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In the framework of an effective field theory of general relativity, a model of scalar and vector bosons
interacting with the metric field is considered. It is shown in the framework of a two-loop order calculation
that, for the cosmological constant term which is fixed by the condition of vanishing vacuum energy,
the graviton remains massless and there exists a self-consistent effective field theory of general
relativity coupled to matter fields defined on a flat Minkowski background. This result is obtained
under the assumption that the energy-momentum tensor of the gravitational field is given by the
pseudotensor of Landau-Lifshitz’s classic textbook. Implications for the cosmological constant problem are

also briefly discussed.
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I. INTRODUCTION

It is widely accepted that, whatever the underlying
fundamental theory of all interactions might be, at low
energies the physics can be adequately described by an
effective field theory (EFT) [1]. Gravitation can also be
included in the formalism of the EFT by considering the
most general effective Lagrangian of metric fields interact-
ing with matter fields [2,3] which is invariant under all
underlying symmetries, including the gauge symmetry of
massless spin-two particles [4]. This quantum field theo-
retical treatment of general relativity with the metric field
presented as the Minkowski background plus the graviton
field and the cosmological constant usually set equal to
zero is considered as a well-defined approach in the modern
sense; see, e.g., Ref. [5]. It is well known that, for a
nonvanishing cosmological constant term A, the graviton
propagator has a pole corresponding to a massive ghost
mode [4]. Setting A equal to zero, as is usually done in the
EFT of gravitation [2], does not solve the problem, as the
radiative corrections regenerate the problem with the
massive ghost [6]. This is because the cosmological
constant term is not suppressed by any symmetry of the
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effective theory, and therefore there is no protection against
generating such a contribution to the effective action by
radiative corrections. However, as has been shown in
Ref. [6], one can represent the cosmological constant as
a power series in 7 and choose the coefficients of this series
such that the graviton becomes a massless spin-2 particle
up to all orders in the loop expansion. Thus, within a
perturbative EFT in a flat Minkowski background, the
cosmological constant, which is one of the parameters of
the effective Lagrangian, is uniquely fixed. This does not
solve the cosmological constant problem [7] (for a recent
review of the cosmological constant problem, see, e.g.,
Ref. [8]) but rather implies that taking into account a
cosmological constant term other than that obtained in
Ref. [6] necessarily requires considering an EFT in a curved
background field. In this case, by imposing the equations of
motion with respect to the background graviton field, the
mass term of the graviton is removed at tree level [9];
however, a systematic study of the issue at higher orders in
loop expansion requires an EFT on a curved background
metric which, to the best of our knowledge, is not avail-
able yet.

Experimental evidence of the accelerating expansion of
the Universe (see, e.g., Ref. [10] and the references therein)
leaves us with a very challenging problem—namely, the
huge discrepancy between the measured small value of the
cosmological constant and its theoretical estimation [7]. An
important question related to this problem is whether there
exists any condition that uniquely fixes the value of the
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cosmological constant. It seems natural to expect the
energy of the physical vacuum state of the theory describ-
ing the Universe to be exactly zero. That is the main
assumption of this work, and it is of importance for the later
discussions. In the framework of the low-energy EFT of
general relativity coupled to the fields of the Standard
Model, imposing such a condition uniquely fixes the
cosmological constant term as a function of other param-
eters of the effective Lagrangian. In this work we calculate
the vacuum expectation value of the full four-momentum of
the gravitational and matter fields at two-loop order in a
simplified version of the Abelian model, with spontaneous
symmetry breaking considered in Ref. [6]. We obtain that,
as a result of a nontrivial cancellation between different
diagrams, the vacuum energy exactly vanishes for the value
of the cosmological constant obtained in Ref. [6], i.e., for
the value which guarantees the vanishing of the graviton
mass and the vacuum expectation value of the graviton field
at two-loop order. That is, provided that our result holds to
all orders, the uniquely fixed value of the cosmological
constant term, leading to a self-consistent perturbative EFT
on the Minkowki background is obtained as a consequence
of imposing the condition of vanishing vacuum energy.
Notice here that, being aware of the lack of a commonly
accepted expression of the energy-momentum tensor for
the gravitational field (see, e.g., Refs. [11-15]), in this work
we use the definition of the energy-momentum pseudo-
tensor and the full four-momentum of the matter and
gravitational fields given in the classic textbook by
Landau and Lifshitz [17].

Our work is organized as follows: In Sec. II we specify
the details of the considered EFT and calculate one- and
two-loop order contributions to the vacuum energy. In
Sec. III we briefly discuss the implications of the obtained
results on the cosmological constant problem. We summa-
rize in Sec. IV, and the Appendix contains the Feynman
rules and two-loop integrals required for our calculations.

