon,
we similarly set q⊥ ¼ 0 with virtuality Q2¼−2qþq−>0
and x ≃ −qþ=Pþ. In the infinite momentum frame (IMF),
Pþ → ∞ and x ≪ 1 for fixed photon virtuality. In the IMF,
in analogy to the scale μ in the OPE, we can introduce a
cutoff Λþ and define the “slow” modes associated with the
target as fields with pþ > Λþ, and likewise, the fast modes
associated with the photon as fields with pþ < Λþ.
In the Feynman diagram shown in Fig. 1(a), the

interaction of the fast modes with pþ < Λþ is mediated

by the photon virtuality Q2 in the quark loop, and the
integration over these fields can be computed explicitly
using perturbation theory, yielding the equivalent of the
coefficients Cn in Eq. (10). The vertical gluon lines, on the
other hand, representing the slow pþ > Λþ modes, are
absorbed into the operatorsOn in Eq. (10). In the following,
we will refer to the gauge field corresponding to these
modes as the background field.
At small x, the CGC EFT implements this separation

of fast and slow modes. The high occupancy back-
ground field gluon modes with transverse momenta
k⊥ ≤ Qs have high occupancy, and can therefore be
obtained from solutions of the classical Yang-Mills
equations [46–48,74],

DμFμν ¼ Jν; ð11Þ

where the source Jμ describes the large x modes in
the ultrarelativistic hadron that in the IMF can be
approximated as

Jν ¼ δνþδðx−Þρðxþ; x⊥Þ; ð12Þ

where ρðxþ; x⊥Þ is the color charge density of the
hadron. In the covariant gauge, a static (xþ independent)
solution of the Yang-Mills equation exists and is given
by

Aþ
clðxÞ ¼ −

1

∂2⊥
ρðx⊥Þδðx−Þ; A−

cl ¼ Ai
cl ¼ 0: ð13Þ

This solution for the CGC shockwave background field
has an infinitesimally small support of order 1=Pþ in the
x− direction, as represented in Fig. 1(b).
It is clear from Fig. 1(b) that there is a strong separation

in timescales between the fast modes and the shockwave
background field. As a result, the dominant contribution to
the hadron tensor at small x is from the diagram in Fig. 1(b),
where the incoming photon splits into the quark-
antiquark pair a long time before its interaction with the
background [68]:

Wμνðq;P;SÞ

¼ −
e2f
π
Imi

Z
d4xeiqxhP;SjγμSAcl

ðx;0ÞγνSAcl
ð0; xÞjP;Si;

ð14Þ

where SAcl
ðx; 0Þ is the quark propagator in the CGC back-

ground field given by Eq. (13).
More generally, for an arbitrary background field A,

defining the effective action Γ as the functional integral

eiΓ½A� ¼
Z

DΨDΨ†eiS½Ψ;Ψ†;A�; ð15Þ

FIG. 1. (a) Current-current correlator in an arbitrary back-
ground field. (b) The same in the CGC shockwave background,
where the spatial separation in x− shrinks to a point.
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one can express Eq. (14) as2

Wμνðq;P;SÞ¼ 1

πe2
Im

Z
d4xeiqxhP;Sj δ2Γ½A�

δAμðxÞδAνð0Þ
jP;Si;

ð16Þ
where the spacetime metric has signature g ¼ ð1;−1;
−1;−1Þ. The problem of computing structure functions
is thereby reformulated as the problem of computing the
effective action of the theory. In this paper, we will develop
a worldline framework for the computation of the effective
action and discuss results for structure functions at small x
for the case where the Aμ → Aμ

cl.

III. WORLDLINE FRAMEWORK FOR DIS

We will present in this section an introduction to the
worldline approach to initiate the unfamiliar reader to basic
features of this formalism. We will begin with the case of
scalar QED before proceeding to the full spinor QED case.
We will then perform a perturbative computation of the
vacuum polarization tensor; this computation will be
useful for the computation in Sec. IV, where we will
perform the computation of the same in the gluon shock-
wave background. Several details of the computations that
may be of use to the interested reader are presented in
Appendixes A–E. Some of the discussion in these intro-
ductory sections can be found in [22]. There are, however, a
number of novel features that we have uncovered in our
study that may of use in wider contexts.

A. Worldline path integrals: Scalar QED

The scalar QED Lagrangian in a background field A is

Lscalar ¼ ϕ†ð∂μ þ ieAμÞ2ϕ −m2ϕ†ϕ: ð17Þ
The effective action of the theory ΓM

scalar½A� can be
defined as a functional integral over quantum fields ϕ:

eiΓ
M
scalar½A� ¼

Z
DϕDϕ†ei

R
d4xLscalar : ð18Þ

To understand the structure of the effective action, one
can construct the perturbative expansion of Eq. (18),
whereby the effective action is expressed as the sum of
one particle irreducible diagrams (1PI). The first few terms

of the perturbative expansion are represented in Fig. 2.
Since the dependence on quantum fields on the right-hand
side of Eq. (18) has a quadratic form, the functional
integrals can easily be evaluated; the effective action of
the theory then transforms into the functional determinant,

iΓM
scalar½A� ¼ ln det½−ð∂μ þ ieAμÞ2 þm2�

¼ Tr ln½−ð∂μ þ ieAμÞ2 þm2�; ð19Þ

where we use the well-known relation for the determinant
of an arbitrary operatorO: ln detO ¼ Tr lnO. The trace in
this relation should be understood as a discrete sum over
finite dimensional internal d.o.f. (such as color and spin)
and a functional trace over the continuous coordinate d.o.f.
A standard way of computing the functional determi-

nant is based on the perturbative expansion of the
logarithm on the right side of Eq. (19), which corresponds
to the resummation of the Feynman diagrams in Fig. 2.
The worldline approach presents an alternative
definition of the functional determinant in the form of a
one-dimensional functional integral. To construct such an
integral, one introduces a complete set of coherent states
of the operator in Eq. (19) and writes the functional
determinant as the product of the corresponding
eigenvalues.
In order to do this, we first perform an analytical

continuation of the effective action in Eq. (19) to
Euclidean spacetime with ημν ¼ diagð1; 1; 1; 1Þ by Wick
rotating the time variable tM → −itE. That gives us the
following form of the Euclidean effective action:

Γscalar½A� ¼ −Tr ln½ðpμ þ eAμÞ2 þm2�: ð20Þ

The operator in Eq. (20) has positive real eigenvalues,
allowing us to apply the heat-kernel regularization formula:

ln½ðpμþeAμÞ2þm2� ¼−
Z

∞

0

dT
T

ðe−T½ðpμþeAμÞ2þm2�−e−TÞ:

ð21Þ

The second term in this formula subtracts ultraviolet
divergences; we will not need to consider these in the rest
of this work. A general discussion of the regularization of
UV divergences in the worldline formalism including, for
instance, the derivation of the QCD β function can be found
in [22]. Substituting Eq. (21) into Eq. (20) gives

FIG. 2. The scalar QED effective action expanded in powers of the background field.

2We will here understand the field A as representing both the
incoming photons and the non-Abelian gauge field background.
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Γscalar½A� ¼ Tr
Z

∞

0

dT
T

e−Tm
2

e−TðpμþeAμÞ2 : ð22Þ

The exponential factor in this formula is understood as the
evolution operator for a scalar particle worldline moving
along a closed trajectory of length T.
We will now introduce the bosonic coherent states jxi

and jpi that respectively define the state of a particle with
coordinate x and momentum p, satisfying the following
completeness and orthogonality relations:

Z
d4xjxihxj ¼

Z
d4pjpihpj ¼ 1; hxjpi¼ eipx: ð23Þ

With these coherent states, the trace of an arbitrary operator
O can be evaluated as

TrO ¼
Z

d4xhxjOjxi; ð24Þ

which allows us to write the effective action in Eq. (22) as

Γscalar½A� ¼
Z

∞

0

dT
T

e−Tm
2

Z
d4xhxje−TðpμþeAμÞ2 jxi: ð25Þ

This can equivalently be written as a functional integral by
splitting the integral over T into N segments and inserting
complete sets of states jxi between them,

Γscalar½A�¼
Z

∞

0

dT
T
e−Tm

2

Z
PBC

YN
i¼1

d4xihxiþ1je−T
NðpμþeAμÞ2 jxii;

ð26Þ

where the integrals over xi satisfy periodic boundary
conditions (PBC): xNþ1 ¼ x1. Using the completeness
and orthogonality relations in Eq. (23), the matrix element
of the evolution operator in Eq. (26) can be rewritten as

hxiþ1je−T
NðpμþeAμÞ2 jxii

¼
Z

d4piþ1;i

ð2πÞ4 eipiþ1;iðxiþ1−xiÞð1 − ðτiþ1 − τiÞ

× ðpiþ1;i
μ þ eAiþ1;i

μ Þ2 þ � � �Þ; ð27Þ

where the ellipses stand for terms suppressed by higher
powers of the ratio T=N. In Eq. (27), we introduced a
proper time variable τ such that τ1 ¼ 0, τNþ1 ¼ T, and
τiþ1 − τi ¼ T=N. The evolution operator in Eq. (27)
depends on the background field, whose magnitude is
evaluated as the average value x̄iþ1;i ¼ ðxiþ1 − xiÞ=2,
namely, Aiþ1;i

μ ¼ Aμðx̄iþ1;iÞ.
Substituting Eq. (27) into Eq. (26), and taking the limit

N → ∞, yields finally the functional integral representation
of the effective action to be

Γscalar½A� ¼
Z

∞

0

dT
T

e−Tm
2

Z
PBC

Dx

×
Z

DpP exp

�Z
T

0

dτðip_x − ðpμ þ eAμÞ2Þ
�
:

ð28Þ

Note that now xðτÞ is a function of the proper time τ and that
the functional integral

R
Dx is performed over all possible

configurations of xðτÞ. The operator P imposes path order-
ing of the background fields A along xðτÞ. For the sake of
brevity, we will not write it in the equations that follow, but
path ordering will always be implicit in our discussion.
Observe that the effective action in Eq. (28) has a structure

distinct from that in the standard quantum field theory
expression given in Eq. (18). Instead of quantum fields,
currents, and products of currents (obtained from taking
functional derivations of the effective action with respect
to the external fields), are expressed in terms of an embedded
(0þ 1)-dimensional quantum mechanical probe. The
(0þ 1)-dimensional quantum mechanical worldline trajec-
tory xðτÞ is the novel ingredient in this approach thatmakes it
distinct from the usual description in termsof quantum fields.
As we will see later, this allows one to develop effective
techniques to calculate worldline functional integrals
employing quantum mechanical worldline propagators.
We note finally that since the functional integral over

momentum in Eq. (28) is Gaussian, it can be evaluated
easily after performing a proper shift of variables to give

Γscalar½A� ¼
Z

∞

0

dT
T

e−m
2T

Z
PBC

Dxexp

�
−
Z

T

0

dτLscalar

�
;

ð29Þ

with the worldline Lagrangian defined as

Lscalar ¼
1

4
_x2 þ ie_x · A: ð30Þ

The first term in this expression is the kinetic term for a free
worldline. The second coupling term represents the evo-
lution of the worldline in the background field A. As has
been noted previously, this term is equivalent to a Wilson
loop of the background field A—and therefore is gauge
invariant with respect to the background field [3,5,16,70].

