
 

Deep inelastic scattering on a nucleus using holography

Kiminad A. Mamo* and Ismail Zahed†

Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800, USA

(Received 4 June 2019; published 22 August 2019)

We consider deep inelastic scattering (DIS) on a nucleus described using a density expansion. In leading
order, the scattering is dominated by the incoherent scattering on individual nucleons distributed using the
Thomas-Fermi approximation. We use the holographic structure functions for DIS scattering on single
nucleons to make a nonperturbative estimate of the nuclear structure function in leading order in the
density. Our results are compared to the fits from data in the large-x regime.
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I. INTRODUCTION

Many years ago, the EMC Collaboration observed that
the structure function of iron differs substantially from that
of the deuteron. This observation was later supported by
dedicated unpolarized deep inelastic scattering (DIS)
experiments from several collaborations at CERN, SLAC
and FNAL [1–4]. The EMC observation was of course
surprising. Why would scattering at high energy and
momentum transfer be affected by intranuclear effects that
are much lower in energy?
The large body of empirical DIS scattering on nuclei

points at the enhancement of incoherent scattering in DIS,
whereby two or more nucleons act coherently to produce
sizable deviations from incoherent scattering as the sum of
DIS scattering over the individual nuclear structure func-
tions. This is best seen in the low-x region with the
depletion of the structure functions also referred to as
shadowing [1,2]. In the large-x region, nuclear effects such
as binding and Fermi motion are more pronounced [3].
The purpose of this paper is to examine the role of strong

coupling when the nuclear many-body system is probed
electromagnetically in the DIS limit. Since QCD is approx-
imately conformal both at strong and weak coupling,
satisfying various scaling laws, it is important that the
issues of kinematics (conformal symmetry) are separated
from issues of dynamics (asymptotic freedom and confine-
ment). For that, we organize the DIS scattering amplitude
on a nucleus in terms of DIS scattering amplitudes on
one, two, … nucleons in a nuclear medium where the indi-
vidual nucleons are distributed using the Thomas-Fermi

approximation. For dilute nuclei with small atomic number
A, the leading contribution is on one-nucleon state smeared
by Fermi motion which should be justified in the large-x
region. Each of the DIS scattering on the few-nucleon
amplitudes is then estimated using holography.
In the holographic limit, DIS scattering on a spin-1

2
state

reveals that the scattering is hard and nucleonic instead of
partonic [5]. In the double limit of a large number of colors
and strong gauge coupling, the short distance correlations
of the electromagnetic current are dominated by double-
trace operators which are hadronic. The partonic operators
develop large anomalous dimensions as they carry color
and radiate strongly. Their energy is quickly depleted
before they are struck, leaving only the colorless hadronic
structures to scatter off, i.e., the nucleon and its pion cloud.
This description of DIS scattering fits well with the nuclear
description of a nucleus as an assembly of individual
nucleons dressed with pion clouds and bound mostly by
two-body forces.
The organization of the paper is as follows: In Sec. II we

briefly introduce the key elements in DIS scattering on a
nucleus. We make use of a density expansion and the
Thomas-Fermi approximation to describe the leading con-
tributions. In Sec. III the nucleus structure function in
leading order in the density expansion is derived, making
explicit the role of binding and Fermi motion. We use the
holographic results for DIS scattering on a single nucleon
to evaluate the pertinent R-ratio in leading order of the
density. The results are compared to the empirical R-ratio
for light nuclei. Our conclusions are in Sec. IV.

II. FINITE NUCLEUS

In a DIS process on a nucleus, a virtual photon of
4-momentum q scatters off a nucleus of 4-momentum PA
producing a complex set of hadronic final states. The
inclusive cross section sums over all these final states.
Comprehensive descriptions of this process can be found in
[6], to which we refer for more details. For unpolarized
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scattering on a nucleus, the DIS tensor is given by the
response function

Gμν
A ¼ i

Z
d4yeiq·yhPAj½JμðyÞ; Jνð0Þ�jPAi; ð2:1Þ

where J is the electric current. G follows the general tensor
decomposition (mostly positive metric)

