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We predict the twist-2 transverse momentum dependent parton distribution functions (TMDs) of the
pion, namely the unpolarized quark TMD, f1ðx; k⊥Þ, and the transversely polarized quark TMD, also
known as the Boer-Mulders function, h⊥1 ðx; k⊥Þ, using a holographic light-front pion wavefunction with
dynamical spin effects. These spin effects, in conjunction with gluon rescattering, are crucial to predict a
nonzero holographic Boer-Mulders function. We investigate the use of a non-perturbative SU(3) gluon
rescattering kernel, thus going beyond the usual approximation of perturbative U(1) gluons. We also predict
the generalized Boer-Mulders shifts in order to compare with the available lattice data.
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I. INTRODUCTION

Transverse momentum dependent parton distributions
functions (TMDs) contain important information on the
three-dimensional internal structure of hadrons, especially
the spin-orbit correlations of quarks within them [1]. For
the pion, there are two twist-2 TMDs: the unpolarized
quark TMD, f1ðx; k⊥Þ, and the polarized quark TMD,
h⊥1 ðx; k⊥Þ, also known as the Boer-Mulders function [2,3].
f1ðx; k⊥Þ describes the momentum distribution of unpo-
larized quarks within the pion while h⊥1 ðx; k⊥Þ describes
the spin-orbit correlations of transversely polarized quarks
within the pion. The Boer-Mulders function is naively a
T-odd distribution and such distributions were initially
thought to vanish due to the time reversal invariance of
QCD [4] but later it became apparent that they can be
dynamically generated by initial or final state interactions
[5,6]. More formally, T-odd distributions do not vanish
due to the nontrivial gauge link that guarantees the
color gauge invariance of their field-theoretic definitions

[7–9]. At the same time, the gauge link makes these
distributions process-dependent, flipping their sign from
semi-inclusive deep inelastic scattering (SIDIS) to Drell-
Yan (DY) scattering.
In conjunction with their nucleon counterparts, the pion

unpolarized TMD and the Boer-Mulders function are
inputs in the theoretical predictions of the cross sections
and azimuthal asymmetries for unpolarized pion-induced
DY scattering [10,11] which have both been measured
[12–14]. The azimuthal asymmetry has been observed to be
large and a better theoretical understanding of the pion
Boer-Mulders function may help to explain this observa-
tion. Otherwise, little is known from experiment on the
pion TMDs although this situation is likely to change with
the new COMPASS collaboration program of pion-induced
DY scattering [15,16].
On the theory side, the pion Boer-Mulders function has

been predicted in the antiquark spectator model [17,18], in
the light-front constituent quark model [10,11,19,20], in the
MIT bag model [21] and in the Nambu-Jona-Lasinio model
[22,23]. In all cases, the physical mechanism generating the
Boer-Mulders function is perturbative gluon rescattering.
A notable attempt to go beyond this perturbative approxi-
mation has been made by Gamberg and Schlegel [24]
within the antiquark spectator framework. The pion TMDs
have also been studied on the lattice [25,26].
Our goal in this paper is to predict the pion TMDs using

the spin-improved holographic pion light-front wave func-
tion [27,28]. We shall generate the holographic
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Boer-Mulders using the nonperturbative kernel of Ref. [24]
as well as its perturbative limit. Finally, we shall predict the
so-called generalized Boer-Mulders shifts in order to
compare with the lattice data of Ref. [26].

II. HOLOGRAPHIC LIGHT-FRONT
WAVE FUNCTIONS

The holographic pion wave function is obtained by
solving the holographic Schrödinger equation for mesons
[29–31]:�

−
d2

dζ2
−
1 − 4L2

4ζ2
þUeffðζÞ

�
ϕðζÞ ¼ M2ϕðζÞ; ð1Þ

with

ζ ¼ ffiffiffiffiffi
xx̄

p
b ðx̄≡ 1 − xÞ; ð2Þ

where b is the transverse separation of the quark and
antiquark and x is the light-front momentum fraction
carried by the quark, and

UeffðζÞ ¼ κ4ζ2 þ 2κ2ðJ − 1Þ; ð3Þ
where J ¼ Lþ S. Solving Eq. (1) yields the meson mass
spectrum

M2 ¼ 4κ2
�
nþ Lþ S

2

�
; ð4Þ

and the wave functions

ϕnLðζÞ ¼ κ1þL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n!