B. Worldline path integrals: Spinor QED

One can similarly construct the worldline representation
of the effective action for spinor QED. The additional novel
ingredient that deserves discussion is the introduction of the
fermion coherent states jξi and jξ̄i to describe spinor
fields in the effective action. The interested reader can
find the details of the calculation in Appendix A. The final
expression for the effective action of spinor QED derived
there is
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ΓQED½A� ¼ −
1

2

Z
∞

0

dT
T

e−m
2T

Z
PBC

Dx

×
Z
APBC

Dψ exp

�
−
Z

T

0

dτ

�
1

4
_x2 þ 1

2
ψμ _ψ

μ

þ ie_xμAμ − ieψμψνFμν

��
: ð31Þ

In analogy to scalar QED, the worldline trajectory of a
particle is described by both bosonic coordinate xðτÞ and
fermionic Grassmann ψðτÞ point particle d.o.f. As dis-
cussed at length in Appendix A, the Grassmann worldline
trajectory ψðτÞ is obtained from the product of eigenvalues
of the QED kinetic operator in the Hilbert space defined by
the fermionic coherent states jξi. While the functional
integral over x has PBC xð0Þ ¼ xðTÞ, the Grassmann
functional integral instead has antiperiodic boundary con-
ditions (APBC) ψð0Þ ¼ −ψðTÞ. The worldline interactions
with the background field are now given by the coupling
terms _xμAμ and ψμψνFμν. The first term coincides with the

spin-independent term in Eq. (29) while the second term is
unique for the case of spinor QED and describes the
transmission of polarization from the background field to
the worldline. This point will be discussed further in [63].
Note that the bosonic and fermionic sectors of the theory
are not independent due to the dependence of the strength
tensor Fμν on xðτÞ.
However, the two sectors are independent in the case of a

free worldline, as represented by the kinetic terms in
Eq. (31). Introducing the notation,

G−1
B ðτ1; τ2Þ ¼

1

2

∂2

∂τ21 δðτ1 − τ2Þ;

G−1
F ðτ1; τ2Þ ¼

1

2

∂
∂τ1 δðτ1 − τ2Þ; ð32Þ

the kinetic terms in the effective action (31) [corresponding
to the diagram in Fig. 2(a)] can be rewritten as

ΓQED½A ¼ 0� ¼ −
1

2

Z
∞

0

dT
T

e−m
2T

Z
PBC

Dx exp
�
1

2

Z
T

0

dτdτ0xμðτÞG−1
B ðτ; τ0Þxμðτ0Þ

�

×
Z
APBC

Dψ exp

�
−
Z

T

0

dτdτ0ψμðτÞG−1
F ðτ; τ0Þψμðτ0Þ

�
: ð33Þ

The functions GBðτ1; τ2Þ and GFðτ1; τ2Þ are, respectively,
bosonic and fermionic propagators of the worldline sat-
isfying the corresponding periodic and antiperiodic boun-
dary conditions on a circle of circumference T. The explicit
forms of their solutions [16,26] are

GBðτ; τ0Þ ¼ jτ − τ0j − ðτ − τ0Þ2
T

;

GFðτ; τ0Þ ¼ signðτ − τ0Þ; ð34Þ

and those of their derivatives are

∂τGBðτ; τ0Þ ¼ signðτ − τ0Þ − 2ðτ − τ0Þ
T

;

∂τGFðτ; τ0Þ ¼ δðτ − τ0Þ; ð35Þ

and

∂2
τGBðτ; τ0Þ ¼ 2δðτ − τ0Þ − 2

T
: ð36Þ

Since the worldline functional integrals in Eq. (33) are
quadratic, they can be evaluated explicitly and give

Z
Dx exp

�
−
Z

T

0

dτ
1

4
_x2
�

¼ ð4πTÞ−D=2;

Z
Dψ exp

�
−
Z

T

0

dτ
1

2
ψ _ψ

�
¼ 4; ð37Þ

where D represents the number of spacetime dimensions.
Calculating functional integrals in the general case of the

interacting worldline effective action in Eq. (31) is a
formidable task because of the arbitrary dependence of
the background field A on the coordinate. However, one
can use the formulas in Eqs. (37) and (34) to construct a
perturbative expansion of the effective action. In the next
section, we will give the simplest example of such a
calculation, the computation of the photon polarization
tensor in QED. We will later generalize this computation to
the more complicated case of the interaction of the world-
lines with the small x gluon shockwave background.
The generalization of Eq. (31) to the case of QCD is

straightforward: one should promote the photon fields A to
include as well fields with a color d.o.f. and add the trace
over color Trc in front of the whole expression. One can
also use fermionic coherent states to construct the func-
tional integral representation for the trace over color
[17,18,70]. We have considered colored Grassmann point-
like variables recently in the context of kinetic theory [15];
we will, however, not employ them here but will return to
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them in the future. One should also note that the ordering of
matrices in the color trace is fixed by the proper time
ordering of the corresponding gluon fields.

C. Vacuum polarization tensor in the
worldline approach

We will now consider as a simple example of a perturba-
tive calculation in the worldline formalism the computation
of the photon polarization tensor in the vacuum. We will
sketch the main ingredients of the calculation; these will be
useful later for the more complicated case of the quark loop
in the gluon shock-wave background.
In general, to take into account the interaction of the

worldline with the background field A, one should be able
to calculate the functional integrals over the worldline
trajectories in Eq. (31). Unfortunately, since this cannot be
performed exactly for an arbitrary background field, one
needs to develop approximate computational schemes. One
approach is to employ a semiclassical approximation
whereby the worldline functional integrals are expanded
around classical trajectories defined by the worldline Euler-
Lagrange equations of motion:

m̄ẍclμ ¼ igFμν · _xclν −
ig
2m̄

ψcl
ρ ∂μFρσψ

cl
σ ;

m̄ _ψcl
μ ¼ igFμσψ

cl
σ ; ð38Þ

where m̄2 ≡m2 þ i
R
1
0 duψ

μFμνψ
ν. These equations are

the covariant generalizations of the BMT equations for
spinning particles in external gauge fields [9].
In this paper, for the problem at hand, we will use an

approach based on the perturbative expansion of the
exponent in Eq. (31). This method [16] is an alternative
perturbative approach to the computation of the standard
Feynman diagrams in quantum field theory and leads to the
same results albeit presented in a quite different form. A
powerful feature of the approach is the efficient computa-
tion of spinor and color traces. Despite this, the worldline
approach is not widely applied to address problems in
QCD. Our work takes a step toward redressing this
situation by performing novel practical computations.
We begin our discussion of vacuum polarization by

considering the simple diagram with two background
photons given in Fig. 2(c). We first take the functional
derivative of Eq. (31) and take its Fourier transform:
Z

d4z1
δΓ½A�
δAμðz1Þ

eik1z1
����
A¼0

¼−
ie
2

Z
∞

0

dT
T

e−m
2T

Z
Dx

Z
Dψ

×
Z

T

0

dτ1ð_xμ1þ2iψμ
1ψ

ρ
1k1ρÞeik1x1e−

R
T

0
dτð1

4
_x2þ1

2
ψ _ψÞ; ð39Þ

where we introduced the shorthand notation x1 ≡ xðτ1Þ,
ψ1 ≡ ψðτ1Þ. In Eq. (39), the worldline current,

jμ ¼ _xμ þ 2iψμψρkρ; ð40Þ

describes the interaction of the worldline with an incoming
photon carrying momentum k. Since the interaction can
occur at any value of the proper time τ1, we have integrated it
over in Eq. (39). In the convolution of Eq. (39) with
momentum kμ, the second term in the worldline current
vanishes due to the Grassmann nature of the trajectory ψðτÞ.
Further, it is also easy to show that the convolution of the _x
term with kμ leads to a full derivative over time τ1, which in
turn is trivially zero because the functional integral over the
coordinate x satisfies periodic boundary conditions. This
worldline current is therefore manifestly conserved. Note
that one can interpret the first term of Eq. (40) as the scalar
current corresponding to the interaction of the scalar world-
line with the background field and the second term as its
spinor counterpart.
The photon polarization diagram in Fig. 2(c) corre-

sponds to the Fourier transform of the second derivative of
the effective action,

Γμν½k1; k2� ¼
Z

d4z1d4z2
δ2Γ½A�

δAμðz1ÞδAνðz2Þ
����
A¼0

eik1z1eik2z2 ;

ð41Þ
which can be written as

Γμν½k1;k2�¼−
ðieÞ2
2

Z
∞

0

dT
T
e−m

2T

Z
Dx

Z
Dψ

Y2
i¼1

×
Z

T

0

dτið_xηii þ2iψηi
i ψ

ρ
i kiρÞeikixie−

R
T

0
dτð1

4
_x2þ1

2
ψ _ψÞ;

ð42Þ

where k1 and k2 are two incoming momenta, and the
Lorentz indices η1 ¼ μ and η2 ¼ ν. The problem of
computing the vacuum polarization tensor Γμν½k1; k2� is
therefore equivalent to computing the functional integrals
in the expression above.
A discussion of the computation of worldline functional

integrals is provided in Appendixes B and C. Taking into
account that

Z
Dψψμ

1ψ
ρ
1e

−
R

T

0
dτð1

2
ψ _ψÞ ¼ 0; ð43Þ

we find that there are only two nontrivial terms:

Z
Dx

Z
Dψð_xμ1þ2iψμ

1ψ
ρ
1k1ρÞ

× ð_xν2þ2iψν
2ψ

σ
2k2σÞeik1x1eik2x2e−

R
T

0
dτð1

4
_x2þ1

2
ψ _ψÞ

¼
Z

Dx
Z

Dψ
X2
i¼1

Δμν
i eik1x1eik2x2e−

R
T

0
dτð1

4
_x2þ1

2
ψ _ψÞ; ð44Þ

ANDREY TARASOV and RAJU VENUGOPALAN PHYS. REV. D 100, 054007 (2019)

054007-8



where

Δμν
1 ¼ _xμ1 _x

ν
2; Δμν

2 ¼ ð2iψμ
1ψ

ρ
1k1ρÞð2iψν

2ψ
σ
2k2σÞ: ð45Þ

One thereby obtains the compact expression

Γμν½k1; k2� ¼ ð2πÞ4δ4ðk1 þ k2Þ
X2
i¼1

Πμν
i ðqÞ; ð46Þ

where q≡ k1 and the polarization tensors Πμν
1 and Πμν

2 ,
respectively, correspond to the terms Δμν

1 and Δμν
2 in

Eq. (45).
In Appendix B, we provide a detailed derivation of

the corresponding scalar worldline functional integrals.
Employing these results, we obtain

Πμν
1 ðqÞ ¼ 2ðieÞ2

Z
d4p
ð2πÞ4

−ημνfðpþ qÞ2 þm2g − ημνfp2 þm2g þ ð2pμ þ qμÞð2pν þ qνÞ
fp2 þm2gfðpþ qÞ2 þm2g : ð47Þ

Likewise, in Appendix C, we derive explicit expressions for the Grassmann worldline functional integrals, leading to the
result

Πμν
2 ½q� ¼ 2ðieÞ2

Z
d4p
ð2πÞ4

ημνq2 − qμqν

fp2 þm2gfðpþ qÞ2 þm2g : ð48Þ

The connection of results from the worldline computation with standard Feynman diagram techniques is discussed at length
in Appendix E. In particular, the first two terms in Eq. (47) correspond to delta functions in the second derivative of the
worldline propagator given in Eq. (36).
Finally, we take the sum of Eqs. (47) and (48) and analytically continue to Minkowski space with signature

g ¼ ð1;−1;−1;−1Þ. This is achieved by the replacements

ημν → −gμν; k4 → −ik0: ð49Þ

With these replacements, we obtain

iΠμν½q� ¼ −4e2
Z

d4p
ð2πÞ4

pμðpν þ qνÞ þ ðpμ þ qμÞpν − gμνfp2 þ ðp · qÞ −m2g
fp2 −m2 þ iϵgfðpþ qÞ2 −m2 þ iϵg : ð50Þ

The numerator of this expression is easily identified as the
trace Trfγμð=pþmÞγνð=pþ =qþmÞg in the Feynman dia-
gram calculation; our result therefore coincides with the
standard expression for the photon polarization tensor. We
see therefore that the worldline formalism is an efficient
way to compute the effective action and its functional
derivatives. Its advantages are not manifest for simple
spinor traces; however, because of the relative ease in
performing quantum mechanical Grassmann integrals,
these advantages become more apparent in the computation
of more complex traces.
In the next section, we will generalize the calculation

presented here of the polarization tensor in the vacuum to
the case of interaction of the quark loop with the gluon
shockwave background field; we will use this to calculate
the hadron tensor Wμν in Eq. (16). As we shall see, the
result for the polarization tensor will be similar to
Eq. (42), but will now include worldline currents corre-
sponding to the interaction of the worldlines with the
shockwave background. Further, integration over world-
line trajectories will lead to formulas similar to Eqs. (47)
and (48), albeit the expressions are more involved in
that case.

