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We discuss production of cc̄-pairs within kT-factorization approach (off-shell initial partons) with
unintegrated parton distribution functions (uPDFs). We present a consistent prescription which merges the
standard leading-order (LO) kT-factorization calculations for this process with tree-level next-to-leading
order (NLO) and next-to-next-to-leading order matrix elements. For the first time we include in this
framework 2 → 3 and 2 → 4 processes with extra partonic emissions for single particle distributions as
well as for correlation observables. The use of the KMR uPDF leads to a good description of the existing
charm (D-meson) data already at the leading-order. On the other hand, a new parton-branching (PB) uPDF
strongly underestimates the same experimental data. A direct inclusion of the higher-orders at tree-level
leads to an overestimation of the data, especially for the KMR uPDF. This suggests a significant double-
counting. We propose a simple method how to avoid the double-counting. Our procedure leads to a much
better description of the experimental data when including the higher-order contributions. Then with the
KMR uPDF we get similar results (both for single particle and correlation observables) as for the standard
calculations of the 2 → 2 processes. For the PB uPDF inclusion of the higher-orders considerably improves
description of the experimental data. We conclude that the LO calculation with the KMR uPDF effectively
includes the higher-orders which is not the case for the PB uPDF. The phenomenological analysis presented
here is first attempt to study the charm cross section at the LHC differentially beyond the NLO.
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I. INTRODUCTION

The production of heavy flavors is known to be a good
example of perturbative QCD calculations—the quark mass
sets already a sizeable scale. Charm quark is the lightest
heavy quark where one believes in the pQCD treatment.
Leading-order collinear approach gives much too small
cross section, compared to the experimental cross section
for charmed meson production. Clearly higher-order cor-
rections are needed. Next-to-leading order approach was
developed for inclusive variables only (single charm dis-
tribution). In general, one is interested not only in single
charm distributions but also in correlation observables.
Some studies of correlation observables were done, e.g., in
Refs. [1,2] within kT-factorization approach.

In the present paper, we will discuss both single particle
distributions (distributions in rapidity or charm transverse
momentum) and correlation observables (distribution in
azimuthal angle between cc̄, invariant mass distribution,
transverse momentum of the cc̄ pair, difference in rapidity
between c and c̄).
We propose and discuss a consistent prescription that

merges the standard leading-order (LO) kT-factorization
calculations for this process with tree-level next-to-leading
order (NLO) and next-to-next-to-leading order (NNLO)
matrix elements. The applied procedure was originally
proposed in the context of BB̄ pair production within the
parton-Reggeization-approach (PRA) in Ref. [3]. There,
the LO calculations for off-shell initial state partons were
supplemented by the NLO corrections from the emission
of one additional hard gluon. The consistent merging
procedure constructed there can be implemented for the
calculation of charm production within the kT-factorization
approach. In this paper, we basically follow the ideas
presented in Ref. [3] but we extend those studies to the case
of NNLO corrections from the emission of two additional
hard gluons.
Our new scheme for the calculations provides a possibility

to study the charm cross section differentially beyond the
NLO collinear approaches, FONLL [4] and GM-VFNS [5],
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commonly used as the state of the art in this context. We
expect the 2 → 4 contributions, that are missing there, to be
of the special importance for the large transverse momenta
of charm particles studied at the LHC. Our main goal here is
to illustrate, for the first time in the literature, the significance
of these 2 → 4 corrections in theoretical interpretations
of the LHCcharmdifferential distributions, including several
correlation observables.

II. BASIC FORMALISM

A. Cross section for charm quark and
meson production

1. The standard calculations within the leading-order
2 → 2 mechanism

We recall the standard theoretical formalism for the
calculations of the cc̄-pair production in the framework of
the kT-factorization [6]. This approach is commonly known
to be very efficient not only for inclusive particle distri-
butions but also for studies of kinematical correlations.
According to this approach, the transverse momenta kt’s
(virtualities) of both partons entering the hard process are
taken into account. In the case of charm (or in general
heavy) flavor production, the parton-level cross section is
usually calculated via the 2 → 2 leading-order g�g� → cc̄
fusion mechanism (see Fig. 1) of off-shell initial state
gluons that is dominant process at high energies. Emission
of the initial state partons is encoded in the so-called
unintegrated parton distribution functions (uPDFs). Then
the hadron-level differential cross section at the tree-level
for the cc̄-pair production reads

dσðpp → cc̄XÞ
dy1dy2d2p1;td2p2;t

¼
Z

d2k1;t
π

d2k2;t
π

1

16π2ðx1x2sÞ2
jMoff−shell

g�g�→cc̄ j2

× δ2ðk⃗1;t þ k⃗2;t − p⃗1;t − p⃗2;tÞF gðx1; k21;t; μ2FÞ
× F gðx2; k22;t; μ2FÞ; ð2:1Þ

where F gðx1; k21;t; μ2FÞ and F gðx2; k22;t; μ2FÞ are the gluon
uPDFs for both colliding hadrons, andMoff−shell

g�g�→cc̄ is the off-
shell matrix element for the hard subprocess. The gluon
uPDF depends on gluon longitudinal momentum fraction x,
transverse momentum squared k2t of the gluons entering the
hard process, and in general also on a (factorization) scale
of the hard process μ2F. The extra integration is over
transverse momenta of the initial partons. Here, one keeps
exact kinematics from the very beginning and additional
hard dynamics coming from transverse momenta of inci-
dent partons. Explicit treatment of the transverse momenta
makes the approach very efficient in studies of correlation
observables. The two-dimensional Dirac delta function

assures momentum conservation. The unintegrated (trans-
verse momentum dependent) gluon distributions must be
evaluated at

x1 ¼
m1;tffiffiffi
s

p expðy1Þ þ
m2;tffiffiffi
s

p expðy2Þ;

x2 ¼
m1;tffiffiffi
s

p expð−y1Þ þ
m2;tffiffiffi
s

p expð−y2Þ;

where mi;t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
i;t þm2

c

q
is the quark/antiquark transverse

mass. In the case of charm quark production at the LHC
energies, especially in the forward rapidity region, one
tests very small gluon longitudinal momentum fractions
x < 10−5 [1].
The off-shell matrix elements are known explicitly only

