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It is challenging to quantify chaos of QCD, because nonperturbative QCD accompanies nonlocal
observables. By using holography, we find that QCD strings at large Nc and strong coupling limit exhibit
chaos, and measure their Lyapunov exponent at zero temperature. A pair of a quark and an antiquark
separated by Lq in the large Nc QCD is dual to a Nambu-Goto string hanging from the spatial boundary of
the D4-soliton geometry. We numerically solve the motion of the string after putting a pulse force on its
boundaries. The chaos is observed for the amplitude of the force larger than a certain lower bound. The
bound increases as Lq grows, and its dependence is well approximated by a hypothesis that the chaos
originates in the endpoints of the QCD string.
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I. INTRODUCTION: QCD CHAOS

How chaotic is QCD?—a question which is simple
but unanswered, should drive the understanding of our
universe based on quantum field theories. It is challenging
to define the extent of chaos for QCD, because QCD is
truly quantum while the popular measure of chaos, the
Lyapunov exponent, is defined classically. Analyses based
on the weakly coupled picture [1–9] and on out-of-time
ordered correlators [10] (which define a quantum chaos)
suggest a QCD chaos at high temperature, but what about
the usual picture of hadronic phase of QCD?
As lattice QCD, a popular strategy to study nonpertur-

bative nature of QCD, still lacks a way to follow time
dependence necessary to analyze any chaos, we need some
other way. The holography, or the AdS=CFT correspon-
dence [11], is suitable for the purpose. Taking a large Nc
limit and a strong coupling limit, QCD is approximated by
a classical gravity dual, while keeping the quantum nature
and the time dependence of QCD. In this paper, we analyze
chaos of a quark antiquark pair by using the holography.
We find a condition for the chaos to occur, and draw a
phase diagram of the QCD chaos.
The study of chaos in the AdS=CFTwas initiated in [12].

While the chaos of chiral condensate in QCD was studied
in [13,14] via the holography, the physical excitation of
QCD at low energy is nonlocal. Wilson loops, and pairs of
quark-antiquark connected by an open Wilson loop, are the
low energy physical degrees of freedom of QCD and their

quantization provides the hadronic world. Spectra of
hadrons exhibit quantum chaos [15], so, we need to locate
the origin of the chaos of QCD, and measure the extent of
the QCD chaos, based on the nonlocal Wilson loops.
Here we have to remind the readers of the fact that a

Nambu-Goto (NG) closed string in three spatial dimen-
sions, a phenomenological model of glueballs in the
large-Nc QCD, is integrable. Then, what is the origin of
the QCD chaos? Naively, we can expect two possible
origins: one is the boundary of the NG string, which is the
quark, and the other is the thickness of the QCD string
which has not been taken care of for the three-dimensional
NG string. The question can be addressed in holography,
because the QCD string corresponds to a NG string in the
higher-dimensional spacetime in the gravity dual, and its
static nature, such as the quark boundaries and the thick-
ness, has been well studied [16–19] (see [20] for a lattice
study). We here provide a detailed analysis of a quark
antiquark pair in motion, and locate the origin of the QCD
chaos.
Through the AdS=CFT, the Wilson loop in QCD is

identified with a NG string [21,22] hanging down from the
boundary of confining geometry [23] which is considered
to be a dual to a pure 4-dimensional Yang-Mills theory. The
qq̄ potential is the free energy of the string. Since the
geometry has the bottom of the spacetime, the hanging
string has the part sitting at the bottom, which provides the
QCD string tension, and the parts connecting the bottom
and the boundary, which correspond to the quarks in a
gluon cloud. The motion of the QCD string is caused by a
pulse force acting on the infinitely massive quarks, and we
solve numerically the motion of the NG string in the
geometry. The chaotic Lyapunov exponent is observed
when the strength of the pulse force exceeds a certain
bound. We study the dependence of the bound on the
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interquark distance, and find that the qq̄ pair is less chaotic
for larger interquark distances.
Our numerical result is explained well by a popular

effective picture of the quarks connected by a long QCD
string, assuming that the QCD string motion is integrable
while the endpoint regions (the quarks with a gluon cloud)
are chaotic. It suggests that the chaos of QCD string
originates in its endpoints. The chaos of motion of closed
NG string in various geometry has been studied [24–26]
(see also [27–34]), which corresponds to the chaos due to
the thickness of the QCD string. Our study about the quark
antiquark pair shows a different origin of the QCD chaos.
In [35], amethodology similar to our paperwas utilized to

an analysis of an open fundamental string hanging from the
boundary in a black hole geometry. The aim of [35] was to
explore chaos caused by the horizon of the black hole, thus
the dual gauge theory is in the deconfinement phase. For that
purpose, the string probe considered in [35] was for a saddle
point, and not a fluctuation around a stable configuration. In
this paper, we aim to find chaos of a QCD string (and thus
necessarily in the confining phase of the gauge theory). The
fundamental string is fluctuating around a stable configu-
ration in the geometry with an IR cutoff. This IR end of the
geometry causes a peculiar behavior of the dynamical string
in motion, which provides a distinct and different origin of
the QCD chaos in the confining phase.
The organization of this paper is as follows. First, in

Sec. II, we review the static Wilson loop in the holographic
QCD, and introduce our coordinate system in the bulk.
In Sec. III, a rectangular NG string is introduced as a toy
model, and its fluctuation analysis is presented to show the
existence of the chaos and the chaos energy bound. Our
main numerical study of the NG string in motion in
holography is presented in Sec. IV. There we find
Lyapunov exponent of the string motion, and draw a phase
diagram of chaos, as a function of ϵ which is the magnitude
of the pulse force and Lq, the interquark distance. The
chaotic behavior is observed in the interquark force which
is an observable of QCD. Section V is for a discussion to
locate the origin of chaos. We introduce a simple effective
picture of an open QCD string and discuss its chaos, to fit
the numerical result of the phase diagram obtained in
Sec. IV. We conclude that the chaos originates in the
endpoints of the QCD string, the quarks. Section VI is for a
summary and discussions. Appendix A provides details of
numerical calculations. Appendix B calculates the formula
for the interquark force.

II. CONFINING GEOMETRY AND qq̄ POTENTIAL

In this section, we first review the confining geometry
[23] and compute the static qq̄ potential through the
AdS=CFT, based on the dictionary [21,22]. The string
configuration serves as an initial one upon which an
external pulse force is put to produce a time-dependent
motion of the QCD string, later in Sec. IV.