IV. WORLDLINES AND THE SHOCKWAVE
APPROXIMATION

The propagation of the worldline in the background field
is described in coordinate space. This makes the approach
particularly suitable for calculations in the shockwave
approximation because in this approximation the interac-
tion is localized at x− ¼ 0. In this section, we will show
how the shockwave approximation can be implemented in
the worldline approach, and we shall introduce the building
blocks which define the worldline trajectory in the CGC
background. In the next section, we will use it to compute
the spin averaged structure functions F1 and F2 that are the
Lorentz invariant quantities in the general formula for the
hadron tensor in Eq. (16).
We begin our discussion with the worldline effective

action Γ½A� for QCD which can easily be obtained3 from
Eq. (31) by insertion of the color trace over color indexes of
the background fields:

3Note that we have omitted here additional terms in the
effective action representing the coupling of quarks to the
external electromagnetic field.
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ΓQCD½A� ¼ −
1

2

Z
∞

0

dT
T

e−m
2TTrc

Z
Dx

Z
Dψ exp

�
−
Z

T

0

dτ

�
1

4
_x2 þ 1

2
ψμ _ψ

μ þ ig_xμAμ − igψμψνFμν

��
; ð51Þ

where we assume periodic and antiperiodic boundary conditions for the functional integrals over xðτÞ and ψðτÞ coordinates,
respectively.
From this formula, it is easy to obtain the second derivative of the effective action (with respect to the electromagnetic

field) which defines the structure of the hadron tensor in the kinematic limit of small x; it is defined by the product of the two
worldline currents in Eq. (40) and has the form

Γμν½k1; k3� ¼
e2e2f
2

Z
∞

0

dT
T

e−m
2TTrc

Z
Dx

Z
Dψ

Z
T

0

dτ1

Z
T

0

dτ3ð_xμ1 þ 2iψμ
1ψ

ρ
1k1ρÞeik1x1ð_xν3 þ 2iψν

3ψ
σ
3k3σÞeik3x3

× exp

�
−
Z

T

0

dτ

�
1

4
_x2 þ 1

2
ψμ _ψ

μ þ ig_xμAμ − igψμψνFμν

��
: ð52Þ

As in the QED case, the formula describes the interaction
of the worldline with two incoming photons with mo-
menta k1 and k3 that, respectively, interact with the
worldline trajectory with the charge ef (in units of the
electromagnetic charge) of a given quark flavor at
the proper times τ ¼ τ1 and τ ¼ τ3. (As usual, the sub-
script on the variables denotes their values at a particular τ,
x1 ≡ xðτ1Þ, etc.)
Here we wish to take into account the interactions of

the worldline with the CGC background field AμðxÞ,
where the interaction terms are specified by _xμAμðxÞ and
ψμψνFμνðxÞ in the worldline action. The CGC back-
ground field is given by the solution to the Yang-Mills
equations in Eq. (13) which has a shockwave structure at
high energies. Namely, a segment of the worldline
interacts with the CGC background instantaneously
and multiple interactions with the background gluons
shrink to a single point. From Fig. 1(b), it is clear that
there are only two such points on the worldline which
we denote by the proper time variables τ2 and τ4. We
will now consider only one of these interaction points
and show how the instantaneous nature of the CGC
background modifies the two interaction terms in the
worldline action in Eq. (52) that represents the inter-
action with the background field.
Let us start with the Grassmann phase factor. The

instantaneous nature of the worldline interaction with the
CGC background dramatically simplifies this expression.
To illustrate this, we can expand the phase factor in powers
of ψ ’s,

eig
R

T

0
dτψψF ¼

X∞
N¼0

ðigÞN
N!

YN
n¼1

Z
T

0

dτnψ
μ
nψν

nFμνðxnÞ: ð53Þ

It is easy to see that only the first 2 orders of the expansion
are important. Indeed, from Eq. (13), we find that the
interaction with the CGC background shrinks to a point at
x− ¼ 0, which corresponds to a local interaction in the

worldline trajectory at a proper time τi. As a result, the
factors ψμ

nψν
n in Eq. (53) are taken at the same point of

the worldline (τn ¼ τi). Thus due to the Grassmann nature
of the variables, only the first three terms in the expansion
survive.
According to Eq. (13) the shockwave background field

has only one nonzero component A−ðxÞ. However, in
general, at high energies, we can assume that there is also
a nontrivial subeikonal component A⊥ðxÞ [75]. In the
Regge limit of QCD, this Ai component describes the
transition of polarization from gauge fields to fermion d.o.f.
As a result, our derivation below in principle includes not
only the scattering in the CGC background (13) but also
describes spin effects at small x.
This discussion indicates that the field strength tensor of

the background field has only two nonzero components
F−m and Fmn. Therefore the terms of expansion in Eq. (53)
with N > 1 at a given time τi (which is τ2 or τ4 in our
notations) can only generate trivial structures, for example
ψ−
i ψ

m
i ψ

n
i ψ

l
i ¼ 0, where m, n, and l are transverse Lorentz

indices. As a result for a single interaction of the worldline
with the CGC background (which of course includes an
infinite number of background gluons) the Grassmann
phase factor in Eq. (53) simplifies to

1þ ig
Z

T

0

dτiψ
η
iψ

κ
i FηκðxiÞ: ð54Þ

Now we need to take into account the fact that the
worldline trajectory can interact with the CGC background
more than once. Both segments, between points τ1 and τ3,
interact with the external field, which is obvious from
Fig. 1(b). The Grassmann phase factor of each of these
interactions is described byEq. (54).We can therefore rewrite
the second derivative of the effective action Eq. (52) as4

4As usual, we will assume path ordering of fields along the
worldline trajectory—see the discussion after Eq. (28).
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Γμν½k1; k3� ¼
e2e2f
2

Z
∞

0

dT
T

e−m
2TTrc

Z
Dx

Z
Dψ

Z
T

0

dτ1

Z
T

0

dτ3ð_xμ1 þ 2iψμ
1ψ

ρ
1k1ρÞeik1x1ð_xν3 þ 2iψν

3ψ
σ
3k3σÞeik3x3

×

�
1þ ig

Z
T

0

dτ2ψ
ξ
2ψ

λ
2Fξλðx2Þ

��
1þ ig

Z
T

0

dτ4ψ
η
4ψ

κ
4Fηκðx4Þ

�
exp

�
−
Z

T

0

dτ

�
1

4
_x2 þ 1

2
ψμ _ψ

μ þ ig_xμAμ

��
; ð55Þ

where τ2 and τ4 are the proper times corresponding to the
interaction of the worldline trajectory with the CGC
shockwave. This is shown in Fig. 3 where the vertical
gluon line drawn denotes the interaction of the worldline
with an infinite number of background gluons that are
shrunk to a single point on the worldline, as also shown in
the representation of Fig. 1(b).
In the above expression, we integrated over all possible

values of τ2 and τ4, from 0 to T. A configuration for the
polarization tensor in the shockwave background can for
instance correspond to the worldline interacting with the
virtual photon at τ1, and then with the shockwave at τ2 with
x−2 ¼ 0; it can then fly off to x− → ∞ as if it were a free
particle, return from x− ¼ ∞, interact with the shockwave
again at τ4, and finally interact again with the virtual photon
at τ3, as depicted in Fig. 3(a).
In principle, more involved configurations are possible,

where the worldline trajectory can intersect with the CGC
background up to 4 times. However, one can show that due
to cancellations between different phase factors, only two
interactions survive. This is particularly easy to see in
the case of scalar QED where the phase factors have a
simple form Uðx⊥Þ≡U½∞;−∞�ðx⊥Þ defined in Eq. (61). In

Figs. 4(a)–4(c) we present typical combinations of the
phase factors acquired by the worldline in the DIS cross
section. Each factor U − 1 describes multiple interactions
of the worldline with the shockwave background. Note that
in the DIS when q2 < 0 there should be at least one
interaction with the background on each side of the cut.
Using unitarity of the phase factors, UU† ¼ 1, one finds
that the resummation of contributions in Figs. 4(a)–4(c)
leads to the structure of factors shown in Fig. 4(d). The
latter can be interpreted as two interactions of the worldline
with the shockwave background defined by the phase
factor U. We will introduce this factor later in the worldline
currents in Eqs. (60) and (62).
By definition [see Eq. (13)], the points of the worldline

τ2 and τ4 are located at x− ¼ 0. In our convention, these are
represented as x−2;4 ¼ 0. It is convenient to make this
explicit by using the identity,

Z
T

0

dτ2;4 _x−2;4signð_x−2;4Þδðx−2;4Þ ¼ 1; ð56Þ

and rewriting the amplitude in Eq. (55) as5

Γμν½k1; k3� ¼
e2e2f
2

Z
∞

0

dT
T

e−m
2TTrc

Z
Dx

Z
Dψ

Y4
i¼1

Z
T

0

dτið_xμ1 þ 2iψμ
1ψ

ρ
1k1ρÞeik1x1ð_xν3 þ 2iψν

3ψ
σ
3k3σÞeik3x3

× ð_x−2 signð_x−2 Þδðx−2 Þ þ igψξ
2ψ

λ
2Fξλðx2ÞÞð_x−4 signð_x−4 Þδðx−4 Þ þ igψη

4ψ
κ
4Fηκðx4ÞÞ

× exp

�
−
Z

T

0

dτ

�
1

4
_x2 þ 1

2
ψμ _ψ

μ þ ig_xμAμ

��
: ð57Þ

From this expression, we see that the interaction of the
CGC background with the worldline trajectory can be
represented by the current

jðxiÞ ¼ _x−i signð_x−i Þδðx−i Þ þ igψξ
iψ

λ
iFξλðxiÞ; ð58Þ

which resembles the structure of the interaction of the
worldline current with the incoming photon in Eq. (40).

FIG. 3. Functional integrals with different time orderings. Each
vertical gluon line denotes the interaction with an infinite number
of background gluons that are shrunk to a single point on the
worldline.

