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In order for spacetimes with static extra dimensions to have four-dimensional de Sitter expansion they
must have at least positive curvature, warping sourced by the four-dimensional expansion, or violate the
null energy condition everywhere in the extra dimensions. We show how this constraint arises from the null
Raychaudhuri equation, and that it is independent of the matter content, the Einstein equations, and is true
point by point in the extra dimensions (not integrated), setting it apart from other no-go theorems in the
literature. We present two previously known examples—a Freund-Rubin compactification with bulk
cosmological constant, and a Randall-Sundrum model where the mismatch between the brane and
bulk cosmological constants sources nontrivial warping—which evade the constraint and discuss the
implications for flux compactifications. We also show that any spacetime with static compact extra
dimensions and four-dimensional de Sitter expansion has an apparent horizon and antitrapped region in the
extra dimensions, which may have interesting implications for the dynamics of bulk fields in cosmology.
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I. INTRODUCTION

Extra dimensions are a common ingredient of high
energy physics theories beyond the Standard Model. An
essential feature of any theory with D > 4 spacetime
dimensions is that it must be able to reproduce cosmo-
logical observations in four dimensions, including periods
of de Sitter (dS) or near-dS accelerating expansion. While it
is relatively straightforward to obtain dS space classically
in a purely four-dimensional theory (by introducing a four-
dimensional cosmological constant), it is surprisingly
difficult to construct models with four-dimensional dS
space in the presence of other static (nonexpanding) extra
dimensions.
In particular, there are a number of “no-go” theorems that

detail how the matter content of the higher dimensional
theory must violate an energy condition in the extra

dimensions in order to obtain four-dimensional dS [1–7].
Some separate related lines of investigation have been
concerned with whether dS space can be explicitly realized
in compactifications of string theory [8–21] (see also
[22–24]), as well as the consistency of the Kachru-
Kallosh-Linde-Trivedi model known as KKLT [25] as in
[26–33]. Finally, recent speculation has suggested that four-
dimensional dS space may be inconsistent with quantum
gravity [34–37].
The approaches described above make a number of

apparently reasonable-looking assumptions in order to
reach their conclusions. Some of these assumptions, such
as integrating out the extra dimensions and working in the
four-dimensional effective field theory, make it difficult to
see how the solutionwill behave in higher dimensions.Other
assumptions, such as the existence of certain matter content,
the validity of the Einstein equations, and the assumption
that the extra dimensions have no boundary (so that integrals
of total derivatives over the extra dimensions vanish), restrict
the generality of the conclusions. Further, many of the
energy conditions in the no-go theorems are violated by
well-known ingredients in string theory, such as orientifold
planes. This can make it difficult to draw strong conclusions
about the possibility of realizing four-dimensional dS space
in models that contain these ingredients.
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In this article, we will explore a different way of
generating constraints on theories with four-dimensional
dS and extra dimensions. Our approach will center on the
null Raychaudhuri equation in D > 4 dimensions. The
power of the null Raychaudhuri equation is manifold:
it is a purely geometric identity, so it only requires the
assumption of a metric ansatz and is thus independent of
the form of the Einstein equations and matter content of the
model in consideration. It is also a local equation, in that it
applies at each point in the extra dimensions and is not
integrated over the internal space (so that there are no
assumptions about boundaries or boundedness). Finally, it
leads to a condition that in order to have four-dimensional
dS the model must violate the null energy condition (NEC)
and/or the extra dimensions have positive curvature. The
NEC is satisfied by a large set of matter content, so this
will further tighten the constraints on models with extra
dimensions.
We will then show using the expansion scalar of null

congruences that models which evade this constraint and
have four-dimensional dS with static extra dimensions
necessarily possess an apparent horizon in the extra
dimensions, with a corresponding antitrapped region.
The apparent horizon is due to the shear from the expansion
in the noncompact dimensions and may have interesting
implications for the cosmological dynamics of fields
present in the bulk of the extra dimensions. As with the
previous result, this conclusion arises in a purely geometric
way and will depend only on the existence of a metric with
four-dimensional dS space and static extra dimensions.
The article is organized as follows. In Sec. II, we use the

null Raychaudhuri equation with a generic metric ansatz to
construct a constraint that models with extra dimensions
must satisfy in order to realize four-dimensional dS. We
will explore the relationship of this constraint to previous
no-go theorems and demonstrate that our constraint is
significantly stronger. In particular, we will show that
matter sources or geometries (such as a bulk cosmological
constant or negative curvature) that evade previous no-gos
and are thought to be important ingredients in building
putative dS solutions are, however, ruled out by our
constraint. We then illustrate two simple examples which
evade our constraints: a six-dimensional Freund-Rubin
compactification of 2-form flux on a sphere with a bulk
cosmological constant and a Randall-Sundrum (RS) model
in which the brane and bulk cosmological constants are
“detuned.” We finish this section with some comments on
the role that the warp factor plays in the constraint for flux
compactification models, as well as the possibility of higher
curvature corrections playing an important role. In Sec. III
we demonstrate that any theory with static extra dimensions
and four-dimensional dS space will have two apparent
horizons and an antitrapped region in the extra dimensions.
We conclude by briefly commenting on the possible
implications of the horizon. We have relegated some details
to the appendixes.

II. SATISFYING THE NULL
RAYCHAUDHURI EQUATION

In order for spacetimes with extra dimensions to make
contact with cosmological observations, we need to allow
for the three observed large spatial dimensions to be
expanding. Further, current early- and late-time cosmo-
logical models incorporate a period of near–de Sitter
accelerating expansion, and the possibility of a nonzero
four-dimensional cosmological constant poses interesting
theoretical challenges on model building.
Based on these reasons, we will take as our metric

a generic D-dimensional warped product of a four-
dimensional expanding spacetime with an n-dimensional
manifold of extra dimensions zm ¼ ðχ; ymÞ:

ds2 ¼ Ω2ðχ; ymÞ½ĝμνdxμdxν þ ḡmndzmdzn�
¼ Ω2ðχ; ymÞ½−dt2 þ a2ðtÞδijdxidxj þ dχ2

þ f2ðχÞg̃mnðymÞdymdyn�; ð1Þ

where we singled out a “radial” direction χ and assumed
that the χ dependence of the rest of the metric can be
factorized.1 The warp factorΩðχ; ymÞ can in general depend
on any of the internal coordinates ðχ; ymÞ. For our analysis
the extra dimensions need not be compact; they could be
infinite in extent, or even bounded by branes. Importantly,
our analysis will be strictly local in nature and thus will not
rely on compactness. The metric (1) is related to more
commonly used metrics in string cosmology compactifi-
cations such as [38], including

ds2 ¼ e2Aðr;ymÞð−dt2 þ a2ðtÞδijdxidxjÞ
þ e−2Aðr;ymÞðdr2 þ f2ðrÞg̃mnðymÞdymdynÞ; ð2Þ

which is related to (1) by a conformal rescaling of the
internal metric, a redefinition of the radial coordinate
χ → χðrÞ, and a redefinition of the warp factor eA ¼ Ω.
However, we will find the form (1) to be more convenient
for our analysis. Note that we have chosen (1) to take the
form of a warped product, with no cross terms gtχ , gtm
between the time and the internal coordinates. While this
makes sense for four-dimensional dS space (because the
symmetries of dS would forbid such terms), it is possible
such terms would be necessary for more generic cosmol-
ogies, such as considered in [3–5].
An interesting question is, what are the required con-

ditions for the metric (1) to support accelerated four-
dimensional expansion, i.e., a dS or a near-dS space?
Interestingly, this question can be answered in a purely
geometric and model-independent way, without reference
to the Einstein equations or explicit matter content, by

1We will relax both of these assumptions later and find that the
general conclusions remain the same.
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using the Raychaudhuri equation. Given a congruence of
affine null tangent vectors NM, these null rays must satisfy
the geometric identity2

dθ
dλ

¼ −
1

D − 2
θ2 − σMNσ

MN − RMNNMNN; ð3Þ

known as the Raychaudhuri equation, where

θ≡ 1ffiffiffiffiffiffiffiffiffi−gD
p ∂Að

ffiffiffiffiffiffiffiffiffi
−gD

p
NAÞ ð4Þ

is known as the expansion and

σMN ≡ 1

2
ð∇MNN þ∇NNMÞ −

1

D − 2
ĥMNθ ð5Þ

is known as the shear tensor, which is transverse to the null
ray σMNNM ¼ 0, and ĥMN is the transverse metric, con-
structed with the help of a cross-normalized auxiliary
vector KM, NMKNgMN ¼ −1,

ĥMN ¼ gMN þ NMKN þ NNKM: ð6Þ

As its name suggests, the transverse metric is also trans-
verse to the null ray ĥMNNM ¼ 0. An important feature of
the null Raychaudhuri equation (3) is that it is a purely
geometric expression, and it is identically true, regardless
of the matter content or the form of Einstein’s equations.
For example, it holds for the Einstein equations as well as
for corrections derived from string theory. We will find that
calculating both sides of the Raychaudhuri equation (3) for
the metric (1) imposes strong local constraints on the
necessary conditions required to obtain four-dimensional
accelerated expansion.
To begin, an affine null vector for (1) along the t, χ

directions is

NM ¼ Ω−2ð1;
t;
0⃗;
x⃗;
1;
χ;
0⃗
y⃗
Þ: ð7Þ

In order to construct the transverse metric ĥMN and shear
tensor σMN we will need the cross-normalized auxiliary
vector