The D4-soliton background holographically corresponds
to a five dimensional super Yang-Mills theory on a non-
supersymmetric circle, giving a four-dimensional pure
Yang-Mills theory at low energy [23]. The background
is an example of confining geometries which has the
bottom of the spacetime. Let us first obtain the static
NG string configuration hanging down from the boundary
of the spacetime, to calculate the expectation value of the
Wilson loop in the Yang-Mills theory.
The D4-soliton background is of the following form

[23,36]:

ds2 ¼
�
U
R

�
3=2

ðημνdxμdxν þ fðUÞdτ2Þ

þ
�
R
U

�
3=2 dU2

fðUÞ þR3=2U1=2dΩ2
4; ð1Þ

fðUÞ ¼ 1 −
U3

KK

U3
: ð2Þ

The coordinates xμ and τ are the directions along the
D4-branes, and the τ direction is compactified on S1. The
coordinate U is a radial direction transverse to the D4-
branes. To avoid a conical singularity at U ¼ UKK, the
period of the τ direction must be

δτ ¼ 4π

3

R3=2

U1=2
KK

¼ 2π

MKK
; ð3Þ

so 1=MKK is the radius of S1. Parameters in the metric can
be expressed by those of the dual gauge theory as

R3 ¼ 1

2

g2YMNcl2s
MKK

; UKK ¼ 2

9
g2YMMKKl2s : ð4Þ

The motion of the NG string studied in Sec. IV often goes
through the tip of the geometry U ¼ UKK, thus we need a
coordinate system which does not have a coordinate
singularity there. The new coordinate r is introduced as

UðrÞ ¼ UKKð1þ tan2rÞ: ð5Þ
The r coordinate is similar the y coordinate of the Sakai-

Sugimoto model [37]. Then, the metric becomes

ds2¼4

3
λl2s

1

cos3r

�
M2

KK

9
ð−dt2þdx⃗2Þþ dr2

1þcos2rþcos4r

�
;

ð6Þ

where λ ¼ g2YMNc is the ’t Hooft coupling. Since we are
interested in QCDwe do not consider τ andΩ4 directions in
the following, and so here we have omitted them. In this
coordinate, the bottom of the D4-soliton r ¼ 0 is totally
regular. The asymptotic boundary of D4-soliton is now
r ¼ π=2, which was U → ∞ in the U coordinate.
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The qq̄ potential is given by the energy of a static NG
open string in the geometry of the gravity dual [21,22]. We
consider a Wilson loop with the quark-antiquark separation
Lq, and take an ansatz that the string is extended in the
x1-r plane and the endpoints of the string are located
at x1 ¼ �Lq=2. If rcenter < 0 where r ¼ rcenter is the point
of the bottom of the hanging string, the string extends to
the opposite side of the cigar geometry (in terms of the
coordinates the string at τ extends to τ þ δτ=2 in the r-τ
plane), see Fig 1.
The NG action in the geometry (6) is

SNG ¼ −
1

2πα0

Z
dτdσ

ffiffiffiffiffiffi
−h

p
; ð7Þ

where h ¼ detðhabÞ and hab is an induced metric on the
worldsheet. We take the static gauge: ðτ; σÞ ¼ ðt; rÞ and
then the static solution is provided as x1 ¼ X1ðrÞ [38]. For
numerical calculations, we choose a unit MKK ¼ 3=2. The
NG action now becomes

SNG¼
λ

6π
T
Z

rcenter

π=2
dr

1

cos3r

�
ðX⃗0Þ2þ 4

1þcos2rþcos4r

�
1=2

ð8Þ

where 0 ¼ ∂r and T ¼ R
dt. The integration region is

π=2≤r≤rcenter, which should solve the equationXðrcenterÞ¼
0 due to the parity symmetry XðrÞ ¼ −Xð−rÞ following

from our boundary condition. Solving the equations of
motion, we obtain static configurations of string for each
quark separations Lq. Figure 2 shows the configurations of
the static string in the x1-r plane. When the quark-antiquark
separation becomes larger, the tip of hanging string sticks to
the bottom of the geometry r ¼ 0. This actually implies that
confining potential appears.
Let us evaluate the qq̄ potential holographically.

Considering the on-shell NG action SNG½X̃�, where X̃ðrÞ
is a static solution to the equation of motion, the qq̄
potential is given by

E ¼ −
2

T
SNG½X̃�: ð9Þ

This has a divergence which stems from the infinitely long
string hanging from the boundary, but it can be naturally
understood as the infinite quark mass. Subtracting the
contribution of that, the qq̄ potential turns out to be E − E0,
where

E0 ¼ −
2

T

�
λ

6π
T
Z

0

π=2
dr

1

cos3r
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ cos2rþ cos4r
p

�
:

ð10Þ
The quantity in the parenthesis is (8) with X0 ¼ 0, except
that the integration region is π=2 ≤ r ≤ 0. Figure 3 shows
the relation between the quark-antiquark separation Lq and
the qq̄ potential E − E0. When Lq is large, the potential
becomes linear in Lq, which means it is a confining
potential. This is totally consistent with the study devel-
oped in [39–41].
In the next section, we consider a toy model of the

motion of the string and study a chaos bound, and in
Sec. IV, we investigate numerically the full time-dependent
dynamics of the string in the D4-soliton background and
interquark force in the gauge theory.

(a)

(b)

τ

τ

U

U

FIG. 1. String on the cigar geometry. (a) rcenter > 0.
(b) rcenter < 0. In both figures, the strings look folded, but they
are not. They are extended in the x1 direction.