II. VACUUM ENERGY IN AN EFT OF GENERAL
RELATIVITY ON A MINKOWSKI BACKGROUND

In the framework of EFT the action of matter interacting
with gravity is given by the most general effective
Lagrangian of gravitational and matter fields, which is
invariant under general coordinate transformations and
other symmetries of the Standard Model,

|

5= / d*x\/=G{Lar(9) + Lun(g: )}
-/ d4x\/-—g{§ (R=2A) + Lyrso(g) + Lo w}

:Sgr(g>+sm(gal//)’ (1)

where k? =327G, with G =6.70881 x 107 GeV~
being the gravitational (Newton’s) constant, y and ¢*
denote the matter and metric fields, respectively,
g =detg™, A is the cosmological constant and R is the
scalar curvature. Further, L, ,(g) represents self-
interaction terms of the gravitational field with higher
orders of derivatives, and L ..r(g,y) is the effective
Lagrangian of the matter fields interacting with gravity.
Experimental evidence suggests that the contributions of
Lot ho (9), as well as the contributions of nonrenormalizable
interactions of L, .q(g,y) in physical quantities, are
heavily suppressed. Vielbein tetrad fields have to be
introduced for fermionic fields interacting with the gravi-
tational field; however, we refrain from giving details on
these, as later we will perform calculations with bosonic
degrees of freedom only.

The low-energy EFT of general relativity is obtained by
representing the gravitational field as the sum of the
Minkowskian background and the quantum fields [16]

9w = M + Khﬂw

gv =" — k" + PR — R+, (2)

and by calculating physical quantities perturbatively by

applying the standard quantum field theory technique.
The energy-momentum tensor of the matter fields

coupled to the gravitational field, T4, and the pseudotensor

of the gravitational field, 7%, are given by

2 688
T/w . _ = m i 3
m (9.%) N7 (3)

v 4 v
T (g) = S A9+ T (9), (4)

where 7%, (g) is defined via [17]

2 /1 ) 1 1
(_g) Tll‘,DL (g) = p <8 ¢ﬂgyygaygﬁég(l/16 gﬁ(s’l - Zgﬂllgyaga,ygﬁﬁgaym gﬁ(s’/l - Zgﬂo—gﬂygﬁagﬁgay’ﬂ g/}(s’/l

1 1
+ Egﬂﬁgyagﬂagyégayﬂa gﬂéﬂl +gﬂag/lagbg’a gﬂl’ﬂ + zgﬂbg/lagiﬂ’a gaa’ﬂ

- gﬂﬂgo’ﬂgyﬂ’a gaa’i _gpﬂgﬁﬂgﬂﬁw gaa’ﬂ +g/16’(7 gﬂy’l _gﬂﬂv/l gygvo' ) ’ (5)
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with ¢ = \/=g¢* and ¢"*,; = Og"/Ox*.

The full energy-momentum tensor T = Th(g,y) +
T4 (g) defines the conserved full four-momentum of the
matter and the gravitational field as [17]

P~ [(greas, (6)

where the integration is carried out over any hypersurface
containing the whole three-dimensional space. Thus, the
energy of the vacuum will be zero if the vacuum expect-
ation value of the energy-momentum tensor times (—g)
vanishes. This quantity is given by the following path
integral:

(0l(=g) T |0) = / DygDy(=g)[T%(g) + T (9.
xexp{i / d4x¢——g[£<g,w>+£cﬂ}, )

where Lgr is the gauge fixing term, and the Faddeev-Popov
determinant is included in the integration measure. The
cosmological constant A can be uniquely fixed by demand-
ing that the right-hand side of Eq. (7) vanishes. To
demonstrate how one obtains a self-consistent EFT by
imposing this condition, we consider a simple model of a
massive scalar and a massive vector field interacting with a
metric tensor field. It coincides with the bosonic part of the
model with spontaneously broken Abelian gauge symmetry
considered in Ref. [6] taken in unitary gauge for the
Abelian gauge symmetry. The action of the matter part
of the model is given by

2

1 M
Sm = \/‘d4.x\/—g{—zgﬂpgvo-Fﬂpro. +79”UA”AD

gﬂl/

m2
+ 5 0,HOH - - H* + cMI}, (8)

2

where F,, = 0,A, — 0,A,, A, is the vector field, H is the
scalar field, and Ly denotes the interactions of matter
fields, the specific form of which is not important for
this work, as we will not include them in our calculations.
The energy-momentum tensor corresponding to Eq. (8) has
the form

T = ~¢"“g" P FopF po + M*g"“ ¢V A Ay + 0,HO,H

v 1 ap gﬂ(f F . F M2 ap A A
-4 29 ap p0+79 aAp
s

2
+ - 0.HOH - ’”71#} + T, 9)

where T}, corresponds to Ly.

meiém

FIG. 1. Diagrams contributing to the vacuum expectation value
of the energy-momentum pseudotensor times (—g) at tree order.
Filled circles correspond to the cosmological constant term. The
cross stands for the energy-momentum pseudotensor times (—g),
and the wiggly line represents the graviton.