KM ¼ 1

2
ð1; 0⃗;−1; 0⃗Þ: ð8Þ

The transverse metric (6) is then

ĥMN ¼

0
BBB@

0 0 0 0

0 Ω2a2δij 0 0

0 0 0 0

0 0 0 Ω2f2ðχÞg̃mn

1
CCCA; ð9Þ

and we indeed see that hMNNM ¼ 0. The expansion
of NM is

θ ¼ 1ffiffiffiffiffiffiffiffiffi−gD
p ∂Að

ffiffiffiffiffiffiffiffiffi
−gD

p
NAÞ

¼ 3HΩ−2 þ Ω−2∂χ log ðΩD−2fn−1Þ: ð10Þ

From this it is straightforward to compute the derivative
with respect to the affine parameter λ on the left-hand side
of the Raychaudhuri equation (3),

dθ
dλ

¼ NM∂Mθ ¼ Nt∂tθ þ Nχ∂χθ

¼ Ω−4½3 _H þ ∂2
χ log ðΩD−2fn−1Þ

− 2ð∂χ logΩÞð3H þ ∂χ log ðΩD−2fn−1ÞÞ�: ð11Þ

The shear tensor (5) has nonzero components

σtt ¼ −∂χ logΩ; ð12Þ

σtχ ¼ σχt ¼ ∂χ logΩ; ð13Þ

σtm ¼ σmt ¼ ∂m logΩ; ð14Þ

σij ¼
1

D − 2
½ðD − 5Þ − ∂χ log ðΩD−2fn−1Þ�a2δij; ð15Þ

σχχ ¼ −∂χ logΩ; ð16Þ

σχm ¼ σmχ ¼ ∂m log χ; ð17Þ

σmn ¼
1

D − 2
½−3H þ ∂χ log ðΩ−2f3Þ�f2g̃mn ð18Þ

with all other components vanishing.
Combining (10), (11), and (12)–(18) into the null

Raychaudhuri equation (3), we obtain the remarkably
simple expression

3ð _H þH2Þ ¼ −ðD − 5Þ ∂
2
χf

f

þ ðD − 2Þðð∂χ logΩÞ2 − ∂2
χ logΩÞ

−Ω4RMNNMNN: ð19Þ

This can be simplified further by noticing that the first term
on the right-hand side is just the component of the Ricci
curvature tensor of the unwarped ḡmn ¼ f2ðχÞg̃mn metric

2We have set the twist tensor to zero ωAB ¼ 0, reflecting the
fact that our null vectors will be hypersurface orthongonal.
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along the χ directions, R̄χχ ¼ −ðD − 5Þ∂2
χf=f, so we can

rewrite (19) as

3ð _H þH2Þ ¼ R̄χχ þ ðD − 2Þðð∂χ logΩÞ2 − ∂2
χ logΩÞ

−Ω4RMNNMNN: ð20Þ

This simple result has important implications: if we wish to
have four-dimensional dS space _H ¼ 0 or near dS space
j _Hj ≪ H2, then the left-hand side of (20) is positive. Thus,
the right-hand side must also be positive. However, this is
difficult to achieve because the last term on the right-hand
side of (20) is always negative for backgrounds that obey
the NEC RMNNMNN ≥ 0. We will discuss this in more
detail below.
In particular, for a space with nonpositive curvature

along χ, R̄χχ ≤ 0, trivial warping Ω ¼ const, and a back-
ground that obeys the NEC, the right-hand side of (20)
is nonpositive, so that it is impossible to obtain four-
dimensional dS. It is necessary to violate one of these
assumptions in order to get four-dimensional dS space
from a theory with extra dimensions with a metric of the
form (1). The result (20) is quite generic—we have not
made any assumptions about the matter content, we have
not integrated over the extra dimensions or demanded that
they are compact or without boundary,3 and we have not
even assumed the Einstein equations. The result (20)
merely follows directly from the geometric identity of
the Raychaudhuri equation (3).
The simple form of (20) can hide some of its important

features. Since (20) is not integrated over the internal space,
it applies equally well to compact as well as noncompact
extra dimensions, as well as extra dimensions that are
terminated on boundaries such as branes. Not being
integrated, the left-hand side of (20) is independent of
the extra dimensions, so the right-hand side of (20) must
also be independent of the extra dimensions as well. This
makes it difficult to imagine how the second term on the
right-hand side of (20), involving the warp factors, can play
an important role, except for very special solutions. Indeed,
we will find in specific examples that this warp factor term
is constant (for specific solutions), exactly zero, or cancels
against corresponding terms arising from the NEC term so
that it does not provide a net positive contribution to the
right-hand side. Finally, (20) must apply locally at every
point in the extra dimensions. This implies that localized
violations of the NEC, such as through local sources (such
as branes) with support only on a submanifold Σ of the

internal space, are insufficient for satisfying (20) homo-
geneously at every point in the extra dimensions. While it is
possible that a NEC-violating source with only local
support on Σ may give a positive contribution to the
integral of −RMNNMNN over the internal space, this would
be insufficient to satisfy (20) at every point in the extra
dimensions, since the contribution from this source would
vanish for points not located on the submanifold Σ.
Let us now consider a more general warped product

metric

ds2 ¼ Ω2ðymÞ½ĝμνdxμdxν þ g̃mnðyÞdymdyn�
¼ Ω2ðymÞ½−dt2 þ a2ðtÞδijdxidxj þ g̃mnðyÞdymdyn�;

ð21Þ

with an affine null vector with legs in the extra dimensions,

NM ¼ Ω−2ð1;
t;
0⃗
x⃗;
; ñm

y⃗
Þ; ð22Þ

where ñm is a unit vector with respect to g̃mn, ñmñng̃mn ¼ 1,
and is affine ñm∇̃mñn ¼ 0. Our previous metric (1) can be
seen as a particular special case of (21), in which we pull
out the radial direction χ. The Raychaudhuri equation (3)
for this metric (21) becomes

3ð _HþH2Þ¼ R̃mnñmñnþðD−2Þñmñnðð∂m logΩÞð∂n logΩÞ
−∇̃m∂n logΩÞ−Ω4RMNNMNN: ð23Þ

This more general constraint equation (23) reduces to (20)
when we take g̃χχ ¼ 1 and take the extradimensional null
vector component to be along the χ direction. Note that (23)
shares the local, unintegrated properties of (20) and shares
the same constraint condition: for nonpositive curvature of
the extra dimensions, constant warping, and nonviolation
of the NEC, it is not possible to have four-dimensional de
Sitter space with the generic metric (21).
We stress again that the constraints (20) and (23) are purely

based on the geometry of their corresponding metrics (1)
and (21), and do not make any assumptions about the
matter content or use the Einstein equations. However,
since the last term involving the NEC plays an important
role, it is helpful to recast this in terms of a constraint on
the matter content of the theory through the Einstein
equations. Using the Einstein equations,4 we can write the
NEC in its more familiar form as a condition on the matter
content of the theory, RMNNMNN ¼ κ2DTMNNMNN ≥ 0.
The NEC is obeyed by essentially all classical forms of
matter, making it difficult to realize four-dimensional dS
space in (20) and (23) using known matter ingredients.5 For

3An integrated version of (20) can be obtained by multiplying
both sides by Ω−4 and integrating over the internal dimensions,
giving 3ð _H þ H2ÞṼ ¼ R

dny
ffiffiffĩ
g

p
Ω−4½R̃χχ − 3ðD − 2Þð∂χΩÞ2 −

Ω4RMNNMNN � where Ṽ ¼ R
dny

ffiffiffĩ
g

p
Ω−4. The warp factor term

now contributes nonpositively to the right-hand side, so one must
have some combination of positive curvature and NEC violation
in order to evade this integrated version of (20).

