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Zcð4430Þ discovered by the Belle Collaboration and confirmed by the LHCb Collaboration in B̄0 →
ψð2SÞK−πþ is generally considered to be a charged charmoniumlike state that includes minimally two
quarks and two antiquarks. Zcð4200Þ found in B̄0 → J=ψK−πþ by Belle is also a good candidate of a
charged charmoniumlike state. In this work, we propose a compelling alternative to the tetraquark-based
interpretations of Zcð4430Þ and Zcð4200Þ. We demonstrate that kinematical singularities in triangle loop
diagrams induce a resonancelike behavior that can consistently explain the properties (spin parity, mass,
width, and Argand plot) of Zcð4430Þ and Zcð4200Þ from the experimental analyses. Applying this idea to
Λ0
b → J=ψpπ−, we also identify triangle singularities that behave like Zcð4200Þ, but no triangle diagram is

available for Zcð4430Þ. This is consistent with LHCb’s finding that their description of the Λ0
b → J=ψpπ−

data is significantly improved by including a Zcð4200Þ contribution while Zcð4430Þ seems to hardly
contribute. Even though the proposed mechanisms have uncertainty in the absolute strengths which are
currently difficult to estimate, otherwise the results are essentially determined by the kinematical effects
and, thus, robust.
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Charged quarkoniumlike states, so-called Zc and Zb,
1

occupy a special position in the contemporary hadron
spectroscopy. This is because, if they do exist, they clearly
consist of at least four valence (anti)quarks, being different
from the conventional quark-antiquark structure. The QCD
phenomenology would become significantly richer by
establishing their existence. Among ∼10 such states that
have been claimed to exist as of 2018, we focus on
Zcð4430Þ and Zcð4200Þ.
Zcð4430Þ was discovered by the Belle Collaboration as a

bump in the ψð2SÞπþ invariant mass distribution of B̄0 →
ψð2SÞK−πþ [2]; charge conjugate modes are implicitly
included throughout. Many theoretical interpretations of
Zcð4430Þ have been proposed: diquark-antidiquark [3–5],
hadronic molecule [6–10], and kinematical threshold cusp
[11,12], as summarized in reviews [13–16]. The exper-
imental determination of the spin parity (JP ¼ 1þ) ruled
out many of the scenarios [17,18]; in particular, the
threshold cusp has been eliminated. After the LHCb

Collaboration found a resonancelike behavior in the
Zcð4430Þ Argand plot [18], a consensus is that Zcð4430Þ
is a genuine tetraquark state [19]. Zcð4200Þ is also a
good tetraquark candidate [5,20]. It was observed by
Belle in B̄0 → J=ψK−πþ [21]. LHCb also found
Zcð4200Þ-like contributions in B̄0 → J=ψK−πþ [22] and
Λ0
b → J=ψpπ− [23].
Meanwhile, triangle singularities (TSs) [24–28] have

been considered to interpret several resonance(like) states
such as a hidden charm pentaquark Pcð4450Þþ [29–31] and
a charged charmoniumlike state Zcð3900Þ [32,33]. The TS
is a kinematical effect that arises in a triangle diagram like
Fig. 1 when a special kinematical condition is reached:
Three intermediate particles are, as in a classical process,
allowed to be on shell at the same time. A mathematical
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FIG. 1. Triangle diagram for H → abc decay. Particle labels
and their momenta (in parentheses) are defined.

*satoshi@ustc.edu.cn

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1We follow Ref. [1] on the particle notations.
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detail of how the singularity shows up is well illustrated in
Ref. [31]. A dispersion theoretical viewpoint is given in
Ref. [34]. Although it was claimed in Refs. [35,36] that an
on-shell triangle loop, which includes an experimentally
unobserved hadron, can induce a spectrum bump of
Zcð4430Þ, the kinematics of the proposed mechanism
is, in fact, classically forbidden and not causing a TS
(Coleman-Norton theorem [26]; also see Fig. 4 and related
discussion in Ref. [31]). The mechanism generates a
clockwise Argand plot, which is opposite to the LHCb
data [18], and has already been ruled out.2