Gμν
A ¼ FA

1 ðxA; q2Þðημν − q̂μq̂νÞ

þ 2xA
q2

FA
2 ðxA; q2Þ

�
Pμ
A þ 1

2xA
qμ
��

Pν
A þ 1

2x
qν
�
ð2:2Þ

with manifest current conservation. FA
1;2 are the nucleus

structure functions expressed in terms of Bjorken xA ¼
−q2=2q · PA with a virtual photon momentum
q ¼ ðω; 0; 0; qÞ. In the DIS kinematic we take ω ≈ q with
large q2 → ∞ but fixed x. In the nucleus rest frame PA ¼
ðAðmN − BÞ; 0; 0; 0Þ where B ¼ 8.5 MeV is the binding
energy per nucleon, so that

x
xA

¼ A

�
1 −

B
mN

�
ð2:3Þ

[(2.1) and (2.2)] is related to the forward part of the virtual
Compton scattering amplitude by the optical theorem.
More specifically, the forward Compton scattering ampli-
tude is

T μν
A ¼ i

Z
d4yeiq·yhPAjT�JμðyÞJνð0ÞjPAi ð2:4Þ

with a similar tensor decomposition

T μν
A ¼ F̃A

1 ðxA; q2Þðημν − q̂μq̂νÞ

þ 2xA
q2

F̃A
2 ðxA; q2Þ

�
Pμ
A þ 1

2xA
qμ
��

Pν
A þ 1

2xA
qν
�
:

ð2:5Þ

The structure functions satisfy FA
1;2 ¼ 2πImF̃A

1;2.

A. Density expansion

Ignoring Pauli blocking, we can assess Eq. (2.1) using a
density expansion in terms of stable nucleon states by
averaging the forward Compton amplitude over a complete
set of stable one-nucleon, two-nucleon, … states distrib-
uted in a finite nucleus. If we denote by

hPAjPAi ¼ ð2πÞ32EAδð0⃗AÞ≡ 2EAV3 ð2:6Þ

the scattering normalization of the (finite) nucleus, then we
may expand Eq. (2.1) in powers of the density

Gμν
A

hPAjPAi
¼
Z

dNGμν
N þ 1

2!

Z
dN1dN2G

μν
2N þ � � � : ð2:7Þ

The connected DIS amplitudes are

Gμν
nN ¼ i

Z
d4zeiq·z

× hNðp1Þ…NðpnÞj½JμðzÞ; Jνð0Þ�jNðp1Þ…NðpnÞic
ð2:8Þ

with the nucleon phase-space occupation factors

dNi ¼ 4
d3ri
V3

d3pi

ð2πÞ3
1

2Epi

nðri; piÞ ð2:9Þ

for unpolarized neutrons and protons. Each of the nucleon
in Eq. (2.8) is on mass-shell modulo binding (see below)
with a 4-momentum pi ¼ ðEpi

; p⃗iÞ. A similar expansion at
finite temperature using pions was successfully used for
electromagnetic emissivities from heavy ion collisions at
collider energies [7].
The leading contribution in Eq. (2.7) involves the

forward Compton amplitude on a single nucleon averaged
over the nucleus, and amounts to the totally incoherent
contribution to the structure functions. The next-to-leading
order contribution corresponds to forward Compton scat-
tering on a pair of nucleons which is the first coherent
correction to the leading contribution. As most nuclei are
well described by trapped nucleons in a mean-field poten-
tial with mostly two-body interactions, the dominant
contributions in the expansion (2.7) are the leading and
next-to-leading order.

B. Thomas-Fermi approximation

The distribution of nucleons in a nucleus is uniform over
a range r < RA up to a surface thickness ϵA ¼ δ=RA ≪ 1
for large nuclei, so that the nucleon density distribution can
be approximated by

ρAðrÞ ¼ ρ0θðRA − rÞ þ ρ0

�
1 −

ðr − RAÞ
δ

�
× θðr − RAÞθðRA þ δ − rÞ: ð2:10Þ

For infinitely large nuclei or nuclear matter ρ0 ¼
0.17 fm−3. RA is fixed by the normalization of the density
(2.10) to A. Typically, for nuclei with A ≥ 12, RA ¼ R0A

1
3,

R0 ¼ 1.12 fm and the surface thickness δ ¼ 2.4 fm. We
now assume the nucleus to be a degenerate Fermi gas of
nucleons trapped in a finite well of depth V0 < 0, with a
Fermi momentum pFðrÞ fixed by the density ρAðrÞ using
the Thomas-Fermi approximation for symmetric nuclei,

ρAðrÞ ¼
4

ð2πÞ3
4π

3
p3
FðrÞ: ð2:11Þ
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For uniform (nuclear) matter with ρ0 ¼ 0.17 fm−3, the
Fermi momentum is pF ¼ 268 MeV, and the typical
kinetic energy per nucleon is K ¼ 23 MeV so that the
well depth is V0 ¼ −K − 2B ¼ −40 MeV (2B is the
binding energy ignoring surface and symmetry contribu-
tions). The occupation number in Eq. (2.9) is
then nðr; pÞ ¼ θðpFðrÞ − jp⃗jÞ.

