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We study the concept of Carrollian spacetime starting from its underlying fiber-bundle structure. The
latter admits an Ehresmann connection, which enables a natural separation of time and space, preserved by
the subset of Carrollian diffeomorphisms. These allow for the definition of Carrollian tensors and the
structure at hand provides the designated tools for describing the geometry of null hypersurfaces embedded
in Lorentzian manifolds. Using these tools, we investigate the conformal isometries of general Carrollian
spacetimes and their relationship with the BMS group.
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I. INTRODUCTION

The Carroll group was discovered by Lévy-Leblond in
1965 [1] as a dual contraction of the Poincaré group,
operating at vanishing rather than infinite velocity of light.
The increasing interest in non-Minkowskian spacetimes
possessing nonetheless boostlike isometries has led to more
systematic studies of Carrollian constructions. Besides the
intrinsic value of the latter (along with Newton-Cartan
geometry), the resurgence in the area has been sustained
by the parallel growth of two distinct albeit related fields of
application. The first involves codimension-one null hyper-
surfaces in Lorentzian, i.e., hyperbolic pseudo-Riemannian,
manifolds. The second concerns the development of flat
holography.
Carroll structures were introduced in [2–5] as alterna-

tives to Riemannian or Newton-Cartan geometries.
According to these authors, Carroll structures consist of
a dþ 1-dimensional manifold C equipped with a degen-
erate metric g and a vector field E, which defines the kernel
of the metric, i.e., gðE; :Þ ¼ 0. In this definition, the Carroll
group emerges as the isometry group of flat Carrollian
structures, whereas general diffeomorphisms are always
available. Because of the field E, the Carroll structure
defines a natural separation between time and space, and a

subset of diffeomorphisms arises, the Carrollian diffeo-
morphisms, which preserves this separation.
Given their defining properties, Carroll structures are

expected to arise systematically as geometries on null
hypersurfaces of relativistic spacetimes, because the induced
metric inherited from the embedding is degenerate.1

There are several notable instances of null hypersurfaces.
Generally, null hypersurfaces occur as components of the
boundary of causal diamonds and related structures, relevant
in the study of entanglement. One also finds null hyper-
surfaces in other important physical situations, such as black-
hole horizons and the hypersurfaces appearing at lightlike
infinity of asymptotically flat spacetimes (commonly des-
ignated as I�). The latter makes the bridge with asymptoti-
cally flat holography, in which the putative dual degrees of
freedom are expected to be defined precisely on this null-
infinity hypersurface. In fact, asymptotically flat holography
has been probably the first arena of application of Carrollian
physics [9,10], not so much because of the geometric
structure the boundary is endowedwith (its Carrollian nature
was identifiedmuch later), but for the emergence of the BMS
symmetry. The BMS group was discovered in 1962 by
Bondi, van der Burg, Metzner and Sachs [11,12] as the
asymptotic isometry group of asymptotically flat spacetimes
towards null infinity (see, e.g., [13,14]). It was in particular
proven [3] that the bmsðdþ 2Þ algebra is isomorphic to
the conformal Carroll algebra ccarrðdþ 1Þ for d ¼ 1; 2.
This is yet another sign corroborating the triangle “Carroll-
null-BMS.”
The aim of the present work is to revisit this web of

relationships and provide an alternative perspective to some
of its aspects. Our analysis follows two paths. On the one
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hand, we define a Carrollian spacetime by recasting a
Carroll structure in terms of a fiber bundle.2 The ingredients
this fiber bundle is equipped with are thus an Ehresmann
connection, a degenerate metric and a scale factor,3 all
assumed a priori time and space dependent. This provides
us with a geometric understanding of the appearance of
Carrollian diffeomorphisms and the reduction of spacetime
tensors to Carrollian tensors. Carrollian spacetimes with the
above set of ingredients are also naturally revealed in null
embedded hypersurfaces. On the other hand, we discuss the
conformal isometry algebra of general Carrollian space-
times. In the shearless case (properly defined shortly), we
generally recover the familiar algebra of transformations,
which in arbitrary dimension is the semidirect sum of the
conformal isometry algebra with supertranslations. In two
and three dimensions, this coincides with BMS. The
strength of our results resides in their wide validity for
shearless but otherwise arbitrary Carrollian spacetimes. In
the literature there have been other proposals made for a
notion of geometry defined on null embedded hyper-
surfaces, the “universal structures” (see, e.g., [14,19]).
Different such proposals may lead to different algebras
that preserve the given structure, along with a related choice
of partial gauge fixing.

II. CARROLLIAN SPACETIMES
AS FIBER BUNDLES

A. The intrinsic definition

A dþ 1-dimensional Carrollian spacetime C is elegantly
described in terms of a fiber bundle with one-dimensional
fiber and a d-dimensional base S thought of as space, the
fiber coordinate being time. As usual, the bundle structure
provides a projection π∶C → S, which defines in turn a
surjective linear map between the corresponding tangent
bundles, dπ∶ TC → TS. It is convenient to choose a local
coordinate system x ¼ ft;xg such that the action of the
projector simplifies to π∶ðt;xÞ → x; that is, t is the fiber
coordinate.
One can define a vertical sub-bundle as V ¼ kerðdπÞ.