In this paper, we give a new insight into Zcð4430Þ and
Zcð4200Þ by showing that these exotic candidates can be
consistently interpreted as TSs if the TSs have absolute
strengths detectable in the experiments. First, we point
out that the triangle diagrams in Fig. 2, formed by
experimentally well-established hadrons, meet the kin-
ematical condition to cause the TSs (in the zero-width
limit of unstable particles). Then we demonstrate that
the diagram in Fig. 2(a) [Figs. 2(b) and 2(c)] creates a
Zcð4430Þ [Zcð4200Þ]-like bump in the ψfπ [ψf ¼ J=ψ ;
ψð2SÞ] invariant mass distribution of B̄0→ψð2SÞK−πþ

[B̄0 → J=ψK−πþ and Λ0
b → J=ψpπ−]. The Breit-Wigner

masses and widths fitted to the spectra turn out to be in
very good agreement with those of Zcð4430Þ and
Zcð4200Þ. The Zcð4430Þ Argand plot from LHCb [18]
is also well reproduced by the triangle diagram. Finally,
we give a natural explanation for the absence of Zcð4430Þ
in Λ0

b → J=ψpπ− and eþe− annihilations in terms of the
TS. This is so far the most successful TS-based interpre-
tation of charged quarkoniumlike states; Zcð3900Þ as a TS
has been disfavored in Ref. [33].3

First, we show that the triangle diagrams in Fig. 2 hit the
TS in the zero-width limit of the unstable particles. A set of
equations presented in Sec. II in Ref. [31] is useful for this

purpose. Regarding Fig. 2(a), we substitute the particle
masses averaged by the Particle Data Group [1] into the for-
mulas and obtain p1 ¼ p2 ¼ 491 MeV, p3 ¼ 154 MeV
(the momentum symbols in Fig. 1) in the B̄0-at-rest frame,
and mψð2SÞπ ¼ 4420 MeV [ψð2SÞπ invariant mass] at the
TS where all particles in the loop have classically allowed
energies and momenta. Similarly, we obtain mJ=ψπ ¼
4187 MeV at the TS for Fig. 2(b) and mJ=ψπ ¼ 3970,
4004, and 4116 MeV for Fig. 2(c) with N� ¼
Nð1440Þ1=2þ, Nð1520Þ3=2−, and Nð1680Þ5=2þ, respec-
tively. In the realistic case where the unstable particles
have finite widths, the triangle diagrams do not exactly hit
the TS and the location of the spectrum peak due to the TS
can be somewhat different from the above mψfπ values.
Using the same formulas, we can also confirm that the
triangle diagrams in Refs. [35,36] are, in the zero-width
limit, kinematically forbidden at the classical level.
We use a simple and reasonable model to calculate the

triangle diagrams in Fig. 2. Let us use labeling of particles
and their momenta in Fig. 1 to generally express the
triangle amplitudes:

Tabc;H ¼
Z

dp1
vab;23ðpa; pb; p2; p3ÞΓ3c;1ðp3; pc; p1Þ
E − E2ðp2Þ − E3ðp3Þ − EcðpcÞ

×
1

E − E1ðp1Þ − E2ðp2Þ
Γ12;Hðp1; p2; pHÞ; ð1Þ

where the summation over spin states of the intermediate
particles is implied. The quantity E denotes the total
energy in the center-of-mass (c.m.) frame, and ExðpxÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2x þm2

x

p
is the energy of a particle x with the mass mx

and momentum px. An exception is applied to unstable
intermediate particles 1 and 2 for which EjðpjÞ ¼ mj þ
p2j=2mj − iΓj=2 (j ¼ 1, 2), where Γj is the width. It is
important to consider the vector charmonium width in
Fig. 2(a), where ψð4260Þ and K�ð892Þ have comparable
widths. We use the mass and width values from Ref. [1].
Regarding the 23 → ab interaction vab;23 in Eq. (1),

where particles 2 and a are vector charmoniums while 3
and b are pions, we use an s-wave interaction:

(a) (b) (c)

FIG. 2. Triangle diagrams contributing to B̄0 → ψfK−πþ (a),(b) and Λ0
b → ψfpπ− (c); ψf ¼ J=ψ ;ψð2SÞ. In (c),N� represents isospin

1=2 nucleon resonances of 1400–1800 MeV. The triangle singularity from the diagram (a) [(b),(c)] generates a Zcð4430Þ [Zcð4200Þ]-
like bump in the ψfπ invariant mass distribution.