III. NUCLEUS STRUCTURE FUNCTIONS

High energy photon-nucleus scattering shows that the
photonuclear cross sections scale as σγA ≈ A0.92σγN for ω >
3 GeV [8]. In this regime the scattering is off the nuclear
volume that scales like A and should describe well the
large-x region. For small x, the virtual photon acts as a
colorless dipole. High energy dipole-nucleus scattering is
equivalent to hadron-nucleus scattering with cross sections
that scale like σNA ≈ A0.8σNN for

ffiffiffi
s

p
≈ ð10–25Þ GeV [9],

which is mostly off the nuclear edge as it scales like A
2
3.

Both volume and surface effects are included in our
expansion using the Thomas-Fermi approximation.

A. Leading density contribution

Since in leading order the coherent scattering off two
nucleons or more is absent, we expect this contribution to
describe well the large-x region. With this in mind, the
leading density contribution in Eq. (2.7) is readily reduced
using Eqs. (2.10) and (2.11):

Gμν
A

hPAjPAi
≈ ρ0

4π

3
R3
A

Z
d3p

2V3Ep

θðpF − jp⃗jÞ
4
3
πp3

F
Gμν
p

þ 16π

Z
RAþΔ

RA

r2dr
Z

d3p
ð2πÞ3

1

2V3Ep

× θðpFðrÞ − jp⃗jÞGμν
p : ð3:1Þ

The DIS scattering on a single nucleon Gμν
p in Eq. (3.1) can

be decomposed similarly to Eq. (2.5):

Gμν
p ¼ Fp

1 ðxp; q2Þðημν − q̂μq̂νÞ

þ 2xp
q2

Fp
2 ðxp; q2Þ

�
pμ þ 1

2xp
qμ
��

pν þ 1

2xp
qν
�
:

ð3:2Þ

The nucleon 3-momentum is fixed by Fermi motion with
xp ¼ −q2=2q · p and tied to x by

x
xp

¼ Ep

mN
−
jp⃗j
mN

cos θp: ð3:3Þ

Here x ¼ −q2=2ωmN is Bjorken-x for a free nucleon at
rest. The first contribution in Eq. (3.1) is due to the uniform
density of the nucleus in bulk and is of order A, while the
second contribution arises from the surface of the nucleus
and is of order A

2
3, with the estimate

3κA
2

ρ0
4π

3
R3
A

Z
d3p

2V3Ep

θðpS − jp⃗jÞ
4
3
πp3

S

Gμν
p : ð3:4Þ

The mean surface Fermi momentum pS is fixed by
Eq. (2.11) with a mean surface density approximated by
1
2
ρ0, Here κA ¼ κϵA with κ adjusting for this approximation.

The dominant correction to Eq. (3.1) stems from the
nucleon pair or two-body correlations in Eq. (2.7), as
three- and higher-body correlations are known to be small
in a nucleus.
Inserting Eqs. (3.1) and (3.2) into Eq. (2.7) leads to the

nucleus structure functions in leading order in the density

FA
2 ðxA; q2Þ ≈ ρ0

4π

3
R3
A

��Z
d3p

EA

Ep

θðpF − jp⃗jÞ
4
3
πp3

F
þ 3κA

2

Z
d3p

EA

Ep

θðpS − jp⃗jÞ
4
3
πp3

S

�

×

�ðpþ q
2xp

Þ2 − 3ðPA · p − q2

4xAxp
Þ2ðP2

A − q2

4x2A
Þ−1

ðPA þ q
2xA

Þ2 − 3ðP2
A − q2

4x2A
Þ

�
xp
xA

Fp
2 ðxp; q2Þ

�
; ð3:5Þ

and similarly for FA
1 . Given the nucleon structure function

Fp
2 , Eq. (3.5) is the leading order estimate for the nucleus

structure function FA
2 . We now choose to analyze Eq. (3.5)

using the holographic results for the nucleon structure function.