FIG. 2. Static strings in the D4-soliton background. From the
innermost string, Lq ¼ 1, 3, 12.
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III. TOY MODEL OF STRING IN MOTION

Before getting into the full numerical simulation of the
NG string in motion, we here first study the motion of a toy
model string to look intuitively how the chaos shows up in
the motion. The toy model assumes the shape of the string
and its fluctuation modes: the shape of the toy string is
rectangular, and the fluctuation modes are only of two
types, one is the motion keeping the rectangular shape, and
the other is the motion giving a linear slope at the bottom of
the rectangular string, see Fig. 4. As is seen in comparison
to the actual shape in Fig. 2, this toy model could capture
some intrinsic feature of the motion of the NG string. When
the interquark distance Lq is large, the shape of the hanging
string shown in Fig. 2 is well approximated by the
rectangular string configuration. (Note that this rectangular
shape is not a solution of the equation of motion for the
Nambu-Goto string in the geometry, so, this is just a toy
model. However, the toy model is easier to exhibit the
physical properties of the hanging string as it has just finite
degrees of freedom.) The rectangular string toy model was

also used in [35] to model a saddle point configuration of a
fundamental string in a black hole geometry, for extracting
chaos caused by its horizon.
We here show that the toy model has no chaos when the

total energy of the string is small, while for a larger energy
the chaos appears. We estimate the lower energy bound of
the chaos in the model, and the bound is used in the next
section for intuitively understanding the simulation results.
The existence of the chaos bound itself is easy to under-
stand: For a very small fluctuation around the static string
shape, the motion is that of a harmonic oscillator, so there is
no chaos. On the other hand, if one puts a larger energy, any
modes are excited and interacting with each other, gen-
erally inducing chaos. We are interested in the energy lower
bound and its dependence on the distance between the
quarks, Lq.
To obtain the fluctuation action of the toy string model,

first we determine the static stable configuration. Denoting
the location of the bottom of the rectangular string as
r ¼ r0 with −Lq=2 ≤ x ≤ Lq=2, the NG action is

SNG ¼ −2λ
27π

T MKK

�
LqMKK

cos3r0

þ6

Z
π=2

r0

dr

cos3r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos2rþ cos4r

p
�
: ð11Þ

Extremizing of this action with respect to r0, we obtain the
relation between r0 and L for the static stable rectangular
string,

LqMKK ¼ 2 cos r0
sin r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos2r0 þ cos4r0

p : ð12Þ

In particular, for a large interquark distance LqMKK ≫ 1,
this relation is rephrased as

r0 ¼
2ffiffiffi
3

p 1

LqMKK
þ 4

9
ffiffiffi
3

p 1

ðLqMKKÞ3
þ � � � : ð13Þ

Let us proceed to obtain the fluctuation action. We include
the lowest two modes, which are represented by the
following linear shape of the bottom of the string,

r ¼ r0 þ αðtÞ þ βðtÞ x
Lq

ð−Lq=2 ≤ x ≤ Lq=2Þ: ð14Þ

The fluctuation modes αðtÞ and βðtÞ deform the bottom of
the string. With this shape it is straightforward to obtain the
NG action,

S ¼ −2λMKK

9π

Z
dtðLradial þ LbottomÞ ð15Þ

where the radial and the bottom parts of the action of the
string are given by

FIG. 3. The relation between quark-antiquark separation Lq and
qq̄ potential.

FIG. 4. Left: the toy-model string, of the rectangular shape.Right:
the lowest two fluctuation modes we consider, αðtÞ and βðtÞ.
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Lradial ¼
Z

π=2

r0þα−β=2

dσ

cos3σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos2σ þ cos4σ

p

þ
Z

π=2

r0þαþβ=2

dσ

cos3σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos2σ þ cos4σ

p ; ð16Þ

and

Lbottom ¼ MKK

3

Z
L=2

−L=2
dσ

1

cos3r

×

�
1 −

9

M2
KK

�
_αþ _β

σ

L

�
2 1

1þ cos2rþ cos4r

�
1=2

×

�
1þ 9

L2
qM2

KK
β2

1

1þ cos2rþ cos4r

�
1=2

ð17Þ

with r ¼ r0 þ αþ βσ=L substituted for the last expression.
We expand the total action (15) to the third order in the
fluctuations αðtÞ and βðtÞ. The result is

S ¼
Z

dt½constþ a11 _α2 þ a22 _β
2 − V�; ð18Þ

V ≡ b11α2 þ b22β2 þ a111α3 þ a122αβ2

þ b111α _α2 þ b212β _α _βþb122α_β
2: ð19Þ

The coefficients a’s and b’s are functions of r0, namely, of
Lq. The “potential” term VðtÞ in general includes time-
derivative terms [42].
Generically, for the chaos to occur, the interaction terms

(the cubic terms) in VðtÞ need to contribute. For small
fluctuation, only the quadratic terms in VðtÞ [which are
mass terms for αðtÞ and βðtÞ] provide the full dynamics and
it is just a set of harmonic oscillators. When the fluctuation
is larger, the cubic interaction term contributes, and the
chaos emerges. To estimate the typical value for the energy
lower bound of the chaos to emerge, we pick up the terms
of αðtÞ2 and αðtÞ3 in VðtÞ and obtain the energy at which
the values of these two terms are equal to each other, under
the condition _αðtÞ ¼ 0. This energy is

Echaos ≡ 2b311
a2111

: ð20Þ

We plot this chaos bound in Fig. 5. We find that the chaos
energy bound diverges for Lq → ∞, while it takes its lowest
value around Lq ∼ 1=MKK. This behavior of Echaos is
naturally understood, because in the limit Lq → ∞, the
system is expected to reduce to an integrable model. For
example, in the former limit Lq → ∞, the string is straight
and resides at the bottomof theD4-soliton geometry, and the
coefficients of the interaction VðtÞ is suppressed as 1=Lq,
therefore the chaos disappears. In fact, in this limit Lq ≫
1=MKK the chaos energy lower bound is calculated as

Echaos ¼
3λMKK

98π
ðLqMKKÞ3

�
1þO

�
1

ðLqMKKÞ2
��

; ð21Þ

and it diverges as ∼L3
q.

The lessons from the toy model are that the chaos should
appear at an energy above some nonzero value, and that the
energy lower bound for the chaos diverges as Lq → ∞. We
will find that these are exactly seen in the full numerical
simulations presented in the next section.