2We confirmed, within our model described below, that the
triangle diagram in Refs. [35,36] does not generate a Zcð4430Þ-
like bump. This is expected from the Coleman-Norton theorem
[26] and a general discussion in Ref. [31].

3The TS-based interpretation of Pcð4450Þþ [29–31] has been
ruled out by recent data [37].
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vab;23ðpa; pb; p2; p3Þ ¼ f01abðpabÞf0123ðp23Þϵ�a · ϵ2; ð2Þ

where ϵa and ϵ2 are polarization vectors for particles a
and 2, respectively. The form factors f01abðpabÞ and f0123ðp23Þ
will be defined in Eq. (4); the momentum of the particle i
in the ij-c.m. frame is denoted by pij and pij ¼ jpijj. An
s-wave pair of ψfπ coming out from this interaction has
JP ¼ 1þ, which is consistent with the experimentally
determined spin parity of Zcð4430Þ and Zcð4200Þ and also
with the insignificant d-wave contribution in the Zcð4430Þ
region [18].
The R → ij decay vertex Γij;R in Eq. (1) is explicitly

given as

Γij;Rðpi; pj; pRÞ ¼
X
LS

fLSij ðpijÞðsiszi sjszjjSSzÞ

× ðLMSSzjsRszRÞYLMðp̂ijÞ; ð3Þ

where YLM is spherical harmonics. Clebsch-Gordan coef-
ficients are written as ðabcdjefÞ, and the spin and its z
component of particle x are denoted by sx and szx,
respectively. The form factor fLSij ðpijÞ is parametrized as

fLSij ðpÞ ¼ gLSij
pLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EiðpÞEjðpÞ
p

�
Λ2

Λ2 þ p2

�
2þðL=2Þ

; ð4Þ

where we use the same cutoff for all the vertices and set
Λ ¼ 1 GeV throughout unless otherwise stated. For each of
the 1 → 3c and 23 → ab interactions, there is only one
available set of fL; Sg. We can determine the gLSij values
for the 1 → 3c interactions using data such as K̄�ð892Þ=
K̄�

2ð1430Þ → K−πþ and N� → π−p partial decay widths.
One might think the 23 → ab coupling strength can also be

determined using 2 → ab3̄ (3̄, antiparticle of 3) partial
decay width. However, the ab invariant mass in the triangle
diagram is significantly larger (by ≳500 MeV) than that
of the 2 → ab3̄ decay process, and, thus, the coupling
strengths may be very different between the two. We leave
the 23 → ab couplings arbitrary.
The H → 12 decay vertices are currently not well

understood, because detailed experimental and lattice
QCD inputs are lacking. There are still some hints to
support the reasonability of considering the B̄0 →
ψð4260ÞK̄�ð892Þ vertex in Fig. 2(a): (i) Belle found an
excess of B → ψð4260ÞK events above the background
[38]; (ii) D0’s data can be consistently interpreted that some
b-flavored hadrons weakly decay into states including
ψð4260Þ [39]. Because the details of the H → 12 vertex
would not change the main conclusions, we assume simple
structures and use arbitrary strengths. Among several sets
of fL; Sg available to the B̄0 decays, we set gLSij ≠ 0 only
for S ¼ js1 − s2j and the lowest allowed L; gLSij ¼ 0 for the
other fL; Sg. Because of using the above vab;23, the B̄0

decays are necessarily parity violating. For the Λ0
b decays,

on the other hand, both parity-conserving and -violating
interactions are possible. We choose the parity-conserving
one and set gLSij ≠ 0 only for S ¼ js1 − s2j and the lowest
allowed L; gLSij ¼ 0 otherwise.
We evaluate the interactions of Eqs. (2) and (3) in the

c.m. frame of the two-body subsystem and then multiply
kinematical factors to account for the Lorentz transforma-
tion to the total three-body c.m. frame; see Appendix C in
Ref. [40]. The procedure of calculating the Dalitz plot
distribution forH → abc using Tabc;H of Eq. (1) is detailed
in Appendix B in Ref. [40].
We first present the ψfπ invariant mass distributions for