B. Holographic nucleon structure function

DIS scattering at strong coupling λ ¼ g2Nc on a nucleon
using the holographic construction was carried initially by
Polchinski and Strassler [5] and others [10]. In brief, the

metric in a slab of five-dimensional anti–de Sitter space
(AdS5) is given by

ds2 ¼ R2

z2
ðημνdyμdyν þ dz2Þ ð3:6Þ

with a fixed wall at zH. The bulk AdS5 radius R and the
string length ls are related to the boundary gauge coupling
λ ¼ R4=l4s ≫ 1. In holography, Compton scattering on a
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nucleon at the boundary maps onto the scattering in bulk of
the R-current onto a dilatino with spin-1

2
at large x, while at

small x the same scattering is dominated by the t-exchange
of a closed string, with the interpolating result [5]

Fp
2 ðx;q2Þ¼ C̃

�
m2

N

−q2

�
τ−1�

xτþ1ð1−xÞτ−2þC

�
m2

N

−q2

�1
2 1

xΔP

�
:

ð3:7Þ

Here τ ¼ Δ − 1
2
refers to the twist, and ΔP ¼ 2j1 − Δ2j=ffiffiffi

λ
p

≪ 1. Also, Δ ¼ mRþ 2 is the conformal dimension of
the spin-1

2
field, and C̃;C are two independent constants.

We have expressed zH in units of mN . The holographic
nucleon structure function for the soft wall model repro-
duces Eq. (3.7) at large q2 [11].
For mR ¼ 3

2
or τ ¼ 3, the structure function (3.7) obeys

conformal scaling, i.e., ð1=q2Þ2. We recall that at strong
coupling, conformal scaling is at the origin of the hard
scaling law [12] for the nucleon form factor. In contrast and
at weak coupling, the structure function obeys Bjorken
scaling (independent of q2) with Fp

2 ðx; q2Þ ≈
ffiffiffi
x

p ð1 − xÞ3 at
the nucleon mass scale. The

ffiffiffi
x

p
behavior for small x is

conform with the Kuti-Weisskopf rule for nonsinglet
structure functions [13].
In Fig. 1 we show the x-dependent part of the nucleon

structure function at weak coupling (dashed curve) and
strong coupling (solid curve) normalized to 1. The former is
peaked towards low x, and even further after the expected
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution. The
latter is skewed towards x ¼ 1, which reflects the fact that in
the double limit of large Nc and strong coupling λ, DIS
scattering is off the nucleon as a whole. The leading twists
are nonperturbative and of order λ0. They arise from double-
trace operators which are hadronic and not partonic [5].

C. R-ratio

It is customary to analyze DIS scattering on a nucleus
through the R-ratio defined as

R½x; q2� ¼
1
A F

A
2 ðx; q2Þ

Fp
2 ðx; q2Þ

ð3:8Þ

and expressed in terms of Bjorken-x for large but fixed q2.
Note that xp;A translate to x through Eqs. (2.3) and (3.3).
With this in mind, the explicit expression for Eq. (3.8) is

R½x; q2� ≈
Z

d3p
1þ 3ϵA

2
64�θðpF − jp⃗jÞ

4
3
πp3

F
þ 3κA

2

θðpS − jp⃗jÞ
4
3
πp3

S

�

×
3xpEA

2xAEp

0
B@
 
EAEp þ −q2

4xAxp

E2
A þ −q2

4x2A

!2

−
1

3

m2
N þ −q2

4x2p

E2
A þ −q2

4x2A

1
CA

×
xapð1 − xpÞb þ Cðm2

N
−q2Þ

1
2 1
xcp

xað1 − xÞb þ Cðm2
N

−q2Þ
1
2 1
xc

3
75; ð3:9Þ

where we made use of the nucleon on-mass shell. However,
in the Thomas-Fermi approximation of Sec. II B, the
nucleons are trapped in a potential well of depth
V0 ¼ −40 MeV. Here, this will be enforced on average
through the substitution Ep → Ep þ V0. Finally, we note
that the conformal scaling factor in Eq. (3.7) drops in the
ratio in Eq. (3.9). So the key feature of strong coupling in
Eq. (3.9) is the shift of the x-distribution towards x ¼ 1
with no evolution needed.
In Fig. 2 we show the R-ratio (3.9) for −q2=m2

N ¼ 25
and τ ¼ 3, with C ¼ 0 for large x. The surface parameters
will be set to ϵA ¼ 0.1=A

1
3 and κA ¼ 0. Other choices of

parameters are possible. The upper solid-red curve is for
A ¼ 42, and the lower solid-blue curve is for A ¼ 12. The
dashed curves are the high performance computing para-
metrization of the available nuclear parton distributions
from [14]. The upper dashed-blue curve is for A ¼ 12, and
the lower dashed-red curve is for A ¼ 42. We have limited

FIG. 1. Large-x dependence of the nucleon structure function
Fp
2 ½x� for weak coupling (dashed curve) and strong coupling

(solid curve) normalized to 1.

