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Canonical quantization of general relativity does not yield a unique quantum theory for gravity. This is in
part due to operator ordering ambiguities. In this paper, we investigate the role of different operator
orderings on the question of whether a big bang or big crunch singularity occurs. We do this in the context
of the minisuperspace model of a Friedmann-Lemaître-Robertson-Walker universe with Brown-Kuchař
dust. We find that for a certain class of operator orderings such a singularity is eliminated without having to
impose boundary conditions.
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I. INTRODUCTION

Probably the most conservative approach to quantum
gravity is canonical quantum gravity, which arises from
applying the usual quantization techniques to general
relativity. In canonical quantum gravity, the state is given
by a wave functional Ψðð3Þg;ϕÞ on three-metrics ð3Þg and
some matter degrees of freedom, say a scalar field ϕ. The
wave equation is not dynamical, since time is absent from
it, but amounts to “constraints” on the wave function. These
constraints are the diffeomorphism constraint and the
Hamiltonian constraint Ĥψ ¼ 0, also called the Wheeler-
DeWitt equation. Due to operator ordering ambiguities
in the quantization process, many different forms of
these constraints can be obtained, resulting in different
quantum theories for gravity. A choice of operator
ordering that is often made (mostly in the context of
minisuperspace models) is to take the Laplace-Beltrami
operator with respect to the DeWitt metric on superspace
[1,2]. However, other choices remain open, especially
in the absence of experimental guidance. The choice
of operator ordering may have effect on the physical
content of the theory [3–5]. In this paper, we investigate
the effect on the possible presence of cosmological
singularities.
According to general relativity, singularities like a big

bang or big crunch singularity are generically unavoidable.
This is the content of the Penrose-Hawking singularity
theorems. This is usually taken as a signal that the classical
theory breaks down and it is hoped that a quantum theory
for gravity will eliminate such singularities. This has been
investigated in simplified models, called minisuperspace
models, which arise from applying the usual quantization
techniques to symmetry-reduced general relativity by
assuming homogeneity and isotropy. However, there is
the question of what exactly should be meant by space-time

singularities in the context of quantum gravity. In general
relativity, singularities arise when geodesics cannot be
smoothly extended. In quantum gravity, this notion no
longer makes sense, since there is no actual metric field.
There is only the wave functional on three-metrics.
Different criteria have been proposed for a singularity.
Examples include that the metric has support on singular
three-metrics, that it is peaked on singular three-metrics,
or that the expectation of the scale factor vanishes (see,
e.g., [6–14]). Even though these criteria may shed some
light on the issue of singularities, none of these seems
completely satisfactory. For example, demanding that the
wave function be zero on singular metrics is often
viewed as sufficient for singularity avoidance [6,14].
However, the set of singular metrics is often of measure
zero, and so the amplitude of the wave function at those
configurations seems of no relevance. Alternatively, it
should perhaps be specified at which rate the wave
function vanishes near singularities [15]. For some of
these criteria, the question whether or not the singularities
are eliminated also hinges on how the problem of time is
dealt with (see, e.g., [8]).
In this paper, we consider a different criterion, namely,

that space-time singularities do not occur if and only if
there is no quantum (probability) flux into singular
metrics. To appreciate this criterion and to contrast it
with the alternative prevailing viewpoints, it is useful to
consider the following example: in classical mechanics,
the Coulomb potential −Ze2=r is singular at r ¼ 0.
Classically, a particle can reach this singularity and its
motion cannot be continued thereafter. Is this singularity
eliminated in quantum mechanics? In the case of the
Dirac equation with the Coulomb potential, the ground
state is given by