ðnþ LÞ!

s
ζ1=2þL exp

�
−κ2ζ2

2

�
LL
n ðκ2ζ2Þ:

ð5Þ

As can be seen from Eq. (4), the lightest bound state, with
n ¼ S ¼ L ¼ 0, is massless and is naturally identified with
the pion. In holographic light-front QCD, the massless pion
is a consequence of the unique form of the holographic
confining potential given by Eq. (4). The harmonic term,
κ4ζ2, of the confining potential is obtained by the de Alfaro,
Furbini and Furlan (dAFF) [32] mechanism which enables
a mass scale κ to appear in the equations of motion while
conformal symmetry is still preserved in the underlying
action. Then, the spin term, 2κ2ðJ − 1Þ, results from the
holographic mapping between massless light-front QCD
and a string theory in the higher dimensional anti-de Sitter
(AdS) space. In this gauge/gravity duality, the radial light-
front variable ζ maps onto the fifth dimension in AdS space
and the mass scale κ emerging from the dAFF mechanism
governs simultaneously the strength of the confining
harmonic potential in physical spacetime and that of the
dilaton field which breaks conformal invariance in AdS
space. Hence, we refer to κ as the AdS=QCDmass scale. As
can be seen from Eq. (4), the AdS=QCD scale κ fixes the

slope of the experimentally observed Regge trajectories and
can thus be extracted from spectroscopic data. A simulta-
neous fit to the Regge slopes of mesons and baryons
gives κ ¼ ð523� 24Þ MeV [33] which we refer to as the
universal AdS=QCD scale.
The holographic light-front Schrödinger Equation only

gives the radial part of the meson light-front wave function.
The complete wave function is given by [34]

Ψðx; ζ;φÞ ¼ ϕðζÞffiffiffiffiffiffiffiffi
2πζ

p XðxÞeiLφ; ð6Þ

where XðxÞ ¼ ffiffiffiffiffi
xx̄

p
as obtained by a precise mapping of

the electromagnetic form factor in AdS and in physical
spacetime [35]. The normalized holographic light-front
wave function for the pion is then given by

Ψðx; ζ2Þ ¼ κffiffiffi
π

p ffiffiffiffiffi
xx̄

p
exp

�
−
κ2ζ2

2

�
: ð7Þ

So far, the quark masses have been neglected and their
spins ignored. Assuming that there is no spin-orbit corre-
lation in the pion, it is straightforward to restore independ-
ently the dependence of the wave function on the quark
masses and helicities:

Ψðx; ζ2Þ ∝ ffiffiffiffiffi
xx̄

p
exp

�
−
κ2ζ2

2

�
exp

�
−

m2
f

2κ2xx̄

�
1ffiffiffi
2

p hδh;−h̄:

ð8Þ

We have shown in previous papers [27,28] that it is
possible to achieve a very successful pion phenomenology
by allowing for dynamical spin effects (i.e. spin-orbit
correlations) in the pion. We do so by using a spin-
improved holographic wave function given, in momentum
space, by

Ψhh̄ðx;kÞ ¼ Ψðx;kÞShh̄ðx;kÞ; ð9Þ

where

Shh̄ðx;kÞ ¼
ūhðx;kÞffiffiffī

x
p

�
Mπ

2Pþ γþγ5 þ Bγ5
�
vh̄ðx;kÞffiffiffi

x
p ; ð10Þ

and

Ψðx;kÞ ¼ N
1ffiffiffiffiffi
xx̄

p exp

�
−
k2⊥ þm2

f

2κ2xx̄

�
ð11Þ

is the two-dimensional Fourier transform of the holographic
pion wave function given by Eq. (7). Here k⊥ ¼ jkj: in
this paper, we use the notation a⊥ ¼ jaj where a is any
2-dimensional momentum. N is a normalization constant
fixed using
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X
h;h̄

Z
dx

d2k
16π3

jΨhh̄ðx;kÞj2 ¼ 1: ð12Þ

We refer to B as the dynamical spin parameter: B → 0
means no spin-orbit correlations as in the original holo-
graphic wave function, while, on the other hand, B ≥ 1
corresponds to a maximal spin-orbit correlations. The
resulting spin-improved holographic wave function is then
given by