IV. CHAOS OF INTERQUARK FORCE

In this section, we explore the full dynamical motion of
string by numerical simulation to examine the chaotic
motion. For this purpose, we employ the numerical
techniques to study dynamical string developed in
[32,33]. The detail of numerical calculations are summa-
rized in Appendix A. To induce the nonlinear dynamics of
the string, we instantly move the position of the string
endpoints at the boundary of the D4-soliton geometry. In
the gauge theory, this corresponds to an instantly forced
motion of the quarks: a small deformation of the Wilson
loop along the time direction. This produces a nonlinear
dynamics of the gluon flux tube induced by the motion of
quark and antiquark pair, afterwards.
To perform the numerical calculation, we again employ

the r coordinate, so the metric is (6). Now, as a world-sheet
coordinate system, we take double null coordinates ðu; vÞ
and specify the string configuration by t ¼ Tðu; vÞ;
r ¼ Rðu; vÞ, x⃗ ¼ X⃗ðu; vÞ. The advantage using the double
null coordinates in numerical calculations is its numerical

FIG. 5. The energy lower bound (20) for the chaos in the toy
model, as a function of the quark-antiquark separation Lq. Only
the plot in the region LqMKK ≥ Oð1Þ is meaningful, since at
small LqMKK the rectangular shape cannot be a good approxi-
mation, and furthermore, the string resides in the region of the
geometry which corresponds to the 5-dimensional gauge theory
which is not of our interest.
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stability [43]: The double null coordinates are along the
characteristics of wave equations and there is no restriction
on the step size for the numerical stability unlike the case
of the time evolution by “space and time” coordinates. The
condition on the induced metric hab for u, v to be null
coordinates is given by huu ¼ hvv ¼ 0. Then, we have
−h ¼ h2uv − huuhvv ¼ h2uv. Thus in the double null coor-
dinate, the Lagrangian for the string is proportional to huv,
and working in the unit MKK ¼ 3=2, the NG action
becomes

SNG ¼ −
λ

6π

Z
dudv

1

cos3R

�
−T;uT;v þ X⃗;u · X⃗;v

þ 4R;uR;v

1þ cos2Rþ cos4R

�
: ð22Þ

From this action, we obtain the evolution equations of the
string:

T;uv ¼ −
3

2
tanRðT;uR;v þ T;vR;uÞ; ð23Þ

R;uv ¼ −
3

2
R;uR;v tanR

�
1þ 3cos2Rð1þ 2cos2RÞ

1þ cos2Rþ cos4R

�

þ 3

8
tanRð1þ cos2Rþ cos4RÞð−T;uT;v þ X⃗;u · X⃗;vÞ;

ð24Þ

X⃗;uv ¼ −
3

2
tanRðX⃗;uR;v þ X⃗;vR;uÞ: ð25Þ

The double null conditions give constraints

Cu ¼ −T2
;u þ X⃗2

;u þ
4R2

;u

1þ cos2Rþ cos4R
¼ 0; ð26Þ

Cv ¼ −T2
;v þ X⃗2

;v þ
4R2

;v

1þ cos2Rþ cos4R
¼ 0: ð27Þ

They are conserved by time evolution: ∂vðcos3RCuÞ ¼
∂uðcos3RCvÞ ¼ 0. We impose them at the initial surface
and timelike boundaries of the string world sheet and solve
time evolution based on Eqs. (23)–(25). (The numerical
techniques for solving evolution equations are summarized
in Appendix A 2.)
Using the residual coordinate transformations, u →

FðuÞ, v → GðvÞ, we put the boundaries of the world
sheet at u − v ¼ 0 and u − v ¼ π. As an initial condition,
we take a static string configuration obtained in Sec. II.
(See Appendix A 1 for the detail of the numerical
construction of the initial data.) In the unit MKK ¼ 3=2,
static string configurations form a one-parameter family of
initial conditions for rcenter, where rcenter denotes the initial
r-coordinate at the tip of the string. This rcenter is one-to-one

correspondent to the interquark distance Lq. Here we use
the static solution with the initial condition rcenter ¼ 0.2
(corresponding to Lq ¼ 2.884) to demonstrate the simu-
lation of the dynamics.
To induce the nonlinear dynamics of the string, we

impose a time-dependent boundary condition on string
endpoints. Introducing time and spatial coordinates on the
world sheet as τ ¼ uþ v and σ ¼ u − v, we consider the
following forced motion (“quench”) of the string endpoints
along the X1 direction:

X1ðτ; σ ¼ δÞ ¼ Lq

2
þ ϵαðτ;ΔτÞ; ð28Þ

X1ðτ; σ ¼ π − δÞ ¼ −
Lq

2
− ϵαðτ;ΔτÞ; ð29Þ

where αðτ;ΔτÞ is defined by

αðτ;ΔτÞ ¼
8<
:

exp

�
2

�
4 − Δτ

τ − Δτ
Δτ−τ

��
; 0 < τ < Δτ

0; otherwise:

ð30Þ

In our numerical simulation, we introduce a small cutoff δ
near string endpoints and set our numerical domain in
δ ≤ σ ≤ π − δ. As long as we take a small enough cutoff δ,
it may not matter to our results as shown in Appendix A 3
[44]. There are two parameters ϵ and Δτ, which are the
amplitude and the timescale of the quench. One can check
that αðτ;ΔτÞ is C∞ in all τ and has a compact support in the
region 0 ≤ τ ≤ Δτ.
Boundary conditions for the other variables at timelike

boundaries are X2 ¼ X3 ¼ 0 and R ¼ Rini, where Rini ≡
Rðτ ¼ 0; σ ¼ δÞ is the initial value of the R at the boundary.
Because of the trivial boundary conditions of X2 and X3,
they are identically zero throughout time evolution. The
boundary value of T is determined by constraints
Cu ¼ Cv ¼ 0. (See Appendix A 2 for the detail.) With
these boundary conditions, the string motion is Z2-
symmetric under x1 → −x1. Figure 6 shows the string
configuration in the x1-r plane for ϵ ¼ 0.4 and Δτ ¼ 4. In
this figure, we took a time slice of bulk coordinate as
t ¼ Tðu; vÞ. Figure 6 contains snapshots of string at early
and late times. At early times, string profiles seem smooth.
On the other hand, at late times small spatial deformations
are observed. We also monitored violation of constraints
(26), (27) and found that they are sufficiently small. (See
Appendix A 3.)
To observe its chaos, we focus on the tip of the string,

rcenter ¼ Rðτ; σ ¼ π=2Þ, since the string motion is com-
pletelyZ2-symmetric due to our boundary condition and the
quench. Figure 7 shows time dependence of rcenterðtÞ. Chaos
means a sensitivity to the change of the initial conditions. To
explore the sensitivity of the string motion, we consider a
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linear perturbation: T → T þ δT, R → Rþ δR, and X⃗ →
X⃗ þ δX⃗. We numerically solve the linear evolution equa-
tions for ðδT; δR; δX⃗Þ on the time dependent background
ðTðu; vÞ; Rðu; vÞ; X1ðu; vÞÞ. Initial conditions are 0 for all
variables and boundary conditions are δX1ðτ; σ ¼ δ;
π − δÞ ¼ �αðτ;Δτ ¼ 4Þ, and ðδR; δX2; δX3Þjσ¼0;π ¼ 0.
The boundary conditions for δT at σ ¼ δ, π − δ are again
determined by linearized constraints δhuu ¼ δhvv ¼ 0.
The results of time evolution of the linear perturbations