5Strictly speaking, the effective action in Eq. (51) is written
in Euclidean space; however, the analytical continuation to
Minkowski space is straightforward and can be achieved by
the trivial substitutions stated in Eq. (49). Therefore in Eq. (57)
one should assume such an analytic continuation for the light-
cone variable x−.
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This form of the current is further modified once we
take into account the boson _xμAμ phase factor in Eq. (57).
This phase depends explicitly on the path taken by the
worldline. However, due to the fact that interaction of the
worldline with the CGC background shrinks to a point,
the worldline path does not propagate in the transverse
direction and can be approximated as a straight line along
the light cone. We can therefore approximate this phase
factor as

W ¼ exp

�
−ig

Z
T

0

dτ _x−Aþðx−ðτÞ; x⊥ðτÞÞ
�
: ð59Þ

This expression is immediately recognizable as a Wilson
loop which depends on the transverse position of the
worldline at the point of interaction with the CGC
background field. Since the background field shrinks to
a single point, the dependence of this phase factor on the
worldline trajectory xðτÞ is trivial.
The phase factor in Eq. (59) can be represented as a

modification to the effective current in Eq. (58). If the
worldline trajectory goes to plus infinity, i.e., _xi > 0, the
phase factor modifies the current to read as

jWðxiÞ ¼ _x−i δðx−i ÞUðx⊥Þ
þ igψξ

iψ
λ
iU½∞;x�ðx⊥ÞFξλðxiÞU½x;−∞�; ð60Þ

where we introduced the notations

U½x;y�ðx⊥Þ ¼ exp

�
−ig

Z
x

y
dx−Aþðx−; x⊥Þ

�
ð61Þ

and Uðx⊥Þ≡ U½∞;−∞�ðx⊥Þ.6 Equation (59) manifests
itself in the effective current as both infinite and
semi-infinite Wilson lines; the two semi-infinite
Wilson lines in the second term of the current correspond
to the two segments of the worldline before and after
interaction with the shockwave. Likewise, if the worldline
at the point of interaction τi goes to minus infinity,

or _xi < 0, the phase in Eq. (59) modifies the current to
read instead as

jWðxiÞ ¼ _x−i δðx−i ÞU†ðx⊥Þ
þ igψξ

iψ
λ
iU½−∞;x�ðx⊥ÞFξλðxiÞU½x;∞�: ð62Þ

While Eqs. (60) and (62) provide different orderings in
the color trace of Eq. (57), their contribution to the
functional integrals over xðτÞ and ψðτÞ are the same.
In the derivation of the worldline currents Eqs. (60) and

(62), we used only the shockwave property of the CGC
background. It is important that these expressions include
Wilson line factors which are defined by an infinite number
of interactions with the background field. This is crucial
since it represents all-twist contributions that are equally
important at small x. Moreover the presence of these
Wilson line factors in the currents makes our final expres-
sion for the polarization tensor in Eq. (66) manifestly gauge
invariant.
An important property of our result for the currents is

that it includes in principle the contribution of the trans-
verse component of the background field A⊥. The inclusion
of this component of the gauge field is a step beyond the
eikonal approximation in the CGC and is necessary to
describe spin effects at small x. The transition of polari-
zation from gauge fields to the worldline fermions is given
by the Grassmann term in the currents [Eqs. (60) and (62)]
with the operator structure U½−∞;x�ðx⊥ÞFmnðxiÞU½x;∞�. This
result is in agreement with recent studies of spin effects at
small x [59–61], where the Fmn strength tensor was
introduced at leading order in perturbation theory to ensure
gauge covariance of the current. However, the worldline
approach allows us to directly identify the full structure of
the operator which includes the contribution of all orders of
expansion in the coupling constant essential at small x. As
we showed, this structure is the consequence of the shock-
wave approximation of the background field on the world-
line. In paper II [63], we will study spin effects at small x
using the full form of the currents in Eqs. (60) and (62). We
will restrict ourselves here to the case of unpolarized
scattering and the computation of the structure function
F2, for which case the form of the currents is simpler.
Indeed, the structure of Eqs. (60) and (62) becomes

especially simple when we take into account the explicit

FIG. 4. (a)–(c) The structure of the phase factors acquired by the worldline due to the interaction of the qq̄ pair with the shockwave
background field. The vertical dashed line is the cross-section cut, which is defined by the worldline going to x− → ∞. (d) The effective
sum of these contributions.

6Note that phase factors U have color indices; for brevity, we
do not write these out explicitly.
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form of the CGC classical field in Eq. (13) which has
A⊥ ¼ 0, leaving only one nonzero component of the gauge
field. In this case, one can express

∂mUðx⊥Þ ¼ −ig
Z

dx−U½∞;x�Fmþðx−; x⊥ÞU½x;−∞�; ð63Þ

such that the currents Eqs. (60) and (62) can be
reexpressed as7

jWðxiÞ ¼ ð_x−i þ 2ψ−
i ψ

m
i ∂mÞδðx−i ÞUðx⊥Þ; ð64Þ

and a similar expression for the reverse time ordering of the
trajectory is obtained by substituting U → U†. Taking into
account the fact that different orderings in the color trace
provides equal contributions to the functional integrals over
xðτÞ and ψðτÞ,

TrcUðx⊥ÞU†ðy⊥Þ ¼ TrcU†ðx⊥ÞUðy⊥Þ; ð65Þ

we can finally rewrite Eq. (57) as

Γμν½k1; k3� ¼ −
e2e2f
2

Z
∞

0

dT
T

e−m
2TTrc

Z
Dx

Z
Dψ

Y4
i¼1

Z
T

0

dτið_xμ1 þ 2iψμ
1ψ

ρ
1k1ρÞeik1x1ð_xν3 þ 2iψν

3ψ
σ
3k3σÞeik3x3

× ð_x−2 þ 2ψ−
2ψ

m
2 ∂2mÞδðx−2 ÞUðx2⊥Þð_x−4 þ 2ψ−

4ψ
n
4∂4nÞδðx−4 ÞU†ðx4⊥Þ exp

�
−
Z

T

0

dτ

�
1

4
_x2 þ 1

2
ψμ _ψ

μ

��
: ð66Þ

Our approximation for the scalar phase factor is only to
leading order in the eikonal expansion. One can try to
calculate the subleading corrections

R
dxiAi; these will,

however, only matter in situations where the finite size of
the background field is relevant, as is the case at large x. In
this study, we will restrict ourselves to the high energy
small x limit where such corrections are power suppressed
in the energy. With this caveat, we have everything we need
to compute the hadron tensor given in Eq. (16).
However, before we do so, we must address the violation

of translational invariance introduced by the shockwave
approximation. Indeed, in the derivation of Eq. (66), we
assumed that the background field is localized at the
longitudinal coordinate x− ¼ 0, explicitly breaking trans-
lational invariance in the longitudinal x− direction. As
proposed in [68], this can be restored by an additional
integral over X−, giving the formal expression8

Wμνðq; P; SÞ ¼ σPþ

πe2
Im

Z
dX−

Z
d4xeiqx

× hP; Sj δ2Γ½A�
δAμðx2 þ X−ÞδAνð− x

2
þ X−Þ jP; Si;

ð67Þ

where Pþ → ∞ is the light-cone momentum of
the target and σ is the transverse radius of the target.
This can be equivalently expressed in Euclidean
metric as

Wμνðq; P; SÞ ¼ σPþ

πe2
Im

Z
dX−

Z
d4xe−iqx

Z
d4k1
ð2πÞ4

×
Z

d4k3
ð2πÞ4 e

−ik1ðx2þX−Þe−ik3ð−x
2
þX−Þ

× hP; SjΓμν½k1; k3�jP; Si; ð68Þ

where Γμν½k1; k3� is defined by Eq. (66). In performing
this substitution, we observe that the resulting expres-
sion contains matrix elements of the product of Uðx2⊥Þ
and U†ðx4⊥Þ. If the matrix element is translationally
invariant in the transverse direction (as for a very large
nucleus), the result will depend only on the difference of
the transverse coordinates x2⊥ and x4⊥. It is therefore
convenient to introduce the function γðk⊥Þ which
satisfies

1

Nc
TrchP; SjUðx2⊥ÞU†ðx4⊥ÞjP; Si

¼
Z

d2k⊥
ð2πÞ2 e

ik⊥ðx2⊥−x4⊥Þγðk⊥Þ: ð69Þ

With this substitution, we obtain the worldline repre-
sentation of the hadron tensor at small x to be

7The required integration over x− is given by the functional
integral over xðτÞ in Eq. (57) at the point of interaction τi.

8In writing this expression, we have made use of the optical
theorem relating the imaginary part of the time ordered product of
currents (proportional to the right-hand side) to the corresponding
Wightman function on the left-hand side, which is the hadron
tensor. We also made use of the fact that the normalization hPjPi
introduces a volume factor, which in addition to X− also
introduces the transverse radius σ.
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Wμνðq;P;SÞ¼−
e2fσP

þNc

8π
Im

Z
dkþd2k⊥
ð2πÞ3 γðk⊥Þ

Z
∞

0

dT
T

e−m
2T

Z
Dy

Z
Dψ

Y4
i¼1

Z
T

0

dτi exp
�
−
Z

T

0

dτ
�
1

4
_y2þ1

2
ψμ _ψ

μ

��

×fð_yμ1−2iψμ
1ψ

ρ
1qρÞe−iqy1ð_y−2 þ2iψ−

2ψ
m
2 kmÞeiky2ð_yν3þ2iψν

3ψ
σ
3qσÞeiqy3ð_y−4 −2iψ−

4ψ
n
4knÞe−iky4gjk−¼0: ð70Þ

Inwriting this expression,9 we integrated over the zeromode
in the functional integral and evaluated several coordinate
andmomentum integrals. In particular, we identified k as the
momentum transferred from the CGC background to the
worldline. Note that translational invariance is also fully
restored. Further, as the factor e2f indicates, this is the
expression for a single flavor of quark, whose mass we
have for convenience denoted as m here. The final expres-
sion should be summed over all quark flavors. Note further
that the current representing the interaction of the worldline
with the shockwave background seen here to be

jðyiÞ ¼ _y−i þ 2iψ−
i ψ

m
i km ð71Þ

is similar to the structure of the current in Eq. (40) describing
the coupling of the external photon to the worldline.
In Appendix E, we will show that the worldline current

jμ corresponds to a γμ insertion in the standard Feynman

diagram approach. From the form of the worldline current
here, one can infer that the effective vertex of this
interaction in the standard technique should be defined
by an insertion of γ−. This coincides with the conclusion of
[68], where the structure of the quark propagator in the
small x shockwave background was analyzed.

V. WORLDLINE DERIVATION OF THE DIPOLE
MODEL AT SMALL x

We have now developed all the necessary tools in the
worldline formalism to compute the hadron tensor Wμν in
the small x shockwave approximation. We will here apply
these techniques to compute the unpolarized structure
functions F1 and F2 using the worldline representation
of Wμν in Eq. (70) and the projectors defined in Eq. (7). In
analogy to Eq. (44), we can rewrite Eq. (70) as the sum over
terms with different structures of the worldline integrals:

Wμνðq; P; SÞ ¼ −
e2fσP

þNc

8π
Im

Z
dkþd2k⊥
ð2πÞ3 γðk⊥Þ

Z
∞

0

dT
T

e−m
2T
Y4
i¼1

Z
T

0

dτi

×
X12
j¼1

Z
Dy

Z
DψΔμν

j e−iqy1eiky2eiqy3e−iky4 exp

�
−
Z

T

0

dτ

�
1

4
_y2 þ 1

2
ψ _ψ

������
k−¼0

; ð72Þ

where the structure of Δμν
j is similar to Eq. (45) and can

easily be reconstructed from Eq. (70), namely,

Δμν
1 ¼ _yμ1 _y

−
2 _y

ν
3 _y

−
4 ;

Δμν
2 ¼ _yμ1ð2iψ−

2ψ
m
2 kmÞ _yν3ð−2iψ−

4ψ
n
4knÞ; etc: ð73Þ

The identity

Z
Dψψμ

i ψ
ν
i exp

�
−
Z

T

0

dτ
1

2
ψ _ψ

�
¼ 0 ð74Þ

shows that four terms in the product of brackets in Eq. (70),
such as _yμ1 _y

−
2 _y

ν
3ð−2iψ−

4ψ
n
4knÞ, do not survive leaving us

with only 12 terms in Eq. (72).
The computation of the remaining functional integrals in