in the LO and only for limited types of QCD 2 → 2
processes (see, e.g., heavy quarks [7], dijet [8], Drell-Yan
[9]). The calculation of higher-order corrections in the
kT-factorization is much more complicated than in the
collinear approximation approach. Some first steps to
calculate NLO corrections in the kT-factorization frame-
work have been tried only very recently for diphoton
production [10,11]. There are ongoing intensive works
on construction of the full NLO Monte Carlo generator for
off-shell initial state partons that are expected to be finished
in near future [12]. Another method for calculation of
higher multiplicity final states is to supplement the QCD
2 → 2 processes with parton shower. For the off-shell initial
state partons, it was done only with the help of full hadron
level Monte Carlo generator CASCADE [13]. However,
this method can be consistently used only with dedicated
models of uPDFs.
On the other hand, the popular statement is that actually

in the kT-factorization approach with 2 → 2 tree-level off-
shell matrix elements some part of real higher-order
corrections can be effectively included. This is due to
possible extra emissions of soft and even hard partons

UGDF

UGDF

k1t = 0

k2t = 0 c̄

c

FIG. 1. A diagrammatic representation of the leading-order
mechanism of charm production.
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encoded in the uPDFs. In this sense, when calculating the
charm production cross section via the g�g� → cc̄ mecha-
nism one could expect to include some contributions
related to an additional one or even two extra partonic
emissions, effectively taking into account, as an example,
the gcc̄ and ggcc̄ final states. However, the presence and a
size of the extra emissions strongly depend on the internal
construction of the unintegrated parton distributions. The
extra emissions (from the uPDFs) are expected to be very
important, especially for studies of kinematical correla-
tions. The correlation observables, such as the azimuthal
angle difference of c and c̄ or transverse momentum of the
produced system, are very useful for testing transverse
momenta of initial partons and may be helpful in limiting
uPDFs uncertainties and in understanding their evolution.
Some time ago we showed that in the case of charm

production at the LHC, within the above formalism, only the
Kimber-Martin-Ryskin (KMR) uPDF leads to a reasonable
description of the experimental data for D-meson and
DD̄-pair production [1]. This was further confirmed by
other authors [2]. As also discussed in Ref. [14], the
kT-factorization approach at leading-order with the KMR
uPDF leads to results well consistent with collinear NLO
approach. The KMR uPDF is known to allow by its
construction for a large contribution from the kT > μF
kinematical regime. Effectively, this extra emission of hard
partons (gluons) from the uPDF corresponds to higher-order
contributions. As reported in Ref. [1], the rest of the
commonly used models of the uPDFs from the literature
are rather missing those contributions and significantly
underestimate the experimental data on charm production
at the LHC.
In the numerical calculation below, based on the standard

kT-factorization framework, we apply the KMR uPDF in its
original form. The KMR distributions are calculated from
the MMHT2014 [15] and CT14 [16] gluon PDFs. As
a default set of the calculations, we use the renormaliza-

tion and factorization scales μ2 ¼ μ2R ¼ μ2F ¼ P
n¼2
i¼1

m2
iT
n

and charm quark mass mc ¼ 1.5 GeV. The uncertainties
related to the choice of the collinear PDF and of the
renormalization/factorization scales will be discussed when
presenting numerical results.
The transition of charm quarks to open charm mesons is

done in the framework of the independent parton fragmen-
tation picture (see, e.g., Ref. [17]). Here we follow the
standard prescription, where the inclusive distributions of
open charm meson are obtained through a convolution of
inclusive distributions of charm quarks/antiquarks and
c → D fragmentation functions,

dσðpp→DD̄XÞ
dyDd2pt;D

≈
Z

1

0

dz
z2

Dc→DðzÞ
dσðpp→ cc̄XÞ

dycd2pt;c

����
yc¼yD

pt;c¼pt;D=z

;

ð2:2Þ

where pt;c ¼ pt;D

z and z is the fraction of longitudinal
momentum of charm quark c carried by a meson D. In
the numerical calculations, we take the Peterson fragmen-
tation function [18], often used in the context of hadroni-
zation of heavy flavors. Then, the hadronic cross section is
normalized by the relevant charm fragmentation fractions
for a given type of D meson [19].

2. A new scheme of the calculations with the higher-order
2 → 3 and 2 → 4 mechanisms

Here we describe our proposal for an alternative scheme
of the calculation of the heavy flavor cross sections within
the kT-factorization approach. The main idea is to include
higher-order corrections at the level of hard matrix
elements with simultaneous limiting of the corresponding
contributions incorporated in the uPDFs. The limitations of
the emissions from uPDFs are consequences of merging
LO, NLO, and NNLO contributions. This is a direct
analogy to the issue of merging hard emissions from
higher-order matrix elements with soft emissions from
the parton showers [20]. Due to the lack of the full NLO
and/or NNLO framework of the kT-factorization, within
the present methods this can be done only at tree-level. In
the proposed scheme, we include and sum up the dominant
2 → 2, 2 → 3, and even 2 → 4 contributions to heavy
quark-antiquark pair production under a special condition
introduced to avoid a possible double-counting. In this
model, the higher-orders with hard extra emissions
come from the higher-order matrix elements, while only
the softer extra emissions are included via the uPDF.
Therefore, within this method for studies of heavy flavor
production, one could apply different models of uPDFs
that do not include in their evolution sufficiently hard
extra emissions.
In this model, we calculate the g�g� → cc̄, g�g� → gcc̄,

and g�g� → ggcc̄ mechanisms for off-shell initial state
partons. We have checked numerically, that for the LHC
energy the channels driven by gluon-gluon fusion are the
dominant ones for each of the considered reactions. For the
present studies (high-energy collisions), the contributions
from the quark-induced processes can be safely neglected.
The numerical calculations for the considered higher-

order contributions (see Fig. 2) are performed in the
framework of the kT-factorization approach within the
methods adopted in the KaTie Monte Carlo generator
[21]. The off-shell matrix elements for higher final state
parton multiplicities at the tree-level can be calculated
analytically applying well-defined Feynman rules [22] or
recursive methods, like generalized Britto-Cachazo-Feng-
Witten (BCFW) recursion [23], or numerically with the
help of methods of numerical BCFW recursion [24]. The
latter method was already applied for 2 → 3 production
mechanisms in the case of cc̄þ jet [14] and even for 2 → 4
processes in the case of cc̄cc̄ [25], four-jet [26], and cc̄þ
2jets [27] final states within the KaTie environment.
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In general, the cross section for pp → gðgÞcc̄X reaction
in the kT-factorization approach can be written as