are as follows. Figure 8 shows a time evolution of
δrcenterðtÞ, the tip of the string (located at X1 ¼ 0 due to
the Z2 symmetry), for ϵ ¼ 0.4. The horizontal axis is the
bulk time coordinate t ¼ Tðτ; σ ¼ π=2Þ. We can find an
exponential growth of the initial perturbation, which
implies chaos. Fitting the amplitude, we obtain the positive
Lyapunov exponent as λL ≃ 0.09.
In the numerical simulations, we also observed that for

small enough ϵ chaos does not occur, which means that
there may be a chaos threshold bound of ϵ for each initial
configuration given by Lq (corresponding to the initial
condition for rcenter). We investigate the bound by running

the simulation for different values of the parameters: quark
separation Lq and ϵ. Our final “phase diagram” of the chaos
of the QCD string is shown in Fig. 9. For each fixed
quark-antiquark separation Lq, we numerically solve the
full dynamical motion of string with different amplitude of
quench ϵ and study whether the motion is chaotic. Below
the solid line in Fig. 9 the motion is regular, while above the
line chaos appears. In the phase diagram, we only show the
region of Lq > 1.2 since the dual gauge theory becomes
five-dimensional for Lq ≲ 1.
The phase diagram (Fig. 9) shows the following two

important behavior: First, there exists a lower bound for the
magnitude of the boundary pulse force ϵ, for the chaos to
occur. Second, the bound is a function of the interquark
distance Lq, and it grows as Lq grows. This in particular
means that long strings are less chaotic. The shape of the
bound described in Fig. 9 appears to be consistent with
what we obtained in the rectangular string toy model in the
previous section, Fig. 5. We shall investigate more on this
behavior of the chaos bound in the next section, by using a
physical model, to locate the origin of the chaos.
Finally, let us provide a prediction about a QCD quantity.

We can also observe positive Lyapunov exponents for an
observable of the gauge theory. When the string endpoint
does not move, the AdS=CFT tells us that the force acting
on the quark and the antiquark in the gauge theory is
given by

hF⃗ðtÞi ¼ λ

72π
∂4
rX⃗jr¼π=2; ð31Þ

where λ is the ’t Hooft coupling appearing as an overall
coefficient in (22). The derivation of (31) is given in
Appendix B. Figure 10 shows the time evolution of hδF⃗ðtÞi

FIG. 7. The trajectory of the tip of the dynamical string for
rcenter ¼ 0.2, ϵ ¼ 0.4, and Δτ ¼ 4.

FIG. 8. Sensitivity of rcenter, the tip of string, to the initial
perturbation. The figure shows that δrcenter exponentially grows
and the Lyapunov exponent can be read off from the coefficient of
t: λL ≃ 0.09.

FIG. 6. Snapshot of dynamical strings.
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and it implies the sensitivity of the interquark force to an
initial perturbation. hδF⃗ðtÞi grows exponentially and its
Lyapunov exponent is consistent with that of δrcenterðtÞ. We
find chaos of the interquark force via the AdS=CFT: the
force in large Nc pure Yang-Mills theory is generically
sensitive to initial perturbations.

V. POSSIBLE ORIGIN OF THE CHAOS

We found in the numerical simulation that the NG string
in the confining geometry shows chaos, when the energy of
the string exceeds some lower bound which is a function of
the interquark distance Lq. In this section we argue why this
behavior appears, based on a simple argument.
In the QCD point of view, dynamics of the fluxtube

between quark and antiquark would be approximated by
the motion of the NG string in 4D Minkowski with fixed
endpoints as shown in Fig. 11. It is known that the NG
string is integrable in the flat spacetime [50]. Thus, the
dynamics of the bulk of the QCD string cannot be the origin
of chaos. This leads us to suspect that complicated physics
induced by the interaction between the fluxtube and quarks
would be a cause of chaos.
On the string any wave can propagate, and the motion is

integrable. The wavewill hit the boundary which is a quark.
The boundary is not a point, but a region of the QCD scale.
Since the string propagation part is integrable, any chaos, if
exists, should originate in the boundary regions [51]. We
naively assume that when the magnitude of a wave hitting
the boundary region exceeds some threshold value ϵ0 the
chaos emerges. The wave amplitude will decay while it
propagates, and so, the system with a larger interquark
distance Lq is expected to be less chaotic.
To quantify this physical model, we solve a motion of the

wave propagating on the straight string. If the NG string sits
at the bottom of the geometry, the fluctuation of the string
obeys the wave equation

½∂2
t − ∂2

x þM2
KK�Uðt; xÞ ¼ 0: ð32Þ

The mass can be obtained by the analysis of the fluctuation
of the straight string. A typical solution with a momentum
k0 larger than the mass scale, k0 ≫ MKK, is

Uðt; xÞ ¼
Z

dkfðkÞ exp
h
it

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

KK

q
− ikx

i
ð33Þ

where fðkÞ is centered at k ¼ k0. Expanding this for small
MKK=k0, we obtain

FIG. 9. Phase diagram of the chaos of the QCD string. For each
fixed interquark distance Lq, we numerically solve the string
motion with different ϵ, the amplitude of the pulse force (quench)
acting on the quarks. In the shaded region we find that the motion
is potentially chaotic, and below that chaos does not appear. This
implies that for larger Lq the motion is less chaotic. We do not
plot the region Lq < 1.2, since for a small Lq the gauge theory
becomes five-dimensional, which is not QCD-like. The non-
monotonic behavior seen around Lq ∼ 1.5 in this figure would be
due to the integrability expected for very small Lq. At
Lq ≪ 1=MKK, the fundamental string in the bulk is located in
the region U ≫ UKK where the 16 supersymmetries of the bulk
spacetime are restored. So, in that region the motion of the
fundamental string is expected to be integrable, and the chaos
bound would be higher for smaller Lq.