B̄0 → ψð2SÞK−πþ and B̄0 → J=ψK−πþ. The red solid
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FIG. 3. Distributions of the ψfπ [ψf ¼ J=ψ ;ψð2SÞ] invariant mass for B̄0 → ψð2SÞK−πþ (a), B̄0 → J=ψK−πþ (b), and Λ0
b →

J=ψpπ− (c). The red solid curves in (a) and (b) are obtained from triangle diagrams in Figs. 2(a) and 2(b), respectively. The blue dash-
dotted curves are from Breit-Wigner amplitudes fitted to the red solid curves. In (c), the red solid, green dashed, and magenta dash-two-
dotted curves are obtained from Fig. 2(c) with N� ¼ Nð1440Þ1=2þ, Nð1520Þ3=2−, and Nð1680Þ5=2þ, respectively. The dotted curves
are the phase-space distributions. Each curve, except for the blue dash-dotted ones, is normalized to give unity when integrated with
respect to mψfπ .
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curves in Figs. 3(a) and 3(b) are solely from the triangle
diagrams in Figs. 2(a) and 2(b), respectively. For com-
parison, we also plot the phase-space distributions by the
black dotted curves. A clear resonancelike peak appears at
mψð2SÞπ ∼ 4.45 GeV in Fig. 3(a) [mJ=ψπ ∼ 4.2 GeV in
Fig. 3(b)] due to the TS. We also calculated the mJ=ψπ

spectrum for B̄0 → J=ψK−πþ from the triangle diagram in
Fig. 2(a) and obtained a result very similar to Fig. 3(a) after
the normalization explained in the caption.
In an ideal situation where experimental inputs are

available to determine all the vertices appearing in the
triangle diagrams, we can make a solid prediction of the
spectra to be shown in Fig. 3. This is not the case in reality,
and thus we examine how the above results depend on the
cutoff Λ of the form factors in Eq. (4). The spectra in Fig. 4
are obtained by changing the cutoff over a reasonable
range: Λ ¼ 0.5–2 GeV. The clear peak structures are
stable, and the positions and widths of the bumps do not
largely change. Therefore, we can conclude that the bump
structures in Fig. 3 are essentially determined by the
kinematical singularities and are robust in this reasonable
cutoff range. The stability of the bumps against changing
the cutoff can be explained below. When all particles in the
loop have zero widths, the loop momentum exactly hits the
TS at a certain mψfπ , which blows up the spectrum to

infinity irrespective of the cutoff value. The finite widths
prevent this from happening and introduce the cutoff
dependence to an extent that they push the TS away from
the physical region.
We associate the peaks from the TS with fake Zc-

excitation mechanisms. We fit the Dalitz plot distributions
from the triangle diagrams in Figs. 2(a) and 2(b) using the
mechanism of B̄0 → ZcK− followed by Zc → ψfπ

þ. The
Zc propagation is expressed by the Breit-Wigner form used
in Ref. [17]. The fitting parameters included in the Zc-
excitation mechanisms are the Breit-Wigner mass, width,
and also the cutoff in the form factor of Eq. (4) at the
vertices. In the fit, we consider the kinematical region
where the magnitude of the Dalitz plot distribution is larger
than 10% of the peak height. The obtained fits of
reasonable quality are shown by the blue dash-dotted
curves in Figs. 3(a) and 3(b). Because the spectrum shape
from the triangle diagrams is somewhat different from the
Breit-Wigner one, their peak positions are slightly different.
We fit the Dalitz plot distributions corresponding to differ-
ent cutoffs of Λ ¼ 0.5–2 GeV (Fig. 4) and present in
Table I the range of the resulting Breit-Wigner parameters
along with those from experimental data. Their agreement
is remarkable.
Next, we confront the triangle amplitude with the

Zcð4430Þ Argand plot from LHCb [18]. Because Zc and
K− are relatively in p wave, the angle-independent part of
the amplitude (A) to be compared with the Argand plot is