4When this substitution RMNNMNN ¼ TMNNMNN is made,
the Raychaudhuri equation becomes completely equivalent to the
Einstein equations.
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example, a bulk D-dimensional cosmological constant with
energy-momentum tensor

TΛ
MN ¼ −ΛDgMN ð24Þ

saturates the NEC, TΛ
MNN

MNN ¼ 0, and therefore does
not contribute at all to (20) and (23). A canonically
normalized bulk scalar field ϕ with potential VðϕÞ has
energy-momentum tensor

Tϕ
MN ¼ 2∂Mϕ∂Nϕ − gMNðð∂ϕÞ2 þ VðϕÞÞ; ð25Þ

which is non-negative when contracted with the null vector
Tϕ
MNN

MNN ¼ ðNM∂MϕÞ2 ≥ 0. Thus it contributes as a
negative term to the right-hand sides of (20) and (23).
Fluxes arising from the p-form field strength tensor
Fa1���ap have the energy-momentum tensor

Tp
MN ¼ 2pFMa2���apF

a2���ap
N − gMNF2: ð26Þ

If thep-form flux is purely along the extra directions, and not
along the direction of the null vector, then we find that the
fluxes saturate, but do not violate, the NEC. If the flux is
along the extra dimensions and has components along the
direction of the null vector, we see that the flux contribution
is non-negative and does not violate the NEC. Finally, if the
p-form flux is spacetime filling in the four dimensions (and
for p > 4 has additional components in the extra dimen-
sions), we again see that the flux contribution does not violate
the NEC. Thus, p-form fluxes cannot provide a positive
contribution to the right-hand side of (20) and (23).
A common source of NEC violation in string flux

compactifications is that of (pþ 1)-dimensional local
sources with tension Tp and energy-momentum tensor

T loc
μν ¼ −TpgμνδðΣÞ; T loc

mn ¼ −TpΠΣ
mnδðΣÞ;

ΠΣ
mngmn ¼ p − 3; ð27Þ

which are localized on the submanifold δðΣÞ, and it
depends on the projector ΠΣ

mn onto this cycle Σ. For
points in the extra dimensions away from Σ, the energy-
momentum tensor of these localized sources vanishes. If
the tension of such objects is negative Tp ¼ −jTpj < 0

(such as for orientifold planes), the integrated version of
the null energy condition

Z
dnyT loc

MNN
MNN ∼ Tp < 0 ð28Þ

can be violated. However, as discussed above, the con-
straints (20) and (23) are local, so that the constraints must
be satisfied point by point throughout the extra dimensions;
in particular, they must be satisfied away from the sub-
manifold Σ where localized sources do not have support,
and whose local contributions vanish. Thus, localized
sources, even those that violate the NEC, will not contri-
bute directly to satisfying the constraint. A common
practice when constructing string flux compactifications
is to smear the localized sources, dissolving their tension,
and to charge uniformly throughout the extra dimensions.
While this may be useful for technical considerations, it
sidesteps one of the central challenges of our constraints to
these models, in that the constraints must be satisfied point
by point throughout the extra dimensions so that the NEC
must be violated at every point. While it remains an
interesting open question whether smeared solutions survive
intact upon localization, the requirement that our constraints
must be satisfied point by point presents a potential obstacle
to realizing dS solutions upon localization.

A. Relation to other no-gos

Our constraints (20) and (23) bear some resemblance to
other existing no-go theorems in the literature for obtaining
dS space in models with warped extra dimensions. Before
we continue to examine the implications of the constraints,
then, we will remark briefly on the comparison of (20)
and (23) to these previous results.
One set of no-go theorems for dS space6 compactifica-

tions arises by taking the four-dimensional trace of the
trace-reversed Einstein equations from the metric (21),
leading to [1,2,6,7]

R̂4 ¼ ∇̃2 logΩþ ðD − 2Þð∇̃ logΩÞ2 − Ω2T̃

¼ 1

ðD − 2ÞΩD−2 ∇̃2ΩD−2 − Ω2T̃; ð29Þ

where

T̃ ¼ 1

D − 2
½−ðD − 6ÞTμ

μ þ 4Tm
m�: ð30Þ

(In more recent literature [26,28], this combination is
commonly written as Δ.) There are clear similarities
between (29) and (23): in order to have four-dimensional
dS space, the left-hand side of (29) is positive so that the
right-hand side must be positive as well, suggesting that
T̃ < 0 is a necessary condition for obtaining dS space.
Notice, however, that (29) does not (directly) depend on the
curvature of the internal space, in contrast to (23).
Interestingly, previous studies have used (29) to infer that

5It may be possible to violate the NEC with exotic forms of
matter [39,40], nonminimal coupling [41,42], or quantum gravity
effects [43], though these approaches often face challenges that
we will not explore further here.

6There are also similar no-go theorems for time-dependent
compactifications [44–47], though we will focus on the time-
independent case here.
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negative internal curvature is a necessary condition for
obtaining dS space [6]. We can see clearly from (23),
however, that negative curvature will not help evade this
constraint, but instead will make it worse. Instead, positive
internal curvature arises as a sufficient (but perhaps not
necessary) condition for dS space.
Multiplying (29) by ΩD−2 and integrating over the

internal space gives

GMN no-go ṼR̂4 ¼
1

D − 2

Z
dD−4y

ffiffiffĩ
g

p ∇̃2ΩD−2

−
Z

dD−4y
ffiffiffĩ
g

p
ΩDT̃: ð31Þ

It is tempting to set the first term on the right-hand side of
(31) to zero, since it appears to be a total derivative on a
compact space. However, because of potential singularities
in the warp factor arising from branes or orientifold planes,
this term could be nonzero (see [2,7] for more discussion).
We will refer to the integrated no-go constraint (31), based
on the analysis of [1,2], as the Gibbons-Maldacena-Nunez
(GMN) no-go.
In order for the GMN no-go (31) to give rise to four-

dimensional dS, the energy-momentum tensor must satisfy

T̃ < 0 ⇒ ðD − 6ÞTμ
μ − 4Tm

m > 0; ð32Þ

which wewill compare to constraints arising from (23). It is
readily seen that fluxes do not satisfy (32) [2], while
positive tension branes also fail for D > 6 [7].
As an example, consider models with negative internal

curvature, ordinary fluxes, no warping, and localized
objects such as branes and orientifolds, which have been
proposed to lead to four-dimensional dS. Negative curva-
ture has been thought to be an important component in a
successful construction of dS with extra dimensions
[6,10,48]. Indeed, these ingredients appear to satisfy the
condition (32) [or its integrated version (31)], implying that
four-dimensional dS solutions are potentially possible. Our
constraint (23), however, shows that these putative sol-
utions are not solutions with four-dimensional dS after all,
since they do not have positive curvature, warping, or
matter content that violates the NEC throughout the extra
dimensions. More generally, it appears that the presence of
negative curvature makes it more difficult to obtain a dS

solution, since it contributes negatively to the right-hand
side of (23), and that positive curvature instead appears to
be preferred. We will illustrate this further with an explicit
solution of four-dimensional dS space with positive internal
curvature in the following subsection.
As more evidence that our constraint (23) excludes

ingredients that may have otherwise passed previous no-
gos, notice that a D-dimensional cosmological constant
TΛ
MN ¼ −ΛDgMN satisfies (32)

T̃Λ ¼ −ðD − 6ÞðTΛÞμμ þ 4ðTΛÞmm ¼ −8ΛD < 0 ð33Þ
as long as ΛD > 0, suggesting that it could be possible
to obtain four-dimensional dS with a D-dimensional
cosmological constant. However, as we have seen, a
D-dimensional cosmological constant saturates, but does
not violate, the NEC, so that aD-dimensional cosmological
constant is not sufficient in (23) to allow for four-
dimensional dS. Thus, the constraints arising from (32)
and (31) are weaker than those arising from (23), which
requires more than a D-dimensional cosmological constant
in order to satisfy the conditions for dS space. The constraints
(31) are also weaker because they are integrated over the
internal space, while (23) are valid at every point throughout
the internal space. Even working with the unintegrated
version (29), however, requires the assumption of the
Einstein equations, which are not assumed in the derivation
of (23).
Our results (20) and (23) also bear some resemblance to

work by Steinhardt-Wesley [3,4] (see also [34]), in which
the NEC also plays an important role. While we are
interested primarily in four-dimensional dS space, the
authors of [3,4] are interested more generally in accelerat-
ing cosmologies with a more general time dependence, and
specifically require integration over the internal dimensions
in order to draw conclusions. A list of assumptions
necessary to derive the results of [4] are conveniently
summarized in [5]; in Table I, we briefly review some of the
assumptions from [1,2,4] and how they compare to our
assumptions. We see in general that our constraint requires
fewer assumptions than previous no-gos.

B. Example: Freund-Rubin with
cosmological constant

The constraint (20) appears to be rather stringent, since
as we have seen there are very few energy-momentum

TABLE I. A comparison of some of the main assumptions of this work compared to assumptions of other well-known no-go theorems
for obtaining accelerating four-dimensional cosmologies with extra dimensions.