By adding the following gauge fixing term to the
effective Lagrangian

1 1
Lgr = 5<auh’w - E(’Whﬁ) <8ﬁhﬂﬂ - 58,/13’), (10)

where & is the gauge parameter, we obtain the Feynman
rules specified in the Appendix.

For the vacuum expectation value of the full energy-
momentum pseudotensor times (—g) at tree order, we
obtain an infinite number of diagrams shown in Fig. 1.
All of these contributions vanish if we take the cosmo-
logical constant vanishing at tree order. That is, we
represent A as

A=) RN (11)

and take A, = 0. Notice that this also removes the graviton
mass from the propagator at tree order.

Next, using the Feynman rules given in the Appendix,
we calculated the one-loop contributions to the vacuum
expectation value of the full energy-momentum pseudo-
tensor times (—g) shown in Fig. 2, and, by demanding that
A, cancels this contribution, we obtain (in the calculations
of the loop diagrams below, we used the program FeynCalc
[18,19])

KT(1 =) (md + (d — 1)M?)
Ar=- : d+6 444 : (12)
240

It is a trivial consequence of Eq. (3) that the same value of
A, cancels the one-loop contribution to the vacuum
expectation value of the graviton field A, shown in
Fig. 3, and consequently the graviton self-energy at zero
momentum, i.e., the graviton mass, as a result of a Ward
identity [6]. The first nontrivial result is obtained at two-
loop order by calculating the diagrams contributing to the
vacuum expectation value of the full energy-momentum
pseudotensor times (—g) shown in Fig. 2. We also
calculated the two-loop contributions to the vacuum
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FIG. 2. Diagrams contributing to the vacuum expectation value of the energy-momentum pseudotensor times (

). The filled circle

corresponds to the cosmological constant term. The cross stands for the energy-momentum pseudotensor times (— g) and the wiggly and
solid lines represent the graviton and the scalar (vector), respectively.

() D) ) (D)

FIG. 3.

Diagrams contributing to the graviton tadpole. The filled circle corresponds to the cosmological constant term. Wiggly and

solid lines represent the graviton and scalar (vector) fields, respectively.

expectation value of the gravitational field shown in Fig. 3
and verified that the same value of A, cancels both
quantities. The obtained result reads

d(d+ 1)*M*=2 cse(5HIM(1 - 9)
Ny =~ 22(d+3)”d—11—*(z§1) - (13)

While it is a trivial consequence of Eq. (3) that the fourth
diagrams in Figs. 2 and 3 both give equal contributions in
A, it is only the sum of the corresponding second and
third diagrams that lead to identical expressions. To check
the obtained results, we also calculated two-loop contri-
butions to the graviton self-energy at zero momentum
and verified that the same value of A, cancels the two-
loop order contribution to the graviton mass in agreement
with the Ward identity [6] (we do not give the expressions
of the corresponding Feynman rules due to their huge
size). While we expect an analogous result to hold to all
orders, we are not able to give a general argument
supporting it.

We briefly outline the computational procedure to arrive
at these results. First, to obtain the Feynman rules for the
effective Lagrangian and the energy-momentum tensor, we
used the program FeynCalc. To perform the calculations
of the pertinent two-loop diagrams, we wrote a program in
Mathematica which contracts the Lorentz indices in the
products of the Feynman rules and expands the obtained
expressions. This results in hundreds of thousands of
terms. In these, we reduce the tensor integrals to the
master scalar integrals specified in the Appendix. Next,
the program substitutes the explicit expressions of the
scalar integrals and simplifies the obtained result to very
compact expressions as specified above. For obvious
reasons, we do not display any of these intermediate
steps here.

III. IMPLICATION ON THE COSMOLOGICAL
CONSTANT PROBLEM

It follows from the result of the previous section that,
unless the cosmological constant is chosen such that the
energy of the vacuum is exactly zero, it cannot remove the
graviton mass and the graviton tadpole order by order in
perturbation theory, and consequently a nonperturbative
treatment of the cosmological constant term is mandatory.
This is because for all physical processes there appear
diagrams like the ones shown in Fig. 4, where the massless
graviton propagator carries vanishing momentum, and
therefore 1/0 singularities occur (this does not happen
only if the tadpole vanishes order by order in the loop
expansion).