Eq. (72) can be performed using the worldline Green’s

function techniques presented in Appendixes B and C.
We will furthermore employ a momentum space
representation of worldline functional integrals that is
outlined in Appendixes D and E. We observe that there
are six different orderings of the proper time variables
τi, which can be interpreted as the independent flow
of momenta in the usual language of Feynman dia-
grams. As an example, the structure of denominator in
Eq. (D8) of Appendix E corresponds to the functional
integral over the trajectory yðτÞ with the time order-
ing τ1 < τ2 < τ3 < τ4.
Despite their apparent complexity, the six contributions

with different orderings of the proper time variables τi in
Eq. (72) can be summarized by the two diagrams in Fig. 3.
All other diagrams are obtained by a simple change of
variables in the corresponding momentum representation of
the functional integral. In particular, using Eq. (D8), the
“scalar” contributionΔμν

1 in the integrand of Eq. (72) can be
expressed as [after continuation to the Minkovski space
with metric g ¼ ð1;−1;−1;−1Þ]

9We promoted the 2-vector k⊥ to a 4-vector in the currents by
replacing the delta function in x− by its equivalent integral
representation, and by restricting k− ¼ 0.
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Wμνðq; P; SÞjΔμν
1
;τ1<τ2<τ3<τ4

¼ e2fσP
þNc

2π
Imi

Z
dkþd2k⊥
ð2πÞ3 γðk⊥Þ

×
Z

d4p
ð2πÞ4

N μνðp; qÞ
ðp2 −m2 þ iϵÞððp − qÞ2 −m2 þ iϵÞððp − q − kÞ2 −m2 þ iϵÞððp − kÞ2 −m2 þ iϵÞ

����
k−¼0

; ð75Þ

where

N μνðp; qÞ ¼ ð2p − 2k − qÞμð2p − 2q − kÞ−ð2p − qÞνð2p − kÞ−
− gμ−ððp − k − qÞ2 −m2Þð2p − qÞνð2p − kÞ− − g−νððp − qÞ2 −m2Þð2p − 2k − qÞμð2p − kÞ−
− g−νðp2 −m2Þð2p − 2k − qÞμð2p − 2q − kÞ− − gμ−ððp − kÞ2 −m2Þð2p − 2q − kÞ−ð2p − qÞν
þ gμ−g−νððp − k − qÞ2 −m2Þðp2 −m2Þ þ gμ−g−νððp − kÞ2 −m2Þððp − qÞ2 −m2Þ: ð76Þ

From the structure of Eq. (77), the calculation of the imaginary part of worldline functional integrals is straightforward
and can be done by the application of Cutkosky rules—which correspond to cuts of the worldline diagrams in Fig. 3. Since
for DIS we have q2 < 0, the diagram in Fig. 3(a) has only one cut. In contrast, the diagram in Fig. 3(b) has two cuts, which
are shown in Figs. 5(b) and 5(c). In total, the six worldline diagrams with different time orderings generate eight diagrams
with cuts. However, only two of them have unique topologies—these correspond to the contributions of the diagrams in
Figs. 5(a) and 5(b).
In particular, the diagram in Fig. 5(b) yields

Wμνðq; P; SÞjΔμν
1
;Fig: 5b

¼ −
e2fσP

þNc

4π

Z
dkþd2k⊥
ð2πÞ3 γðk⊥Þ

×
Z

d4p
ð2πÞ4

N μνðp; qÞ
ðp2 −m2Þððp − q − kÞ2 −m2Þ ð2πÞ

2δððp − qÞ2 −m2Þδððp − kÞ2 −m2Þθðp−Þθðq− − p−Þjk−¼0: ð77Þ

To calculate the corresponding contribution to the structure functions, one should multiply Eq. (77) by the projectors given
in Eq. (7).
A similar calculation can be done for the other terms Δj in Eq. (72). If we sum all of them, all terms contributing to the

topology in Fig. 5(b) give

F2jFig: 5b ¼ −
e2fσNcQ2q−

8π

Z
dkþd2k⊥

2π
γðk⊥Þ

Z
d4p
ð2πÞ4 θðp

−Þθðq− − p−Þ

×
24Q2z2ð1 − zÞ2 − 2p2⊥ þ 2piki − 2ð2z − 1Þ2m2 − ð4z2 − 4zþ 3Þk2⊥ − 6zð1 − zÞQ2

ðp2 −m2Þððp − q − kÞ2 −m2Þ
× δððp − qÞ2 −m2Þδððp − kÞ2 −m2Þjk−¼0; ð78Þ

where we introduced the variable z ¼ p−=q−.

FIG. 5. Functional integrals with different cuts.
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Integrating over the variables kþ and pþ, we finally get the following contribution of Fig. 5(b) to the structure
function F2:

F2jFig: 5b ¼ −
e2fσQ

2Nc

64π2

Z
1

0

dz
Z

d2p⊥
ð2πÞ2

d2k⊥
ð2πÞ2 γðk⊥Þ

1

p2⊥ þm2 þ zð1 − zÞQ2

1

ðp − kÞ2⊥ þm2 þ zð1 − zÞQ2

× ½24Q2z2ð1 − zÞ2 − 2p2⊥ þ 2piki − 2ð2z − 1Þ2m2 − ð4z2 − 4zþ 3Þk2⊥ − 6zð1 − zÞQ2�; ð79Þ

where we recall that

γðk⊥Þ ¼
1

Nc

Z
d2x⊥e−ik⊥x⊥TrchP; SjUxU

†
0jP; Si: ð80Þ

The contribution of the second nontrivial contribution represented by the cut in Fig. 5(a) coincides with
Eq. (79), except with a different common sign and setting k⊥ ¼ 0 in all the terms in the integrand multiplying the
function γðk⊥Þ.
Taking the sum of contributions in Figs. 5(a) and 5(b) we find

F2jFig: 5aþFig: 5b ¼ −
e2fσQ

2Nc

16π2

Z
1

0

dz
Z

d2p⊥
ð2πÞ2

d2k⊥
ð2πÞ2 γ̃ðk⊥Þ

1

p2⊥ þm2 þ zð1 − zÞQ2

1

ðp − kÞ2⊥ þm2 þ zð1 − zÞQ2

× ½4z2ð1 − zÞ2Q2 þm2 þ ðz2 þ ð1 − zÞ2Þp⊥ · ðp − kÞ⊥�: ð81Þ

Here we defined

γ̃ðk⊥Þ ¼
1

Nc

Z
d2x⊥e−ik⊥x⊥TrchP; SjUxU

†
0 − 1jP; Si: ð82Þ

We can perform the integration over the transverse momenta p⊥ in all the terms using the identities

Z
d2p⊥

1

ðp2⊥ þ ϵ2Þððp − kÞ2⊥ þ ϵ2Þ ¼
Z

d2r⊥eik⊥r⊥K2
0ðϵr⊥Þ ð83Þ

and

Z
d2p⊥

p⊥ · ðp − kÞ⊥
ðp2⊥ þ ϵ2Þððp − kÞ2⊥ þ ϵ2Þ ¼ ϵ2

Z
d2r⊥eik⊥r⊥K2

1ðϵr⊥Þ; ð84Þ

where ϵ2 ¼ m2 þQ2zð1 − zÞ. Then taking the sum over all terms, we obtain the final result,

F2 ¼
σQ2Nc

2π3
X
f

e2f

Z
1

0

dz
Z

dr⊥r⊥ð1 − γðr⊥ÞÞ

× ½ð4Q2z2ð1 − zÞ2ÞK2
0ðϵfr⊥Þ þ ½ðz2 þ ð1 − zÞ2Þϵ2fK2

1ðϵfr⊥Þ þm2
fK

2
0ðϵfr⊥Þ��; ð85Þ

where the survival probability γðr⊥Þ is the Fourier transformation of Eq. (80). We have also summed over all quark flavors,
replacing in the process m → mf and ϵ → ϵf.
The first and second terms in the brackets are proportional to the probabilities, respectively, for a longitudinal and

transversely polarized photon to split into a qq̄ pair given by the splitting functions [76]

jΨf
Lðz; rÞj2 ¼

αemNce2f
2π2

4Q2z2ð1 − zÞ2K2
0ðϵfrÞ;

jΨf
Tðz; rÞj2 ¼

αemNce2f
2π2

½ðz2 þ ð1 − zÞ2Þϵ2fK2
1ðϵfrÞ þm2

fK
2
0ðϵfrÞ�; ð86Þ
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where αem is the QED fine structure constant. Thus
F2 ∝ ðjΨLðz; rÞj2 þ jΨTðz; rÞj2Þ, the sum of the probabil-
ities of transversally and longitudinally polarized photons
to split into a quark-antiquark pair. In Eq. (85), one can
therefore recognize the standard dipole model form10 of the
structure function at small x [54,55]. We thus see that the
worldline representation of the hadron tensor properly
captures the small x dynamics of a qq̄ interacting with
the shockwave background.
The longitudinally polarized structure function FL,

which can be independently extracted in DIS by varying
the electron energy for a given Q2 and Bjorken x, is
obtained by simply replacing the sum of the two splitting
probabilities in Eq. (85) with the probability of a longitu-
dinally polarized photon to split into a quark-antiquark
pair—the term proportional to K2

0. Using the definition
2xF1 ¼ ðF2 − FLÞ, we can obtain equivalently the struc-
ture function F1.
As a final comment, recall that the worldline current has

the form

jðxiÞ ¼ _x−i δðx−i Þ þ igψξ
iψ

λ
i FξλðxiÞ: ð87Þ

This current transparently indicates how the spin of the
worldline couples to the background field from the target.
As we will show in our follow-up paper, this form of the
current can be employed to compute the spin-dependent
structure function g1.

VI. CONCLUSIONS

In this paper, we developed a worldline formalism to
compute structure functions in DIS at small x. Starting from
the expression relating the hadron tensor in DIS to the time
ordered product of currents, we rewrote the latter in terms
of worldline path integrals. We discussed the simpler
examples of scalar and spinor QED, as well as the vacuum
polarization tensor, before discussing the QCD case. For
the latter, we computed the polarization tensor in the gluon
shockwave background, which provides the leading con-
tribution in the CGC EFT at small x. We showed how one
extracts from this expression the well-known dipole model
expression for the unpolarized structure function F2. In
doing so, we established a dictionary between computa-
tions in the worldline framework to that of Feynman
diagrams.
The techniques developed here can be extended to the

case of polarized structure functions at small x [63] and to
explore the role of the chiral anomaly in such experiments.
Further, since the worldline formalism provides a natural
framework to describe phase space Wigner distributions
[15], it also provides an ab initio framework to compute

both one-dimensional helicity distributions and more dif-
ferential questions regarding the distributions of partons in
both momentum and impact parameter space [77–79].
These will be particularly interesting in light of forth-
coming experiments at a polarized electron-ion collider
[80,81]. More speculatively, an interesting possibility is
that of formulating worldline computations of structure
functions and Wigner distributions in the Regge limit as a
hybrid quantum computational problem. Work in this
direction will be reported separately [67].
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APPENDIX A: WORLDLINE REPRESENTATION
OF THE EFFECTIVE ACTION FOR SPINOR QED

Let us consider the more complicated case of spinor
QED defined by the Lagrangian

LQED ¼ ψ̄ði=∂ − e=AÞψ −m2ψ̄ψ : ðA1Þ

In full analogy with the scalar case, one obtains the
following representation of the effective action of spinor
QED:

ΓQED½A� ¼ −
1

2
Tr

Z
∞

0

dT
T

e−Tm
2

× exp

�
−T½ðpμ þ eAμÞ2 −

e
2
Fμνσ

μν�
�
; ðA2Þ

where we used the identity

ð=pþ e=AÞ2 þm2 ¼ ðpμ þ eAμÞ2 −
e
2
Fμνσ

μν þm2; ðA3Þ

defining the antisymmetric matrix σμν ¼ i
2
½γμ; γν�.