Assumption GMN no-go Steinhardt-Wesley This work

The metric is block diagonal Yes Yes Yes
Higher dimensional theory is assumed to be described by general relativity Yes Yes No
The internal metric is Ricci flat or conformal Ricci flat No Yes No
The integral of a total derivative over the internal space vanishes or is bounded Yes Yes No
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sources that violate the NEC in a uniform way throughout
the extra dimensions. However, if the internal space has
positive curvature, then it is possible, from the perspective
of (20), to obtain a compactification to dS4.
In this section we will show that this expectation is

indeed true by presenting a simple example, following
[49–51], consisting of 2-form flux and a bulk cosmological
constant on a 2-sphere. We will examine this model from
the perspective of the four-dimensional effective action, the
six-dimensional Einstein equations, and the Raychaudhuri
constraint (20) in turn, demonstrating agreement between
each perspective.
We will take an unwarped direct product metric

for a D ¼ 6 compactification to four dimensions on
a 2-sphere S2:

ds26 ¼ L−2ĝμνdxμdxν þ L2g̃mndymdyn; ð34Þ

where L is the radius of the S2 and we have done a Weyl
rescaling so that the four-dimensional Planck constant is
independent of L. Taking the matter content to be a 2-form
gauge field strength F2 wrapped over the extra dimensions,
F2 ¼ f2ϵ̃2 (where ϵ̃2 is the volume form on g̃mn), and a six-
dimensional cosmological constant Λ6, the six-dimensional
action is

S6 ¼
Z

d6x
ffiffiffiffiffiffiffiffi
−g6

p �
M4

6R6 − Λ6 −
1

4
F2
2

�
: ð35Þ

An effective potential for the radius L can be found by
dimensionally reducing this action (35),

S4 ¼
Z

d4x
ffiffiffiffiffiffiffiffi
−ĝ4

p
½M2

pR̂4 − VeffðLÞ�; ð36Þ

where M2
p ¼ Ṽ2M4

6 and Ṽ2 ¼
R
d2y

ffiffiffiffiffi
g̃2

p
, with

VeffðLÞ ¼ −M2
p
R̃2

L4
þ Ṽ2

2

f22
L6

þ Ṽ2

Λ6

L2
; ð37Þ

where R̃2 ¼ g̃mnR̃½g̃�mn is the fiducial curvature of the S2.
The minimum of the potential is found at

∂LVeffðLÞ ¼ 0 ⇒ 4
M2

pR̃2

L5
− 3

Ṽ2f22
L7

− 2
Ṽ2Λ6

L3
¼ 0:

ð38Þ

In the absence of a bulk cosmological constant Λ6 ¼ 0,
the effective potential (37) has a stable minimum at finite
radius with a negative vacuum energy, as in Fig. 1; this is
the usual Freund-Rubin solution. The presence of the bulk
cosmological constant has two important effects, which can
readily be seen in Fig. 1: First, it appears to contribute a
positive “uplifting” energy density and can lift the negative
vacuum energy at the stable minimum to a positive vacuum

energy with a (meta)stable minimum; second, the func-
tional dependence of the cosmological constant contribu-
tion slightly shifts the value of the stabilized radius away
from the negative cosmological constant minimum to larger
values. If the bulk cosmological constant is too large,
however, the metastable de Sitter minimum disappears. We
can see this second point directly from the minimization of
the potential (38): increasing Λ6 from zero shifts the
minimum to larger values of L, until the critical value

Λ6 ≥ 2
3
M8

6

R̃2
2

f2
2

is reached and a minimum no longer exists,

corresponding to the vanishing of the uplifting term.
Now let us consider the same system, but from the

perspective of the Einstein equations. From (35), the
six-dimensional Einstein equations reduce to the two
conditions

R̂4 ¼ −2
R̃2

L4
þ 1

M4
6

f22
L6

þ 2

M4
6

Λ6

L2
; ð39Þ

R̃2 ¼
3

4M4
6

f22
L2

þ 1

2M4
6

Λ6L2 ð40Þ

in terms of the four-dimensional curvature R̂4 ¼ ĝμνR̂½ĝ�μν.
Notice that, up to multiplicative constants, the first of
these (39) corresponds to the effective potential (37),
while the second (40) corresponds to the minimization
condition (38). Thus, we see that the six-dimensional
Einstein equations are completely equivalent to the four-
dimensional effective potential perspective.
Now, let us consider this simple model in the context of

the constraint (20). Specifically, we will take the 2-sphere
metric to be

g̃mndymdyn ¼ dχ2 þ sin2 χdϕ2; ð41Þ
this metric has the same form as (1), and we will take our
null ray to have its spatial leg along the χ direction, so that
the constraint (20) can be used with no change in its form.
Evaluating the right-hand side of (20),

FIG. 1. The effective potential (37) for various values of the
bulk cosmological constant Λ6 in units ofM6 ¼ 1. Notice that the
cosmological constant not only “uplifts” the effective potential
but also shifts the location of the stable minimum.
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3H2 ¼ 1

L4
R̃χχ − RMNNMNN ¼ 1

2

R̃2

L4
−

1

2M4
6

f22
L6

; ð42Þ

where we used RMNNMNN ¼ 1
M4

6

TMNNMNN , we find that

the positive curvature contributes a positive term to the
right-hand side, the warp factor terms vanish, and the F2

flux contributes a negative term through the energy-
momentum tensor. Notice that the contribution from the
cosmological constant vanishes since it saturates the NEC.
Writing the constraint in this form presents a puzzle: how

does the introduction of the bulk cosmological constant Λ6

lead to a positive H2 > 0 if it does not contribute to the
right-hand side of (42)? The solution to this puzzle is that
the bulk cosmological constant indirectly affects the
balance of terms on the right-hand side of (42). When
Λ6 ¼ 0, the location of the stable minimum is such that the
second term on the right-hand side of (42) is larger than the
first, so that the right-hand side is overall negative.
However, as Λ6 is increased from zero, the location of
the stable minimum shifts to larger L. Since the first term is
proportional to L−4 while the second term is proportional to
L−6, as L increases the magnitude of the first term over-
takes the second, so that at large enough values of Λ6 the
stable minimum is located at a large enough radius for L
that (42) becomes positive. This “indirect uplifting” chal-
lenges the usual perspective of simply adding a positive
contribution to the effective potential to uplift the minimum
to a de Sitter minimum. Instead, the additional ingredient of
a cosmological constant shifts the location of the minimum
in the right direction to result in a de Sitter solution that
satisfies (20).
We have evaded the constraint (20), obtaining a stabi-

lized compactification with four-dimensional de Sitter
space, through the simple presence of positive curvature,
2-form gauge field strength, and a bulk cosmological
constant. While it is possible this model may not be
directly realizable as the low energy limit of a top-down
construction (such as string theory), it is nonetheless useful
as a concrete, explicit example of a model that evades the
constraint (20) as well as other no-go theorems for dS with
extra dimensions.
In particular, we have shown explicitly that positive (not

negative) curvature is the necessary ingredient in this model
to obtain four-dimensional dS. While it is tempting to think
of the bulk cosmological constant as the essential ingre-
dient that uplifts the minimum to de Sitter, we found instead
through the constraint that since the bulk cosmological
constant saturates the NEC it does not directly contribute to
the vacuum energy at the minimum (42). Instead, (42)
illustrates that the bulk cosmological constant contributes
indirectly: by shifting the location of the stable minimum to
larger values of the radius the positive curvature overtakes
the negative contribution from the 2-form flux in (42).

C. Example: dS in RS

Our simple example in Sec. II B had a constant warp
factor, so that the contributions from warping to (20) and
(23) vanished. More generally, however, we expect some
nontrivial warping due to e.g., localized sources or fluxes in
the extra dimensions. While the details of the warping
depends in many cases on the specific ingredients, the most
well-known and explicit constructions of extra dimensions
with warping are the RS models [52,53], with the warped
metric

ds2RS ¼ e2AðzÞĝμνdxμdxν þ dz2: ð43Þ

The five-dimensional theory is described by five-
dimensional general relativity with a bulk cosmological
constant

Z
d5x

ffiffiffiffiffiffiffiffi
−g5

p �
M2

5

2
R5 − Λ5

�
; ð44Þ

where the extra dimension along z is an S1 terminated by
the presence of one or more 3-branes with brane tensions λi
for i ¼ 1, 2. The presence of the boundaries makes
it impossible to apply the integrated no-go theorems
[2–4,6,7]; however, as previously discussed the constraint
(20) applies equally well in the presence of boundaries and
is true everywhere in the bulk locally, so it can be used to
analyze RS backgrounds.
When the brane tensions are tuned to be related to the

(negative) bulk cosmological constant Λ5 ¼ −6M2
5=L

2,
λ1 ¼ −λ2 ¼ 6M3

5=L, the warp factor takes the form AðrÞ ¼
−z=L and the four-dimensional metric is Minkowsi [52]. A
simple (and, as we will see, overly naive) choice for this
metric is to take the RS solution AðzÞ ¼ −z=L and to
promote the four-dimensional metric ĝμν to be expanding

ds2RS ¼ e−2z=L½−dt2 þ a2ðtÞdx⃗2� þ dz2: ð45Þ

We can rewrite (45) in the form (1)

ds2RS ¼
L2

χ2
½−dt2 þ a2ðtÞdx⃗2 þ dχ2� ð46Þ

with χ ¼ 1
L e

z=L and ΩðχÞ ¼ L=χ. Taking a null vector with

one leg along the bulk direction NM ¼ χ2ð1; 0⃗; 1Þ, the warp
factor contribution to (20) is

ð∂χ logΩÞ2 − ∂2
χ logΩ ¼ 0 ð47Þ

so that the constraint equation (20) becomes (with _H ¼ 0)
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3H2 ¼ −
1

χ4
RMNNMNN: ð48Þ

We see that four-dimensional dS in RS, with a simple
warped product metric of the form (45), requires a violation
of the NEC everywhere in the bulk. The first Randall-
Sundrum scenario [52] requires a 3-brane with negative
tension localized at z ¼ z0, which in principle violates the
NEC at that location; however, as mentioned above, the
constraint (48) is a local expression, valid at each point in
the bulk, even away from the 3-branes, so these do not
contribute except as delta-function sources. RS models also
typically involve a number of other ingredients in the bulk,
such as bulk scalar fields contributing to the Goldberger-
Wise stabilization of the radion [54]. However, we have
already seen that bulk scalar fields do not violate the NEC,
and so cannot lead to a positive H2 in (48).
The analysis leading up to (48) was done assuming that

the warp factor took its Minkowski-space form (45) and did
not change when “uplifted” to dS. However, braneworld
and RS models with realistic cosmologies require mod-
ifications to the metric that go beyond simply promoting
the four-dimensional metric to dS. For example, models
with dS or anti–de Sitter (AdS) space require modifications
to the warp factor away from that of flat space [55–59],
while braneworld cosmological metrics contain warp fac-
tors with nonseparable dependence on time and the extra
dimension [60,61]. We can see the difficulty in obtaining
four-dimensional dS space for the metric (45) without
violating the NEC as a failure of the approach of simply
promoting the four-dimensional metric to be expanding,
without also modifying the warp factor.
In particular, by “detuning” the brane tensions from the