FIG. 2. R-ratio at large x using the leading density contribution
(3.9) and the holographic nucleon structure function (3.7) (solid
curves), versus the parametrized empirical ratio from [14]
(dashed curves), for A ¼ 12 (blue curves) and A ¼ 42 (red
curves).
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the comparison to light nuclei since the calculation was
restricted to the leading density contribution. Overall,
Eq. (3.9) supports a depletion of valence partons at
intermediate x and their rise due to Fermi motion at large
x. Without the binding energy, the depletion at intermediate
x is constant. The depletion appears stronger for lighter
nuclei in our analysis, with most of the A-dependence
stemming from ϵA. We expect this to change if a more
realistic wave function for the finite nucleus is chosen with
A-dependent binding energies [6].
The shadowing-antishadowing effects at low x are likely

due to the combination of the low-x contribution in the
nucleon structure function, together with coherent DIS
scattering on a two-nucleon state smeared by Fermi motion.
This latter effect requires the holographic derivation of the
structure function on a two-nucleon-like state similar to the
deuteron in holography, which is outside the scope of this
work. We recall that the low-x regime in the extreme case of
coherent scattering is captured in holography by scattering
on an extremal Reissner-Nordström–AdS black hole in
leading order, as we discussed recently in [15]. In a way,
this corresponds to our expansion restricted to a single
term with forward Compton scattering coherently on one
A-nucleon charged state.
Finally, wewould like to point out that in the perturbative

regime, the nucleon (PDF) and nuclear (nPDF) parton
distribution functions are scheme dependent, i.e., they
depend on the factorization μF and renormalization μR
scales. In the DIS scheme for instance, μF ¼ μR is assumed.
However, the structure functions are scheme independent
provided that the hard part in the factorization kernel is
evaluated using the same scheme. The holographic analysis
provides a nonperturbative estimate for both the PDF and
nPDF at a single but low scale, say, the proton mass. In this
sense, their evolution to higher scale, if needed, should
follow the DIS scheme.

IV. CONCLUSIONS

We have outlined a general framework for the analysis of
DIS scattering on a nucleus. It consists in a density
expansion of the forward Compton amplitude on a nucleus,
as a sum of Compton amplitudes over stable nucleon states

smeared over the nuclear volume using the Thomas-Fermi
approximation. We have used the holographic nucleon
structure function with a hard wall, to analyze the leading
order contribution to the R-ratio for DIS on nuclei with
different atomic number A.
The leading result for the nucleus R-ratio is independent

of the hard conformal scaling factor, and supports a
depletion at intermediate x and an enhancement at large
x which are the hallmarks of the EMC effect. The depletion
appears to be stronger for lighter nuclei if only the surface
effects are taken into account with the same binding for
all nuclei. We expect this to change when a realistic
A-dependence of the binding energy is taken into account,
e.g., using a shell model.
A key feature of the holographic forward Compton

scattering on the nucleus in the DIS kinematics is that in
the leading density approximation the hard virtual photon
scatters coherently off each nucleon by exciting it to high
energy and therefore small size, without breaking it. As a
result, the structure functions are observed to be shifted
towards x ¼ 1, besides their conformal scaling. In the
double limit of large number of colors and gauge coupling,
scattering off a hard parton in a proton is the exception and
not the rule due to the large splitting rate, a point also at the
origin of the modified Coulomb law [16]. A large fraction
of the parton energy is lost before it is even struck. This is
not the case at weak coupling, where scattering off a hard
parton of a small size is more likely. Despite this, various
QCD scaling laws are reproduced at strong coupling
including the hard parton-counting rules [12].
Finally, we note that the leading nucleon and subleading

two-nucleon structure functions can be improved using a
soft wall to account for Reggeization, or a fine-tuned
dilaton potential to account for asymptotic freedom [17].
More importantly, the one- and two-nucleon structure
functions can be borrowed from experiment, or extracted
from first principles using current lattice simulations for the
quasidistributions [18].
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