dσpp→gðgÞcc̄X ¼
Z

dx1
d2k1t
π

dx2
d2k2t
π

F gðx1; k21t; μ2FÞ

× F gðx2; k22t; μ2FÞdσ̂g�g�→gðgÞcc̄: ð2:3Þ

Then, the elementary cross section from the above can be
written somewhat formally as

dσ̂gg→g�g�→gðgÞcc̄ ¼
Yn
l¼1

d3pl

ð2πÞ32El
ð2πÞnδn

�Xn
l¼1

pl−k1−k2

�

×
1

flux
jMg�g�→gðgÞcc̄ðk1;k2Þj2; ð2:4Þ

with n ¼ 3 and n ¼ 4 for g�g� → gcc̄ and g�g� → ggcc̄,
respectively, where El and pl are energies and momenta of
final state gluon(s) and charm quarks. Above only depend-
ence of the matrix element on four-vectors of incident
partons k1 and k2 is made explicit. In general, all four-
momenta associated with partonic legs enter. Also, in this
case, the matrix element takes into account that both gluons
entering the hard process are off-shell with virtualities
k21 ¼ −k21t and k22 ¼ −k22t. Here, as a default choice we set
the renormalization/factorization scale to be equal to the
averaged sum of the transverse mass squared of the final

state particles μ2 ¼ P
n
i¼1

m2
iT
n , where miT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i þ p2
iT

p
with n ¼ 3 and n ¼ 4 for 2 → 3 and 2 → 4 cases,
respectively.
Calculating the minijets at tree-level requires some

technical methods for regularization of the cross section.
For this purpose, we follow the method adopted, e.g., in
PYTHIA [28] for the calculations of the 2 → 2 pQCD
processes with light quarks and gluons in the final states.
This procedurewas also applied recently in the context ofD-
meson production via unfavored fragmentation [29] or J=ψ-
meson production in the color-evaporation model [30].

Here, we introduce a special suppression factor FsupðpTÞ ¼
p4
T=ðp2

T0 þ p2
TÞ2 for the g�g� → gcc̄ and g�g� → ggcc̄ cross

sections with pT being the outgoing minijet transverse
momentum and with pT0 being a free parameter. This
parameter could, in principle, be fitted to total charm cross
section measured experimentally or calculated in the
NLO/NNLO collinear calculations. Usually, the values
pT0 ¼ 1–3 GeV are taken in phenomenological applica-
tions. As a default set in our calculations here we use
pT0 ¼ 1 GeV. Within the referred range, we expect only
a small sensitivity of the calculated charmquark distributions
on the value of this parameter. The uncertainties could be
visible only at very small transverse momenta of charm
quark, i.e., pc

T < 3–4 GeV. This is the region where still the
leading-order mechanism should dominate. At larger charm
quark transverse momenta, where higher-order contributions
should play the most important role, our calculations are not
sensitive to the choice of the regularization parameter. The
calculated transverse momentum distributions of D-meson
can be treated as the approximate attempt to study the
differential charm cross section beyond the NLO.
Within the proposed scheme, we sum together the three

contributions g�g� → cc̄, gcc̄, and ggcc̄. It is known, when
mixing different final state multiplicities that a problem of
possible double-counting appears. The double-counting
effects shall also appear in the case under consideration.
Their consistent treatment is not an easy task since there is
a lack of well-established theoretical techniques. However,
very recently the consistent prescription for merging
leading- and next-to-leading-order calculations for off-shell
initial state partons were established [3]. Here, for the first
time, a similar procedure is adopted also for the case of
NNLO corrections. According to this approach, we intro-
duce for each of the three reactions, a set of the double-
counting-exclusion (DCE) cuts. For the three reactions,
transverse momenta of (mini)jets from the uPDF are con-
strained to be subleading. A similar constrain was also used
in the PRA studies of dijet azimuthal decorrelations [8].

FIG. 2. A diagrammatic representation of the higher-order mechanisms of charm production.
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Therefore, the proposed DCE conditions set the following
extra limitations on transverse momenta of incident partons:
(1) kT < μF for g�g� → cc̄, where μF is the factoriza-

tion scale,
(2) kT < pT of the minijet for g�g� → gcc̄,
(3) kT < pmin

T of the two minijets for g�g� → ggcc̄.
As was shown in Ref. [3], the above kinematic cuts shall
provide a clear separation of events that correspond to the
2 → 2, 2 → 3, and 2 → 4 reactions. The first condition
excludes the possible extra hard emissions from the uPDF
in the 2 → 2 case, that are not under full theoretical/
kinematical control. It reduces this contribution rather to
the leading-order collinear calculations with c and c̄ being
the leading (mini)jets. The second condition assures that the
hardest (mini)jet in the 2 → 3 event comes always from the
hard matrix element. It removes the contributions that
correspond rather to the mechanisms explicitly present in
the 2 → 4 calculations. Similarly, the third condition assures
that the two hardest (mini)jets in the 2 → 4 event also do not
originate from the uPDF. Including one or two hardest
minijets from the uPDF in the 2 → 4 case in association
with soft minijets from the matrix element may also lead to
contributions already present in the case of the 2 → 3

processes. The additional hard emissions associated with
charm determine the kinematics of the c and c̄ and their
correlations. In this context, having them at the level of hard
matrix elements seems to be more accurate. Within the
presented framework the leading- and higher-order contri-
butions can be consistently taken into account together
without additional double-counting subtractions to describe,
e.g., correlation observables.