Minkowski solution above, we can obtain solutions with dS
or AdS world volumes [55–59]. Following [56], we will
take a five-dimensional spacetime with a bulk cosmological
constant Λ5 ¼ −6M3

5=L
2, bounded by a positive tension

brane, with tension λ1, located at z ¼ 0 and negative
tension brane, with tension λ2, located at z0. Unlike the
flat RS case, however, now the brane tensions are not tuned
to cancel against the bulk cosmological constant. With the
metric (43), ĝμν is four-dimensional dS with effective four-
dimensional cosmological constant Λ4 when the warp
factor and brane tensions take the form

eAðzÞ ¼
ffiffiffiffiffiffi
Λ4

p
L sinh

�
z⋆ − z
L

�
;

λ1 ¼
6M3

5

L
coth

z⋆
L
; λ2 ¼ −

6M3
5

L
coth

z⋆ − z0
L

; ð49Þ

where z⋆ is a constant determined in terms of the brane
tensions. For this solution the bulk matter only consists of a
five-dimensional cosmological constant, so RMNNMNN ¼
κ25T

Λ
MNN

MNN ¼ 0. The Ricci curvature vanishes, so the
constraint (20) becomes

3H2 ¼ 3½ð∂χ logΩÞ2 − ∂2
χ logΩ�: ð50Þ

Making the coordinate change dz=dχ ¼ eAðzÞ with
Ω ¼ eAðzÞ, we find

∂χ logΩ ¼ −
ffiffiffiffiffiffi
Λ4

p
cosh

�
z1 − z
L

�
; ð51Þ

∂2
χ logΩ ¼ Λ4 sinh2

�
z1 − z
L

�
; ð52Þ

so that (50) becomes

H2 ¼ Λ4 cosh2
�
z1 − z
L

�
− Λ4 sinh2

�
z1 − z
L

�
¼ Λ4: ð53Þ

Thus, we see in this case that the warp factor plays a crucial
role: while the internal curvature vanishes and the bulk
cosmological constant saturates the NEC, it is the warp
factor7 itself that sources four-dimensional dS space. It is
also possible to construct more general solutions with bulk
scalar fields [56], with a similar role played by the warp
factor in evading the constraint (20).
As in the previous section, while the toy-model example

presented here may not be directly realizable in a top-down
construction from string theory or the UV-complete theory
of gravity, it nevertheless serves as a proof of principle and
guidepost for evading the constraint (23) through the warp
factor. This example also suggests a more general lesson for
model building of cosmologies with warped extra dimen-
sions: it may not be enough to simply promote a four-
dimensional metric to dS, leaving the warp factor and other
fields fixed. Instead, the warp factor may itself play
an important role in establishing the existence of four-
dimensional dS.

D. Discussion

1. Flux compactifications and KKLT

A broad class of warped metrics used in string com-
pactifications take the form [38]

ds210 ¼ e2AðymÞĝμνdxμdxν þ e−2AðymÞḡmndymdyn: ð54Þ

We can rewrite the constraint (23) in terms of the warp
factor AðyÞ and “unwarped” metric ḡmn,

3ð _H þH2Þ ¼ R̄mnñmñn þ 2e4A∇̄2A

− 8ñmñn∂nA∂mA − e4ARMNNMNN; ð55Þ

where R̄mn is the Ricci tensor of the metric ḡmn, we used
Ω ¼ eA, and internal derivatives are with respect to the

7As noted in [55,56], we can also interpret these dS solutions
as embeddings of dS4 hypersurfaces in AdS5.
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unwarped coordinates. In order to determine the precise
form of the contribution of the warp factor to (55), we need
to consider a specific model.
A common form of (54) with warping of the form

ds210 ¼
r2

L2
ĝμνdxμdxν þ

L2

r2
ðdr2 þ r2dS25Þ ð56Þ

serves as a simple stand-in for many other more compli-
cated strongly warped backgrounds, such as the Klebanov-
Strassler throat [62]. It is straightforward to factor out a
conformal warp factor from the metric (56)

ds210 ¼
L2

χ2
ð−dt2 þ a2ðtÞdx⃗2 þ dχ2 þ χ2dS25Þ; ð57Þ

where χ ¼ L=r, so that (57) takes the form (1) with
ΩðχÞ ¼ L=χ. We then find that the warp factor contribution
to the constraint (20) vanishes,

ð∂χ logΩÞ2 − ∂2
χ logΩ¼ ð∂χð− logχÞÞ2 − ∂2

χð− logχÞ ¼ 0;

ð58Þ

so that (20) becomes

3H2 ¼ −
L4

χ4
RMNNMNN: ð59Þ

As we saw in Sec. II C, simply promoting the four-
dimensional metric of a known warped solution to dS
while leaving the warp factor the same requires that the
NEC is violated at every point throughout the bulk of the
extra dimensions.
Another well-studied model based on (54) that purports

to lead to four-dimensional dS space is KKLT [25]. The
KKLT construction consists of three separate sets of
ingredients: First, a low energy N ¼ 1 four-dimensional
effective field theory is calculated based on the metric (54)
with a Ricci-flat internal space within type IIB string
theory with fluxes and local sources such as D3-branes
and O3-planes, as in the so-called Giddings–Kachru–
Polchinski (GKP) background [38]. The fluxes and branes
source the warp factor and stabilize the complex structure
moduli, fixing the dynamics of the internal space. Second,
gaugino condensation on D7-branes gives rise to a non-
perturbative contribution to the superpotential of the four-
dimensional effective field theory, stabilizing the overall
volume modulus of the internal space. Finally, an anti–D3-
brane located in a strongly warped region of the internal
space uplifts the minimum of the effective potential to a
positive cosmological constant.
Let us examine this model and its ingredients in the

context of our constraint (55). It is possible that the effects
of the gaugino condensation are not easily captured by a

ten-dimensional analysis; however, recent work [26–28]
suggests that some effects of gaugino condensation might
be describable in a ten-dimensional perspective. For the
purposes of our discussion here, we will assume that the
KKLT model can be analyzed in ten dimensions. As we
have argued above, we see from (55) that any model with
nonpositive curvature, trivial warping, and matter sources
that obey the NEC cannot give rise to four-dimensional dS.
For the first step of the construction, we have already seen
that fluxes do not violate the NEC, and so cannot contribute
positively to the right-hand side of (55); and since the
internal space is Ricci-flat R̄mn ¼ 0, the first term on the
right-hand side of (55) vanishes as well. Orientifold planes
have negative tension, violating the NEC, but as local
sources they cannot violate the NEC at every point in the
extra dimensions as is required to satisfy (55), as previously
discussed. Aside from warping then (which we will return
to shortly), there are no ingredients at this step that can
evade the constraint.
Some interesting recent work has focused on whether

the integrated ten-dimensional energy momentum tensor
arising from gaugino condensation can evade existing no-
go theorems on obtaining four-dimensional dS [26–28].
However, gaugino condensation occurs on the world
volume of D7-branes, which are necessarily constrained
to submanifolds within the internal manifold. Evaluating
(55) at points away from these submanifolds, then, means
that they cannot contribute to the right-hand side, regardless
of the sign of their contribution. Finally, anti–D3-branes
have positive tension (although opposite C4 charge) and
do not violate the NEC. Further, being local objects, they
do not contribute to the right-hand side of (55) at points
away from their location. Thus, we see that none of the
ingredients (aside from warping) of the KKLT model can
contribute positive terms to the right-hand side of (55)
homogeneously throughout the extra dimensions.
It appears, then, that the only way to potentially satisfy

(55) for the set of ingredients in KKLT is through the warp
factor contributions. Notice, then, that nontrivial warping
must play an essential role in the KKLT construction.
Usually the only role that warping plays in KKLT is to scale
down the anti–D3-brane tension for the uplifting to dS in a
locally warped region. The constraint (55), however,
suggests that the entire bulk must have some nontrivial
warping in order to have a homogeneous positive contri-
bution to the right-hand side.
It is unclear what form the warp factor should take in a

ten-dimensional construction of KKLT. However, since the
first step of KKLT is based on the GKP background [38],
we will take that as our starting point to consider what
additional modifications are needed in order to obtain four-
dimensional dS from this ten-dimensional construction.
The source equation for the warp factor can be computed

from the Einstein equations (see Appendix A for more
details),
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2e4A∇̄2A¼gs
4
e8A ¯jG3j2þ8e4A ¯ð∂AÞ2þ7−p

4
κ210Tpe2AδðΣÞ;