FIG. 10. Sensitivity of the interquark force to the initial
perturbation. We here again read off the positive Lyapunov
exponent of the chaos, and find that it is consistent with that
of δrcenter. This holographically implies that the force acting on
quarks in the gauge theory is chaotic.

FIG. 11. A string model with boundary quarks of the size of the
QCD scale ∼L0.
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U ∝ cos

�
M2

KK

2k0
t

�
∼ 1 −

M4
KK

8k20
t2 þ � � � : ð34Þ

which means that the amplitude of the fluctuation decays
along the propagation on the string. The timescale for the
fluctuation to reach the other side of the string is estimated
as t ∼ L − L0 where L0=2 is the size of the boundary region
which is expected to be the QCD scale. The typical
momentum k0 is estimated as k0 ∼ π=ð2ΔτÞ for the initial
kick in our numerical simulation. Using these, the lower
bound for the chaos is given by

ϵ ≥ ϵ0

�
1þM4

KKðΔτÞ2
2π2

ðLq − L0Þ2
�
: ð35Þ

This expression shows that a larger Lq makes the chaos
diminished.
By this analytic expression (35), we can fit our numerical

lower bound of the chaos, Fig. 9. Our numerical simulation
uses MKK ¼ 3=2, Δτ ¼ 4. We find that choosing ϵ0 ¼
0.064 and L0 ¼ 1.2 fits the numerically obtained bound
qualitatively, see Fig. 12. The obtained value, L0=2 ∼ 0.6,
roughly coincides with 1=MKK which is the QCD scale of
the model.
From this argument, we find that a physical picture

consistent with the results of the numerical simulation is a
quark model in which an integrable string connect two
boundaries whose size is of the QCD scale, and the
boundary region produces chaos if the input wave exceed
a certain threshold amplitude. The chaos originates in the
boundaries of the QCD string, the constituent quarks.

VI. SUMMARY AND DISCUSSION

In this paper, we studied chaos and time evolution of
interquark force by using the AdS=CFT correspondence.
We performed a full nonlinear numerical simulation of the
dynamics of a NG string in the confining geometry in the
gravity side. The AdS=CFT translates the chaos of the NG

string to the chaos of the interquark force. We found that the
interquark force in large-Nc four-dimensional pure Yang-
Mills theory is generically sensitive to initial perturbations,
and it is actually chaotic.
Our numerical calculation of the string in the D4-

soliton background enabled us to analyze the full dynami-
cal motion in details, and the Lyapunov exponent was
obtained. Using the AdS=CFT dictionary, we further
obtained the Lyapunov exponent of the interquark force.
Normally, time-dependence of gauge-invariant nonpertur-
bative observables of QCD is quite difficult to compute,
thus, our results provide a theoretical prediction: the
dynamics of the nonperturbative Yang-Mills gauge theory
may be generically chaotic.
Our numerical simulations have two adjustable param-

eters: the interquark distance Lq and the strength ϵ of the
impulse force on the quarks to make them start moving. By
area-bombing the parameter space, we obtained a phase
diagram of the chaos, Fig. 9. It exhibits a unique picture:
there exists a lower bound of ϵ for the chaos to occur, and
the bound grows as Lq. This feature can be understood if
the chaos originates in the constituent quark sectors (which
are the boundaries of the QCD string), as provided in
Sec. V with a simple model.
We provided a prediction of the Lyapunov exponent for

the interquark forces. We hope we can confirm the
exponent by some other direct calculations of QCD.
Recently, the gradient flow techniques have been applied
to lattice QCD simulations and the energy-momentum
tensor on the lattice was defined through a flow equation
[52]. By using these techniques, the three dimensional
distribution of energy-momentum stress tensor in SUð3Þ
gauge theory is nonperturbatively computed [53]. How-
ever, the lattice QCD analyses are still only for static
observables, and it is difficult to follow the time depend-
ence. Nevertheless, it would be beneficial to compare the
structure of the lattice QCD string with the holographic
QCD string and find some difference, to locate possible
origin of chaos qualitatively.
Our study focused on light modes of the large Nc QCD,

which are mesons and glueballs, while heavy nonlocal
excitations exist: baryons and nuclear resonances. It would
be important to quantify chaos of large Nc baryons and
nuclei and compare them with that of mesons and the QCD
strings to find any difference in origin. Again, holography
can help analyzing the chaos of the single or multiple
baryon(s). They are known to be dual to D-branes called
baryon vertices [54] in the gravity side, so the motion
of the baryons are well-approximated by a dimensionally
reduced Yang-Mills theories [55]. Based on the classical
1-dimensional Yang-Mills analyses [1,2] and on their D0-
brane interpretation [56,57], or more detailed ADHM-like
matrixmodel formulation [58] and its quantum states [59], it
is possible to quantify the chaos of baryons. Since it is
known that nuclear resonances follow quantum chaos [60],

FIG. 12. Phase diagram fitted by the quadratic function (35).
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finding out random matrixlike behavior from the classical
holographic baryons would be interesting.
The chaos in the gravity side has been studied in the

context of black hole horizons and the infinite redshift. The
universal chaos bound discovered in [10] is λ ≤ 2πT for
largeNc system with a finite temperature T, and it is proven
that all observables in the large Nc limit should obey this
chaos bound for the quantum Lyapunov exponent defined
by the out-of-time ordered correlators. Our case is at zero
temperature, so, if we naively apply the chaos bound to the
zero-temperature large Nc QCD, any chaos is not allowed.
This appears to contradict with our finding that the
interquark force has a nonzero Lyapunov exponent and
thus is chaotic—apparently there should be a loophole.
The point is that the bound in [10] was for local operators,
while our observables are nonlocal, so the bound does
not apply naively. Since non-Abelian gauge theories are
always accompanied by nonlocal observables, it would
be interesting to study how the quantum Lyapunov expo-
nent of those nonlocal observables in generic gauge
theories is theoretically observed, and how they play a
role in determining the spectral/dynamical aspects of
generic gauge theories.
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APPENDIX A: NUMERICAL DETAILS

1. Initial data

As the initial data, we use the static string configuration.
Here, we explain how to express the static solution in the
double null coordinate ðu; vÞ. Introducing τ ¼ uþ v and
σ ¼ u − v, we assume that the static solution is written as
T ¼ τ, X⃗ ¼ ðXðσÞ; 0; 0Þ, andR ¼ RðσÞ. In this assumption,
Eq. (23) is automatically satisfied. Integrating Eq. (25) by σ,
we obtain