B. Unintegrated gluon distributions

1. Kimber-Martin-Ryskin uPDF

As a default, in the calculations below we use the
leading-order Kimber-Martin-Ryskin (KMR) approach
[31,32] with the angular (or rapidity) ordering constraints
imposed, which comes from inclusion of coherence
effects in gluon emission. According to this approach,
the unintegrated gluon distribution is given by the follow-
ing formula:

fgðx; k2t ; μ2Þ≡ ∂
∂ log k2t ½gðx; k

2
t ÞTgðk2t ; μ2Þ�

¼ Tgðk2t ; μ2Þ
αSðk2t Þ
2π

X
b

×
Z

1

x
dzPgbðzÞb

�
x
z
; k2t

�
: ð2:5Þ

This formula makes sense for kt > μ0, where μ0 ∼ 1 GeV
is the minimum scale for which DGLAP evolution of the
conventional collinear gluon PDF, gðx; μ2Þ, is valid.

The virtual (loop) contributions may be resummed to all
orders by the Sudakov form factor

Tgðk2t ; μ2Þ≡ exp

�
−
Z

μ2

k2t

dκ2t
k2t

αSðκ2t Þ
2π

X
b

Z
1

0

dzzPbgðzÞ
�
;

ð2:6Þ
which gives the probability of evolving from a scale kt to a
scale μwithout parton emission. The exponent of the gluon
Sudakov form factor can be simplified using the following
identity: Pqgð1 − zÞ ¼ PqgðzÞ. Then the gluon Sudakov
form factor reads

Tgðk2t ;μ2Þ¼ exp

�
−
Z

μ2

k2t

dκ2t
k2t

αSðκ2t Þ
2π

�Z
1−Δ

0

dzzPggðzÞ

þnF

Z
1

0

dzPqgðzÞ
��

; ð2:7Þ

where nF is the quark–antiquark active number of flavors
into which the gluon may split. Due to the presence of the
Sudakov form factor in the KMR prescription, only last
emission generates transverse momentum of incoming
gluons. Here, the variable Δ ¼ kt=ðkt þ μÞ introduces a
restriction of the phase space for gluon emission due to the
angular-ordering condition. This constraint translates into
the permission for hard emissions from the uPDF, that
correspond to the kt > μ kinematical regime.
Taking all together, the precise expression for the

unintegrated gluon distribution reads

fgðx; k2t ; μ2Þ ¼ Tgðk2t ; μ2Þ
αSðk2t Þ
2π

×
Z

1

x
dz

�X
q

PgqðzÞ
x
z
q

�
x
z
; k2t

�

þ PggðzÞ
x
z
g

�
x
z
; k2t

�
Θ
�

μ

μþ kt
− z

��
:

ð2:8Þ
This prescription was found to be consistent with the Multi-
Regge-Kinematics limit of the QCD amplitudes [3].
In numerical calculations below, we apply different sets

of the KMR gluon uPDF, obtained from different collinear
PDFs, including LO, NLO, and even NNLO fits. As was
discussed in Ref. [33], the LO KMR model together with
NLOPDFs leads to gluon distributions compatiblewith their
counterparts calculated within full NLO KMR approach.
Thus, in phenomenological studies, one can safely neglect
effects related to the higher-order perturbative-splitting
functions and concentrate only on the collinear PDF input.

2. Parton-branching uPDF

The parton-branching (PB) method, introduced in
Refs. [34,35], provides an iterative solution for the evolution
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of both collinear and transverse momentum dependent
parton distributions. Within this novel method, the splitting
kinematics at each branching vertex stays under full control
during the QCD evolution. Here, soft-gluon emission in the
region z → 1 and transverse momentum recoils in the parton
branchings along the QCD cascade are taken into account
simultaneously. Therefore, the PB approach allows for a
natural determination of the uPDFs, as the transverse
momentum at every branching vertex is known. It agrees
with the usual methods to solve the DGLAP equations, but
provides in addition a possibility to apply angular ordering
instead of the standard ordering in virtuality.
Within the PB method, a soft-gluon resolution scale

parameter zM is introduced into the QCD evolution
equations that distinguishes between nonresolvable and
resolvable emissions. These two types of emissions are
further treated with the help of the Sudakov form factors,

ΔaðzM;μ2;μ20Þ¼ exp

�
−
X
b

Z
μ2

μ2
0

dμ02

μ02

Z
zM

0

dzzPðRÞ
ba ðαs;zÞ

�
;

ð2:9Þ
and with the help of resolvable splitting probabilities

PðRÞ
ba ðαs; zÞ, respectively. Here a, b are flavor indices, αs

is the strong coupling at a scale being a function of μ02, z is

the longitudinal momentum splitting variable, and zM < 1
is the soft-gluon resolution parameter. Then, by connecting
the evolution variable μ in the splitting process b → acwith
the angle Θ of the momentum of particle c with respect
to the beam direction, the known angular ordering relation
μ ¼ jqt;cj=ð1 − zÞ is obtained, that ensures quantum coher-
ence of softly radiated partons.
The PB evolution equations with angular ordering

condition for unintegrated parton densities F aðx; kt; μ2Þ
are given by [34]

F aðx; kt; μ2Þ
¼ Δaðμ2ÞF aðx; kt; μ20Þ

þ
X
b

Z
d2q0t
πq02t

Δaðμ2Þ
Δaðq02t Þ

Θðμ2 − q02t ÞΘðq02t − μ20Þ

×
Z

zM

x

dz
z
PðRÞ
ab ðαs; zÞF b

�
x
z
; kt þ ð1 − zÞq0t; q02t

�
:

ð2:10Þ

These equations can be solved by an iterative Monte Carlo
method. In this method, every resolvable branching
is reconstructed explicitly and the full kinematics at
each branching is taken into account. Here, the starting
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distribution for the uPDF evolution is taken in the
factorized form as a product of collinear PDF fitted to
the precise DIS data and an intrinsic transverse momen-
tum distribution in a simple Gaussian form.
There are two sets available of the parton-branching

uPDFs—PB-NLO-2018-set1 and PB-NLO-2018-set2—
that correspond to different choice of the parameters of
the initial distributions [35]. Both of them are based on the
HERAPDF2.0 collinear parton densities at NLO. In the
numerical calculations below, we use the PB-NLO-2018-
set1 uPDF. The resulting unintegrated parton densities,
PB-NLO-2018-set1 and PB-NLO-2018-set2, including
uncertainties, are available in TMDLIB [36].