ð60Þ

where contractions in the internal space are made with ḡmn

and the internal space is compact and Ricci flat, R̄mn ¼ 0.
Inserting (60) into (55), we obtain

3ð _H þH2Þ ¼ gs
4
e8A ¯jG3j2 þ 8e4A ¯ð∂AÞ2

þ 7 − p
4

κ210Tpe2AδðΣÞ
− 8ñmñn∂nA∂mA − e4ARMNNMNN: ð61Þ

At first glance, (61) looks promising, since substituting in
for the warp factor has provided two positive-definite terms
on the right-hand side. However, there are a number of
negative terms on the right-hand side of (61) arising from
the last term involving the NEC. We can use the Einstein
equations to calculate the last term (again, see Appendix A
for details),

RMNNMNN ¼ κ210TMNNMNN

¼ gs
4
e4A ¯jG3j2þ 8 ¯ð∂AÞ2− 8e−4Añmñn∂nA∂mA

þ κ210Tpe−2AδðΣÞ− κ210Tpe−4AΠΣ
mnñmñnδðΣÞ:

ð62Þ

Substituting (62) into (61), the constraint (61) now
becomes

3ð _HþH2Þ ¼−
p− 3

4
κ210Tpe2AδðΣÞþ κ210TpΠΣ

mnñmñnδðΣÞ;
ð63Þ

where the previously positive terms on the right-hand side
arising from warping have now canceled against negative
terms arising from the NEC.
The remaining contributions on the right-hand side of

(63) are all local sources, and so cannot solve (63) in a
homogeneous way. More generally, (63) illustrates the
difficulty in using local sources to “uplift” to a dS solution:
the left-hand side of (63) is independent of the internal
coordinates, while the right-hand side contains delta
functions. If (63) were integrated over the internal space,
it might appear possible to obtain a dS space by including
appropriate local sources that violate the NEC. However,
this expectation would be misleading, since the localized
version of the constraint cannot be solved.
An important part of the argument leading to (63) is that

we assumed the warp factor, dilaton, and flux profiles are
given by the GKP background. We thus see that if KKLT
dS vacua are to have a ten-dimensional description, then the
warp factor and fluxes must be deformed away from GKP,

and the warp factor must be nontrivial everywhere in the
bulk so that it is not possible to make an unwarped or
weak warping assumption in which the warp factor is
assumed to be constant. Instead, the warp factor must play
an essential role in establishing the existence of KKLT dS
vacua. This would also imply that the warp factor must
now include some nontrivial dependence on the cosmo-
logical constant in a global way throughout the extra
dimensions. For example, the anti–D3-brane responsible
for uplifting is often found at the tip of a strongly warped
“throat” region. A common example of such a throat
region is the Klebanov-Strassler (KS) throat [62], supported
by H3 and F3 flux. At the tip of the KS throat, the
warp factor approaches a constant A ≈ A0 (which deter-
mines the maximum redshift of the throat region) so that
∇̄2A ≈ ∂A ≈ 0. However, if the warp factor now contains
some dependence on the cosmological constant, one of the
terms in (55) must be proportional to H2. For example,
taking ∂nA ∼H implies that the warp factor at the tip of the
KS throat is no longer a constant, but instead eA ∼ eA0þHy,
which could have interesting implications on the dynamics
of branes and antibranes in cosmology.
Finally, we note that the four-dimensional effective field

theory (EFT) assumed to be valid in the KKLT construction
is based on a dimensional reduction from ten dimensions
with a GKP-type background with trivial warping. We have
just seen that the flux and warp factor background must be
deformed away from the GKP background if a ten-
dimensional solution for KKLT vacua is to exist. Thus,
it is unclear if the four-dimensional EFT corresponds to the
actual degrees of freedom of the ten-dimensional construc-
tion. In particular, even in the presence of nontrivial
warping on GKP backgrounds the path to constructing a
four-dimensional EFT by dimensional reduction is highly
nontrivial and depends on precise cancellations between
different flux and warping contributions [63–69]. In several
cases, including the warping and flux contributions in the
dimensional reduction correctly leads to important correc-
tions to the four-dimensional EFT as in [65,68]. It is not
difficult to imagine that deviations from the GKP back-
ground will lead to even more significant corrections to the
EFT, especially given the delicate nature of the cancella-
tions in the GKP background. Indeed, since warping must
be strong enough to play an essential role in establishing
the existence of a dS solution in KKLT in ten dimensions, it
would be surprising if it does not also play an important
role in the resulting EFT after dimensional reduction.
Unfortunately, it does not seem possible to study this in
more detail until we have a better understanding of the ten-
dimensional solution of KKLT.
More broadly, it would be interesting to extend this

analysis to flux backgrounds with warping and parallel
Dp=Op sources, such as those in [15,16,70] or the dS
solutions of [17] (see also [18]). We leave investigations of
these interesting directions for future work.
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2. Higher Curvature Corrections

We have been focusing on the warp factor and energy-
momentum contributions to the constraints (20) and (23);
however, corrections to the Einstein equations in the form

RMN −
1

2
gMNRD ¼ κ2DTMN þ 1

2
λðnÞH

ðnÞ
MN ð64Þ

can provide additional terms to the right-hand side of the
constraints through

RMNNMNN ¼ κ2DTMNNMNN þ 1

2
λðnÞH

ðnÞ
MNN

MNN: ð65Þ

In string theory models, for which corrections of the form
(65) can be calculated, we have λðnÞ ∼ α0n−1 ∼ l2ðn−1Þ

s in
terms of the string length ls. Computing the correction
terms in (65) can be challenging for even the simplest
backgrounds; for example, the authors of [71] computed
the corrections arising from Gauss-Bonnet corrections in
simple black hole and cosmological backgrounds. We will
take the corrections to scale as some power of the curvature

HðnÞ
MNN

MNN ∼ −½R�n, and we will assume that these cor-
rections maximally violate the NEC in order to arrive at the
strongest possible case for the role of these corrections, so
that (23) becomes

3H2 ∼ l2ðn−1Þ
s ½R�n þ � � � ; ð66Þ

where þ � � � denote the other, nonpositive contributions to
the right-hand side.
We expect the curvature corrections to be dominated by

either the four-dimensional curvature scale HðnÞ
MNN

MNN ∼
½R�n ∼H2n or the curvature scale of the extra dimensions

HðnÞ
MNN

MNN ∼ ½R�n ∼ 1=L2n. If the former is true, then in
order to get dS, the NEC violation must be of the same
order as the left-hand side of (66) so that

H2 ∼ l2ðn−1Þ
s H2n; ⇒ ðHlsÞ2ðn−1Þ ∼ 1; ð67Þ

implying that the expansion rate must be the same order as
the string scale H ∼ l−1

s , much too large for cosmological
interest. Alternatively, if the curvature scale is dominated
by the extra dimensions, then (66) implies that

H2 ∼
l2ðn−1Þ
s

L2n ; ⇒ L ∼ ls
1

ðlsHÞ1=2n : ð68Þ

Interestingly, given the current value of accelerated expan-
sion H ∼ 10−41 GeV, and taking ls ∼ ð1018 GeVÞ−1, this
corresponds to a curvature scale of L ∼ 1015ls ∼ 1 TeV
for n ¼ 6.
Alternatively, it is possible that the NEC-violating

contributions from the higher order corrections to

Einstein equations cancel against other NEC-satisfying
terms arising from the matter content, so that

H2 ∼−RMNNMNN þ � � �∼−κ2DTMNNMNN

þ 1

2
λðnÞH

ðnÞ
MNN

MNN þ � � �∼−
1

L2
þ l2ðn−1Þ

s
1

L2n : ð69Þ

However, since H2 ≪ 1=L2, we must then have L ∼ ls in
order for the correction terms to cancel the negative
contributions from the matter content, so that it is
not possible to have solutions with parametrically large
volume.
The difficulty of realizing positive terms on the right-

hand side of the constraint (23) due to higher curvature
corrections such as (65) may have implications for realizing
the large volume scenario [72,73] as an explicit solution in
ten dimensions.

E. Summary

We have shown how combining the null Raychaudhuri
equation with a fairly generic metric ansatz for a spacetime
with static extra dimensions and four-dimensional dS leads
to a simple constraint (23) between the internal curvature,
warping, and matter content of the model. In particular, we
have shown that if a model does not have positive
curvature, have warping with curvature of the order of
the four-dimensional dS scale, or violate the NEC point-
wise everywhere in the bulk, then it cannot support four-
dimensional dS space.
We demonstrated with some explicit examples that the

constraint (23) is stronger than existing no-go theorems and
relies on far fewer assumptions. In particular, our constraint
is independent of the form of the Einstein equations, matter
content, and does not depend on integrals over the extra
dimensions. We demonstrated two simple examples that
evade our constraint: a Freund-Rubin compactification of
2-form flux on an S2 with a bulk cosmological constant
and an RS model in which the brane-localized and bulk
cosmological constants are detuned. Finally, we discussed
the role that warping can play, particularly in RS and flux
compactification models, and roughly sketched some dif-
ficulties for using higher order corrections to Einstein’s
equations to evade the constraint.