Ψh;h̄ðx;kÞ ¼ ½ðMπxx̄þ BmfÞhδh;−h̄ − Bk⊥e−ihθk⊥ δh;h̄�

×
Ψðx; k2⊥Þ

xx̄
ð13Þ

which we can rewrite as

Ψh;h̄ðx;kÞ¼ ½Ψh;h̄ðx;kÞ�Lz¼Sz¼0þ½Ψh;h̄ðx;kÞ�Lz¼−Sz ð14Þ

where

½Ψh;h̄ðx;kÞ�Lz¼Sz¼0¼ðMπxx̄þBmfÞhδh;−h̄
Ψðx;k2⊥Þ

xx̄
ð15Þ

and

½Ψh;h̄ðx;kÞ�Lz¼−Sz ¼ −ðBke−ihθk⊥ δh;h̄Þ
Ψðx; k2⊥Þ

xx̄
ð16Þ

to highlight the fact that dynamical spin effects are
accounted for by two corrections to the original holo-
graphic wave function: a term proportional to the quark
mass (which therefore vanishes in the chiral limit) and a
new (Lz ¼ �1, Sz ¼∓ 1) component which allows for the
spins of the quarks to be aligned and which actually
survives in the chiral limit. We shall see that the latter is
directly responsible for a nonzero Boer-Mulders function.
With B ≥ 1, mu=d ¼ 330 MeV and κ ¼ 523 MeV, we

successfully predict simultaneously the pion decay con-
stant, charge radius, EM and transition form factors [27] as
well as the pion PDF after taking into account perturbative
QCD evolution [28]. We shall use our spin-improved
pion holographic wave function, without any further
adjustment of its parameters, in order to predict the
twist-2 pion TMDs. Recently, in Ref. [36], the unpolarized
pion TMD, f1ðx; k⊥Þ, was predicted using the original pion
holographic wave function (i.e. to which our spin-improved
wave function reduces when B ¼ 0). Here, we go beyond
the analysis in Ref. [36] by also predicting the holographic
Boer-Mulders function (which indeed vanishes if B ¼ 0).

III. TMDS

The pion TMDs are derived from the quark correlation
function

Φ½Γ�
ij ðx;kÞ

¼
Z

dz−d2z⊥
2πð2πÞ2 e

iz·khπjΨ̄jð0ÞΓL†ð0jnÞLðzjnÞΨiðzÞjπizþ¼0

ð17Þ

where

LAþ¼0ðz⊥jnÞ

¼ P exp

�
−ig

Z
∞

z⊥
dη⊥ ·A⊥ðη− ¼ n ·∞; z⊥Þ

�
ð18Þ

is the gauge link (in the light-front gauge, Aþ ¼ 0) which
guarantees colour gauge invariance and n ¼ ð0;þ1ð−1Þ; 0Þ
in SIDIS (DY). The unpolarized TMD and Boer-Mulders
function are given by [10]

f1ðx; k⊥Þ ¼
1

2
TrðΦ½γþ�Þ ð19Þ

and

h⊥1 ðx; k⊥Þ ¼
ϵijkjMπ

2k2⊥
TrðΦ½iσiþγ5�Þ ð20Þ

respectively.
Ignoring the gauge link,

TrðΦ½Γ�Þ ¼
X
h;h̄;h0

1

16π3kþ
Ψ�

h0h̄ðx;kÞΨhh̄ðx;kÞ

× ūh0 ðkþ;kÞΓuhðkþ;kÞ: ð21Þ

Using the light-front matrix element [37]

ūh0 ðkþ;kÞγþuhðkþ;kÞ ¼ 2kþδhh0 ; ð22Þ

it follows that

f1ðx; k⊥Þ ¼
1

16π3
X
h;h̄

jΨhh̄ðx;kÞj2: ð23Þ

Thus the ordinary PDF

fðxÞ ¼
Z

d2kf1ðx; k⊥Þ; ð24Þ

satisfies the normalization condition

Z
dxfðxÞ ¼ 1: ð25Þ

This embodies the assumption that our holographic dis-
tributions are valid at a low hadronic scale where there
are only valence quarks and no sea quarks and gluons in
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the pion. In Ref. [28], we evolved the holographic PDF
perturbatively in order to fit the reanalyzed E615 data [38].
On the other hand, using the light-front matrix element,

ūh0 ðkþ;kÞϵijkjσiþγ5uhðkþ;kÞ ¼ 2kþh0δ−h0hk⊥e−ih
0θk⊥

ð26Þ
in Eq. (21), we deduce that the Boer-Mulders function
vanishes. This is because

X
h;h̄

Ψ�
−hh̄ðx;kÞhk⊥eihθk⊥Ψhh̄ðx;kÞ ¼ 0; ð27Þ

as can be readily verified using our spin-improved holo-
graphic wave functions. To generate a nonzero Boer-
Mulders function, we need to take into account the gauge
link. Physically, this is equivalent to taking into account
initial or final state interactions of the active quark with the
target remnant, which we refer collectively as gluon
rescattering. We assume that this physics is encoded in a
gluon rescattering kernel Gðx;k − k0Þ such that