3. Comparison of the uPDF distributions

Let us present now a numerical comparison between the
two uPDF models used in the calculations below. Here, we
compare the KMR-MMHT2014lo and PB-NLO-set1 gluon
unintegrated distributions. In Fig. 3, we show transverse
momentum dependence of the uPDFs for two different
values of longitudinal momentum fractions: x ¼ 0.01
(upper panels) and x ¼ 0.0001 (lower panels) as well as
for three different values of the factorization scale: μ ¼ 3,
10, 100 GeV (left, middle, and right panels). We observe
significant differences between the two models of uPDF
at both, very small and very large transverse momenta of
gluons. The differences for kt ≲ 1 GeV come from mis-
cellaneous treatment of the nonperturbative regime in the
considered uPDFs, which in both cases is rather uncertain.
However, the main visible difference appears in the region
of large transverse momenta. The KMR uPDF (solid lines)
has long tails which is a consequence of kt > μ contribu-
tions allowed for the gluon emissions. In contrast, the
PB-NLO-set1 uPDF (dashed lines) is strongly suppressed
in this kinematical regime. As will be discussed in the
following, this behavior of the two uPDFs has a crucial
meaning for valuable predictions of charm hadroproduction
at the LHC.

III. NUMERICAL RESULTS

A. The standard kT-factorization calculations
of the D-meson cross section including only

g�g� → cc̄ mechanism with the
KMR uPDFs

We start presentation of our numerical results with the
inclusive distributions of D-meson and with correlation
observables for DD̄ meson-antimeson pair production. We
compare our theoretical predictions with the LHCb open
charm data from pp-scattering at

ffiffiffi
s

p ¼ 7 TeV [37,38].
Here, we follow the standard kT-factorization approach and
calculate the cross section for cc̄-pair production by taking
into account the g�g� → cc̄ mechanism. We use the KMR
gluon uPDF in the original form, that allows for extra
hidden hard emissions at the very last step of its evolution,
i.e., including contributions from the kT > μF kinematical
regime. In this way, a part of real higher-order corrections is
effectively taken into account in the calculations. This was
already discussed in the case of charm production, e.g., in
Ref. [1]. Here, wewish to extend those studies by discussing
some important details of the calculation, relevant to estimate
overall uncertainties of the model.
In Fig. 4, we show the transverse momentum distributions

for different rapidity bins (left panel) and the rapidity
distribution (right panel) of the charged D-meson measured
by the LHCb experiment in the kinematical range: 0 < pT <
8 GeV and 2 < y < 4.5. We compare results obtained with
two different sets of the KMR gluon uPDF: KMR-
MMHT2014lo (solid) and KMR-CT14lo (dotted). Both of
them lead to a reasonable description of the LHCb data for
larger transverse momenta; however, we observe some
visible differences of results for small transverse momenta.
The KMR-MMHT2014lo results overestimate theD-meson
pT distributions at very small transverse momenta and give a
very good description of the larger pT’s. The KMR-CT14lo
gluon uPDF leads to slightly smaller cross sections, which
improves the description of the data at very small pT’s and
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s
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[37]. Here, we compare the results for different collinear PDFs used for calculating the KMR uPDFs.
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in the consequence of rapidity distribution. Except the first
bin, for the transverse momentum distribution, the uncer-
tainty related to the choice of the collinear gluon uPDFs
can be estimated at the level of less than a factor of 2.
The calculated rapidity distributions reflect the behavior
of the cross section in the first bin in transverse momentum.
The KMR-MMHT2014lo overestimates the experimental
points while the KMR-CT14lo result lies much closer to the
experimental data.
In Fig. 5, we discuss theoretical uncertainties related to the

perturbative order of the strong coupling αS and simulta-
neously of the choice of the collinear gluon PDF used in
the calculations. Here we use the KMR-MMHT2014 gluon
uPDFand consider three different choices ofαS and collinear
PDFs: LO (solid), NLO (dotted), and NNLO (dashed).
Again, we observe a visible sensitivity of our results to
the choice of these basic ingredients. The higher-order sets
lead to a better agreement with the data for the rapidity
distribution and at small transverse momenta, while the
larger pT bins prefer the leading-order αS and PDF.

Another important source of uncertainties of the pQCD
calculation is the choice of the renormalization and
factorization scale. Typically, both of them are set to be
equal μ ¼ μR ¼ μF. Usually, in the case of heavy flavors,
the scales are connected with the transverse mass (or
momentum) of the produced particles. In the following,
as a default set of the calculations, we take the averaged
sum of transverse mass squared of the final state particles

μ2 ¼ P
n
i¼1

m2
iT
n , where miT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i þ p2
iT

p
. Here, instead of

varying the default set to produce the scale uncertainty
band, we also consider two different sets: μ2 ¼ M2

cc̄ ¼ ŝ

and μ2 ¼ 4m2
c þ

P
n
i¼1

p2
iT
n . A comparison of corresponding

results for different scales is shown in Fig. 6. These three
sets of the scales lead to visible differences only for very
small meson pT’s. The overall uncertainty related to the
scales is of the same order as those discussed above.
The framework of the kT-factorization is known to be

very efficient in studying kinematical correlations between
produced particles (charmed mesons). It allows for a direct
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calculation of the less inclusive distributions already at the
leading-order. The correlation observables are fully deter-
mined by the transverse momenta of the initial state
partons. In Figs. 7 and 8, we extend the above studies
of the inclusiveD-meson spectra to the case of theDD̄-pair
production. We present differential distributions as a
function of transverse momentum of D-meson (or D̄-
antimeson) for the pair (top-left panels), di-meson invariant
mass Minv ¼ MDD̄ (top-right panels), azimuthal angle
Δφ ¼ φDD̄ (bottom-left panels), and rapidity difference
ΔY ¼ jyD − yD̄j (bottom-right panels). Again, we show
uncertainties due to the choice of collinear gluon PDFs
(Fig. 7) and due to the choice of scales (Fig. 8). Here the
LHCb correlation data [38] are not absolutely normalized
and we consider only shapes of the distributions. The more
exclusive observables bring more useful information about
the model calculations. The shapes of the calculated
distributions are almost insensitive to the choice of the
collinear gluon PDF used in calculating the KMR uPDF.
On the other hand, one of the used sets of the scales μ2 ¼
M2

cc̄ ¼ ŝ is clearly not supported by the experimental data.
Summarizing this subsection, we conclude that within the