III. APPARENT HORIZONS
IN THE EXTRA DIMENSIONS

In the previous section we derived a set of necessary
conditions to obtain four-dimensional dS space with extra
dimensions, starting from the metric (1) [or more generally
(21)]. In this section, we will demonstrate that these
cosmological metrics have a surprising consequence: the
existence of an antitrapped horizon in the extra dimensions.
To demonstrate this, we will examine in more detail the
properties of the expansion θ of null congruences.
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A. Example: An S2

We start with the simple case where the spatial metric
consists of a 2-sphere, as in our example from Sec. II B,

ds2 ¼ −dt2 þ R2ðdχ2 þ sin2 χdα2Þ ð70Þ

with null rays pointing in opposite directions along χ,

NM
� ¼

�
1;
t;

� 1

R
;

χ;

0

α

�
: ð71Þ

It is straightforward to check that these null rays are (affine)
geodesics, satisfying NM∇MNN ¼ 0. The tangent vector
NMþ corresponds to null rays starting at the North Pole and
converging at the South Pole, while the tangent vector NM

−
is the opposite, as in Fig. 2. Also note that while the
component of the tangent vector in the χ-direction Nχ

þ is
always positive, the vector is outgoing only for
0 < χ < π=2, while for π=2 < χ < π it is ingoing. This
expectation is confirmed by the behavior of the so-called
“areal radius” r̃ ¼ R sin χ: the rate of change of the areal
radius with the χ coordinate d

dχ r̃ ¼ R cos χ is positive for
0 < χ < π=2, corresponding to outgoing rays, while it is
negative for π=2 < χ < π, corresponding to ingoing rays.
The expansion of this congruence of null rays is

θ̃� ≡ 1ffiffiffiffiffiffiffiffi−g3
p ∂Að ffiffiffiffiffiffiffiffi

−g3
p

NA
�Þ ¼ � cot χ

R
: ð72Þ

We can see that θ̃� → �∞ as χ → 0, confirming that NM
�

converge/diverge there (and similarly for χ → π), while the
expansion vanishes θ̃� ¼ 0 at the equator χ ¼ π=2. For
0 < χ < π=2, the expansion is positive (negative) for NMþ
(NM

− ), in agreement with our conclusion that the rays are
outgoing (ingoing) in this region. Similar statements apply
in the lower hemisphere π=2 < χ < π. Note that even

though the expansions vanish at the equator, this does
not mark the location of an apparent horizon; as reviewed in
Appendix B, the existence of an apparent horizon requires
at least one expansion to be nonzero.
The integral of the expansion over the S2 vanishes for

both types of null rays,

Z ffiffiffiffiffi
g2

p
θ̃�dχdα ¼

Z
2π

0

Z
π

0

�R cos χdχdα ¼ 0; ð73Þ

implying that there are equal amounts of divergence and
convergence over the sphere. The vanishing of the integral
of the expansion is simply due to the fact that the expansion
is a total derivative on the sphere

ffiffiffiffiffi
g2

p
θ̃� ¼ ∂mð

ffiffiffiffiffi
g2

p
Nm

�Þ; ð74Þ

where we used
ffiffiffiffiffiffiffiffi−g3

p ¼ ffiffiffiffiffi
g2

p
from the metric (70).

The vanishing of the expansion when integrated over the
compact space will be important when we consider the
more general case: it implies that there are equal amounts of
positive and negative expansions, and thus there must be a
locus upon which the expansion vanishes θ̃� ¼ 0. Thus,
this is a generic feature not restricted to the S2.
Now, let us consider the S2 as a direct product with

an expanding four-dimensional Friedmann–Lemaître–
Robertson–Walker space8 with scale factor aðtÞ,

ds2 ¼ −dt2 þ a2ðtÞδijdxidxj þ R2ðdχ2 þ sin2 χdα2Þ:
ð75Þ

As with the previous example, the detailed matter content
giving rise to this metric is unimportant; we are only
concerned with the geometric properties of the metric,
supposing that it exists. For our purposes, we choose a pair
of affine null tangent vectors with one leg along the χ
direction

NM
� ¼

�
1;
t;

0⃗;
x⃗;

� 1

R
;

χ;

0

α

�
: ð76Þ

Note that the affine null vectors (76) do not contain any
time dependence or functional dependence on the scale
factor aðtÞ: their interpretation is the same as before, as
outgoing and ingoing in their respective hemispheres.
The expansion for the null rays (76) depends not only on

χ but also on the noncompact scale factor aðtÞ through the
determinant of the six-dimensional metric

FIG. 2. Null rays NM
� (71) diverge at the North or South Pole of

the S2 and converge at the opposite pole. The expansion of NMþ is
positive in the Northern Hemisphere and negative in the Southern
Hemisphere, with opposite statements for NM

− .

8We are considering the three-dimensional spatial metric to be
flat for simplicity, though the results hold for isotropic and
homogeneous spatial metrics with positive and negative curva-
tures as well.
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θ� ¼ 1ffiffiffiffiffi
g6

p ∂Að ffiffiffiffiffi
g6

p
NA

�Þ ¼
1

a3R3 sin χ
∂Aða3R3 sin χNA

�Þ

¼ 3H � cot χ
R

; ð77Þ

where H ≡ _a
a, with a dot denoting a derivative with respect

to time, and the last term is θ̃� as in (72). Interestingly
there is now a band, with width dependent on the three-
dimensional expansion rate H, in which both null tangent
vectors have a positive expansion. To see this, consider the
null vector outgoing from the North Pole NMþ . Certainly
this vector has positive expansion θþ up to the equator for
0 < χ < π=2 as before, as in Fig. 3. However, because of
the presence of the Hubble expansion term the expansion
is also positive beyond the equator up to the angle
χ < π=2þ cot−1ð3HRÞ, reaching into the lower hemi-
sphere where this null ray is ingoing. But note that the
expansion θ− for the null rays outgoing from the South
Pole NM

− is also positive in this region. Thus, we see
that in the region π=2 < χ < π=2þ cot−1ð3HRÞ both
ingoing and outgoing null rays have a positive expansion.
A similar argument follows for the region π=2−
cot−1ð3HRÞ < χ < π, in which we see that both expan-
sions are positive in this region as well.
Altogether, we have found a band around the equator

π=2 − cot−1ð3HRÞ < χπ=2þ cot−1ð3HRÞ in which both
expansions are positive, so that this region of spacetime is
antitrapped, and the boundaries are apparent horizons (see
Appendix B). Further, these apparent horizons are (inner
past) trapping horizons when Lþθ− > 0, which occurs
when

Lþθ− ¼ NMþ∂M

�
3H −

cot χ
R

�

¼ 3 _H þ csc2 χ
R2

¼ 3 _H þ 1þ ð3HRÞ2
R2

> 0: ð78Þ

Note that for de Sitter space _H ¼ 0 and near–de Sitter space
_H ¼ −ϵH2 (for ϵ ≪ 1), this condition is satisfied auto-
matically. Indeed, the condition for the existence of trap-
ping horizons is satisfied up until the rate of change of the
Hubble expansion is of the order of the size of the
S2, _H ∼ − 1

R2.
In order to recover effective four-dimensional physics,

we expect that the Hubble expansion rate is much smaller
than the size of the radius of the S2, HR ≪ 1, so that the
antitrapped band is quite thin compared to the size of the
S2. However, if the Hubble scale were to become large
compared to the size of the sphere (as in the early universe),
then nearly the entire S2 would be encompassed by the
antitrapped region.

B. General warped case

Let us now consider a more general D-dimensional
metric consisting of a warped product between a macro-
scopic expanding three-dimensional spacetime and an
n-dimensional compact internal space, of the form (21)

ds2D ¼ Ω2ðymÞ½−dt2 þ a2ðtÞδijdxidxj þ g̃mnðymÞdymdyn�:
ð79Þ

As before, we will only be concerned with the geometric
properties of this metric ansatz. Oppositely oriented affine
null rays in D dimensions with a leg along the extra
dimensions can be written

NM
� ¼ Ω−2ð1;

t;
0⃗;
x⃗;
ñm�
y⃗
Þ; ð80Þ

where ñm�ñ
n
�g̃mn ¼ þ1 is a unit vector and is affine on the

internal metric ñm�∇̃mñn� ¼ 0.