Comparing the effective actions in Eqs. (22) and (A2),
one concludes that the boson and fermion sectors of spinor
QED are separable. The structure of the bosonic component
is identical to the case of the scalar QED, while the quark’s
spinor structure is described by the Fμνσ

μν term. We will
now follow a similar procedure to the scalar QED case to
construct the worldline functional integral representation of
the spinor part of the QED effective action. However, to do
this, one has to introduce fermionic coherent states similar
to the complete set of coordinate and momentum bosonic

10Note that jΨf
L;Tðz; rÞj2 is defined slightly differently in

Ref. [44] with the difference absorbed in a redefinition of the
phase space measure.
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coherent states jxi and jpi introduced in the scalar
QED case. A nice discussion of such a construction can
be found in [82]; see also [17,18] for an alternative
realization.
We first construct the fermion raising and lower oper-

ators aþi and a−i , respectively, defined by [22]

a�i ≡ 1

2
ðγi � iγiþ2Þ; i ¼ 1; 2: ðA4Þ

where γi are Euclidean gamma matrices defined by the
identity fγi; γjg ¼ 2gij. One can check that these operators
satisfy the anticommutation relations

faþi ; a−j g ¼ δij; faþi ; aþj g ¼ fa−i ; a−j g ¼ 0: ðA5Þ

With these definitions, one can introduce a Hilbert space
with a vacuum defined by

a−r j0i ¼ 0; h0jaþr ¼ 0: ðA6Þ

The complete set of coherent states which define the basis
of the Hilbert space can be obtained by the action of the
raising and lowering operators on the vacuum. Such states
should satisfy

hξja−i ¼ hξjξi; a−i jξi ¼ ξijξi;
hξ̄jaþi ¼ hξ̄jξ̄i; aþi jξ̄i ¼ ξ̄ijξ̄i: ðA7Þ

Each fermionic coherent state jξi and jξ̄i is characterized
by a set of Grassmann numbers ξi and ξ̄i, which are defined
by fξi; ξjg ¼ 0 and fξ̄i; ξ̄jg ¼ 0. The integration over
Grassmann numbers can be done with the help of the
identities [82,83]:

Z
dξi ¼

Z
dξ̄i ¼ 0;

Z
ξidξi ¼

Z
ξ̄idξ̄i ¼ i;

Z
δðξ; ξ0Þdξ ¼ 1;

Z
ξδðξ; ξ0Þdξ ¼ ξ0; ðA8Þ

where the delta function for Grassmann numbers
is δðξ; ξ0Þ≡ 1

i ðξ − ξ0Þ.
The fermionic coherent states which satisfy Eq. (A7) can

be explicitly constructed:

hξj ¼ −ih0j
Y2
i¼1

δðξi; a−i Þ; jξi ¼ e−
P

2

i¼1
ξia

þ
i j0i;

hξ̄j ¼ h0je−
P

2

i¼1
a−i ξ̄i ; jξ̄i ¼ −i

Y2
i¼1

δðξ̄i; aþi Þj0i: ðA9Þ

The fermionic coherent states jξi and jξ̄i are analogous
to the bosonic states jxi and jpi and satisfy similar
completeness and orthogonality relations [see (23)],

i
Z

jξihξjd2ξ ¼ −i
Z

jξ̄ihξ̄jd2ξ̄ ¼ 1;

hξjξ̄i ¼ e
P

2

i¼1
ξi ξ̄i ; hξ̄jξi ¼ e

P
2

i¼1
ξ̄iξi ; ðA10Þ

where d2ξ ¼ dξ2dξ1, d2ξ̄ ¼ dξ̄1dξ̄2.
With the complete set of states given in Eq. (A9), the

derivation of the functional integral representation of the
effective action in Eq. (A2) is straightforward [22]. We start
with the expression defining the fermionic functional trace
similar to Eq. (24):

TrO ¼ i
Z

d2ξh−ξjOjξi; ðA11Þ

where

h−ξj ¼ −i
Z

e
P

2

i¼1
ξ̄iξihξ̄jd2ξ̄: ðA12Þ

Employing these relations brings us to the form of the
effective action in Eq. (A2),

ΓQED½A� ¼−
i
2

Z
∞

0

dT
T

e−Tm
2

Z
d4x

Z
d2ξhx;−ξj

×exp
�
−T

�
ðpþeAÞ2−e

2
Fμνσ

μν

��
jx;ξi;

ðA13Þ

where for the bosonic functional trace we repeat steps
similar to the scalar case. Splitting the integration over T
into N segments and using completeness relations in (23)
and (A10), we get

ΓQED½A� ¼−
iN

2

Z
∞

0

dT
T

e−Tm
2

Z
BC

YN
i¼1

d4xid2ξihxiþ1;ξiþ1j

×exp

�
−
T
N

�
ðpþeAÞ2−e

2
Fμνσ

μν

��
jxi;ξii;

ðA14Þ

where integration over xi and ξi satisfies periodic x1 ¼
xNþ1 and antiperiodic ξ1 ¼ −ξNþ1 boundary conditions.
Let us consider the matrix element of the evolution

operator which is sandwiched between the “coordinate”
states jxi and jξi. Let us expand the exponent and insert a
complete set of “momentum” states jpi and jξ̄i in between:
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hxiþ1; ξiþ1j exp
�
−
T
N

�
ðpþ eAÞ2 − e

2
Fμνσ

μν

��
jxi; ξii

¼
Z

d4piþ1;i

ð2πÞ4 eipiþ1;iðxiþ1−xiÞ
�
1 − ðτiþ1 − τiÞ

�
ðpiþ1;i þ eAiþ1;iÞ2hξiþ1jξii −

e
2
Fμνhξiþ1jσμνjξii

�
þ � � �

�

¼ −i
Z

d4piþ1;id2ξ̄iþ1;i

ð2πÞ4 eipiþ1;iðxiþ1−xiÞeðξ
k
iþ1

−ξki Þξ̄kiþ1;ið1 − ðτiþ1 − τiÞfðpiþ1;i þ eAiþ1;iÞ2 − ieFμνψ̃
μ
iþ1ψ

ν
ig þ � � �Þ; ðA15Þ

where we used the following formula for the matrix
element of the product of two gamma matrixes:

hξiþ1jγμγνjξii¼−2i
Z

d2ξ̄iþ1;ihξiþ1jξ̄iþ1;iihξ̄iþ1;ijξiiψ̃μ
iþ1ψ

ν
i

ðA16Þ

introducing a shorthand notation for the coefficients

ψ1;2
i ¼ 1ffiffiffi

2
p ðξ1;2i þ ξ̄1;2iþ1;iÞ; ψ3;4

i ¼ iffiffiffi
2

p ðξ1;2i − ξ̄1;2iþ1;iÞ;

ψ̃1;2
iþ1 ¼

1ffiffiffi
2

p ðξ1;2iþ1þ ξ̄1;2iþ1;iÞ; ψ̃3;4
iþ1¼

iffiffiffi
2

p ðξ1;2iþ1− ξ̄1;2iþ1;iÞ:

ðA17Þ

Next, we substitute the matrix element in Eq. (A15) back
into the effective action, symmetrize the exponential factor,
and take the limit N → ∞ to obtain

ΓQED½A� ¼−
1

2

Z
∞

0

dT
T

e−m
2T

Z
PBC

Dx
Z

Dp

×
Z
APBC

DξDξ̄P exp

�Z
T

0

dτ

�
ip_xþ1

2
_ξξ̄−

1

2
ξ _̄ξ

− ðpμþeAμÞ2þ ieFμνψ
μψν

��
: ðA18Þ

Finally, we rewrite the fermionic term

1

2
_ξ ξ̄−

1

2
ξ _̄ξ ¼ −

1

2
ψ · _ψ ðA19Þ

in terms of the real components of the continuum version of
the variables in Eq. (A17):

ψ1;2¼
1ffiffiffi
2

p ðξ1;2þ ξ̄1;2Þ; ψ3;4¼
iffiffiffi
2

p ðξ1;2− ξ̄1;2Þ: ðA20Þ

As a result, one can write down the final form of the
worldline representation of the effective action of the spinor
QED:

ΓQED½A� ¼ −
1

2

Z
T

0

dT
T

e−m
2T

Z
PBC

Dx

×
Z
APBC

Dψ exp
�
−
Z

T

0

dτ
�
1

4
_x2 þ 1

2
ψμ _ψ

μ

þ ie_xμAμ − ieψμψνFμν

��
: ðA21Þ

APPENDIX B: CALCULATION OF SCALAR
FUNCTIONAL INTEGRALS

In this section, we will calculate scalar functional
integrals11

Z
Dxeik1x1eik1x2eSBðxÞ;

Z
Dx_xμ11 eik1x1eik1x2eSBðxÞ;

Z
Dx_xμ11 _xμ22 e

ik1x1eik1x2eSBðxÞ; ðB1Þ

where the free bosonic worldline action on a trajectory
xðτÞ is

SBðxÞ¼−
1

4

Z
T

0

dτ _x2ðτÞ¼ 1

2

Z
T

0

dτdτ0xðτÞG−1
B ðτ;τ0Þxðτ0Þ;

ðB2Þ

with the bosonic worldline propagator defined in Eq. (32).
In the more complicated case of the interaction of world-
lines with the shockwave background field, we will
encounter similar integrals which have more scalar current
_xμ insertions. All of these integrals can be calculated with
the method discussed here.

11The results of the computation of the worldline scalar
integrals is well known [16]. We will present here a different
approach through the notion of the semiclassical approximation
around the classical trajectory; this will be promising for future
computations of worldline integrals in arbitrary backgrounds.
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Before we evaluate the functional integrals in Eq. (B1),
let us first take into account momentum conservation
which, in the language of the worldlines, corresponds to
the integration over the zero mode. We can formally write

Z
Dx ¼

Z
d4x0

Z
Dy; ðB3Þ

where the zero mode x0 ≡ xð0Þ ¼ xðTÞ is a constant shift
xðτÞ ¼ yðτÞ þ x0 in the worldline trajectory and yðτÞ
satisfies yð0Þ ¼ yðTÞ ¼ 0. Integration over x0 then leads
to the momentum conservation delta function in the
integrals in Eq. (B1), which takes the formZ

DxIμ1���μN ðxÞeSBðxÞ

¼ ð2πÞ2δ2ðk1 þ k2Þ
Z

DyIμ1���μN ðyÞeSBðyÞ; ðB4Þ

where Iμ1���μN ðxÞ represents the integrands in Eqs. (B1) and
N is number of factors _xμii .
We can formally express Iμ1���μN ðxÞ with the help of

auxiliary Grassmann variables θ as

Iμ1���μN ðyÞ ¼
YN
i¼1

Z
dθidθ̄ie

−
R

T

0
dτð
P

N
i¼1

JμiρþJρÞyρ ; ðB5Þ

where the number of auxiliary integrations i is equivalent to
the number of factors of the scalar current _xðτÞ in the
integrals12 of Eq. (B1).
The three currents in the integrand of Eq. (B1) can then

straightforwardly be replaced by the currents JðτÞ, which
for each integral are, respectively,