typical pQCD uncertainties we are able to get a satisfactory
description of the LHCb charm data. The statement is valid

for both the absolutely normalized inclusive D-meson
distributions as well as for the shapes of the DD̄ correlation
observables. The framework of the kT-factorization together
with the KMR gluon uPDF allows one to describe the LHCb
charm data already within the leading-order g�g� → cc̄
mechanism. This is completely opposite to the calculations
within the collinear-approximation. There, only the NLO
framework is able to obtain the same level of quality of the
description of the LHC heavy flavor data [4,5]. This clearly
shows that within the kT-factorization approach we effec-
tively include higher-order contributions. However, the fact
and the size of the effective resummation strictly depend
on the construction of the used uPDF. The KMR model is
unique and very useful in this context. It allows even for two
extra emissions of hard partons from the uPDFs, that
correspond to the gg → gcc̄ and the gg → ggcc̄ contribu-
tions. As we have shown for charm production at the LHC,
this model seems to work very well; however, the overall
picture is more complicated.
The role of the extra emissions from the KMR uPDF

can dramatically change when going to the lower energies.
The emissions are not under full kinematical control and
in the case of some processes, e.g., for dijets production, they
may even lead to a problematic double-counting. Moreover,

   [GeV]
T

D-meson p
3 4 5 6 7 8 9 10 11 12

   
[1

/(
0.

25
 G

eV
)]

T
/d

p
σ

  dσ
1/

3−10

2−10

1−10

1

 X0D0 D→p p  = 7 TeVs
LHCb data

2 < y < 4
 < 12 GeV

T
3 < p

n

2
iTm

 
n=2

i=1
∑ = 2μ

KMR-CT14lo (dotted)

KMR-MMHT2014lo (solid)
KMR-MMHT2014nnlo (dashed)

-factorization + Peterson FFTk
 includedμ > T with kc c→g*g*

   [GeV]invM
4 6 8 10 12 14 16 18 20

   
[1

/(
0.

05
 G

eV
)]

in
v

/d
M

σ
  dσ

1/

3−10

2−10

1−10

1

 X0D0 D→p p  = 7 TeVs
LHCb data

2 < y < 4
 < 12 GeV

T
3 < p

n

2
iTm

 
n=2

i=1
∑ = 2μ

KMR-CT14lo (dotted)

KMR-MMHT2014lo (solid)
KMR-MMHT2014nnlo (dashed)

-factorization + Peterson FFTk
 includedμ > T with kc c→g*g*

π|/|Δϕ
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

/0
.0

5]
π

|  
 [

Δϕ
/d

|
σ

 d σ
1/

2−10

1−10

1

 X0D0 D→p p  = 7 TeVs
LHCb data

2 < y < 4

 < 12 GeV
T

3 < p

 includedμ > T with kc c→g*g*

KMR-CT14lo (dotted)
KMR-MMHT2014lo (solid)
KMR-MMHT2014nnlo (dashed)

n

2
iTm

 
n=2

i=1
∑ = 2μ

-factorization + Peterson FFTk

Y|Δ|
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Y
|  

 [1
/0

.2
]

Δ
/d

|
σ

 dσ
1/

3−10

2−10

1−10

1

10

 X0D0 D→p p  = 7 TeVs
LHCb data

2 < y < 4

 < 12 GeV
T

3 < p

n

2
iTm

 
n=2

i=1
∑ = 2μ

KMR-CT14lo (dotted)
KMR-MMHT2014lo (solid)
KMR-MMHT2014nnlo (dashed)

-factorization + Peterson FFTk
 includedμ > T with kc c→g*g*

FIG. 7. Transverse momentum (top-left), invariant mass (top-right), azimuthal angle (bottom-left), and rapidity distance (bottom-right)
distributions for neutral DD̄ meson-antimeson pair production at

ffiffiffi
s

p ¼ 7 TeV together with the LHCb data [38]. Here, we compare
results for different collinear gluon PDFs used in calculating the KMR uPDF.
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other models of the uPDFs from the literature do not contain
such large contributions from the kT > μF regime and are
useless at leading-order calculations for processes where
higher-orders are of the special importance.Due to the lackof
the full NLO/NNLO formalism with off-shell initial state
partons, we propose a simplified scheme for the calculation
of heavy flavor cross section in the kT-factorization with
higher-ordermechanisms taken into account at the tree-level.

B. A new scheme of calculations in the framework
of the kT-factorization with higher-order effects

at tree-level

1. The Kimber-Martin-Ryskin uPDF with
limited hard emissions

The idea of the proposed scheme is to exclude the extra
hard emissions from the uPDF and include the higher-order
contributions g�g� → gcc̄ and g�g� → ggcc̄ explicitly at the
level of hard matrix elements.
First of all we wish to show the importance of the

kT > μF contributions in the case of the KMR uPDF
for the leading-order g�g� → cc̄ mechanism. In Fig. 9,
we present the c-quark transverse momentum (left) and
φcc̄ azimuthal angle (right) distributions for cc̄-pair

production at
ffiffiffi
s

p ¼ 7 TeV. The solid histograms corre-
spond to the standard KMR calculations with the kT > μF
limitation included, and the dashed histograms are for the
calculations with excluded contributions from the kT > μF
region. We observe a significant differences between the
both results. The kT > μF contribution is very important
for the whole considered distribution of the transverse
momenta and concentrated especially at small azimuthal
angles. The kT < μF limitation of the KMR uPDF that
allows only for soft extra emissions and as a consequence
significantly reduces the predicted cross section.
In Fig. 10, we present a similar analysis as the above one

for the higher-order components. Here we consider the role
of the kT > μF contribution in the KMR uPDF both for the
g�g� → gcc̄ (left panel) and g�g� → ggcc̄ (right panel)
mechanism. Also, in the case of the higher-order processes,
the kT > μF kinematical region in the KMR uPDF signifi-
cantly contributes to the charm quark production cross
sections in the whole range of considered pT’s. As we
already argued, in the case of higher-order processes, the
kT < μF limitation is not enough to fully avoid double-
counting effects when summing up the leading- and higher-
order contributions. Therefore, we also plot here the
contributions that correspond to the case of the proposed
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KMR-MMHT2014lo results for different renormalization/factorization scales.
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double-counting-exclusion (DCE) cuts (see the dotted
histograms). The effects related to these cuts are very
important for both, the 2 → 3 and 2 → 4 processes. In the
latter case, the DCE cut significantly reduces the basic
cross section by about 1 order of magnitude.
Now we wish to present the results of the proposed new