FIG. 3. (a) The expansion θþ of the null rays NMþ is positive not only in the Northern Hemisphere but also in a band in the Southern
Hemisphere because the expansion of the congruence of null rays also depends on the Hubble expansion, as in (77). This band in the
Southern Hemisphere is antitrapped because both expansions are positive in this region. (b) Repeating the same argument for NM

− , we
see that there is a band on both sides of the equator of antitrapped spacetime in which the expansions of oppositely oriented null vectors
are both positive. This antitrapped spacetime is bounded by apparent horizons.
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The null expansion is

θ� ¼ 1ffiffiffiffiffiffiffiffiffi−gD
p ∂Mð

ffiffiffiffiffiffiffiffiffi
−gD

p
NMÞ ¼ 3HΩ−2 þ θ̃�; ð81Þ

where we defined the expansion on the internal space as

θ̃� ≡ 1

ΩD ffiffiffiffiffi
g̃n

p ∂mðΩD−2
ffiffiffiffiffi
g̃n

p
ñm�Þ: ð82Þ

The expansion on the internal space is proportional to a
total derivative on the compact space, and so its integral
vanishes,

Z ffiffiffiffiffi
g̃n

p
ΩDθ̃�dny ¼ 0: ð83Þ

As in the case of the S2, this implies that there are equal
amounts of positive and negative θ̃� expansions throughout
the internal space, and thus there must be a locus on which
θ̃� ¼ 0. We can intuitively understand this locus as the
submanifold upon which the null rays (80) transition from
ingoing to outgoing.
As in the case of the S2, there is now a band of

antitrapped spacetime surrounding the locus upon which
θ� ¼ 0, as in Fig. 4. To see this, note that for an arbitrarily
small distance from the locus where θ̃� ¼ 0 in one
direction there is a region where θ̃− is negative and
arbitrarily small, while θ̃þ is positive (corresponding to
NM

− ingoing and NMþ outgoing). However, sinceH > 0, this
implies that θ− ¼ 3HΩ−2 þ θ̃− > 0 is positive; since θþ is
still positive in this region, we have a region of spacetime
where both θþ and θ− are positive, signaling the existence
of an antitrapped spacetime. Moving farther from θ̃� ¼ 0,
we eventually reach a point where θ− ¼ 0 and θþ > 0,
marking the location of an apparent horizon. A similar
argument moving away from θ̃� ¼ 0 in the opposite

direction leads to another antitrapped region and apparent
horizon. (Unfortunately, it is not possible to determine
conclusively that these boundaries are also trapping hori-
zons given the level of generality of the metric.)

C. Discussion

We have shown, through the simplified example of a
direct product of a three-dimensional spacetime with an S2

as well as that of a more general warped product, that the
existence of antitrapped regions and apparent horizons is a
generic feature of four-dimensional cosmological space-
times with stabilized extra dimensions. Before we discuss
the possible implications of these results, we should briefly
remark on the assumptions made and their limitations.
First, the generic metric ansatz (79) assumes that the

internal dimensions are static, so that the size of the extra
dimensions is stabilized. If the internal metric g̃mn is time
dependent, this gives rise to additional terms in the
expansion (81) which will affect the location and possibly
even the existence of the antitrapped region. We have
also assumed that, aside from the warping factor ΩðyÞ, the
D-dimensional metric is a direct product between the
three-dimensional and internal spaces. Unless the four-
dimensional spacetime is de Sitter, it is possible to also
allow for an off-diagonal mixing term in the metric
gμmðt; ymÞ. Such a term can be removed by an appropriate
D-dimensional diffeomorphism, but at the expense of
inserting time dependence into the internal metric or
additional y dependence into the four-dimensional metric
beyond that of the warp factor. For simplicity we will not
consider such terms, though it would be interesting to see
how they would change our conclusions.
Finally, we have assumed that the internal space is

compact so that the integral (83) vanishes, thus implying
the existence of a locus upon which θ� ¼ 0. This integral
does not automatically vanish for spacetimes that are
bounded by branes (such as RS [53] or football geometries
[74–77]); however, if these spacetimes nonetheless have a
locus upon which θ� ¼ 0, then we still expect there to be
antitrapped regions in the extra dimensions.
Let us now turn to the interpretation of these results. It is

puzzling to find the presence of an antitrapped region in the
extra dimensions of (83), since the extra dimensions
themselves are static and not participating in the expansion.
The origin of the antitrapped region can be seen by the
presence of shear. The null rays (80) have a vanishing
tangent vector component along the three-dimensional
comoving coordinates Ni

� ¼ 0. This implies that these
trajectories are at fixed comoving coordinates xi, but
expanding physical coordinates Xphys ¼ aðtÞxi. Thus, a
congruence of nearby null rays, which are nearby not only
in ym but also in xi, expands due to the expansion of the
three-dimensional space as the rays are “pulled along” with
the comoving coordinates. Note that since the expansion θ�
is a scalar, it is not possible to decompose it into, say, shear

FIG. 4. In a general compact space, there is a band of
antitrapped space around θ̃� ¼ 0 in which the expansions of
oppositely oriented null rays are both positive.
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and parallel expansions, arising from the expanding three
dimensions and extra dimensions, respectively. Thus there
does not seem to be a generally covariant way to distinguish
between apparent horizons arising due to the direct expan-
sion of coordinates and those due to shear of transverse
coordinates.
Despite the existence of an apparent horizon, however, it

appears that a null ray can traverse from one end of the
extra dimensions to the other, and in particular can traverse
across the apparent horizon, in finite affine time, as long as
Ω does not contain singularities, as can be seen by
integrating (80). Thus, it is not immediately clear what
the physical significance of the antitrapped region is for the
cosmology of metrics with extra dimensions. Perhaps bulk

modes that are spread out throughout the extra dimensions
can feel the effects of the apparent horizon over timescales
comparable to the Hubble time. We hope to pursue this
further in the future.
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APPENDIX A: GKP Backgrounds

A commonly used class of backgrounds utilize the low
energy limit of II B string theory, with the action

SIIB ¼ 1

2κ210

Z
d10x

ffiffiffiffiffiffi
−g

p �
R −

∂Mτ∂M τ̄

2ðImτÞ2
�
−

1

2κ210

Z �
G3 ∧ ⋆Ḡ3

12Imτ
þ 1

4
F̃t ∧ ⋆F̃5 þ

i
4Imτ

C4 ∧ G3 ∧ Ḡ3

�
þ Sloc; ðA1Þ

whereR is the ten-dimensional Ricci scalar, τ ¼ C0 þ ie−ϕ

is the axio-dilaton, the 3-form gauge field strengths F3 ¼
dC2 and H3 ¼ dB2 have been combined into the complex
3-form G3 ¼ F3 − τH3, and we defined the 5-form field
strength as F̃5 ¼ dC4 − C2 ∧ H3. The action for local
objects, such as D3-branes and O3-planes, is included
in Sloc.
Our background will consist of the metric and fluxes [78]

ds210 ¼ e2AðymÞη̂μνdxμdxν þ e−2AðymÞḡmndymdyn;

F̃5 ¼ ϵ̂4 ∧ d̄6e4A þ ⋆̄d6e−4A; ⋆̄6G3 ¼ iG3; ðA2Þ

with a constant τ ¼ igs. The Ricci tensor components are

Rμν ¼ −η̂μνe4A∇̄2A; ðA3Þ

Rmn ¼ R̄mn þ ḡmn∇̄2A − 8∂nA∂mA: ðA4Þ

The contributions from the fluxes and localized sources
lead to the following energy-momentum tensors:

Tð3Þ
μν ¼ −

gs
4κ210

e8A ¯jG3j2η̂μν; ðA5Þ

Tð3Þ
mn ¼ gs

4κ210
ðe4AGp̄ q̄

m Ḡnpq − ḡmne4A ¯jG3j2Þ; ðA6Þ

Tð5Þ
μν ¼ −

4

κ210
e4A ¯ð∂AÞ2η̂μν; ðA7Þ

Tð5Þ
mn ¼ 1

κ210
½4 ¯ð∂AÞ2ḡmn − 8∂mA∂nA�; ðA8Þ

T loc
μν ¼ −Tpη̂μνe2AδðΣÞ; ðA9Þ

T loc
mn ¼ −TpΠΣ

mnδðΣÞ; ðA10Þ

where we have denoted the submanifold of the localized
source as Σ and ΠΣ

mn is the projector onto this submanifold,
with ΠΣ

mngmn ¼ ðp − 3Þ.
The equation for the warp factor can be obtained by

tracing over the four-dimensional components of the trace-
reversed Einstein equation Rμν ¼ κ210ðTμν − 1

8
gμνTM

MÞ, giv-
ing the following equation:

2e4A∇̄2A ¼ gs
4
e8A ¯jG3j2 þ 8 ¯ð∂AÞ2e4A

−
ðp − 7Þ

4
κ210Tpe2AδðΣÞ: ðA11Þ

APPENDIX B: Apparent and Trapping Horizons

Consider a pair of oppositely oriented affine null rays nM�
[“ingoing” (−) and “outgoing” (þ)] with corresponding
expansions θ�. Following [79] (see also [80]), an apparent
horizon is a surface on which one of the expansions
vanishes while the other is nonzero. A region of spacetime
in which both expansions are positive is called antitrapped,
while a region of spacetime in which both expansions are
negative is called trapped.
For example, the apparent horizon of a Schwarzschild

black hole occurs where the expansion for ingoing null rays
is negative θ− < 0 while the expansion for outgoing null
rays vanishes θþ ¼ 0. The region inside of this apparent
horizon, where both expansions are negative θþ; θ− < 0 is
a trapped region. Similarly, a cosmological apparent
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horizon in four-dimensional spacetime occurs when the
expansion of the outgoing null ray θþ is positive, while the
expansion for the ingoing null ray vanishes θ− ¼ 0. The
region outside of this apparent horizon, where both
expansions are positive, θþ; θ− > 0 is an antitrapped
region.
Finally, we define a (inner past) trapping horizon as a

surface upon which the Lie derivative of the inward

pointing expansion along the outward pointing null ray
is positive [79]

Lþθ− > 0: ðB1Þ

The trapping horizon provides a better definition for the
existence of the boundary of a trapped region than the mere
presence of an apparent horizon, as discussed in [79].
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