The cosmological constant problem is often described as
a vacuum having tiny nonzero energy density. Because of
this loose language, one might think that the condition of
vanishing vacuum energy a priori excludes the solution of
the cosmological constant problem. A closer look reveals
that exactly the opposite might be the case. Indeed, because
of the condition imposed on the cosmological constant term
of the effective Lagrangian, the effective action calculated
on the Minkowski background metric with vanishing
background matter fields does not contain an effective
cosmological constant term contributing to Einsten’s equa-
tions. However, for our Universe the corresponding effec-
tive action has to be calculated in the presence of nontrivial
background fields. The cosmological constant term of the

Vi G G

FIG.4. Tree order tadpole diagrams contributing to the graviton
self-energy.
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effective Lagrangian exactly canceling the loop contribu-
tions in a trivial background leads to a uniquely fixed
effective cosmological constant contributing in the
Einstein’s equation also in the presence of a nontrivial
background. While for weak backgrounds we expect large
cancellations leaving us with a tiny effective cosmological
constant, a quantitative investigation of this estimation is a
subject for a separate publication. To make this more
precise, the background relevant for cosmology is not flat
Minkowski; therefore the fixed cosmological constant term
will cancel the quantum corrections to the effective
cosmological constant not exactly but rather only approxi-
mately, leaving a small finite piece. This remains to be
calculated.

IV. SUMMARY AND DISCUSSION

Consistency conditions of the perturbative EFT of
general relativity in a flat Minkowski background
uniquely fix the cosmological constant term as a
function of all other parameters of the theory [6].
This follows from the requirement of the presence of
a massless graviton, instead of a massive spin-2 ghost,
in the spectrum of the theory. Notice that it is not
possible to take into account perturbatively any other
value of the cosmological constant term within an EFT
on the flat Minkowski background. This is because of
the 1/0 singularities in the Feynman diagrams with
tadpole contributions; see, e.g., Fig. 4.

In our opinion if there is any fundamental reason for
choosing a fixed value of the cosmological constant,
then it must be the condition of vanishing of the vacuum
energy. It is often argued that vacuum has nonzero
energy due to quantum fluctuations. A classical example
is given by quantum oscillator. It is well known that the
ground state energy of a quantum oscillator is faw/2,
where o is the angular frequency. A closer look reveals,
however, that this expression is the result of an
assumption. In particular, if we share the point of view
that the real world is described by a quantum theory and
classical theory is only an approximation of it, then it is
not possible to wuniquely reproduce the quantum
Hamiltonian of an oscillator by quantizing the classical
one. This nonuniqueness is of course well known and is
manifested in the problem of operator ordering. Indeed,
by adding a vanishing term ~(pq — gp) to the classical
Hamiltonian of the oscillator and quantizing it, we
obtain a quantum Hamiltonian with an arbitrary constant
term, and hence an arbitrary vacuum energy. Starting
from the classical theory, there is no way to tell which
value of the vacuum energy is more ‘“fundamental.”
Notice that the argument for the Casimir effect being a
proof of nonvanishing vacuum energy is not convincing
either; see, e.g., Refs. [20,21].

In the framework of low-energy EFT of general relativity
coupled to the fields of the Standard Model, imposing

a condition of vanishing vacuum energy uniquely
fixes the cosmological constant term as a function of
other parameters of the effective Lagrangian. We expect
that this will lead to a self-consistent perturbative EFT
defined on the Minkowski background, i.e., to a mass-
less graviton in the spectrum and the vanishing graviton
tadpole. We were not able to give a general argument
supporting our claim. Instead we calculated the vacuum
expectation value of the full four-momentum of matter
and gravitational fields at two-loop order in a simplified
version of the Abelian model with spontaneous sym-
metry breaking considered in Ref. [6]. While at one-
loop order the condition of vanishing vacuum energy
automatically leads to the conditions of Ref. [6], at two-
loop order the same agreement of two conditions
appears to be a result of a nontrivial cancellation
between different diagrams. We notice here that there
does not exist a commonly accepted expression of the
energy-momentum tensor for the gravitational field (see,
e.g., Refs. [11-15]). In this work we used the definition
of the energy-momentum pseudotensor and the full four-
momentum of the matter and gravitational fields given
in the classic textbook by Landau and Lifshitz [17].