The above coordinate set has been chosen such that V is
given by all sections of TC proportional to ∂t (vectors of the
vertical tangent subspace Vðt;xÞ are of the form Wt∂t). In
order to split the tangent space Tðt;xÞC into a direct sum of
vertical and horizontal components, Vðt;xÞ ⊕ Hðt;xÞ
(smooth everywhere, i.e., valid for the tangent bundle,
TC ¼ V ⊕ H), one needs an Ehresmann connection. With
this connection, the linear map dπ restricted to Hðt;xÞ sets a
one-to-one correspondence between Hðt;xÞ and TxS. This

allows one to lift vertically vectors W ¼ Wi∂i ∈ TxS to
W̄ ¼ WiEi ∈ Hðt;xÞ, where

Ei ¼ ∂i þ biðt;xÞ∂t; i ¼ 1;…; d ð1Þ

provide a basis for Hðt;xÞ. The Ehresmann connection is
encoded in the one-form b ¼ biðt;xÞdxi ∈ T�C.
The Ehresmann connection has many facets. On the one

hand, it provides a lift of curves in S onto curves in C such
that the tangent vectors to the latter are horizontal. On
the other hand, it makes it possible to realize the splitting
TC ¼ V ⊕ H through the definition of the projector p
acting on TC with image V and kernel H,

p ¼ ∂t ⊗ ðdt − biðt;xÞdxiÞ: ð2Þ

We call the fiber bundle C a Carrollian spacetime,
once endowed with a degenerate metric g whose one-
dimensional kernel coincides with the vertical sub-
bundle V,

gðX; :Þ ¼ 0; ∀X ∈ V: ð3Þ

In the local coordinate system this imposes the metric to be
of the form

g ¼ gijðt;xÞdxi ⊗ dxj; ð4Þ

providing a time-dependent notion of distances.
At this point of the presentation, it is worth mentioning

that the triple ðC; V; gÞ corresponds to the definition of a
weak Carrollian structure given in [4]. From the spacetime
viewpoint, the fiber-bundle structure and the accompanying
Ehresmann connection are the key ingredients for the
intrinsic horizontal versus vertical splitting of the tangent
bundle, and more generally of any tensor bundle.
The coordinate system ft;xg is adapted to the splitting at

hand, as is any new chart obtained through the trans-
formation

t ↦ t0ðt;xÞ and x ↦ x0ðxÞ: ð5Þ

The motivation for introducing the fiber-bundle structure is,
among others, to make these diffeomorphisms natural,
being a reparametrization of the fiber coordinate at each
spatial point and a change of coordinates on the base,
respectively. With this, the Jacobian matrix Jμν ¼ ∂x0μ

∂xν is
upper triangular,

� Jðt;xÞ Jiðt;xÞ
0 JjiðxÞ

�
; ð6Þ

since

2This concept was introduced earlier in Refs. [15,16] as an
“ambient structure.”

3Note that these ingredients all appear within the context of
Carrollian fluids and the fluid-gravity correspondence, as in
Refs. [17,18].

CIAMBELLI, LEIGH, MARTEAU, and PETROPOULOS PHYS. REV. D 100, 046010 (2019)

046010-2



dt0 ¼ Jðt;xÞdtþ Jiðt;xÞdxi; dx0j ¼ JjiðxÞdxi; ð7Þ

or equivalently

∂t ¼ Jðt;xÞ∂ 0
t; ∂i ¼ Jiðt;xÞ∂ 0

t þ JjiðxÞ∂ 0
j: ð8Þ

These diffeomorphisms were called Carrollian in [17].
Every spacetime tensor field can be decomposed intrinsi-
cally into vertical and horizontal components, the latter
transforming tensorially under Carrollian diffeomorphisms.
These components are the Carrollian tensors introduced in
[17]. An example of a Carrollian tensor is the metric (4),
whose components transform as

g0ij ¼ J−1kiJ−1ljgkl; ð9Þ

i.e., as a rank-(0,2) Carrollian tensor field. In order to
maintain the invariance of p in Eq. (2), the components of
the Ehresmann connection must transform as

b0j ¼ J−1ijðJbi þ JiÞ: ð10Þ

For reasons that become clear in the course of the paper,
it is convenient to introduce a density Ωðt;xÞ, transforming
under Carrollian diffeomorphisms as4

Ω0ðt0;x0Þ ¼ Jðt;xÞ−1Ωðt;xÞ: ð11Þ

With this density, one defines a new basis vector of Vðt;xÞ as

E ¼ Ωðt;xÞ−1∂t: ð12Þ

Together with the Hðt;xÞ basis vectors Ei defined in (1), we
obtain a frame Eμ; μ ¼ 0;…; d, adapted to the split tangent
space and transforming canonically under Carrollian dif-
feomorphisms (E0 ≡ E),

E0 ¼ E and E0
i ¼ J−1jiEj: ð13Þ

The dual coframe, generically referred to as eμ;μ¼0;…;d,
is (e0 ≡ e),

e ¼ Ωðdt − bjdxjÞ and ei ¼ dxi; i ¼ 1;…; d; ð14Þ

with ei transforming as in (7) and e0 ¼ e.
Any vectorW ∈ TC is decomposed in the above frame as

W ¼ W0ðt;xÞEþWiðt;xÞEi, while any form ω ∈ T�C is
ω ¼ ω0ðt;xÞeþ ωiðt;xÞei. In this basis, the vertical and
horizontal components are reduced, i.e., do not mix under
Carrollian diffeomorphisms. The vertical components

remain invariant, while the horizontal transform tensorially
under Carroll diffeomorphisms,

W00 ¼W0; W0i ¼ JijW
j; ω0

0 ¼ω0; ω0
i ¼ J−1jiωj:

ð15Þ

From the horizontal perspectiveW0 and ω0 are scalars, and
we refer to them as Carrollian scalars, whereas Wi and ωi
are components of a Carrollian vector and a Carrollian
one-form. The same reduction properties are valid for
rank-ðr; sÞ tensor fields in Tðr;sÞC. Notice that one can
use gij ¼ gðEi; EjÞ and its inverse gij for lowering and
raising spatial indices i; j;… amongst Carrollian tensors.
In terms of the frame (1) and (12), and the coframe (14),

the action of the exterior derivative on the generic one-form
ω reads

dω ¼ ðEðωiÞ − Eiðω0ÞÞe ∧ ei þ EkðωiÞek ∧ ei: ð16Þ

One can define the Ehresmann curvature as

de ¼ φ ∧ eþϖ ¼ φiei ∧ eþ 1

2
ϖijei ∧ ej; ð17Þ

which exhibits a pair of genuine Carrollian tensors. The
purely horizontal piece ϖ is a Carrollian two-form, which
we call the Carrollian torsion.5 It has components