TrðΦ½Γ�Þ ¼
X
h;h̄;h0

Z
d2k0

16π3k0þ
Gðx;k − k0ÞΨ�

h0h̄ðx;k0Þ

×Ψhh̄ðx;kÞūh0 ðk0þ;k0ÞΓuhðkþ;kÞ: ð28Þ
Using the fact that

ūh0 ðk0þ;k0Þiϵijkjσiþγ5uhðkþ;kÞ ¼ 2ik0þh0δ−h0hk⊥e−ih
0θk⊥

ð29Þ
it follows that

1

2
TrðΦ½iσiþγ5�Þ ¼

Z
d2k0

16π3
iGðx;k − k0Þ

×
X
h;h̄

Ψ�
−h;h̄ðx;k0Þhk⊥eihθk⊥Ψh;h̄ðx;kÞ;

ð30Þ
and therefore Eq. (20) yields

k2⊥h⊥1 ðx;k2⊥Þ¼Mπ

Z
d2k0

16π3
iGðx;k−k0Þ

×
X
h;h̄

Ψ�
−h;h̄ðx;k0Þhk⊥eihθk⊥Ψh;h̄ðx;kÞ: ð31Þ

Defining q ¼ k − k0, we can rewrite Eq. (31) as

k2⊥h⊥1 ðx; k2⊥Þ ¼ Mπ

Z
d2q
16π3

iGðx; q⊥Þ

×
X
h;h̄

Ψ�
−h;h̄ðx;k − qÞhk⊥eihθk⊥Ψh;h̄ðx;kÞ;

ð32Þ

where we have assumed that Gðx;qÞ ¼ Gðx; q⊥Þ. To
proceed, we must specify the form of the gluon rescattering
kernel Gðx; q⊥Þ.

IV. THE GLUON RESCATTERING KERNEL

The simplest approach is to assume that [5,6]

ImGpertðx; q⊥Þ ∝
CFαs
q2⊥

; ð33Þ

referred to as the perturbative Abelian gluon rescattering
kernel since it can be derived by working with perturbative
Abelian gluons, followed by the replacement g2 →
4πCFαs. By hypothesis, the coupling is weak, i.e.
g2 ≪ 1 which implies that αs ≪ 0.95. Yet, there is no
consensus in the literature on what value of αs should be
used in Eq. (33). For instance, while Ref. [39] uses
αs ¼ 0.3, other authors prefer to use much larger values
of αs: αs ¼ 0.911 in Ref. [11], and αs ¼ 1.2 in Ref. [10].
Strictly speaking, using such large values of αs contradicts
the weak coupling hypothesis leading to Eq. (33). However,
taking αs ∼ 1 in the perturbative kernel may perhaps be
considered as a phenomenological way to account, at least
to some extent, for nonperturbative effects.
Having said that, it is still clear that Eq. (33) has the

shortcoming of diverging as q⊥ → 0. While this divergence
may be regulated when computing the Boer-Mulders
function, it remains true that the perturbative kernel might
not capture accurately the dynamics of soft gluons which
are primarily responsible for generating a nonperturbative
quantity like the Boer-Mulders function. In addition, the
prescription g2 → 4πCFαs in an Abelian theory neglects
the contribution of crossed gluon ladder diagrams in QCD
although the latter are subleading only in a large Nc
approximation. An exact nonperturbative computation
gluon rescattering kernel is yet not available and, in
practice, some approximation scheme is necessary. In
Ref. [24], Gamberg and Schlegel obtained the so-called
QCD lensing function [40] from the eikonal amplitude for
quark-antiquark scattering via the exchange of both direct
and crossed ladder diagrams of non-Abelian soft gluons. In
their antiquark spectator framework, the lensing function,
Iðx; q⊥Þ, connects the first moment of the Boer-Mulders
function with the chiral-odd pion generalized parton dis-
tribution (GPD):

M2
πh

⊥ð1Þ
1 ðxÞ ¼

Z
d2q

2ð2πÞ2 q⊥Iðx; q⊥ÞH
π
1

�
x;−

�
q⊥
x̄

�
2
�

ð34Þ

where the first moment of the Boer-Mulders function is

2M2
πh

⊥ð1Þ
1 ðxÞ ¼

Z
d2kk2⊥h⊥1 ðx; k2⊥Þ ð35Þ
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and the chiral-odd pion GPD is given by