Within a self-consistent EFT all physical quantities
should be finite after renormalizing (an infinite number
of) parameters of the effective Lagrangian. Therefore it
is mandatory that the uniquely fixed value of the
cosmological constant term, which defines the pertur-
bative EFT of the Standard Model coupled to gravitons
on the Minkowski flat background leads to a finite
expression of the energy of the vacuum to all orders in
loop expansion. Based on the two-loop order result of
this work, we expect that this finite value is actually
zero. Turning the argument around, we expect that, by
demanding that the vacuum energy should be vanishing
to all orders, we obtain a self-consistent perturbative
low-energy EFT of matter and gravitational fields on the
flat Minkowski background.

Relegating calculations and detailed discussion to a
future work, we briefly comment on the implications of
our results for the cosmological constant problem. In
particular, we expect the cosmological constant term of
the effective Lagrangian exactly canceling the loop con-
tributions in a flat background very likely to cancel the bulk
of such contributions also in the presence of a nontrivial
background, relevant for our Universe, thus leaving with a
tiny effective cosmological constant contributing to
Einstein’s equations.

A further very interesting question is what condition
(if any) is imposed on the energy of the vacuum by the
consistency of EFT of gravitation in (anti—)de Sitter space.
Unfortunately we are unable to address this issue as, to the
best of our knowledge, a consistent formulation of a
systematic EFT in the (anti—)de Sitter background does
not exist yet.
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APPENDIX: FEYNMAN RULES

Below we give Feynman rules used in the calculation of
the vacuum expectation values of the graviton field and the
energy-momentum tensor.

Propagators:

(a) Scalar propagator with momentum p:
i Al
p*—m?+ie’ (A1)

(b) Vector boson propagator with Lorentz indices y, v and
momentum p:

(g™ = p'pr/MP)
p>—M? +ie

(A2)

(c) Graviton propagator in D dimensions with Lorentz
indices (u,v), (a, ) and momentum p:

s

(c) Graviton with indices (u,v)—scalars with momenta p, and p,:

I
3 ik(—=g"(m* + py - p2) + P5p% + P ph).

(d) Gravitons with indices (¢, v) and (a, #)—scalars with momenta p; and p,:

1,
= IR P = g g+ iP5+ PR + PP+ P (=Phd? + g + i)

+ PIph e + P(=psg? + Phg® + pid) — piphg” — piphg” — pi - pa(g g + g — ¢ P g)).

2 p*+ie
&P (pg* +prg) + P (PP g + P g) (A3)
2 (p? +ie)? ’
Vertices (all momenta in all vertices are incoming):
(a) Graviton with indices (u,v):
2iAg"
_HAFY (A4)
K
(b) Graviton with indices (u,v) and (a, §):
iNg™ " + g* g = gPg"). (AS)
(A6)
(A7)

(e) Graviton with indices (u, v)—vector bosons with (Lorentz index, momentum) combinations (4, p;) and (o, p,):

i
— S K(=MG7g" + MG+ MM+ pipsg’” = pi(psa® + Phg — phg)

+ P (P59 — PAg"?) — PADY 9" — P1 - P29’ 9" + p1 - P29 + P - P29t ).

(A8)
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(f) Gravitons with indices (u,v) and (a, f)—vector bosons with (Lorentz index, momentum) combinations (4, p;)
and (o-, Do)
_ _K 2(—gro P PEMP — P PEMP — R M — g POGEMP + g PR POME + R P GPOM? + g P g M
g(l/lfag/tuMZ _ g(tﬁgﬂﬁg;wMZ _ gaz/g/}/lgyGMZ _ gallg/}ug/mMZ + gaﬁg/h/g/wMZ _ g(lygﬁﬂgurfMZ _ gaigﬁugwaZ
+ gl g M — phphg g + Pphg g — PLpsg g + P pha 9 + Pl psa gt + pipsd g
+ Pipha g + piphd d + PipsgP e — Plpsgt g — piphgt g — Pphgt g — pipsdh g
— P p8g” g — piphd g — Plpig g™ — pipid g + P pid 9" + PP g
+ pi(Phg™ 9" = P59 I — prg P + Pha g — pagt 4 pigt gt + ph(gt e+ g — g )
= phaP g + pSgg + phgPe + Ph(ggr + ¢ — g g™)) + Pl phg g
+ pIpAg g — PLpSa 9 — PIPAT ' + P (—Phg P + pig g — Phg g + Phg g
- ng""g“’ + PA(g P + g P — g P g) + ph(gh g — g g)) - PiphgP e
+ P phg™ g + piphg g + Pipid g + pipid e — i psgt g — piphgt ¢
- g“"gﬂ g“p1-p2—9“d G Py P2 = LS 1 P2 = 9GPy P2
+ 9GPy pr+ 9 9GPy pr S G P2 9Py P2 — 9P GGy P2
- 9“9 ¢ pr - p2— 979 9P P2+ 9P G Py P2 = ISPy P2 = 9Py -
+97d* g py - pa). (A9)
(2) Energy-momentum tensor with indices (u,v)—gravitons with (Lorentz indices, momentum) combinations (1, ¢, p;)

and (a,f, p»):