Jρðτ; τ1; τ2Þ ¼ −ikρ1δðτ − τ1Þ − ikρ2δðτ − τ2Þ; ðB6Þ
Jμiρðτ; τiÞ ¼ −gμiρθ̄iθiδ0ðτ − τiÞ; ðB7Þ

where the current in Eq. (B7) correspond to the _x factors in
the last two integrals of Eq. (B1). Note that “prime” in the
delta-function represents its derivative with respect to the
proper time.
As a result of the introduction of the auxiliary integrals,

the integrals in Eq. (B1) can be reexpressed as

Z
DxIμ1���μN ðxÞeSBðxÞ

¼ ð2πÞ2δ2ðk1þk2Þ
YN
i¼1

Z
dθidθ̄i

Z
DyeS

μ1…μN ðyÞ; ðB8Þ

where the worldline action is now given by13

SðyÞ ¼ SBðyÞ −
Z

T

0

dτ

�XN
i¼1

Jμiρ þ Jρ
�
yρ: ðB9Þ

This action takes into account the worldline interaction
with the background field. In particular, the current in
Eq. (B6) corresponds to the interaction of the worldline
with two incoming scalar particles of momenta k1 and k2.
Equation (B8) has a structure very similar to the standard
functional integrals of quantum field theory, except that
fields are now substituted with worldlines and currents are
functions of the proper time variable τ.
The functional integral in Eq. (B8) includes the con-

tribution of all possible worldline trajectories yðτÞ.
However, in a semiclassical picture, the dominant path is
the classical path yclðτÞ, given by

δSðyÞ
δyμ

����
y¼ycl

¼ 0: ðB10Þ

In this semiclassical approximation,14

Z
DyeSðyÞ≈eSðyclÞ

Z
Dyexp

�
1

2

Z
T

0

dτdτ0yρðτÞ

×
δ2S

δyρðτÞδyσðτ0Þ
����
y¼ycl

yσðτ0Þ
�
: ðB11Þ

In general, Eq. (B10) does not always allow for an
analytical solution. However, in the case of interactions
with a finite number of external particles, the action SðyÞ is
quadratic and Eq. (B10) has the straightforward solution,

yρclðτÞ ¼
Z

T

0

dτ0GBðτ; τ0Þ
�XN

i¼1

Jμiρðτ0Þ þ Jρðτ0Þ
�
; ðB12Þ

where the classical path yρclðτÞ is solely defined by the
external currents JðτÞ and the solution in Eq. (B11) is the
exact result.
Here we would like to mention that in the CGC back-

ground one has to take into account an infinite number of
interactions with the parton constituents of the target; one
therefore should apply the semiclassical approximation in
Eq. (B11), with a nontrivial equation for the classical
trajectory yðτÞ. However, as we show in the main part of the
paper, due to the infinitesimal structure of the small x
background in the longitudinal direction, the interaction
can still be described by an effective current which has a
form similar to the current of a pointlike particle. In this
shockwave limit, the semiclassical approximation to the
worldline functional integrals in the CGC background
provides an exact solution.12The first integral therefore has no auxiliary Grassmann

integrations.
13For simplicity, we will suppress the indices μ1 � � � μN in SðyÞ

in the following.

14A shift of variables is implied; yðτÞ in Eq. (B11) now refers
to the deviation from the classical trajectory ycl.
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Now taking into account the fact that the second derivative of the action in Eq. (B11) is the inverse propagator G−1
B ðτ; τ0Þ,

and using Eq. (37), we obtain

Z
DyeSðyÞ ¼ ð4πTÞ−D=2eSðyclÞ: ðB13Þ

Therefore the functional integrals represented in Eq. (B1) have the form

Z
DxIμ1���μN ðxÞeSBðxÞ ¼ ð2πÞ2δ2ðk1 þ k2Þð4πTÞ−D=2

YN
i¼1

Z
dθidθ̄ieSðyclÞ: ðB14Þ

Substituting the explicit form of the currents in Eqs. (B6) and (B7), and integrating over the auxiliary Grassmann variables,
one obtains

Z
Dxeik1x1eik2x2eSBðxÞ ¼ ð2πÞ2δ2ðk1 þ k2Þð4πTÞ−D=2ek1·k2GBðτ1;τ2Þ; ðB15Þ

Z
Dx_xμ11 e

ik1x1eik2x2eSBðxÞ ¼ ð2πÞ2δ2ðk1 þ k2Þð4πTÞ−D=2½−ikμ12 ∂τ1GBðτ1; τ2Þ�ek1·k2GBðτ1;τ2Þ; ðB16Þ

Z
Dx_xμ11 _xμ22 e

ik1x1eik2x2eSBðxÞ ¼ ð2πÞ2δ2ðk1 þ k2Þð4πTÞ−D=2f−gμ1μ2∂τ1∂τ2GBðτ1; τ2Þ

þ kμ12 kμ21 ∂τ1GBðτ1; τ2Þ∂τ1GBðτ1; τ2Þgek1·k2GBðτ1;τ2Þ: ðB17Þ

The derivatives of the bosonic worldline propagator are
given in Eqs. (35) and (36).
The generalization of this computation to an integral

with an arbitrary number of factors _x is straightforward. We
will need it in our calculation of the structure functions
where integrals with four scalar currents _x will appear.
However, a practical implementation of the scheme leads to
cumbersome integrations over Grassmann variables.
Moreover, a comparison of the final results for the scalar
integrals Eqs. (B15)–(B17) does not provide any simple
mnemonic rules that allow one to extend these results to
cases where there are a larger number of _x factors—this is
seen from the explicit results given in [16].
We therefore find it useful to use a different representa-

tion of the scalar functional integrals through a momentum
integration which is based on the fact that the worldline
action in Eq. (B2) fully represents scalar QED [16,17]. It
provides a straightforward generalization to integrals with
an arbitrary number of incoming currents, has a direct
connection to the language of standard Feynman diagrams,
and is better suited for our problem of the computation of
structure functions in DIS.

APPENDIX C: CALCULATION OF GRASSMANN
FUNCTIONAL INTEGRALS

In this Appendix, we will follow the same procedure as
in Appendix B to calculate the Grassmann functional
integrals

Z
DψeSFðψÞ;

Z
Dψψμ1

1 ψ
ν1
1 e

SFðψÞ;
Z

Dψψμ1
1 ψ

ν1
1 ψ

μ2
2 ψν2

2 e
SFðψÞ; ðC1Þ

where the free Grassmann worldline action on a trajectory
ψðτÞ is

SFðψÞ ¼ −
Z

T

0

dτ
1

2
ψ _ψ : ðC2Þ

This calculation is similar to the calculation of bosonic
functional integrals in Appendix B. It is based on the notion
of classical trajectories in the Grassmann sector.
Similar to Eq. (B5), we will introduce the auxiliary

Grassmann variables θi and θ̄i and exponentiate factors
ψμi
i ψ

νi
i in Eq. (C1) as

ψμi
i ψ

νi
i ¼

Z
dθidθ̄ie

−
R

T

0
dτψρðτÞðδμiρ θiδðτ−τiÞþδ

νi
ρ θ̄iδðτ−τiÞÞ: ðC3Þ

As a result we can rewrite functional integrals in
Eq. (C1) as

YN
i¼1

Z
Dψψμi

i ψ
νi
i e

SFðψÞ ¼
YN
i¼1

Z
dθidθ̄i

Z
DψeSðψÞ; ðC4Þ
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where the Grassmann worldline action now includes terms
representing the interaction with the external currents and is
given by15

SðψÞ ¼ SFðψÞ −
Z

T

0

dτψρðτÞ
XN
i¼1

ðηiρ þ η̄iρÞ; ðC5Þ

and N is the number of factors ψμi
i ψ

νi
i in Eq. (C1). Also, we

introduced here the Grassmann currents

ηiρ ¼ δμiρ θiδðτ − τiÞ; η̄iρ ¼ δνiρ θ̄iδðτ − τiÞ: ðC6Þ
To calculate the Grassmann functional integrals in

Eq. (C4), we expand the Grassmann worldline action
around the classical trajectory ψμ

clðτÞ, defined by

δSðψÞ
δψμ

����
ψ¼ψcl

¼ 0: ðC7Þ

The Grassmann functional integral then takes the formZ
DψeSðψÞ

¼ eSðψclÞ
Z
Dψ exp

�
1

2

Z
T

0

dτdτ0
δ2S

δψρðτÞδψσðτ0Þ
����
ψ¼ψcl

× ψσðτ0ÞψρðτÞ
�
; ðC8Þ

where

δ2S
δψρðτÞδψσðτ0Þ

����
ψ¼ψcl

¼ −2G−1
F ðτ0; τÞgρσ; ðC9Þ

with the fermionworldline propagatorGF defined inEq. (34).
The worldline trajectory ψclðτÞ is the solution of

Eq. (C7) and can be expressed as

ψρ
clðτÞ ¼ −

1

2

Z
T

0

dτ0GFðτ; τ0Þ
XN
i¼1

ðηρi ðτ0Þ þ η̄ρi ðτ0ÞÞ: ðC10Þ

Integrating over deviations from the classical trajectory
using Eq. (37) yields

YN
i¼1

Z
Dψψμi

i ψ
νi
i e

SFðψÞ ¼ 4
YN
i¼1

Z
dθidθ̄ieSðψclÞ: ðC11Þ

Substituting Eq. (C10) in Eq. (C5) then gives

SðψclÞ ¼ −
1

4

Z
T

0

dτdτ0
XN
i¼1

ðηρi ðτÞ þ η̄ρi ðτÞÞGFðτ; τ0Þ

×
XN
j¼1

ðηjρðτ0Þ þ η̄jρðτ0ÞÞ: ðC12Þ

Further substituting the explicit form of the currents in
Eqs. (C12), and integrating over the auxiliary Grassmann
variables in Eq. (C11), one obtains

Z
DψeSFðψÞ ¼ 4; ðC13Þ

Z
Dψψμ1

1 ψ
ν1
1 e

SFðψÞ ¼ 0; ðC14Þ
Z

Dψψμ1
1 ψ

ν1
1 ψ

μ2
2 ψ

ν2
2 e

SFðψÞ ¼ −gμ1μ2gν1ν2 þ gμ1ν2gν1μ2 ;

ðC15Þ

where we used the identity GFðτ; τÞ ¼ 0.
Using the general result in Eq. (C11), one can then easily

calculate functional integrals over Grassmann worldline
trajectories with arbitrary number16 N of factors ψμi

i ψ
νi
i

in Eq. (C1).

APPENDIX D: WORLDLINE FUNCTIONAL
INTEGRALS IN THE MOMENTUM

REPRESENTATION

We shall introduce here a momentum representation of
worldline scalar functional integrals with a finite number of
interactions which in general have the form of Eq. (B13).
This representation is based on the simple expression for a
Gaussian integral in D dimensions,

Z
dDp
ð2πÞD e−Tp

2 ¼ ð4πTÞ−D=2; ðD1Þ

which we shall employ to introduce momentum integrals in
the semiclassical approximation for the functional integral
in Eq. (B13).
Before we do this, let us notice that in the computation of

the polarization tensor [see for instance Eq. (42)], the scalar
integrals are integrated over the size of the worldline T and
the position of the interaction points τi. This, in combina-
tion with Eq. (D1), yields integrals with the structure

Z
∞

0

dT
T

e−m
2T
Y
i

Z
T

0

dτi

Z
DyeSðyÞ

¼
Z

dDp
ð2πÞD

Z
∞

0

dT
T

Y
i

Z
T

0

dτie−Tðp
2þm2ÞeSðyclÞ; ðD2Þ

where the index i represents the number of interactions with
external currents. Finally, one can take the explicit form of

15Again, as in the previous Appendix, the dependence on the
indices μi and νi is implicit in the expressions that follow.

16In particular, in the main text of the paper, we use Grassmann
functional integrals with N ¼ 3 and N ¼ 4 which we calculated
using Eq. (C11). However, since the exact formulas are rather
cumbersome, we do not give them here.
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the action SðyclÞ and perform the integration over the
variables T and τ, using the methods discussed previously.
As an example, let us consider the integral in Eq. (B17).