scheme that includes higher-order corrections explicitly in
comparison to the standard (leading-order) KMR calcu-
lations. In Fig. 11, we show the standard 2 → 2 KMR
calculations with the kT > μF included (dashed histo-
grams) and the results obtained within the proposed
scheme for 2 → 2þ 3þ 4 calculations. For the latter
case, here we show both results, with only the kT < μF
limitations (dotted histograms) and with the DCE cuts
(solid histograms). We clearly see that the DCE cuts are
necessary for 2 → 2þ 3þ 4 calculations to reproduce the
successful standard 2 → 2 KMR calculations. The calcu-
lations with the kT < μF limitations would also lead to

a significant overestimation of the LHC charm data.
The calculations within the 2 → 2þ 3þ 4 scheme with
the DCE cuts almost coincide with the standard 2 → 2
calculations in the broad range of the considered trans-
verse momenta of charm quark. Some discrepancy
appears only at small pT’s. The reason could be a different
collinear PDFs used in both calculations. It is not clear
for the 2 → 2 case whether the LO, NLO, or NNLO PDFs
should be used, so there we keep the LO PDF as a default
while in the case of the 2 → 2þ 3þ 4 we assume that the
NNLO PDFs are the most appropriate. Our new scheme
also leads to a very similar azimuthal angle distribution as
in the standard 2 → 2 calculations.

2. The parton-branching uPDF

In this subsection, we basically repeat the above studies
for the KMR uPDF but here we apply the parton-branching
uPDFs [34,35]. As we observe from Figs. 12 and 13 in the
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p ¼ 7 TeV. Here, we compare the KMR-MMHT2014nnlo results with and without the contributions from the
kT > μF region for the basic g�g� → cc̄ mechanism.
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p ¼ 7 TeV. Here, we compare the KMR-MMHT2014nnlo results
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p ¼ 7 TeV. Here, we compare the KMR-MMHT2014lo g�g� → cc̄ results with the kT > μF contribution and the
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p ¼ 7 TeV. Here, we compare the PB-NLO-set1 results with and without the contributions from the kT > μF
region for the g�g� → cc̄ mechanism.
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p ¼ 7 TeV. Here, we compare the PB-NLO-set1 results with and
without the contributions from the kT > μF region as well as with the extra double-counting-exclusion cuts for the g�g� → gcc̄ (left) and
g�g� → ggcc̄ (right) mechanisms.
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case of the PB uPDFs, the kT > μF contributions are very
small for the 2 → 2 mechanism and almost negligible for
the 2 → 3 and 2 → 4 higher-orders (see almost coinciding
solid and dashed histograms in Fig. 13). Therefore, it is
impossible to describe the LHCb open charm data within

the PB uPDFs when considering only the g�g� → cc̄
mechanism. Here, the effects of the DCE cuts are still
sizeable, however, much smaller than in the case of the
KMR uPDF. In Fig. 14, for a more general comparison, we
show the 2 → 2þ 3þ 4 results with the DCE cuts for the
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two uPDFs together on the same plots. In the case of the
2 → 2 mechanism, some differences between the two
results are obtained. For the 2 → 3 and 2 → 4mechanisms,
when the DCE cuts are imposed the results almost coincide.
In Fig. 15, we again show the standard 2 → 2 KMR

calculations with the kT > μF included (dashed histo-
grams) and the results obtained within the proposed
scheme for the 2 → 2þ 3þ 4 calculations but with the
KMR (dashed histograms) and the PB uPDFs (solid
histograms) in addition. One can observe that the
2 → 2þ 3þ 4 calculations for the two different uPDFs
lead to very similar results. The proposed procedure is the
only scheme that allows for a reasonable prediction for
heavy flavor production within the PB uPDFs. Further
improvement can be done only by the full NLO/NNLO
kT-factorization calculations.

3. Numerical representation of the double-counting
exclusion cuts

Here, we wish to illustrate whether the proposed double-
counting exclusion cuts can really result in separation of the
leading- and higher-order contributions. In Fig. 16, we plot
the two-dimensional distributions as a function of the
leading gluon jet pT and averaged transverse momentum
of the charm quark and antiquark in the 2 → 2 (left panels),
2 → 3 (middle panels), and 2 → 4 (right panels) events that

could be helpful in schematic illustration of the comple-
mentarity of phase spaces for the leading- and higher-order
contributions. The top panels correspond to the direct
calculations without the DCE cuts, while the bottom panels
correspond to the calculations with the DCE cuts included.
As we observe, the DCE cuts remove from the 2 → 2
calculations the contributions of the 2 → 3 and 2 → 4 type,
as well as suppress the 2 → 3 and 2 → 4 components in the
region populated by the 2 → 2 mechanism. Although, the
separation is not sharp which may be related to the chosen
scales, the main tendency of the applied procedure is clear
and seems to support the applied procedure. Similar
conclusions were drawn in Ref. [2] in the case of bb̄-pair
production.

4. Double-counting and two-dimensional distributions

We wish to discuss also how our prescription devoted to
avoid double-counting works, for example, for a two-
dimensional distribution in ðMcc̄;ϕcc̄Þ. In Fig. 17, we show
results for the standard KMR prescription (left panel) and
when applying kT < μF cut (middle panel). For compari-
son, we show also results obtained with the PB-NLO-set1
(right panel). As one can see for the KMR approach the
cut removes the strength at small invariant masses and
small φcc̄. This region is much less populated when using
PB-NLO uPDF.
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FIG. 16. Correlations of the transverse momentum of the leading gluon jet and averaged transverse momentum of the charm quark and
antiquark for the 2 → 2 (left panels), 2 → 3 (middle panels), and 2 → 4 (right panels) events. The top panels correspond to the direct
calculations without the DCE cuts. The bottom panels correspond to the calculations with the DCE cuts included. In the latter case, a
kind of a separation of the leading- and higher-order contributions is obtained.
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What about higher-orders? In Fig. 18, we show similar
distributions for 2 → 3 (upper panels) and 2 → 4 (bottom
panels). We start with the PB-NLO-set1 distributions (left
and middle panels). We see that the removed (for the KMR)
regions reappear in the higher-order corrections. The left
panels are results of direct calculation, whereas the middle
panels include the DCE cuts. The direct calculations (left
panels) lead to a significant contributions for back-to-back
configurations already included in the 2 → 2 processes. We
observe that our DCE cuts allow to avoid double-counting.