ϖij ¼ −ΩðEiðbjÞ − EjðbiÞÞ: ð18Þ

The vertical-horizontal mixed components

φi ¼ ΩEðbiÞ þ EiðlnΩÞ ð19Þ

define a Carrollian one-form φ, the acceleration. Both
appear in the Lie bracket of the basis vectors,

½Ei; Ej� ¼ −ϖijE; ½Ei; E� ¼ −φiE; ð20Þ

which is dual to (17).
A natural question to ask iswhetherH can be thought of as

the tangent bundle of codimension-one hypersurfaces in C. If
this holds, C is foliated by a family of hypersurfacesmodeled
on S. This is indeed possible whenever H is an integrable
distribution in TC. The corresponding integrability condition
originates from Fröbenius’ theorem stating that the Lie
bracket of horizontal vectors must be horizontal, or equiv-
alently, that the vorticity of the normal (vertical) vector
should vanish, ϖij ¼ 0. In other words, the Ehresmann
curvature should have no horizontal component.
Besides the above Carrollian tensors emanating from the

Ehresmann connection, others can be defined using the4Observe that b transforms as a Carrollian connection density.
Strictly speaking, the Ehresmann connection is thus bΩ. To avoid
confusion, we should mention that the latter combination was
referred to as b in [17,18].

5The quantity − 1
2
ϖij is also referred to as the Carrollian

vorticity of the vector field E [17].
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metric g. Using time derivatives of the metric (the metric
components are generically functions of both t and x), we
define

θ ¼ Eðln
ffiffiffiffiffiffiffiffiffi
detg

p
Þ ¼ 1

2
gikEðgkiÞ; ζij ¼

1

2
EðgijÞ−

1

d
gijθ;

ð21Þ

referred to as expansion and shear (gij are the components
of the inverse of g). They are respectively a Carrollian
scalar and a Carrollian symmetric and traceless rank-two
tensor. The latter vanishes if and only if the time depend-
ence in the metric is factorized, gijðt;xÞ ¼ e2σðt;xÞg̃ijðxÞ, in
which case the expansion reads θ ¼ dEðσÞ. This instance
turns out to play a significant role later in the discussion of
BMS symmetry (Sec. III).
We can also introduce a connection which defines a

horizontal parallel transport for horizontal tensors, i.e., a
covariant derivative acting on Carrollian tensors and
producing new Carrollian tensors. It was introduced in
[17] as D ¼ Eþ γ, called the Levi-Civita-Carroll connec-
tion, with γ being the Christoffel-Carroll symbols,

γijkðt;xÞ ¼
1

2
gilðEjðglkÞ þ EkðgljÞ − ElðgjkÞÞ ¼ Γi

jk þ cijk;

ð22Þ

where Γi
jk are the ordinary Christoffel symbols and

cijkðt;xÞ ¼
Ω
2
gilðbjEðglkÞ þ bkEðgljÞ − blEðgjkÞÞ: ð23Þ

This connection, also cast as D ¼ ∇þ c with ∇ being the
Levi-Civita connection, is metric compatible (Dkgij ¼ 0),
and satisfies γi½jk� ¼ 0. Its curvature tensors can be worked

out following [17]. As opposed to the ordinary Levi-Civita
connection for Riemannian manifolds, the Levi-Civita-
Carroll connection is not the unique metric-compatible
and torsionless connection one can define on TC. This
question has been examined, e.g., in [15,16].
In the spirit of [2–4], one can introduce the concept of

flat Carrollian spacetime given in an adapted coordinate
system by

gij ¼ δij; Ω ¼ 1; bi ¼ const: ð24Þ

For this case, the Ehresmann curvature ϖij as well as
the acceleration φi, the shear ζij and the expansion θ
vanish, as do the Christoffel-Carroll symbols written
above. Carrollian flatness implies that the Ehresmann
connection is a pure gauge.

B. Realization on null hypersurfaces

We discuss now the appearance of the above structures
on null hypersurfaces C of a Lorentzian spacetime M. The
pullback g of the ambient metric on null hypersurfaces is
degenerate with one-dimensional tangent sub-bundle ker-
nel V, and from this perspective the Carrollian structure
encompassed in the triple ðC; V; gÞ emerges naturally. This
feature has been discussed by several authors, the more
complete account being in the already quoted Refs. [7,8].
The fiber bundle with Ehresmann connection approach,
which is designed for separating explicitly Carrollian
time and space, emerges naturally in null embeddings.
This requires appropriate gauge fixing in the ambient
Lorentzian spacetime.6

We illustrate the above in the case of a dþ 2-dimen-
sional spacetime M foliated with null hypersurfaces. In
this case the ambient metric reads

ds2M ¼ gabdxadxb ¼ −2ΩΞðdt− bidxi þ θtdr− biθidrÞdr
þ gijðdxi þ θidrÞðdxj þ θjdrÞ; ð25Þ

where Ω, Ξ, bi, θt, θi and gij depend on all the coordinates
ðr; t;xÞ and t is a retarded time. The constant-r leaves of the
foliation Cr define dþ 1-dimensional null hypersurfaces
because the pullback of the metric, gr ¼ gijðr; t;xÞdxidxj,
is indeed degenerate. The diffeomorphisms that preserve
the form of this metric are

r ↦ r0ðrÞ; t ↦ t0ðr; t;xÞ; x ↦ x0ðr;xÞ: ð26Þ

Defining as usual

Jab ¼
∂x0a
∂xb ; ð27Þ

the various quantities involved transform as

Ω0 ¼ ðJttÞ−1Ω; ð28Þ

b0j ¼ J−1ijðJttbi þ JtiÞ; ð29Þ

g0ij ¼ J−1kiJ−1ljgkl; ð30Þ

Ξ0 ¼ ðJrrÞ−1Ξ; ð31Þ

θ0t ¼ ðJtrÞ−1ðJttθt − Jtr þ Jtiθ
iÞ; ð32Þ

θ0i ¼ ðJtrÞ−1ðJijθj − JirÞ: ð33Þ

Therefore, we see that Ω, bi and gij transform on every leaf
as they do on a Carrollian spacetime, Eqs. (11), (10), and (9).