Substituting the worldline propagator and its derivatives
yields

Z
Dy_yμ1 _y

ν
2e

iqy1e−iqy2eSBðyÞ

¼
Z

dDp
ð2πÞD e−T½p2þq2uð1−uÞ�

×

�
2gμν

T
δðuÞ − 2gμν

T
− qμqνð1 − 2uÞ2

�
; ðD3Þ

where τ2 ¼ uT and we use the rotational invariance of the
worldline to fix the position of the “first” interaction τ1 ¼ 0.
From Eq. (D1) it is easy to see that

Z
dDp
ð2πÞD

gμν

T
e−Tp

2 ¼
Z

dDp
ð2πÞD 2pμpνe−Tp

2

: ðD4Þ

Using this relation in the second term of Eq. (D3) and
making the shift p → pþ uq, we obtain17

Z
Dy_yμ1 _y

ν
2e

iqy1e−iqy2eSBðyÞ

¼
Z

dDp
ð2πÞD e−T½ð1−uÞp2þuðpþqÞ2�

×
�
2gμν

T
δðuÞ − ð2pμ þ qμÞð2pν þ qνÞ

�
: ðD5Þ

Finally, we need to integrate Eq. (D5) over T and the proper
time variables τ. From the form of Eq. (D5), it is easy to
predict the structure of the result: the integrationoverT yields
a momentum denominator of the Feynman diagrams where
the proper time variables play a role of Feynman parameters,
as previously observed inRefs. [16,26]. The delta function in
Eq. (D5) originates from the second derivative of the bosonic
propagator and provides diagrams where interaction points
of two incoming particles on the worldline coincide.
Performing the integration, we get the following result:

Z
∞

0

dT
T

e−m
2T

Z
T

0

Y2
i¼1

dτi

Z
Dy_yμ1 _y

ν
2e

iqy1e−iqy2eSBðyÞ

¼ ð−iÞ2
Z

dDp
ð2πÞD

ð2pμ þ qμÞð2pν þ qνÞ − gμνððpþ qÞ2 þm2Þ − gμνðp2 þm2Þ
ðp2 þm2Þððpþ qÞ2 þm2Þ : ðD6Þ

In the numerator of Eq. (D6) one immediately recognizes
the interaction vertices of scalar QED.
From Eq. (D6), one can derive a rule to reconstruct the

form of the momentum integral with different numbers of
incoming particles. For a given ordering of interactions18,19

of the worldline with incoming particles, one should set a
momentum flow and then write down an integral similar to

Eq. (D6), where the numerator has a product of factors
2pμ þ qμ corresponding to the _yμ currents in the functional
integral, plus a sum of all possible combinations ∼ − gμν

where any two interaction vertices on the worldline
coincide—see the delta function in Eq. (D5). The result
in Eq. (D6) is schematically presented in Fig. 6.
Following this rule, one can easily write down the

momentum representation for an integral with an arbitrary
number of currents _xμ. For example, it yields the following
relations which we will use in the main part of the paper
along with Eq. (D6):

Z
∞

0

dT
T

e−m
2T

Z
T

0

Y2
i¼1

dτi

Z
Dy_yμ1e

iqy1e−iqy2eSBðyÞ

¼ −i
Z

dDp
ð2πÞD

2pμ þ qμ

ðp2 þm2Þððpþ qÞ2 þm2Þ ; ðD7Þ

FIG. 6. Different contributions to the momentum representation of the worldline functional integral in Eq. (D6).

17Before making the shift we also add linear terms proportional
to pμ and pν to the integrant of Eq. (D3), which by symmetry
provide merely trivial contribution.

18There is only one possible ordering in the case of two
incoming particles.

19That of course should be done in such a way that a chosen
ordering of interactions on the worldline is not violated. By doing
that we avoid the subtle point of how one should divide a
contribution of the delta function in the derivative of the bosonic
propagator between terms with different proper time ordering.
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and the more complicated identity,

Z
∞

0

dT
T

e−m
2T

Z
T

0

Y4
i¼1

dτi

Z
Dy_yμ1 _y

ξ
2 _y

ν
3 _y

η
4e

iqy1eiky2e−iqy3e−iky4eSBðyÞ
���
τ1<τ2<τ3<τ4

¼ ð−iÞ4
Z

dDp
ð2πÞD

N μξνηðp; qÞ
ðp2 þm2Þððpþ qÞ2 þm2Þððpþ qþ kÞ2 þm2Þððpþ kÞ2 þm2Þ ; ðD8Þ

where the structure of the numerator can easily be understood from Fig. 7 to be

N μξνηðp; qÞ ¼ ð2pþ qÞμð2pþ 2qþ kÞξð2pþ qþ 2kÞνð2pþ kÞη
− gμξððpþ qÞ2 þm2Þð2pþ qþ 2kÞνð2pþ kÞη − gξνððpþ qþ kÞ2 þm2Þð2pþ qÞμð2pþ kÞη
− gνηððpþ kÞ2 þm2Þð2pþ qÞμð2pþ 2qþ kÞξ − gμηðp2 þm2Þð2pþ 2qþ kÞξð2pþ qþ 2kÞν
þ gμξgηνððpþ qÞ2 þm2Þððpþ kÞ2 þm2Þ þ gμηgξνðp2 þm2Þððpþ qþ kÞ2 þm2Þ: ðD9Þ

Expressions with other time orderings can easily be
obtained from the above with an appropriate change of
variables.

APPENDIX E: WORLDLINES AND
FEYNMAN DIAGRAMS

The worldline approach provides an alternative to the
standard Feynman diagram description of a particle moving
along the loop in an external background field. In the
Feynman diagram technique, we deal with the functional
integrals over quantum fields. These can be rewritten in
terms of propagators, and the spinor nature of the quark is
described in terms of the algebra of gamma matrixes. In the
worldline approach, the perspective is completely different;
the particle is characterized in terms of the worldline
trajectory in coordinate space, and the spinor nature of
quark fields is described by a worldline trajectory in the
space of Grassmann variables.
Despite the fact that the two formalisms are very

different from one another, they describe the same physical
object—a loop formed by the particle in a background

field. It is therefore very instructive to understand how the
two methods are connected to each other and to develop a
dictionary between the two approaches. For a general
analysis of this problem, see Refs. [20,84–86].
Let us consider the simple example of the vacuum

polarization diagram in Fig. 2(c). We will show that the
structure of the trace of gammamatrixes for this diagram can
be rewritten in terms of vertices of scalar QED and the spinor
dependent interaction ∼σμνFμν. We will demonstrate that
scalar QED interactions correspond to the scalar current _x in
the worldline approach, while the spinor dependent inter-
action can be associated with the Grassmann current
ψμψνFμν; see Eq. (31).
There is a one-to-one correspondence between the two

methods, and one can immediately translate expressions
obtained in one formalism into the language of the other. In
our discussion we will reveal several subtle points of the
worldline approach that are important for practical calcu-
lations. To the best of our knowledge, these have not been
fully addressed in literature.
We begin with the spinor trace in the vacuum polariza-

tion diagram,

FIG. 7. Different contributions to the momentum representation of the worldline functional integral in Eq. (D8).
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Trfð=pþ =qþmÞγμð=pþmÞγνg; ðE1Þ

where q is external momentum and p is momentum of the
loop; the factors in parentheses correspond to spinor
contributions to the diagram. To rewrite this trace in terms
of worldline structures, one should move the numerators of
the quark propagators through the adjacent gamma matri-
ces using the identity

ð=pþ =qþmÞγμ ¼ fð2pμ þ qμÞ þ iσμρqρg − γμð=p −mÞ;
ðE2Þ

which then gives

Trfð=pþ =qþmÞγμð=pþmÞγνg
¼ Trfðð2pμ þ qμÞ þ iσμρqρÞðð2pν þ qνÞ − iσνηqηÞg
− Trfðgμν − iσμνÞðp2 −m2Þg
− Trfðð2pμ þ qμÞ þ iσμρqρÞγνð=pþ =q −mÞg: ðE3Þ

Now using the cyclic property of the trace, and some
algebra, one can rewrite Eq. (E1) as

Trfð=pþ =qþmÞγμð=pþmÞγνg

¼ 1

2
Trfðð2pμ þ qμÞ þ iσμρqρÞðð2pν þ qνÞ − iσνηqηÞg

−
1

2
Trfðgμν − iσμνÞgððpþ qÞ2 −m2Þ

−
1

2
Trfðgμν − iσμνÞgðp2 −m2Þ: ðE4Þ

We should note here that while the step of the derivation
when we apply the cyclic property of trace may seem
like a trivial manipulation, it explicitly shows that the
technique we discuss here is uniquely applicable to loop
diagrams. In the worldline approach, this is realized
only when the worldline trajectory has the topology of a
closed loop. One otherwise has to include boundary
effects from the ends of the open worldline trajectory. In
the Feynman diagram approach, these will correspond to
external spinors.
In other words, while it seems natural to break the

worldline and write down a representation for a spinning
particle moving between two finite points in space, one
should be very careful with this because boundary effects
absent in the worldline action in Eq. (31) have to be
properly taken into account. Thus while tempting, the
generalization of the worldline representation to the case of
propagators of spinning particles, i.e., open worldlines, is
not straightforward [87,88].
As we discussed previously, the structure of the polari-

zation tensor in Eq. (42) in the main text embeds the
product of two worldline currents of the form

jμ ¼ _xμ þ iψμψρqρ: ðE5Þ

Indeed, the 2pμ þ qμ term in Eq. (E4) is just the interaction
vertex of scalar QED. See also the first term in Eq. (D6)
which corresponds to the bosonic worldline contribution in
Fig. 6(a).
The second term of Eq. (E5) can easily be associated

with the structures σμρqρ in Eq. (E4). The simplest way to
understand this is to compare the Grassmann functional
integral of ψμðτÞψρðτÞqρ with the trace of σμρqρ.

20 For
example, compare Eq. (C15) and

1

4
Trfσμ1ν1σμ2ν2g ¼ gμ1μ2gν1ν2 − gμ1ν2gν1μ2 : ðE6Þ

One can exploit effectively this equivalence between the
functional integral over ψμψρqρ and trace of σμρqρ. Indeed,
while the calculation of Grassmann functional integrals is
quite involved [see Eq. (C11)], and not yet realized in
computer codes, there are plenty of tools for the compu-
tation of traces of gamma matrices.
Now let us consider the second line of Eq. (E4).

There is a term ∼gμνðp2 −m2Þ which we have already
seen in the calculation of the bosonic worldline func-
tional integral summarized in Eq. (D6). The origin of
this term is δðτ1 − τ2Þ in the derivative of the bosonic
worldline propagator, as seen in Eq. (36). It corre-
sponds to Fig. 6c where two scalar currents _x meet
each other on the worldline. In terms of the Feynman
rules of scalar QED, it is of course the seagull
interaction.
There is also a term ∼σμν in the second line of Eq. (E4)

whose contribution to the vacuum polarization trace in
Eq. (E1) is zero. However, if we construct the representa-
tion in Eq. (E4) for more complicated Feynman diagrams
(for example, with more than two external photons), it is
not necessarily the case. While this on the surface suggests
a discrepancy between the worldline formalism and that of
Feynman diagrams, this discrepancy vanishes if we con-
sider a sum of Feynman diagrams with all possible
insertions of external photons. In terms of worldlines, this
corresponds to the integration over all possible τi, as
Eq. (72). In this case, there is a cancellation of σμν terms
from different diagrams amongst each other. This com-
parison of the two techniques therefore suggests that ∼σμν
terms with particular proper time orderings must be
treated with care in worldline computations. This will be
especially important when one explores polarized parton
distributions.

20Note that both Grassmann variables here depend on the same
proper time τ; otherwise, each of them should be associated with
a gamma matrix, i.e., γμ ∼ ψμðτÞ.
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