X0 ¼ cos3R
cos3rcenter

; ðA1Þ

where rcenter is the integration constant and 0 ≡ d=dσ.
Substituting above expression into constraints (26) and
(27), we have

R02 ¼ 1

4
ð1þ cos2Rþ cos4RÞ

�
1 −

cos6R
cos6rcenter

�
: ðA2Þ

At R ¼ rcenter, we have R0ðσÞ ¼ 0. Thus, R ¼ rcenter corre-
sponds to the position of the tip of the hanging string. Note
that this equation is regular at R ¼ π=2 and well-behaved

near the AdS boundary. On the other hand, near the tip of the
hanging string,R0 ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rcenter − R

p
. This is not a suitable form

for the numerical integration around R ¼ rcenter. From
Eq. (24), we can obtain the other equation for RðσÞ as

R00 ¼ −
3

2
R02 tanR

�
1þ 3cos2Rð1þ 2cos2RÞ

1þ cos2Rþ cos4R

�

þ 3

8
tanRð1þ cos2Rþ cos4RÞ

�
1þ cos6R

cos6rcenter

�
:

ðA3Þ

This can also be derived by differentiating Eq. (A2) by σ.
Contrary to Eq. (A2), above equation is singular at R ¼ π=2
but regular at R ¼ rcenter. Therefore, in our numerical
construction of the initial data, we integrate Eq. (A3) from
R ¼ rcenter to R ¼ ðπ=2þ rcenterÞ=2. We then switch the
equation to Eq. (A2) and continue the integration from R ¼
ðπ=2þ rcenterÞ=2 to R ¼ π=2. Once we have the numerical
solution of RðσÞ, we also obtain XðσÞ integrating Eq. (A1).
As the result, we have the right half of the static string in
Fig. 3. We reparametrize the world sheet coordinates as τ →
cτ and σ → −cσ þ c0 (c and c0 are constants) so thatRjσ¼0 ¼
π=2 and Rjσ¼π=2 ¼ rcenter are satisfied. The left half of the
static string can be easily generated by the Z2-symmetry:
RðσÞ ¼ Rðπ − σÞ and XðσÞ ¼ −Xðπ − σÞ. Then, timelike
boundaries of the world sheet are located at σ ¼ 0, π.

2. Time evolution

The original form of evolution equations (23)–(25) is
numerically unstable. To stabilize time evolution, we
eliminate T;u and T;v from Eqs. (23)–(25) using the
constraint equations (26) and (27). Resultant equations
are written in the form of

Φ;uv ¼ FðΦ̂;u; Φ̂;v; Φ̂Þ: ðA4Þ

where Φ ¼ ðT; R; X⃗Þ, Φ̂ ¼ ðR; X⃗Þ and F is a nonlinear
function of its arguments.
We take uniform grid along u and v as in Fig. 13. The

grid points are explicitly written as v ¼ jh and u ¼
ðiþ jÞhþ δ (i ¼ 0; 1; 2;…; N, j ¼ 0; 1; 2;….) where h ¼
ðπ − 2δÞ=N is the mesh size and N is the number of grid
points along the u-direction. Our numerical domain is in
δ ≤ u − v ≤ π − δ and v ≥ 0. We introduced a small cutoff
δ near the time-like boundaries of the world sheet. If we set
exactly δ ¼ 0, the numerical simulation immediately breaks
down and we cannot even see regular time evolutions.
Let us focus on points N, E, W, S, and C in Fig. 13. We

can evaluate Φ and its derivatives at the point C with
second-order accuracy in h as Φ;uvjC ¼ ðΦN −ΦE −ΦWþ
ΦSÞ=h2, Φ;ujC ¼ ðΦN −ΦE þΦW −ΦSÞ=ð2hÞ, Φ;vjC ¼
ðΦN þΦE −ΦW −ΦSÞ=ð2hÞ and ΦjC ¼ ðΦE þΦWÞ=2,
where ΦN;E;W;S denote numerical values of Φ at points
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N,E,W,S. Substituting them into Eq. (A4), we obtain the
discretized version of the evolution equation. The equation
determines ΦN from ΦE;W;S. We use the Newton-Raphson
method for solving the equation.
Once we have the initial data at v ¼ 0 and boundary data

at u − v ¼ δ, π − δ, we can determine the solution in our
numerical domain by solving the discretized equation. As
the initial data, we use the static string obtained in Sec. A 1.
(So, the constraint (26) is satisfied at v ¼ 0.) At boundaries
u − v ¼ δ, π − δ, we do not change R from its initial
value: Rðτ; σ ¼ δÞ ¼ Rðτ ¼ 0; σ ¼ δÞ and Rðτ;σ¼π−δÞ¼
Rðτ¼0;σ¼π−δÞ. We impose the Dirichlet conditions for
X1 as in Eqs. (28) and (29). To determine the boundary
value of T, we consider points P, Q, and R in Fig. 13. We
can evaluate Φ and its v-derivatives at the point R as
Φ;vjR ¼ ðΦP −ΦQÞ=h and ΦjR ¼ ðΦP þΦQÞ=2. Sub-
stituting them into the constraint equation (27), we have
the equation for TP. By the similar way, using the other
constraint (26), we obtain the left boundary value of T.
Substituting Φ → Φþ δΦ into Eq. (A4) and taking first

order in δΦ, we obtain the linear partial differential
equation for δΦ ¼ ðδT; δR; δXÞ. We also solve the evolu-
tion of the linear perturbation numerically. Its numerical
procedure is completely parallel to that for the background.

3. Error analysis

As the measure of the numerical error, we monitor the
violation of the constraints (26) and (27). We introduce the
normalized constraint as

Cðu; vÞ ¼ jCuj þ jCvj
1þN u þN v

; ðA5Þ

where N u and N v are “scales” of constraints:

N u ¼ T2
;u þ X⃗2

;u þ
4R2

;u

1þ cos2Rþ cos4R
; ðA6Þ

N v ¼ T2
;v þ X⃗2

;v þ
4R2

;v

1þ cos2Rþ cos4R
: ðA7Þ

We also add 1 to the denominator of Eq. (A5) for the case of
N u ≃N v ≃ 0. We further introduce the one dimensional
function CmaxðvÞ, which measures of the constraint viola-
tion on the fixed v-slice as

CmaxðvÞ ¼ max
fixed v

Cðu; vÞ: ðA8Þ

Figure 14(a) shows CmaxðvÞ for N ¼ 4000, 8000, 16 000.
(The numerical integration by N ¼ 4000 broke down at
v ≃ 30.) We considered the same setup as Fig. 7. The cutoff
near timelike boundaries is fixed as δ ¼ 0.01. The con-
straint violation keeps small value (Cmax ≲ 10−3 for
N ≳ 8000). We can also see Cmax ∝ 1=N2. This is con-
sistent with the fact that our numerical scheme has second
order accuracy.
In Fig. 14(b), we show the time dependence of the tip of

the hanging string rcenterðtÞ for several values of the cutoff:
δ ¼ 0.005, 0.01, 0.02. The number of grid points are fixed
as N ¼ 8000. We again considered the same setup as
Fig. 7. The dependence on δ is small and typical chaotic
behavior of the string does not depend on the value of δ.