Hπ
1ðx;−Δ2⊥Þ ¼

ϵijΔiMπ

2Δ2⊥

Z
dz−

2π
eik

þz−hPþ;ΔjΨ̄ð0Þσiþγ5ΨðzÞjPþ; 0izþ¼0 ð36Þ

with Δ ¼ −q=x̄. As noted in Ref. [24] and proved in Ref. [18], Eq. (34) is not model-independent. Thus, to be able to use
the lensing function of Ref. [24], we must first demonstrate that a factorization of the type given by Eq. (34) also holds in the
overlap representation with our spin-improved holographic light-front wave functions.
Inserting Eq. (31) in Eq. (35) and changing variable k → q ¼ k − k0, we obtain

M2
πh

⊥ð1Þ
1 ðxÞ ¼ Mπ

2

Z
d2qiGðx; q⊥Þ

Z
d2k0

16π3
X
h;h̄

Ψ�
−h;h̄ðx;k0Þhðq⊥eihθq⊥ þ k0⊥e

ihθk0⊥ ÞΨh;h̄ðx;k0 þ qÞ; ð37Þ

which can be reexpressed as

M2
πh

⊥ð1Þ
1 ðxÞ ¼ Mπ

2

Z
d2qiGðx; q⊥Þ½q⊥ þ Fðx; q⊥Þ�

Z
d2k0

16π3
X
h;h̄

Ψ�
−h;h̄ðx;k0Þheihθq⊥Ψh;h̄ðx;k0 þ qÞ; ð38Þ

where the function

Fðx; q⊥; αÞ ¼
R
d2k0P

h;h̄Ψ�
−h;h̄ðx;k0Þhk0⊥e

ihθk0⊥Ψh;h̄ðx;k0 þ qÞR
d2k0P

h;h̄Ψ�
−h;h̄ðx;k0Þheihθq⊥Ψh;h̄ðx;k0 þ qÞ ð39Þ

depends, à priori, on x and q⊥ as well as α, the set of parameters appearing in the wave functions (here α ¼ fκ; mfg).
However, it turns out that an explicit evaluation of Eq. (39) using our spin-improved holographic wave functions, yields

Fðq⊥Þ ¼ −
q⊥
2
: ð40Þ

Hence, we can write

M2
πh

⊥ð1Þ
1 ðxÞ ¼

Z
d2q
2

iGðx; q⊥Þ
2

q⊥
�
Mπ

Z
d2k0

16π3
X
h;h̄

Ψ�
−h;h̄ðx;k0Þheihθq⊥Ψh;h̄ðx;k0 þ qÞ

�
; ð41Þ

where the quantity in the square brackets is essentially the overlap representation of the chiral-odd pion GPD. Indeed, using
Eq. (36), we are able to show that

q⊥
x̄
Hπ

1

�
x;−

�
q⊥
x̄

�
2
�

¼ −Mπ

Z
d2k0

16π3
X
h;h̄

Ψ�
−h;h̄ðx;k0Þheihθq⊥Ψh;h̄ðx;k0 þ qÞ: ð42Þ

Thus, we can rewrite Eq. (41) as

M2
πh

⊥ð1Þ
1 ðxÞ ¼ −

Z
d2q
2

iGðx; q⊥Þ
2

q2⊥
x̄
Hπ

1

�
x;−

�
q⊥
x̄

�
2
�
: ð43Þ

We have thus shown that the first moment of our holographic Boer-Mulders function can indeed be expressed as a
convolution of the chiral odd pion GPDwith the gluon rescattering kernel: a factorization analogous to Eq. (34). This allows
us to compare Eqs. (43) and (34) and deduce that

iGðx; q⊥Þ ¼ −
2

ð2πÞ2
x̄Iðx; q⊥Þ

q⊥
: ð44Þ
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V. THE LENSING FUNCTION

In Ref. [24], the lensing function is derived for final state
rescattering by soft U(1), SU(2) and SU(3) gluons. In all
three cases, the lensing function is negative and its
magnitude increases with Nc. In impact space, the lensing
function is given by

Iðx; b⊥Þ ¼
x̄

2Nc

χ0

4
C

�
χ

4

�
ð45Þ

where

C

�
χ

4

�
¼ Tr

�
Imf 0

�
χ

4

�
þ 1

2

�
Imf0

�
χ

4

�
Ref

�
χ

4

�

−Imf

�
χ

4

�
Ref0

�
χ

4

���
ð46Þ

is a color function and

χ

�
b⊥
x̄

�
¼ g2

2π

Z
dk⊥k⊥J0

�
b⊥
x̄
k⊥

�
D1ð−k2⊥Þ ð47Þ

is the eikonal phase with D1ð−k2⊥Þ being the gauge-
independent part of the gluon propagator. The momentum
space lensing function is given by the inverse Fourier
transform of Eq. 17 in Ref. [24], i.e.