In the right panels, we show for comparison results with the
DCE cuts but for the KMR uPDF.
We see that our DCE cut fulfills the necessary require-

ments supporting its practical applicability.

5. Comparison to the calculations based on
the collinear approach

Here, we wish to demonstrate how the 2 → 2þ 3
calculations at the tree-level with the DCE cuts differs
from the full NLO approach. This can be done only in the
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FIG. 17. Correlations of the Mcc̄ and ϕcc̄ in the case of the 2 → 2 mechanism. The left and middle panels correspond to the
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calculations for the PB-NLO-set1 uPDF.
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collinear approximation because of the lack of the NLO
kT-factorization framework. In the left panel of Fig. 19,
we compare results for the transverse momentum distri-
bution of charm quark obtained in the full NLO frame-
work (solid line) and calculated by summing the 2 → 2
and 2 → 3 contributions at the tree-level (solid histogram).
The two approaches almost coincide in the broad range of
considered pT’s. Significant differences appear only at
very small transverse momenta where the effects related to
the loop-corrections are expected to be of special impor-
tance. Here, we plot in addition the 2 → 2þ 3þ 4
contribution (dotted histogram). We observe a huge
contribution of the NNLO-type to the transverse momen-
tum distribution of charm quarks. It is not taken into
account in the state-of-art calculations of the FONLL and
GM-VFNS frameworks. Here, within our more pragmatic
model, we only wish to pay attention to the importance of
the NNLO corrections to differential distributions of
heavy quarks. Definite conclusions about their size are
strongly limited since the NNLO collinear framework is

not available for differential distributions of charm and
bottom quarks.
For completeness, in the right panel of Fig. 19, we

compare the 2 → 2þ 3þ 4 contributions calculated in
both the collinear and kT-factorization tree-level approach
with the DCE cuts.

C. The D-meson cross section with the parton-
branching uPDF, beyond the leading-order

Finally, we wish to verify the results obtained in our
2 → 2þ 3þ 4 scheme with both uPDFs against the LHCb
open charm data. In Figs. 20 and 21, we compare our
results with inclusive D-meson and DD̄ correlation LHCb
data, respectively. The solid histograms correspond to
the PB uPDF, while the dashed ones to the KMR-
MMHT2014nnlo uPDFs. In both cases, we get the descrip-
tion of the experimental data of the same quality as in the
case of the standard 2 → 2 kT-factorization calculations
with the KMR uPDF.
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FIG. 19. The transverse momentum distributions of charm quarks for
ffiffiffi
s

p ¼ 7 TeV. Left: comparison of the full NLO (solid line),
2 → 2þ 3 (solid histogram), and 2 → 2þ 3þ 4 (dotted histogram) calculations in the collinear approach. Right: comparison of the
2 → 2þ 3þ 4 calculations in the collinear (dotted histogram) and kT -factorization (solid histogram) tree-level approach.
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p ¼ 7 TeV together with the LHCb
data [37]. Here, we show the PB-NLO-set1 and the KMR-MMHT2014nnlo results for summed contributions of g�g� → cc̄,
g�g� → gcc̄, and g�g� → ggcc̄ mechanisms with the extra conditions.
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IV. CONCLUSIONS

In the present paper, we have considered charm pro-
duction at the LHC within the kT-factorization approach
beyond the standard leading-order g�g� → cc̄ partonic
mechanism. For the first time, we have included in this
context next-to- and next-to-next-to-leading order mecha-
nisms for the differential distributions. We have proposed a
new scheme for calculating the charm quark cross section
including in addition the 2 → 3 and 2 → 4 higher-order
contributions at the tree-level. To the best of our knowl-
edge, this is first attempt to study the charm cross section at
the LHC differentially beyond the NLO. The calculations
of the g�g� → gcc̄ and g�g� → ggcc̄mechanisms have been
done also in the framework of the kT-factorization, with
off-shell initial state partons, for two different unintegrated
gluon densities from the literature—Kimber-Martin-Ryskin
and recent parton-branching uPDFs. We have proposed
special conditions in order to avoid the problem of double-
counting when calculating the higher-order corrections at
the tree-level.
We have made a detailed comparison of the results

for charm production obtained in the standard 2 → 2

calculations with the KMR uPDF and those from the
proposed 2 → 2þ 3þ 4 scheme with the higher-order
contributions taken into account at the tree-level. Both
approaches have been found to lead to very similar results.
This conclusion applies exclusively for the KMR uPDF
model. The analogous analysis has been done also for the
PB-NLO-set1 uPDFs. In the latter case, the 2 → 2

calculations lead to a significant underestimation of the
charm cross section at the LHC. Within this model of the
gluon uPDF, the experimental data can be described only
in the 2 → 2þ 3þ 4 scheme, with higher-order contri-
butions taken into account at the level of hard-matrix
elements. This observations may be also valid for other
models of the uPDFs from the literature, including differ-
ent CCFM-fits, that do not allow for extra hard emissions
encoded in their evolution.
Several differential distributions, including correlations

observables, for open charm mesons for the LHCb experi-
ment have been analyzed. Within the proposed 2 → 2þ
3þ 4 calculational scheme, a good quality description of
the data has been obtained for both the KMR and the
parton-branching unintegrated gluon densities.
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FIG. 21. Transverse momentum (top-left), invariant mass (top-right), azimuthal angle (bottom-left), and rapidity distance (bottom-
right) distributions for neutral DD̄ meson-antimeson pair production at

ffiffiffi
s

p ¼ 7 TeV together with the LHCb data [38]. Here, we show
results for the PB-NLO-set1 and KMR-MMHT2014nnlo results for summed contributions from g�g� → cc̄, g�g� → gcc̄, and g�g� →
ggcc̄ mechanisms with the extra conditions.
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