ψ0ðrÞ ∼ ð2mZαrÞ
ffiffiffiffiffiffiffiffiffiffiffi
1−Z2α2

p
−1e−mZαr: ð1Þ
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Can the quantum particle fall into the singularity of the
Coulomb potential? There is no actual point-particle like
in classical mechanics, just the wave function. The wave
function is nonzero at the origin. It even diverges. So
according to some of the proposed notions of a singu-
larity, the singularity is not eliminated. However, quan-
tum mechanically, according to the Born rule, the wave
function merely determines a probability amplitude to
find the particle somewhere upon detection. The probability
(with respect to the measure ψ†ψd3x) of finding the particle
at one particular point, including the singularity, is always
zero. So merely considering the quantum mechanical
probability distribution is not helpful. However, what seems
more relevant is whether the probability density flows into
or out of the singularity, i.e., whether the probability flux
into the singularity is zero or not. If there is a decreased
change over time to find the particle outside the singularity,
it seems natural to conclude that the particle might have
ended up in the singularity. If there is no flux into or out of
the classical singularity, then the singularity is avoided
quantum mechanically. Concretely, in this context, this
condition means that1

lim
R→0

I
CR

dσðxÞjnμðxÞjμðxÞj ¼ 0; ð2Þ

where CR is the cylinder with radius R and normal field nμ
centered around the line r ¼ 0 in space-time and jμ ¼ ψ̄γμψ
is the Dirac current. (The absolute value is taken so that
there is no incoming and no outgoing flux.) For any state,
the condition (2) is actually satisfied since the L2 norm of
thewave function is preserved. So in this case the notion ties
together with the unitarity of the quantum dynamics.
When it comes to quantum gravity, there is no immediate

probability distribution that could be used to formulate a
Born rule, even in the case of minisuperspace models, due
to the constraint nature of the theory. Nevertheless, there is
a conserved current and we can consider whether there is
flux into singular metrics. This conserved current can be
derived as a Noether current corresponding to the U(1)
symmetry of the action SðψÞ ¼ hψ jĤψi from which the
Wheeler-DeWitt equation Ĥψ ¼ 0 is derived (provided
there is a kinematical inner product with respect to which
Ĥ is symmetric). As a no-singularity criterion, we now
consider the condition that there is no flux into singular
metrics.
An advantage is that we do not need to consider a Hilbert

space or deal with the problem of time. Another advantage
is that the no-flux criterion can be naturally written in
coordinate-free language using differential forms. Namely,

in the case of an n-dimensional minisuperspace, the local
conservation of the current J yields that J is most naturally
thought of as an instance of a closed (n − 1) form. The flux
of such a form through codimension-one surfaces ∂Ω
(encompassing the singular metrics) is intrinsically defined
by the integral

R
∂Ω J.

On the other hand, the conserved current may not directly
be related to probability flow. While in the case of the Dirac
theory, the no-singularity criterion was related to conserva-
tion of probability, this may no longer be so in the case of
quantum gravity. The situation may be compared to that of
the Klein-Gordon equation describing a single spinless
particle. The conserved current jμ ∼ Imðψ�∂μψÞ is not a
probability current, but rather is often interpreted as the
charge current. Nevertheless the flux of this current can be
considered even though it may not be sufficient to com-
pletely capture the notion of singularity avoidance.
This being said, in the semiclassical regime, the current

is sometimes treated as a probability current [2,16,17].
Also, our notion of singularity avoidance is relevant in the
case of Bohmian gravity. In Bohmian quantum gravity
[18], there is an actual metric and actual matter degrees of
freedom, such as a scalar field, and the integral curves of
the conserved current form the possible trajectories. So, in
this case, the classical notion of singularity can be
employed and singularities are typically avoided when
there is no flux through the singularities. The situation is
similar in case of the Klein-Gordon equation, where the
Bohmian trajectories correspond to the integral curves of
the Klein-Gordon current. In addition, in the context of
Bohmian nonrelativistic quantum mechanics, the jψ j2d3x
probability for a particle to run into the singularity of the
Coulomb potential is zero if and only if the no-flux
condition is obeyed [19,20].
In the next section, we will consider a particular

minisuperspace model corresponding to a Friedmann-
Lemaître-Robertson-Walker (FLRW) universe with dust,
where the dust is described by the Brown and Kuchař
method [21]. In this example, it turns out that the chosen
operator ordering plays a crucial role in whether or not
singularities occur.