S I (Gev. i}, (. pa}. (oo psh) + Bhb({v. p1}. (@ B pa}. {4 ps})
+hhh({u.v. p1}.{f. a. p2}.{A. 0. p3}) + hhh({u.v. p\ }. {f. a. p2}.{0. 4. p3})

+hbhh({v, u, p1}, {a. B, p2}. {4, 0, p3}) + hhh({v, u, p1 }. {a. B, p2}. {0, 4, p3})
+hhh({v, 4, p1}, {8, @, p2}. {4, 0, p3}) + hhh({v, u, p1 }, {B, @, p2}, {0, 4, p3})], (A10)

where

hhh({u,v, p}.{a.B,p2}. {40, p3})

1
:—Zlk(plng’“’g”“rpzp F¢+20GP G + 29 ¢ (p1 - pa+ p1 P+ P2 P3) g + 297 9 (P + 3+ p3) g

+ g (P (Ph+ PG + (P} + Ph)pSg™) + (T psg™ g + PR psg™ g + pSphg™a™)

+4((PIPs + PSP P g + (P5Ph + P p8)g™ g + (P pg + pTph) g™ 9™)
—2((p4pS + P5P) G g + (P4 DS+ Paps) g™ g7 + (P Ph + Pl p§) g™ g™

+2((P4 5 + PP g + (P PY + Phps) g™ g + (Papg + PApS) g™ ™)

—2(pi 5P g7 + (PApSe™ + Piphg ) g = 2P pig 9" + pirhg ¢

+ (P51 + Paps) g + (PSP + Pip3)g™)) —4(ps Pl g 9 + p§ph g 9

+ g ((Phps + Pips) g + (PipS + PAipS)g™)) = S(p3(P) + P79 + g (P! (s + p4) g

+(pT+ PYPAg™)) +2(PhpSgP g + Pt g7 + pipSe g + Ph(Phg™ g + phgg")
+Pipig P g) + 2(pIPhg P g + Ph P o + Pipig g + PP g + PP + Pipsg™ g )
+A(pIPhaP g + P ph g g + pips g g + PAPS S 9 + PP 9 + phpkg ™ g)

046021-7



J. GEGELIA and ULF-G. MEIBNER PHYS. REV. D 100, 046021 (2019)

—4(pi P e g + P (psg™ g+ Phg™ g*) + p3(pig™ " + Plg ™ d) + psrhg™e')

—6(psPhg g™ + p(pig™ 9+ PLg™ ") + P (Psg™ " + Phg™ ™) + PL psg™e")

+8A(g g + g ¢ ) = 2(ps Ph g P+ P i P+ P Pag S + pipSg

+ P p8g g + pirhg g = 2(pi P g + g (i P + PapAg) + pipsgP g

+ g™ (pIPh* + P Phg")) + 2(ps g™ P + P ph g g + P ps g g + 1l plg™ g

+ DY (S + Phe ) +2(P (pSgP g + Phg™ 97) + PS5 g + Pl e™)

+PA (P g™ + pg™9)) = 2(P (PSgP 9 + Pha™ g') + (Ph Phg™ + PSP 9

+ P4 (P39 + Phg™ 9)) +2(P (P97 g + Pl g) + P (P 9 + P3P g

+ Ps( g + pig9) = 4(pSps (9™ P + g7 ) + pIph (9 g + )
1p2 g{m—gAﬂ +grlﬂg;m' ) (p2p2( (lﬂgliﬁ+g(lﬂgﬁﬂ +p1p1 g(lD¢” +g(1/4gﬂ

+ p3p3(g""g’“‘ +g%g)) +2(PhpSg™ P+ Ph A g + P g + piph g e

+ P (phg™ g + pid” ")) +16(psps g 9 + Pipid 9 + Phph P d ) = 8(piph e o

+psp§d Y + i g g 0) +2(pS P9 9 4 pSpig 9 + S (DA 9+ pad )

+ PP g7+ Piha? 97) +2(p5(Phe” 9 + pid7 9 ) + P (P9 9 + ph g )

+ (iP5 +Pipy) g g7) = A(Ph g I + i pag g + P9 (pag™ + pig™) + s pig g

+Pipsd" ) = 8(pi P g™ 9 + Pi i g I + PAd (Phg™ + PS9') + PiPh e g + P g 9)
+A(pApSg™ e + PPy e + pIph g a) = 2 pSg ™ o + PP + P P g