6See [20] for a recent discussion on foliations and symmetries
that preserve them.
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Hence, the diffeomorphisms (26) are interpreted as Carroll
diffeomorphisms on each leaf Cr. The other elements Ξ, θt
and θi were not present in the intrinsic definition of the
previous section. This is not surprising as they account
for the nontrivial r-dependence of the residual gauge
symmetry (26). For simplicity we fix locally Ξ ¼ 1 and
θt ¼ θi ¼ 0. This is achievable using (and therefore fixing)
the r-dependence of the diffeomorphism (26). Henceforth
the bulk metric simplifies to

ds2M ¼ −2Ωðdt − bidxiÞdrþ gijdxidxj; ð34Þ

with the residual gauge freedom (5),

r ↦ r; t ↦ t0ðt;xÞ; x ↦ x0ðxÞ: ð35Þ

Indeed, if we were to describe a single null hypersurface, it
would also be natural to set Ξ ¼ 1, and θi and θt to 0 in its
neighborhood. Under the coordinate change (35), gij, bi, and
Ω still transform according to (11), (10), and (9). One
can show that Cr equipped with these data is a dþ 1-
dimensional Carrollian spacetime, in the lines we discussed
earlier. For thiswe need to exhibit the Ehresmann connection.
The ambient metric (25) allows one to define two

independent null vector fields,7 sections of TM,

l ¼ 1

Ω
∂t; n ¼ ∂r; l · n ¼ 1: ð36Þ

The corresponding forms in T�M are

l ¼ −dr; n ¼ Ωðdt − bidxiÞ: ð37Þ

Hence, the vector field l is normal to Cr. Since it is null, it is
also tangent to Cr and belongs therefore to TCr. Being the
kernel of the degenerate metric gr on Cr, it spans the vertical
sub-bundle Vr. The horizontal sub-bundle Hr is given by
the set of vectors X in TCr that are orthogonal to n,

X · n ¼ 0; ð38Þ

but since X ∈ Hr, by definition

X · l ¼ 0: ð39Þ

Thus, writing X ¼ Xr∂r þ Xt∂t þ Xi∂i, Eqs. (38) and (39)
lead to Xr ¼ 0 and Xt − biXi ¼ 0, so that

X ∈ Hr ⇔ X ¼ Xið∂i þ bi∂tÞ ¼ XiEi: ð40Þ

Consequently, the field biðr; t;xÞ plays the role of an
Ehresmann connection for each null leaf Cr, as one could
have anticipated. Notice also that the tensor pa

b ¼ lanb

has nonzero components pt
t and pt

i. These define a
Carrollian tensor, which is the vertical Ehresmann projector
p introduced in (2).
Given the above embedding of null hypersurfaces Cr,

we can determine their extrinsic geometry. This is generally
captured by three quantities, the surface gravity, the
deformation tensor, and the twist, all built with the
projector onto Hr ⊂ TCr,

hab ¼ δab − nalb − lanb: ð41Þ

Lowering an index we find that the nonzero components
are hij ¼ gijðr; t;xÞ and the surface gravity vanishes
with our choice of l. The other extrinsic quantities are
respectively given by

Dab ¼ 1

2
hachbdLlhcd;

ωa ¼ hbanc∇blc; ð42Þ

where ∇a stands for the Levi-Civita connection of gab.
In addition, the deformation tensor is reduced to the
expansion and the shear

Θ ¼ habDab ¼ 1

2
habLlhab;

σab ¼ Dab −
Θ
d
hab: ð43Þ

For the geometry at hand, the nonvanishing components of
the extrinsic tensors, at every r, coincide with the Carrollian
tensors defined on Cr [see (19) and (21)],

ωi ¼ −
1

2
∂tbi −

1

2Ω
ð∂iΩþ bi∂tΩÞ ¼ −

1

2
φi;

Θ ¼ 1

Ω
∂t ln

ffiffiffi
g

p ¼ θ;

σij ¼
1

2Ω
∂tgij −

Θ
d
gij ¼ ζij: ð44Þ

The reduced bulk covariance (26), which preserves the
form (25), corresponds precisely to the Carrollian diffeo-
morphisms (5), for which these objects are genuine tensors.
In conclusion, before we turn to the investigation of

conformal isometries, the message is that the definition of
Carrollian spacetimes as fiber bundles with Ehresmann
connection and a degenerate metric is adapted to the
description of families of embedded null hypersurfaces
where, on any leaf, the induced geometry is Carrollian.

III. CONFORMAL CARROLLIAN ISOMETRIES

Carrollian spacetimes C have been introduced in Sec. II
irrespective of any isometry properties. Carrollian diffeo-
morphisms are not isometries. They are a subgroup of the
full diffeomorphism group, compatible with the intrinsic7Our choice of gauge fixing differs from other works as [7,21].
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splitting in vertical versus horizontal components of the
tangent bundle TC, made possible thanks to the Ehresmann
connection. The Carroll group emerges precisely on the
tangent space at a point. Suppose indeed that we trade the
H basis vectors Ei for a set of vectors Ê{̂, orthonormal with
respect to g: gðÊ{̂; Ê|̂Þ ¼ δ{̂ |̂. The tangent space is now
everywhere spanned by fE; Ê{̂; {̂ ¼ 1;…; dg, whereas for
the cotangent space the basis is fe; ê{̂; {̂ ¼ 1;…; dg with
ê{̂ðÊ|̂Þ ¼ δ{̂|̂. Automorphisms of the tangent space preserv-
ing the vertical vector field E and the orthonormal nature of
the H basis are generally as follows:

ðE0 Ê0
{̂ Þ ¼ ðE Ê|̂ Þ

�
1 Bk̂R

k̂
{̂

0 R|̂
{̂

�
; ð45Þ

with Rk̂
{̂ðt;xÞ being the elements of a d-dimensional

orthogonal matrix and Bk̂ðt;xÞ, d numbers. The explicit
dependence on the coordinates underlines that this trans-
formation need not be the same at every point of C. These
transformations are the dþ 1-dimensional Carroll boosts
(the full Carroll group also includes spacetime translations).
They rotate the horizontal frame and coframe, and produce
a rotation plus a shift proportional to B on the Ehresmann
connection. This latter statement can be made explicit by
writing

Ê{̂ ¼ Ej
{̂∂j þ b{̂∂t; ð46Þ

the transformation (45) thus implies

E0j
{̂ ¼ Ej

k̂R
k̂
{̂ and b0{̂ ¼ ðbk̂ þ Ω−1Bk̂ÞRk̂

{̂: ð47Þ

The Carroll boosts play for the tangent bundle of a Carrollian
spacetime the same role as the Lorentz group does for the
tangent bundle of a pseudo-Riemannian manifold.
The Carroll group appears also as the isometry group of

the flat Carroll manifold introduced in Eqs. (24). These
isometries are diffeomorphisms generated by vectors ξ such
that Lξg ¼ 0, LξE ¼ 0, and shifting the Ehresmann con-
nection by an arbitrary constant. One finds

ξ0 ¼ βjxj þ γ; ξi ¼ ωi
jxj þ ϵi; ð48Þ

with all entries constant and ωkj ¼ δkiω
i
j antisymmetric.

These are precisely the ðdþ 2Þðdþ 1Þ=2 generators of the
Carroll algebra carrðdþ 1Þ.
We would like to enter now the core of our discussion

about conformal Carrollian isometries for generic Carrollian
spacetimes. We first define them, and then solve the asso-
ciated differential equations under the assumption of the
absence of shear. This enables us to exhibit a rather universal
algebra, which gives a generalized version of the infinite-
dimensional conformal Carroll algebra ccarrðdþ 1Þ.

We define Carrollian conformal Killing vector fields ξ by
imposing

Lξg ¼ λg; ð49Þ

where λðt;xÞ is an a priori arbitrary function. Setting
ξ ¼ fðt;xÞEþ ξiðt;xÞEi we obtain

Lξg ¼ ð2gij∂tξ
iÞdtdxj þ ððΩ−1f þ bkξkÞ∂tgij

þ ξk∂kgij þ gik∂jξ
k þ gjk∂jξ

kÞdxidxj ð50Þ

¼ ð2Ω−1gij∂tξ
iÞeej þ

�
2f

�
ζij þ

1

d
θgij

�

þDiξj þDjξi

�
eiej; ð51Þ

where Di stands for the Levi-Civita-Carroll connection
introduced in (22). Observe that the time dependence of the
metric enters these expressions explicitly and one might
expect it to alter significantly the structure of the conformal
isometry algebra. At the same time one should also stress
that in the absence of time dependence, neither the
Ehresmann connection nor the scale factor Ωðt;xÞ plays
a role in the analysis of conformal properties, which would
reduce to the analysis in [2–4].8 The first term of (51)
translates through Eq. (49) into

∂tξ
iðt;xÞ ¼ 0: ð52Þ

This imposes that ξ is the generator of a Carrollian diffeo-
morphism [it ensures the vanishing entry in (6) since it
imposes ξiðt;xÞ ¼ YiðxÞ], and this is assumed systemati-
cally here. Hence the core of the definition of conformal
Carrollian isometries is in the second term of (51), leading to

2f

�
ζij þ

1

d
θgij

�
þDiYj þDjYi ¼ λgij: ð53Þ

The trace of this equation determines λ,

λðt;xÞ ¼ 2

d
ðfθ þDiYiÞðt;xÞ; ð54Þ

and substitution back into (53) then gives

DiYj þDjYi −
2

d
DkYkgij ¼ −2fζij: ð55Þ

At the present stage, the equations to be solved
for finding the components of the conformal Killing
vectors fðt;xÞ and YiðxÞ are Eqs. (55), which are a set

8Notice that ξ ¼ ðΩ−1f þ bkξkÞ∂t þ ξi∂i. Equation (50) de-
pends on bk and Ω only through ξt ≡ Ω−1f þ bkξk.
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of time-dependent partial differential equations sourced by
the Carrollian shear.
In the Carrollian case under consideration, as a conse-

quence of the degenerate nature of the metric, this set—in
other words Eq. (49)—is not sufficient for defining
conformal Killing fields. In order to proceed, we must
refine our definition of the latter. We further impose
vanishing shear for the Carrollian spacetime, and with this
the full conformal algebra can be unraveled without any
further restriction on the Carrollian data gij, Ω, and bi,
generalizing thereby the range of validity of the results
obtained in [2–4].
We note that for ξ ¼ fðt;xÞEþ YiðxÞEi, the Lie deriva-

tive of the vertical vector field E is itself vertical, satisfying

LξE ¼ μE; ð56Þ

where

μðt;xÞ ¼ −EðfÞ − φiYi: ð57Þ

A precise definition of the conformal Carrollian Killing
vectors is reached by setting a relation among the a priori
independent functions λðt;xÞ and μðt;xÞ. The guideline for
this is Weyl covariance, because a desirable feature for
conformal Killing fields is their insensitivity to Weyl
rescalings of the metric.
We define Weyl rescalings as g ↦ g=Bðt;xÞ2 and b

invariant [this is required for the spatial vectors Ei in (1) to
remain well defined], supplemented with Ωðt;xÞ ↦
Bðt;xÞ−zΩðt;xÞ for some real number z, the dynamical
exponent. Under such rescalings, ξ has Weyl weight o,
which implies that Yi and f have weights 0 and −z.
Therefore, λðt;xÞ and μðt;xÞ transform as