II. MINISUPERSPACE WITH DUST

In the Brown-Kuchař description [21,22], dust is
described by a matter fluid determined by the rest mass
density ρ and a four-velocity field Uμ, which can be
parametrized by certain (noncanonical) scalar fields. The
classical action including gravity is2

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
ρðgμνUμUν − 1Þ þ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p
R;

ð3Þ
1One might worry that the integral in (2) is not finite because it

involves an integration over an unbounded surface CR. It might
therefore be worth considering alternative criteria, like demand-
ing that (2) holds for appropriate segments of CR or that
limsupR→0supx∈CR

jnμðxÞjμðxÞj ¼ 0. 2We take ℏ ¼ c ¼ 1.
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where G is the gravitational constant, gμν is the four-metric,
and R is the Ricci scalar. Assuming spatial homogeneity
and isotropy, the metric is given by the FLRW metric

ds2 ¼ NðtÞ2dt2 − aðtÞ2dΩ2; ð4Þ

where N > 0 is the lapse function, a is the scale factor, and
dΩ2 is the spatial line-element on 3-space. We assume that
there is no spatial curvature and that 3-space is compact,
with comoving volume V. Because of the symmetry, the
dust field Uμ can be parametrized by a single scalar field
T ¼ TðtÞ as Uμ ¼ ∂μT. The effective classical Lagrangian
is given by

L ¼ V

�
1

2
Na3ρ

�
_T2

N2
− 1

�
−

1

2Nκ2
a _a2

�
; ð5Þ

where κ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πG=3

p
. The corresponding classical equa-

tions of motion are

_T2 ¼ N2;
d
dt

ða3ρÞ ¼ 0;

_a2

N2a2
¼ 2κ2ρ;

d
dt

�
_aa2

N

�
¼ 3

2

a _a2

N
: ð6Þ

The lapse function is an arbitrary function of time, which
relates to the time reparametrization invariance. In the
gauge N ¼ 1, so that t is cosmic time (i.e., the proper time
for an observer moving with the expansion of the
Universe), we can write these equations as

T ¼ tþ t0;
d
dt
ða3ρÞ ¼ 0;

_a2

a2
¼ 2κ2ρ;

ä
a
¼ −κ2ρ:

ð7Þ

Without loss of generality, we can put the constant t0 ¼ 0,
so that the matter field T just equals cosmic time. The
resulting equations are the familiar ones for dust, which
leads to the following evolution of the scale factor:

aðtÞ ¼ ðc1tþ c2Þ2=3; ð8Þ

with c1, c2 constant. So, classically, there is always a big
bang or big crunch singularity, when a ¼ 0, obtained
at t ¼ −c2=c1.
Canonical quantization of this classical theory yields the

Wheeler-DeWitt equation

Ĥψ ≔ i∂Tψ −
1

2M
1

amþ1
∂aðam∂aψÞ ¼ 0; ð9Þ

where ψ ¼ ψða; TÞ, and hence ψ is independent of time t,
and M ¼ V=κ2. The variable m corresponds to a choice of

operator ordering.3 The choice m ¼ −1=2 corresponds to
using the Laplace-Beltrami operator corresponding to the
DeWitt metric on minisuperspace [22]. Other operator
orderings have been considered in, e.g., [23].
There is a conservation equation