Iðx; q⊥Þ
qi

q⊥
¼ −

i
x̄3

Z
d2b exp

�
−i

q · b
x̄

�
Iðx; b⊥Þ

bi

b⊥
:

ð48Þ

The real and imaginary parts of fðχ=4Þ in Eq. (46) originate
from the real and imaginary parts of the eikonal amplitude for
quark-antiquark scattering via the exchange of generalized
infinite ladders of gluons. As can be seen, it is the imaginary
part of the eikonal amplitude that is responsible for a non-
vanishing lensing function. There is also a contribution from
the real part of the eikonal amplitude, although, as we shall
see, it is subleading in the perturbative limit.
For U(1) gluons,

RefUð1Þ ¼ cos χ − 1 ð49Þ

and

ImfUð1Þ ¼ sin χ ð50Þ

while for SU(3) gluons,

Re½fSUð3Þαβ �ðaÞ ¼ δαβð−c2a2 þ c4a4 − c6a6 − c8a8 þ � � �Þ
ð51Þ

and

Im½fSUð3Þαβ �ðaÞ ¼ δαβðc1a − c3a3 þ c5a5 − c7a7 þ � � �Þ
ð52Þ

where a≡ χ=4 and ci are numerical coefficients given in
Ref. [24]. Equation (49) to Eq. (52) reveal that the real
part of fðχ=4Þ is subleading for perturbative gluons (since
g2 ≪ 1 and χ ≪ 1).
We can now find the lensing function for perturbative

Abelian gluons. To leading g2, the color function becomes

Cpert
Uð1ÞðχÞ ¼ 4 cos χ: ð53Þ

Now, using the perturbative Feynman gluon propagator,

D1ð−k2⊥Þ ¼
1

k2⊥
ð54Þ

in Eq. (47), we find that

χ0
�
b⊥
x̄

�
¼ −

g2

2π

x̄
b⊥

: ð55Þ

Using Eqs. (55) and (53) in Eq. (45), we find that

Ipert
Uð1Þðx; b⊥Þ ¼ −

g2

4π

x̄2

b⊥
ð56Þ

so that Eq. (48) yields

IpertUð1Þðx; q⊥Þ ¼ −
g2

2

x̄
q⊥

: ð57Þ

Equation (44) then tells us that

iGpert
Uð1Þðx; q⊥Þ ¼

g2

4π2
1

q2⊥
: ð58Þ

After the replacement g2 → 4πCFαs, we obtain

iGpertðq⊥Þ ¼
αsCF

πq2⊥
ð59Þ

which is consistent with Eq. (33). Equation (59) is our
perturbative kernel.
For nonperturbative SU(3) gluons, both the real and

imaginary parts of fSUð3Þαβ ðχ=4Þ contribute to the color
function. To compute the eikonal phase χ, we follow
Ref. [24] in using a nonperturbative Dyson-Schwinger
gluon propagator given by

D1ðk2⊥;Λ2
QCDÞ ¼

1

k2⊥

�
αsðk2⊥Þ

αsðΛ2
QCDÞ

�
1þ2δ

×

�
cðk2⊥=Λ2Þκ þ dðk2⊥=Λ2Þ2κ

1þ cðk2⊥=Λ2Þκ þ dðk2⊥=Λ2Þ2κ
�

2

ð60Þ
with
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αsðμ2Þ ¼
αsð0Þ

ln½eþ a1ðμ2=Λ2Þa2 þ b1ðμ2=Λ2Þb2 � ð61Þ

where all parameters are taken from Ref. [41] and are
explicitly given in Ref. [24].
In Fig. 1, we compare the perturbative Abelian kernel to

the nonperturbative SU(3) kernel. As can seen, the two
kernels are very different in the q⊥ ≤ 1 GeV region where
the nonperturbative kernel offers the advantage of being
infrared finite while peaking at low q⊥. A notable feature of
the nonperturbative kernel is that it is not symmetric under
x̄ ↔ x: its maximum decreases with increasing x. On the
other hand, the perturbative kernel has no x dependence
and, as we noted before, diverges as q⊥ → 0.