Aðm2
abÞ ¼ cbg þ cnorm

Z
dΩpc

Y�
1 ;−szZc

ð−p̂cÞMabc;H; ð5Þ

where szZc
is the z component of the Zc spin and mab the ab

invariant mass. The invariant amplitudeMabc;H is related to
Tabc;H in Eq. (1) through Eq. (B3) in Ref. [40]. Complex
constants cnorm and cbg are adjusted to fit the empirical
Argand plot; cbg represents a background. In the LHCb
analysis, a complex value representing the Zcð4430Þ
amplitude is fitted to the dataset in a m2

ψð2SÞπ bin with a

bin size Δ. To take account of the bin size, we simply
average our amplitude without pursuing a theoretical rigor:
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FIG. 4. Cutoff dependence of the spectra in Fig. 3. (a) and
(b) correspond to Figs. 3(a) and 3(b), respectively. The red solid
curves are the same as those in Fig. 3 and are from calculations
using the cutoff Λ ¼ 1 GeV. The black dotted, blue dashed, and
green dash-dotted curves are obtained with Λ ¼ 0.5, 1.5, and
2 GeV, respectively. All the curves are normalized as in Fig. 3.

TABLE I. Breit-Wigner mass (third row) and width (fourth row) for Zcð4430Þ and Zcð4200Þ; the unit is MeV.
Zcð4430Þ [Zcð4200Þ] parameters are fitted to the Dalitz plot distributions for B̄0 → ψð2SÞK−πþ (a)
[B̄0 → J=ψK−πþ (b)] generated by the triangle diagram in Fig. 2(a) [2(b)]. The ranges are from the cutoff
dependence. The parameters from the experimental analyses are also shown; the first (second) errors are statistical
(systematic).

Zcð4430Þ Zcð4200Þ
(a) Belle [17] LHCb [18] (b) Belle [21]

4463� 13 4485� 22þ28
−11 4475� 7þ15

−25 4233� 48 4196þ31þ17
−29−13

195� 16 200þ41þ26
−46−35 172� 13þ37

−34 292� 56 370� 70þ70
−132
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Āðm2
abðiÞÞ ¼

1

Δ

Z
m2

abðiÞþΔ=2

m2
abðiÞ−Δ=2

Aðm2
abÞdm2

ab; ð6Þ

wherem2
abðiÞ is the central value of an ith bin. As shown in

Fig. 5, the empirical Zcð4430Þ Argand plot is fitted well
with Āðm2

abðiÞÞ from the triangle diagram in Fig. 2(a);
cbg ¼ 0.12þ 0.03i in Eq. (5). This demonstrates that the
counterclockwise behavior found in Ref. [18] does not
necessarily indicate the existence of a resonance state.
Similar statements have also been made for threshold cusps
[12,29]. We also confirmed a counterclockwise behavior of
the Argand plot from the triangle diagram in Fig. 2(b), as
Belle [21] found the Zcð4200Þ amplitude to behave so.
A puzzle about Zcð4430Þ is its large branching to

ψð2SÞπ compared with J=ψπ: Rexp
Zcð4430Þ ≡ B½Zþ

c ð4430Þ →
ψð2SÞπþ�=B½Zþ

c ð4430Þ → J=ψπþ� ∼ 11 [17,21]. This can
be qualitatively understood if Zcð4430Þ is due to the TS,
and the coupling strength ratio (cRψπ) of ψð4260Þπþ →
ψð2SÞπþ to ψð4260Þπþ → J=ψπþ interactions of
Eq. (2) is fixed by Rexp

ψð4260Þ ≡B½ψð4260Þ→ ψð2SÞπþπ−�=
B½ψð4260Þ→ J=ψπþπ−� ¼ ð0.11� 0.03� 0.03Þ− ð0.55�
0.18� 0.19Þ from four different solutions of Ref. [41].
Because of the large difference in the phase space available
to the final states, Rmodel

ψð4260Þ ¼ 0.29 × jcRψπj2 is obtained by

using Eq. (2). In addition, the larger phase space allows
resonance(like) f0ð980Þ [42] and Zcð3900Þ [43] to con-
tribute to B½ψð4260Þ → J=ψπþπ−� by ∼40%, and thus
Rmodel
ψð4260Þ ∼ 0.17 × jcRψπj2. Therefore, the model reproduces

Rexp
ψð4260Þ ∼ 0.54 with jcRψπj ∼ 1.8, and the puzzling

Rexp
Zcð4430Þ ∼ 11 is also reproduced with the same jcRψπj. It

is, however, noted that this discussion is based on the
assumption that cRψπ is the same for the ψð4260Þπþ
scattering at the TS and the ψð4260Þ decays. As discussed
earlier, these two processes are significantly different in the
energy, and thus cRψπ is not necessarily the same.
Now we discuss the J=ψπ invariant mass distribution for

Λ0
b → J=ψpπ− induced by the triangle diagram in Fig. 2(c).