λ ↦ λ − 2YiEiðlnBÞ; μ ↦ μþ zYiEiðlnBÞ: ð58Þ

Thus, the combination 2μþ zλ is Weyl covariant (actually
invariant). Setting it to 0,

2μðt;xÞ þ zλðt;xÞ ¼ 0; ð59Þ

is compatible with the basic expected attributes of Killing
vectors, as stressed earlier.
Equations (49) and (59) define our conformal Killing

fields. It should be mentioned that (59) was introduced in
[2–4] with z ¼ −2=N and N being a positive integer,
following the requirement that Lξðg ⊗ E⊗NÞ ¼ 0. Leaving
z arbitrary does not support such a geometrical interpre-
tation, but is nonetheless consistent. The case z ¼ 1 (i.e.,
N ¼ 2), where time and space equally dilate, pertains when
the Carrollian spacetime emerges on an embedded null
hypersurface in a pseudo-Riemannian geometry.

The combination of (54), (57), and (59) leads to9

DiYi −
d
z
φiYi −

d
z

�
EðfÞ − z

d
θf

�
¼ 0: ð60Þ

Summarizing, the conformal isometry group as defined in
(49) and (59) for a Carrollian spacetime described in terms
of Ωðt;xÞ, biðt;xÞ, and gijðt;xÞ is the set of solutions
fðt;xÞ and YiðxÞ of Eqs. (55) and (60) for a given choice
of z.
At this point we restrict our analysis to Carroll space-

times with vanishing shear, ζij ¼ 0, because in this case the
system (55) and (60) can be solved. As stated previously,
ζij vanishes if and only if the time dependence of the metric
is conformal,

gijðt;xÞ ¼ e2σðt;xÞg̃ijðxÞ: ð61Þ

Recall now that (55) and (60) are Weyl covariant.
Performing a Weyl rescaling with Bðt;xÞ ¼ e2σðt;xÞ
removes the time dependence from the metric, while it
transforms the other fields as

Ω̃ðt;xÞ¼ e−zσðt;xÞΩðt;xÞ;
φ̃iðt;xÞ¼φiðt;xÞ− zð∂iþbiðt;xÞ∂tÞσðt;xÞ; θ̃ðt;xÞ¼ 0:

ð62Þ

The Killing field is invariant, ξ̃ ¼ ξ ¼ f̃ ẼþYiEi with
Ẽ ¼ ezσE, and this leads to

f̃ðt;xÞ ¼ e−zσðt;xÞfðt;xÞ; ỸiðxÞ ¼ YiðxÞ;
ỸiðxÞ ¼ g̃ijðxÞYjðxÞ: ð63Þ

Equations (55) and (60) finally become equations for
f̃ðt;xÞ and YiðxÞ,

∇̃iYj þ ∇̃jYi ¼
2

d
∇̃kYkg̃ij; ð64Þ

Ω̃−1∂tf̃ ¼ z
d
∇̃kYk − φ̃kYk; ð65Þ

where ∇̃i is the Levi-Civita connection for g̃ij.
The first equation is an ordinary conformal Killing

equation, and its solutions fYiðxÞg are the generators of
the conformal group for S equipped with a metric g̃ijðxÞ.
Given any such vector in H solving (64),

ξ̄Y ¼ YiðxÞEi ¼ YiðxÞð∂i þ biðt;xÞ∂tÞ ð66Þ

9The left-hand side of Eq. (60) can actually be recast using
Weyl-covariant derivatives, based on the Weyl connection
A ¼ 1

zφþ 1
d θe, which transforms as A ↦ A − d lnB.
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(the subscript Y stresses that the vector field at hand
depends on the set fYiðxÞg), Eq. (65) provides a solution
for f̃ðt;xÞ,

f̃ðt;xÞ ¼ TðxÞ þ z
d

Z
t
dt�Ω̃ðt�;xÞ

×

�
∇̃iYiðxÞ − d

z
φ̃iðt�;xÞYiðxÞ

�
: ð67Þ

Here TðxÞ is an arbitrary smooth function of weight −z,
which specifies any conformal Carrollian Killing field.
Before we further investigate this family of conformal

Carrollian Killing vectors, we should pause and make
contact with previous results reached in the already quoted
literature. The situation that has been studied in [4]
corresponds in our language to σ ¼ 0 and Ω ¼ 1. This
means in particular that the metric is time independent. In
Ref. [4] no Ehresmann connection was introduced. We
could therefore set it to 0, or better leave biðt;xÞ unspeci-
fied, because, as mentioned earlier for a time-independent
metric, it is not expected to play any role in the conformal
algebra. Indeed, using (64) we find the precise family of
vectors ξ̄Y as in (66), which combined with (67) leads to

ξT;Y ¼
�
TðxÞ þ z

d
t∇̃iYiðxÞ

�
∂t þ YiðxÞ∂i; ð68Þ

irrespective of biðt;xÞ (again the subscript T, Y recalls the
dependence on fTðxÞ; YiðxÞg). Therefore the corresponding
algebra is infinite dimensional and emerges as the semidirect
product of the conformal group of g ¼ g̃ðxÞ on S, generated
by YiðxÞ∂i, with supertranslations. For a flat or conformally
flat metric on S, the spatial conformal algebra in d dimen-
sions is soðdþ 1; 1Þ, and the conformal Carrollian Killing
fields (68) span10 ccarrNðdþ 1Þ ¼ soðdþ 1; 1Þ ⋉ TN ,
where z ¼ 2=N. The standard conformal Carrollian algebra
ccarrðdþ 1Þ refers to dynamical exponent z ¼ 1 (level
N ¼ 2): ccarrðdþ 1Þ ¼ ccarr2ðdþ 1Þ. This algebra
emerges as the null-infinity isometry algebra of asymptoti-
cally flat dþ 2-dimensional spacetimes in Bondi gauge,
bmsðdþ 2Þ.11
Our general analysis embraces the above case, by

including time dependence in the spatial metric g and a
general scale factor Ωðt;xÞ on top of the Ehresmann
connection biðt;xÞ. Despite these generalizations, as a

direct consequence of the factorized time dependence in
the metric [see (61)] due to the requirement of vanishing
shear, the structure of the conformal Carrollian Killing
vectors remains unaltered, i.e., as in (68): their algebra is
the semidirect product of the conformal group of g̃ðxÞ on S
with supertranslations at dynamical exponent z. This
statement is shown as follows.
Using (67), we obtain the general conformal Carrollian