FIG. 13. Grid points on the world sheet for numerical calcu-
lations. A small cutoff δ is introduced near timelike boundaries.

(a)

(b)

FIG. 14. (a) Constraint violation Cmax for N ¼ 4000, 8000,
16 000. (b) Time dependence of the tip of the string rcenterðtÞ for
several values of cutoff δ ¼ 0.005, 0.01, 0.02.

CHAOS OF QCD STRING FROM HOLOGRAPHY PHYS. REV. D 100, 046009 (2019)

046009-11



Based on the error analysis here, we show results in the
main text of this paper for N ¼ 8000 and δ ¼ 0.01.

APPENDIX B: INTERQUARK FORCE FROM
HOLOGRAPHY

1. Derivation

Here we derive the formula (31) giving a relation
between the force acting on quarks in the gauge theory
and the NG string in the gravity side. We follow the
argument given in Appendix D of [32].
We write the on-shell NG action as

S½x⃗q; x⃗q̄� ¼ SNG½X̃�; ðB1Þ

where X̃ is a solution of the equation of motion with the
boundary condition Xðt; r → π=2Þ ¼ x⃗qðtÞ; x⃗q̄ðtÞ. The
force acting on quarks in the gauge theory is holograph-
ically given by [32]

hF⃗ðtÞi ¼ m∂tðγv⃗Þ þ
δS½x⃗q; x⃗q̄�
δx⃗qðtÞ

; ðB2Þ

wherem is mass of the quark, v⃗ ¼ _x⃗q and γ ¼ ð1 − v⃗2Þ−1=2.
Now, let us evaluate δS=δx⃗q in the gravity side. Since the

background metric is now given by (6), in the static gauge
the NG action becomes

SNG ¼ −
2λM2

KK

27π

Z
dtdr

1

cos3r

�
ð1 − ð _X⃗Þ2Þ

×

�
ðX⃗0Þ2 þ 9=M2

KK

1þ cos2rþ cos4r

�
þ ð _X⃗ · X⃗0Þ2

�
−1=2

;

ðB3Þ

where _¼ ∂t and 0 ¼ ∂r. In what follows we always take
our unit MKK ¼ 3=2. Solving the equation of motion for X⃗
near the D4-boundary; r ¼ π=2, we obtain an asymptotic
expansion form of the solution as

X⃗ðt; rÞ ¼ x⃗qðtÞ − γ2a⃗ϵ2 þ f⃗4ðtÞϵ4 þOðϵ5Þ; ðB4Þ

where a⃗ ¼ ̈x⃗q and we have defined ϵ ¼ π=2 − r.
To obtain the force, let us consider the variation of the

action (B3),

δSNG ¼ −
λ

6π

Z
dtδX⃗ ·

∂L
∂X⃗0

����
r¼π=2−ϵ

; ðB5Þ

where L is the integrand of (B3) and we introduce a cutoff
at r ¼ π=2 − ϵ. Substituting the asymptotic solution (B4)
into (B5), we obtain

δS½x⃗q; x⃗q̄� ¼
Z

dtδx⃗q ·

�
−

λ

6πϵ2
∂tðγv⃗Þ

þ λ

3πγ
ðf⃗4 þ γ2ðv⃗ · f⃗4Þv⃗Þ þ A

�
: ðB6Þ

The last term A involves complicated terms, but when we

consider a probe approximation _x⃗q → 0, A actually van-
ishes, so we do not care about A. From this expression we
find that the quark mass m corresponds to λ=6πϵ2, which is
divergent when ϵ → 0. Setting m ¼ λ=6πϵ2 and consider-

ing probe approximation _x⃗q → 0, we get the force acting on
the quark

hF⃗ðtÞi ¼ λ

72π
∂4
rX⃗ðt; rÞjr¼π=2; ðB7Þ

where we have replaced f⃗4 with ∂4
rX⃗=4!.

2. Sensitivity of the interquark force

To numerically compute the sensitivity of the interquark
force to initial perturbations, we can employ two proce-
dures to do it. One is a direct calculation: In Eq. (B7),
change the world sheet coordinate to double null u − v
coordinate and consider linear perturbations Φ → Φþ δΦ.
Evaluating the linearized differential equation for δΦ ¼
ðδT; δr; δXÞ at r ¼ π=2, we obtain the sensitivity of the
interquark force hδF⃗i. However, this is a little tough since
the right-hand side of Eq. (B7) has four derivatives of r. So,
we employ the other one which we explain in the following.
In Eq. (B5), The integrand is explicitly written as

∂L
∂X⃗0 ¼

1

cos3r
X⃗0

½ðX⃗0Þ2 þ 4ð1 − ð _X⃗Þ2Þ=ð1þ cos2rþ cos4rÞ�
1
2

:

ðB8Þ

Substituting a solution X̃ to the right hand side and
evaluating it at r ¼ π=2, this quantity is corresponding
to infinitely heavy quarkmass and the interquark force.
Changing to the double null coordinate,

�
X⃗0

_X⃗

�
¼

�
r;u T;u

r;v T;v

�−1� X⃗;u

X⃗;v

�
ðB9Þ

and plugging them into (B8), we find that this can be more
easily evaluated numerically since the right-hand side
includes only single derivatives. Considering linear pertur-
bations Φ → Φþ δΦ and evaluating it at u ¼ 0 or u ¼ π,
we obtain the sensitivity to perturbations of the interquark
force:

hδF⃗ðtÞi ¼ λ

6π
δ

�∂L
∂X⃗0

�����
u¼0;π

: ðB10Þ
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