In the Zcð4200Þ region, the TS is expected to create a
spectrum bump. Interestingly, several isospin 1=2 nucleon
resonances (N�) of 1400–1800 MeV can contribute to the
singularities, and, depending on the mass and width of N�,
the position and width of the bump can vary. In Fig. 3(c),
we show results obtained with some representative
four-star resonances: N� ¼ Nð1440Þ1=2þ, Nð1520Þ3=2−,
and Nð1680Þ5=2þ. As expected, the triangle diagrams
including different N� generate different spectrum bumps
in the Zcð4200Þ region. In reality, these bumps may
coherently interfere with each other to create a single
broad bump. Also, other charmoniums of 3650–3900 MeV
with coupling to J=ψππ, such as ψð2SÞ and χc1ð3872Þ,
could replace ψð3770Þ in Fig. 2(c) to generate TS bumps in
the Zcð4200Þ region. The LHCb analysis [23] found that
the Λ0

b → J=ψpπ− decay data are significantly better
described by including the Zcð4200Þ amplitude. Because
of limited statistics, the mass and width of Zcð4200Þ were
assumed to be the same as those in B̄0 → J=ψK−πþ [21].
Therefore, the spectrum bumps shown in Fig. 3(c), some of
which extend to the lower end of the Zcð4200Þ region, are
still consistent with the LHCb finding.
Another important finding in the LHCb analysis [23]

is that Zcð4430Þ seems to hardly contribute to
Λ0
b → J=ψpπ−. If Zcð4430Þ found in B̄0 → ψð2SÞK−πþ

is due to the TS, a natural explanation follows: Within
experimentally observed hadrons, no combination of a
charmonium and a nucleon resonance is available to form a
triangle diagram like Fig. 2(c) that causes a TS at the
Zcð4430Þ position. This idea can be further generalized. At
present, a puzzling situation about Zc is that those observed
in eþe− annihilations and in B decays are mutually
exclusive. If the Zc states are due to TSs, the answer is
simple: A TS in a B decay does not exist or is highly
suppressed in eþe− annihilations, and vice versa. There-
fore, a key to establishing a genuine tetraquark state is to
identify it in different processes including different initial
states. However, there are still cases where, as we have seen
in Figs. 3(b) and 3(c), different TSs could induce similar
resonancelike behaviors.
In summary, we demonstrated that Zcð4430Þ and

Zcð4200Þ, which are often regarded as genuine tetraquark
states, can be consistently interpreted as kinematical
singularities from the triangle diagrams we identified.
The Breit-Wigner parameters fitted to the TS-induced
spectrum bumps of B̄0 → ψfK−πþ are in very good

-0.4

-0.2

 0

 0.2

-0.4 -0.2  0  0.2
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 (
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FIG. 5. Zcð4430Þ Argand plot. Six curved segments are from
the triangle diagram in Fig. 2(a). Six data points from Ref. [18]
are from fitting data in six bins equally separating the range of
18 GeV2 ≤ m2

ψð2SÞπ ≤ 21.5 GeV2; m2
ψð2SÞπ increases counter-

clockwise. A curved segment and a data point of the same color
belong to the same bin. A solid circle is an average of the curved
segment of the same color. See Eq. (6) for averaging.
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agreement with those of Zcð4430Þ and Zcð4200Þ from the
Belle and LHCb analyses. The Zcð4430Þ Argand plot from
LHCb is also well reproduced. We also explained in terms
of TSs why a Zcð4200Þ-like contribution was observed in
Λ0
b → J=ψpπ− but Zcð4430Þ was not. These results are

robust, because they are essentially determined by the
kinematical effect, and not sensitive to uncertainty of
dynamical details.
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