Killings as vector fields in TC,

ξT;Y ¼
�
TðxÞþ z

d

Z
t
dt�Ω̃ðt�;xÞ

×

�
∇̃iYiðxÞ−d

z
φ̃iðt�;xÞYiðxÞ

��
ẼþYiðxÞEi: ð69Þ

We can unravel the structure of these conformal Carroll
Killings and of their algebra by introducing an invariant
local clock,

Cðt;xÞ≡
Z

t
dt�Ω̃ðt�;xÞ: ð70Þ

This in fact is a specific instance of Cγ ¼
R
γ Ω̃ðdt − bÞ with

γ being a path in C. In (70), Cðt;xÞ appears as a local
function because the path runs along a vertical fiber starting
at, say, the zero section reference to which we have
suppressed.12 Using (19) and (70) we reach the following
identity:

Z
t
dt�Ω̃ðt�;xÞφ̃iðt�;xÞ ¼ EiðCðt;xÞÞ; ð71Þ

which enables us to express (69) as

ξT;Y ¼
�
TðxÞ − YiEiðCðt;xÞÞ þ

z
d
Cðt;xÞ∇̃iYiðxÞ

�

× Ẽþ YiðxÞEi: ð72Þ

The invariant clock defines a Carrollian diffeomorphism
[see (5)] with t0 ¼ Cðt;xÞ and x0 ¼ x. Under this diffeo-
morphism Ω̃ → 1, Ẽ → ∂t0 , while (72) reads now precisely
as (68) with t traded for t0. This demonstrates the earlier
statement about the algebra of conformal Carrollian Killing
vectors of a shearless Carroll spacetime.
Summarizing, shearless Carrollian spacetimes, i.e., space-

times equipped with a metric of the form gijðt;xÞ ¼
e2σðt;xÞg̃ijðxÞ, have a conformal isometry algebra that
depends only on g̃ðxÞ, d and z: it is the semidirect product
of the conformal algebra of S equipped with g̃ðxÞ and
supertranslations at level N ¼ 2=z. This conclusion is valid

10This algebra is defined in the literature for integer N.
11As before, strictly speaking this is valid ford ¼ 1 and 2 (where

furthermore g̃ is always conformally flat). For higher d, it was
presumed to hold by some authors [3]. However, gauge conditions
exist for the Bondi-gauge null-infinity behavior of asymptotically
flat spacetimes that render bmsðdþ 2Þ finite dimensional [22],
and with this choice ccarr2ðdþ 1Þ ≠ bmsðdþ 2Þ. This does not
exclude that less restrictive gauge fixing might be considered
leading to other, possibly infinite-dimensional bmsðdþ 2Þ alge-
bras for d ≥ 3.

12We refer to Cðt; xÞ as an invariant local clock because it
defines an integration measure on each one-dimensional fiber, a
proper time.
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irrespective ofΩðt;xÞ and biðt;xÞ. On the one hand,Ωðt;xÞ
can disappear from the expression (72) of the Killings upon
an appropriate Carrollian diffeomorphism driven by the
invariant local clock. Hence its presence does not affect
the algebra. On the other hand, although the Ehresmann
connection biðt;xÞ cannot be removed with Carrollian
diffeomorphisms (unless its field strengthϖ and acceleration
φ vanish), it cancels out between the last two terms in (72).
This is not insignificant though, and we discuss it in the
remainder of the present chapter.
The set of vectors Y ¼ YiðxÞ∂i ∈ TS with fYiðxÞg

solving (64) realizes the conformal algebra of g̃,

½Y; Y 0� ¼ ½Yi∂i; Y 0j∂j� ¼ Y 00k∂k ¼ Y 00; ð73Þ

with

Y 00k ¼ Yi∂iðY 0kÞ − Y 0i∂iðYkÞ: ð74Þ

These vectors act generally on functions ϕðxÞ. One may
instead contemplate a realization in terms of Carrollian
vectors ξ̄Y ∈ H as in (66) acting on functions Φðt;xÞ of C.
In this case,

½ξ̄Y; ξ̄Y 0 � ¼ ξ̄½Y;Y 0� −ϖðY; Y 0ÞE
¼ ξ̄½Y;Y 0� − ϖ̃ðY; Y 0ÞẼ ∈ V ⊕ H; ð75Þ

where ϖðY; Y 0Þ ¼ ϖijYiY 0j and ϖ̃ ¼ e−zσϖ. Because of
the Ehresmann connection, this realization is not faithfully
the conformal algebra (73) of g̃, except if the Carrollian
torsion is 0 (horizontal piece of the Ehresmann curvature),
which coincides with the condition for H to be integrable13

(or if the action is limited to functions of x only, which is
not what we want). Furthermore the extra V-term is not
a central extension, unless the Carrollian acceleration
vanishes (in this case E and Ei commute).
The expression in parentheses present in (72) suggests

defining, for each set fYiðxÞg associated with a solution of
(64), a Carrollian operator MY acting on any function
Φðt;xÞ of C as