+ DA PGP P+ PE P g + PhpSgh g0) + B(pSphg ™ + PPt o + P hg e + P i
+ P pig g + piphg a0) + 8(pipS g™ + PhpSat g + Phpha™ o + i psgt e + pipl gt g

+ pephg g ) +10((pS + p3) PAg™ o + P (ps + P5) g d" + p3 (P + ) g ¢°)

—AN(g g 7 + g PG + g g ) + AP (P3P + P g + P (S + Phg)

+ DA (P + Phgr)) = 8((pEp3e™ + pipid’?) g + g (Pl g + pPhphg®)

+ g (Pip3e” + pzng”")) —10(ps(pTg™ + p9) g™ + Phg™ (psd” + Plg”")

+ P (P39 + Phg”)) — A(p3p3d” + Pips g ) g + (P Phe” + P P

+g*(Pipse” + p%p3 ) —4((PI e + Pipsd’) g + g™ (Pl psd’ + Pl Phg®)

+ g (p3Phe” + Phphg ) +10((p§p3e™ + Pspsd’) g + g™ (Php4d’ + Pl pag®)

+ g (PTPhe" + P Phe ) +8(pS (P 97 + Pig g™ + P (59" 77 + PhgP¢7)

+ 5 (P g + phgP ) +12(ps P 9 + P (P39 o' + Phg™ g7)) — 6(Ph Phg™ o

+ pgpé‘g‘”g/"’ +Pipsd 9+ Pipad" e + P (Pag I + 5 g7) = 4(phph (97 + g™ )
pps( " + 9 g0) + pipi (9" ¢ + P 7)) + APt i (g7 P + g™ o)
Pips (g + " q7) + pip§ (¢ 9 + ¢ ) = 4P P g0 g + Pl (Phg™ I + 5 )

+ Py p3g g + pi (P9 + P g0)) + 2(Php§d g + PA(Ps g™ 9 + pid 97) + pips g

+ i (Phg 9" + 5 9°)) = 12(ps P (7 ¢ + 9 97) + P (PA(g™° ™ + 9™ ) + P35 (¢ 9 + 9" ¢°)))

+4(g g p1- P2+ g G Py P3NP PP P2+ PGPy p3)

+ 9“9 Py p3+ g PG P p3) +2(g PGP P2+ 9T T PPy p3+ IS P 2 p3)

—8(g* g9 p1- P2+ 9P g ¢ Py - 3+ 9SG r - p3) +8(g* (P

046021-8
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+ V1 P2+ 9 P Py o3+ PG Py s+ 9 PPy P 9P Do 3)
—4(g™ g g (p1-p2+pi-p3) + 9P ¢ (p1- P2+ P2 p3) + 9% 9 (p1- p3+ P2 p3))
—4g™ 9" P+ 979" P3+ g g p3) + 899G P+ 9 g s + 9 9 g P

+ 97 ¢ p3+ g (I P+ P p3)) — 4 (g g (Pt + p3)

+ 9% g3 (pT+ p3) + 99 9 (P + p3)))- (Al1)

(h) Energy-momentum tensor with indices (p,v)—scalars with momenta p; and p,:
9" (m* + pi - p2) = phPY = Pps- (A12)

(i) Energy-momentum tensor with indices (u,v)—graviton with indices (a, #) and scalars with momenta p; and p,:

1 g
SR (=g )" = g+ 2m g g+ D5 + P + pipse
+ P (29597 + g + P8 + e + Ph(=2p50"7 + Phg™ + P39 — pSpLY
— PP = p1 - Pag™ g = pi - Pag™ e + 2P - pag ). (A13)

(j) Energy-momentum tensor with indices (u, v)—vector bosons with (Lorentz index, momentum) combinations (4, p;)
and (o, p»):

- Mg g + Mzg%”" + MGG+ pipsg = pi(psg™ + phg” — pig™)
+ p(Pha' — PAg"?) — PADN G — P - P2g’ 9" + p1 - P2g™ 9 + pi - P2 g (A14)

(k) Energy-momentum tensor with indices (u,v)—graviton with indices (a, ) and vector bosons with (Lorentz index,
momentum) combinations (4, p;) and (o, p,):

_ %K(gaagﬂugiﬂMZ + gabgﬁaglﬂMZ + ga()'gﬁ;lg/leZ + gaﬂgﬁag/luMQ _ gaugﬂﬂgloMZ _ gaﬂgﬂugio’MZ