VI. HOLOGRAPHIC TMDS

Having specified both the light-front wave functions and
the gluon rescattering kernel, we are now in a position to
find explicit expressions for the holographic pion TMDs.
We start with the Boer-Mulders function. The overlap
appearing in Eq. (32) is given by

X
h;h̄

Ψ�
h;h̄
ðx;k − qÞheihθkΨh;h̄ðx;kÞ ¼ 2BðMπxx̄þ BmfÞq⊥ cosðθq⊥ − θk⊥Þ

Ψðx; ðk − qÞ2ÞΨðx;k2Þ
ðxx̄Þ2 ð62Þ

where

Ψðx; ðk − qÞ2ÞΨðx;k2Þ ¼ N 2

xx̄
exp

�
−
k2⊥ þm2

f

κ2xx̄

�
exp

�
−

q2⊥
2κ2xx̄

�
exp

�
q⊥k⊥ cosðθq⊥ − θk⊥Þ

κ2xx̄

�
: ð63Þ

Inserting Eq. (62) in Eq. (32), and integrating over θq⊥, we find that

h⊥1 ðx; k⊥Þ ¼ B
Mπxx̄þ Bmf

ðxx̄Þ3 N 2
Mπ

k⊥
exp

�
−
k2⊥ þm2

f

κ2xx̄

�Z
dq⊥
4π2

q2⊥iGðx; q⊥Þ exp
�
−

q2⊥
2κ2xx̄

�
I1

�
−
k⊥q⊥
κ2xx̄

�
ð64Þ

where I1 is the modified Bessel function of the first kind. If we use the perturbative gluon rescattering kernel in Eq. (64), we
can obtain an analytic form for the holographic Boer-Mulders function:

h⊥pert
1 ðx; k2⊥Þ ¼ αsBCF

MπN 2

4π3
Mπxx̄þ Bmf

ðxx̄Þ2
�

κ

k⊥

�
2

× exp

�
−
k2⊥ þ 2m2

f

2κ2xx̄

��
1 − exp

�
−

k2⊥
2κ2xx̄

��
: ð65Þ

As expected, if B → 0, the holographic Boer-Mulders
function vanishes. On the other hand, for B ≥ 1, it is
hardly sensitive to the value of B since the wave function
normalization constant N ∼ 1=B2 for B ≥ 1.
In Fig. 2, we illustrate the differences between the

holographic Boer-Mulders function generated by the
perturbative and nonperturbative kernels. As can be
seen, a simple rescaling of the normalization of the
perturbative kernel, say by increasing αs, cannot fully

capture the nonperturbative effects. This is because the
difference between the two holographic Boer-Mulders
functions is x-dependent: at low x, the size of the
nonperturbatively generated function is larger than that
of the perturbatively generated one while the opposite is
true at large x.
Let us now give an explicit form for our holographic

unpolarized TMD. Using our spin-improved holographic
wave functions in Eq. (23), we find that

FIG. 1. Solid curves: the nonperturbative SU(3) kernel at
different values of x: x ¼ 0.1 (blue), x ¼ 0.3 (red), x ¼ 0.5
(orange) and x ¼ 0.7 (purple). Dashed black curve: the pertur-
bative kernel with αs ¼ 0.3.
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fðx; k⊥Þ ¼
2

16π3
ðMπxx̄þ BmfÞ2 þ B2k2⊥

ðxx̄Þ3

×N 2 exp

�
−
k2⊥ þm2

f

xx̄κ2

�
: ð66Þ

Contrary to the holographic Boer-Mulders function, our
holographic unpolarized TMD does not vanish as B → 0.
Instead, it reduces to the original holographic TMD derived
in Ref. [42] with a purely Gaussian dependence on trans-
verse momentum.
In Fig. 3, we show the 3-dimensional plots of the

holographic unpolarized TMD and the holographic Boer-
Mulders function generated with the perturbative kernel.
The plots reveal a double-humped structure about x ¼ 0.5
for both holographic TMDs. This feature is inherited from
the x-dependence of our spin-improved holographic wave
functions. We note that it does not survive in the holo-
graphic Boer-Mulders generated by the nonperturbative

kernel since, as we mentioned before, the latter is not
symmetric about x ¼ 0.5.
A model-independent theory constraint on our holo-

graphic TMDs is the positivity bound [42]:

Pðx; k⊥Þ≡ f1ðx; k⊥Þ −
k⊥
Mπ

jh⊥1 ðx; k⊥Þj ≥ 0: ð67Þ

In Fig. 4, we show that this constraint is safely satisfied
when the holographic Boer-Mulders function is generated
by the perturbative kernel with αs ¼ 0.3. This is not the
case if we use αs > 0.3, although the violation only occurs
for large k⊥. This is also the case when the holographic
Boer-Mulders is generated by the nonperturbative kernel.
As can be seen in Fig. 4, this violation becomes somewhat
more pronounced (i.e. happening for smaller k⊥) for
small x. Similar violations of the positivity constraint have
been reported in the literature [10,11], albeit with the
perturbative kernel. They seem to indicate a limitation of

FIG. 2. Solid black curves: the holographic Boer-Mulders function generated by the nonperturbative kernel (solid curves) at different
values of x: x ¼ 0.1 (upper left), x ¼ 0.3 (upper right), x ¼ 0.5 (lower left) and x ¼ 0.7 (lower right). Dashed red curves: the
holographic Boer-Mulders function generated by the perturbative kernel with αs ¼ 0.3.
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FIG. 3. Left: the holographic Boer-Mulders function generated by the perturbative kernel with αs ¼ 0.3. Right: the holographic
unpolarized TMD. The numbers on the vertical axis are in units of GeV−2 and k⊥ is in GeV.

FIG. 4. Pðx; k⊥Þ at x ¼ 0.1 (upper left), x ¼ 0.3 (upper right), x ¼ 0.5 (lower left) and x ¼ 0.7 (lower right) with the
holographic Boer-Mulders function generated by the perturbative kernel (red dashed curves) and the nonperturbative kernel
(solid black curves).
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current nonperturbative models to accurately capture the
large k⊥ behavior of the TMDs.

VII. COMPARISON TO LATTICE

The generalized Boer-Mulders shifts of the pion TMDs
have also been predicted from first principles in lattice
QCD at a scale of 2 GeV and using a pion mass, Mπ ¼
518 MeV [26]. In order to compare with the lattice
predictions, we compute the shifts defined as

hk⊥iUTðb2⊥Þ ¼ Mπ

h̃⊥½1�ð1Þ
1;π ðb2⊥Þ
f̃½1�ð0Þ1;π ðb2⊥Þ

; ð68Þ

where the generalized TMD moments are given by

f̃½m�ðnÞðb2⊥Þ ¼
2πn!
M2n

π

Z
dxxm−1

Z
dk⊥k⊥

�
k⊥
b⊥

�
n

× Jnðb⊥k⊥Þfðx; k2⊥Þ: ð69Þ

The b⊥ → 0 limit of Eq. (68) is a measure of the quark’s
average transverse momentum in a direction perpendicular
to its polarization. Our results are shown in Table I. As can
be seen, it is possible to fit the lattice data by using a large
αs with the perturbative kernel. However, as we mentioned
earlier, αs ¼ 0.9 is perhaps not consistent with the weak
coupling hypothesis g2 ≪ 1. We prefer to consider the
predictions with αs ¼ 0.3 as a more realistic prediction
with the perturbative kernel. Then, it becomes apparent that
the nonperturbative kernel does a better job, bringing our

predictions closer to the lattice data. It might be possible to
improve upon these predictions by using a different non-
perturbative gluon propagator than the one given by
Eq. (60) or a different set of fitted parameters in
Eq. (60) itself. Thus the nonperturbative kernel offers a
more promising way to fit the lattice data.
We should also emphasize that our predictions are at a

low hadronic scale and are obtained using the physical pion
mass while the lattice predictions are at a scale of 2 GeV
and are obtained using a pion mass of 518 MeV. We have
checked that our predictions do not change much if we use
the larger pion mass. On the other hand, we have not
attempted to address here the more delicate issue of
evolving our holographic TMDs to a higher scale.
Indeed, the evolution of TMDs are likely to be driven
both by perturbative and nonperturbative physics [43–46]
and are not yet fully known [47]. The approximate
evolution of the original holographic unpolarized TMD
up to 5 GeV, has been carried out in Ref. [36], revealing a
substantial change in its width as well as the x-dependence
of the latter.

VIII. CONCLUSIONS

We have predicted the two leading twist pion TMDs
using the spin-improved holographic light-front wave
function for the pion. To predict the holographic Boer-
Mulders function, we used both a perturbative and a
nonperturbative gluon rescattering kernel. We find that
the nonperturbative kernel offers a more promising way to
describe the available lattice data on the generalized Boer-
Mulders shifts. A more precise comparison to the lattice
data may be possible when the evolution of our holographic
pion TMDs are taken into account and if lattice data
become available at the physical pion mass.
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