MYðΦÞ≡ YiEiðΦÞ − z
d
Φ∇̃iYi: ð76Þ

The mapping Y → MY is a representation of the group of
conformal Killing vectors of g̃, which however is again not
faithful as the commutator exhibits an extra term, similar to
the one in (75), possibly vanishing in the same circum-
stances,

½MY;MY 0 �ðΦÞ≡MYðMY 0 ðΦÞÞ −MY 0 ðMYðΦÞÞ
¼ M½Y;Y 0�ðΦÞ − ϖ̃ðY; Y 0ÞẼðΦÞ: ð77Þ

Using now the map (76) and ξ̄Y ∈ H given in Eq. (66), the
conformal Killing field in TC, Eq. (72), is recast as

ξT;Y ¼ ðTðxÞ −MYðCÞðt;xÞÞẼþ ξ̄Y: ð78Þ

For vanishing TðxÞ, the representation MY defines a lift of
ξ̄Y ¼ YiEi ∈ H → TC through the map

ξ̄Y ↦ ξ0;Y ¼ ξ̄Y −MYðCÞẼ: ð79Þ

This lift provides a faithful and Carrollian (i.e., acting on
functions of t and x) realization of the conformal isometry
algebra (73) of g̃ on TC, thanks to the cancellation of
the extra term appearing in (75) and (77). Even though
the Ehresmann connection does not appear ultimately
in the conformal algebra, when nonvanishing, it adjusts
for making compatible the realization of the algebra with
Carrollian diffeomorphism invariance. This is yet another
of its numerous facets. For nonvanishing TðxÞ, we obtain
the following commutation relations for the complete
conformal Carrollian Killing fields (78)14:

½ξT;Y; ξT 0;Y 0 � ¼ ξMY ðT 0Þ−MY0 ðTÞ;½Y;Y 0�: ð80Þ

This is the usual pattern for conformal Carrollian and BMS
algebras.

IV. CONCLUSIONS

In this work, we have considered Carrollian geometries
from various perspectives: their defining properties, their
emergence on embedded null hypersurfaces, and their
conformal symmetries. We have emphasized the interpre-
tation of Carrollian spacetime as a fiber bundle endowed
with an Ehresmann connection. Realized by a one-form
field, this connection defines the splitting of the tangent
bundle into vertical and horizontal components. The
vertical component coincides precisely with the kernel of
a degeneratemetric, which is the last piece of equipment for a
Carroll structure. It is worth stressing that all defining fields
(Ehresmann connection, metric and scale factor) have been
assumed space and time dependent throughout the paper.
The vertical versus horizontal canonical separation is

preserved by the subset of Carrollian diffeomorphisms.
These enable the reduction of spacetime tensors into purely
spatial components, the paradigm being Carrollian torsion
and acceleration, emerging as reduced components of
the Ehresmann curvature. Other geometric objects can
be introduced using the degenerate metric, such as shear
and expansion, and even further based on a horizontal13Generally, one expects invariants that prevent the horizontal

part of the Ehresmann connection from being flat. For example,
in d ¼ 2, one might have nonzero Chern class c ¼ 1

2π

R
S ϖ. 14We use here the identity ẼðMYðCÞÞ ¼ φ̃iYi − z

d ∇̃iYi.
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connection, which we only alluded to when discussing the
Christoffel-Carroll symbols. Investigating the types of
connections that can be defined on the full tangent bundle
TC is an interesting subject that has been touched upon in
the literature,15 but, we believe, deserves more attention,
e.g., in the case of Weyl connections.
The above ingredients (Ehresmann connection and

vertical and horizontal sub-bundles) arise naturally on null
hypersurfaces embedded in Lorentzian spacetimes, and
specific tensors such as Carrollian shear, acceleration and
expansion are inherited from the ambient geometry.
Our analysis was here confined to the instance of genuine
null foliations, but can be adapted to the case of boundary
null hypersurfaces, such as black-hole horizons or null
infinities.
The last element of our investigation concerns sym-

metries, and more specifically conformal isometries of
Carrollian spacetimes. Contrary to pseudo-Riemannian
geometries, the definition of (conformal) isometries cannot
rely solely on the Killing equation for the metric, because
the latter is degenerate. Here we complied with the standard
definition of the conformal Carrollian Killing vectors, and
additionally restricted our analysis to the case of shearless
Carrollian structures. Although seemingly innocuous, as
time dependence remains general both in the scale factor
and in the Ehresmann connection, this limitation is quite
severe. Indeed time dependence of the metric is factorized
and this ultimately drives us to the standard semidirect
product of the conformal isometry algebra of the metric
with supertranslations. This is infinite dimensional and
coincides with ccarrNðdþ 1Þ, for conformally flat spatial
metrics. One thus recovers bmsðdþ 2Þ in d ¼ 1 and 2, and
possibly in a higher dimension with some appropriate
definition of the BMS algebra. Our study has the virtue of

sustaining the robustness of the format already known to
emerge in static Carrollian spacetimes without scale factor
or Ehresmann connection. It stresses the role of the shear,
but leaves open the probe of the conformal Carrollian
isometries, when the latter is nonzero. It also illustrates
another subtle role of the Ehresmann connection, which
allows one to lift without alteration the conformal isometry
algebra of the metric from the basis tangent bundle TS to
the Carrollian tangent bundle TC.
Although relatively confined, our investigation touches

upon several timely and perhaps deep issues. Conformal
symmetries and in particular the BMS algebra are known to
appear as the backbone of conserved charges in asymp-
totically flat spacetimes. In addition, the role of null
hypersurfaces has been appreciated in flat holography,
where they are expected to replace the timelike foliations
relevant in anti–de Sitter holography. In particular, their
symplectic structure should play a significant role in giving
an alternative reading of the gravitational degrees of
freedom. Clearly, Carrollian spacetimes and their sym-
metries are the central concepts in all these developments,
which deserve further analysis, possibly in the lines of our
current work.
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