— PO PAGM? — @ fo g M2 4 2P P MR 4 g PO ME 4 g oM — 2P g o M2
+ 1P MP + g PG ME = 297 oM+ phps g — plipig g + pipsg g
— Piphg™ " — D5 g g — pipsd gt — P phg g — piphd g = 2P\ g g7 + Pl phg g
+ PAPhgm g + P Phg ™ g7 + pipsd g + D pse 97 + pipsd g + Piphg g + PSP g
— Pipsgeg” — piphg o g — pi(~pha™ g + pig g — Pig g + Phg gt + P g

L(g¥ g + gP g = 297 ) + Phg g + ph(gm g + g - 297 g) + 2phgP g
- pha g — pidPig) — PPAg g — Piphd 9 + PAPSat e + piphg g
+ P (Phg™ g + pidM g + Ph (g + ¢ = 20 g7 — phgg — pigPige
+ ph(—g g — gH 7 + 297 g0)) + 2\ pAgP g — plphg g — piphg e — P psdee
= PIPAP G + PLPSa G + pIrhg g + g gy P+ 9T Py pa + 9 G D s
A e TR R e i I e A T i i TR P g R
+ 29799 py - pa + 9P p1 - P2+ 9P PPy P2 =297 Py - o

+ 9GPy - pa+ 9P Py P2 =297 99 Py - pa). (A15)

(1) Energy-momentum tensor with indices (u,v)—gravitons with (Lorentz indices, momentum) combinations (4, o, p;)
and (a, 3, py):
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oo —

(—4pTpig™ g™ — Apipsg™ g™ + 4pipsg” g — 2pipsg " d* - 2pipsg " + ApipSe o
—4g°g" 1+ P + 647G p1 - p2g + 69 g 1 - P — A7 g py - P — ApTpig* g
—4pipsgh g — 4pTpsa gt + 4pTphg ™ gt + 4Pk P g — ApT P g + 4pipsg g
+ApTps g — AT + ApTPhg g + 4Pl phg g — ApTphd g + 4piphd g
= 2P Phg g = 20! Phg™ g = 2Pt ph g 7+ 2D PAg P ¢ + 2pi pSg g — 2 pSg e
= 2P PAg " + 20 PG + 2 P = 2pTpSe g — 2§ phd ¢ + 2P s g
+ 2P ph g = 2P P3G G = 2p5Phg 97 + 2 g e + 2t pSg ¢ — 2p) g g
= 2P PAg g + 2T PG + 2 P g — 2D pSe g = 2P + 2Pk pS g
+2piph g = 2ph pig g = 25 phgt g — 2 pha g = 2pf phg o = 25 P o
+ 2] PSS+ 2P P+ 2 PSS+ 2pS g g — Apt phg g + 4p] phg g
+4piphg g — 4P PSP + ApTps g + 4D s gt g = 2Pk ps g g — 2 phet o

= 2pY(=2phg* g + 2pSg P + 2psgtd — 2phg gl

+ p3 (=29 g

+2p5(97 ¢ + g -
+A4p phg g + 4ptphgt g
—2p(=2pig g + 2p59 9" + 2p5g°t g -

p3(=29"g" -

+ 2p5 (g g™

+3979" 9™ p)

=20 + (7 + V") + 205 g
(g7 + )G +9™) + pag” g™ + pigg "“) Apirhg”g”
—4piphe" g + Apiphe g = 2P PSg e — 2P phg g

—4g™ g py - py + 699" ¢ py
=3¢%¢ g p, - py + 397 ¢* ¢ p,
=3¢ ¢ ¢ py - py — 39" 9 p,

—4g™ P g py - py + 397 g py
P2+ 3979 py - py).

+2ph gy

2p gm/glfa

2% + (¢ + 9")g") + 2ph g™ g + 2phg
+ g9 = (97 + )G+ g7) + prg?
—4f”956¢”P1 “ D2
—39"/}9/169”@1 * D2
+29% ¢ ¢ py - pa
+69%d g7 p1 - P2
— 49" ¢ 9 p1 - P2

9"+ ngﬁ"g"”) —4g* ¢ g"*p; - py

- P2+ 29" ¢ py - pa + 29797 1 - pa
P2+ 3G ¢ py - pr + 297 ¢ 1 - pa
P2+ 397 g ¢ py - py + 399" ¢ p1 - pa
= 3979 9" p1 - P2 = 399" 9" Py - 2

=3¢ ¢ g% py - py = 399 97 p1 - 2

P2+ 397G g py - pr — 49 py - s

The basic two-loop integral appearing in the results of the various two-loop diagrams takes the form

d"k,d"k, 1

2r)*" (k5 = M? + ie)*(k; —
2R OT G — D=5+ a+ D=3+ B+ )T (n+a+ B +7)

M? + i) ((ky — ky)? + i€)”

(47)"T (@)L (LG (=

n+a+p+2y)
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