∂TjT þ ∂aja ¼ 0; ð11Þ

where

jT ¼ jψ j2amþ1; ja ¼ −
1

2M
amImðψ�∂aψÞ: ð12Þ

Avoidance of the singularity now means that there is no
flux through a ¼ 0 in the half-plane determined by
a ∈ Rþ ≔ ð0;þ∞Þ, T ∈ R. In other words,4

lim
a→0

Z þ∞

−∞
dTjjaða; TÞj ¼ 0: ð14Þ

Using x ¼ 2
3
a3=2 and τ ¼ −T, the Wheeler-DeWitt

equation (9) reduces to

i∂τψ ¼ −
1

2M
1

xn
∂xxn∂xψ ; ð15Þ

with n ¼ 2m=3þ 1=3. Since a ∈ Rþ, we have that
x ∈ Rþ. Using the transformation ψ ¼ x−n=2ϕ=ð2=3Þn,
we get

i∂τϕ ¼ −
1

2M
∂2
xϕþ c

2M
1

x2
ϕ; ð16Þ

with c ¼ ðn=2 − 1Þn=2. So we get the nonrelativistic
Schrödinger equation with a 1=x2 potential. We have that

−ja ¼ jx ¼
1

2M
Imðϕ�∂xϕÞ; ð17Þ

3Of course, more general operator orderings could be consid-
ered, such as

i
1

wðTÞ ∂TðwðTÞψÞ þ
1

2MafðaÞ ∂aðfðaÞ∂aψÞ ¼ 0; ð10Þ

which is still a local constraint.
4In the Bohmian theory, the dynamics is given by

_T ¼ N
jT

jψ j2amþ1
; _a ¼ N

ja
jψ j2amþ1

; ð13Þ

with N as an arbitrary function of time [18]. This dynamics
preserves the measure jψða; TÞj2amþ1dadT (which is no prob-
ability measure). In this case, the no-flux condition (14) is closely
related to the property that the jψða; TÞj2amþ1dadT measure of
the set of “initial” configurations that start or end up in a ¼ 0 is
zero.
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with jx the usual probability current associated with the
Schrödinger equation (16), which satisfies

∂τjϕðx; τÞj2 þ ∂xjxðx; τÞ ¼ 0: ð18Þ

The criterion that there be no flux into the big bang
configurations (a ¼ 0) now reads5

lim
x→0

Z þ∞

−∞
dτjjxðx; τÞj ¼ 0: ð19Þ

The form of the Schrödinger equation (16) suggests that
one look for a unitary dynamics on the Hilbert space
L2ðRþÞ, with τ playing the role of time [22,24]. A unitary
dynamics will preserve the norm of ϕ, i.e.,

kϕðx; τÞk2 ¼
�Z þ∞

0

jϕðx; τÞj2dx
�

1=2
ð20Þ

is constant as a function of τ, i.e., ∂τkϕk2 ¼ 0. On the other
hand, from the continuity equation (18), we have

∂τkϕðx;τÞk22¼−
Z þ∞

0

dx∂xjxðx;τÞ¼−lim
x→0

jxðx;τÞ ð21Þ

[provided limx→þ∞jxðx;τÞ¼ 0]. Hence, limx→0jxðx; τÞ ¼ 0
and there is no flux in each finite τ interval. This does not
necessarily imply the no-flux condition (19), since there
might still be flux for jτj going to infinity. However, we will
not worry about this since classically already, jτj to infinity
corresponds to infinite proper cosmic time.6

This being said, we will refrain from demanding a
unitary dynamics. After all, time does not appear in the
theory and promoting the variable τ to play the temporal
role relies on a certain way to solve the problem of time. At
this stage, we do not want to commit ourselves to any
solution to that problem. So, we want to regard (16) as a
partial differential equation at face value, without regarding
τ as a time variable. Requiring that solutions ϕ are square
integrable over the ðx; τÞ half-plane (x > 0) is too strong,
but in order to preserve the possibility of a notion of
(conditional) probability, it remains natural to require that
they are square integrable over certain sections of the
half-plane.
In the case c ¼ 0, a L2ðRþÞ-integrability condition for

ϕð:; τÞ does not yet accomplish ruling out flux through
a ¼ x ¼ 0: the dynamics in this case can be seen as the
restriction to the half line of the free Schrödinger evolution

over the whole line. For a generic solution of the latter
problem, there will be flux through the origin. Extra
boundary conditions need to be imposed to prohibit such
a flux. [Requiring a unitary dynamics on the half line yields
the boundary conditionϕjx¼0¼C∂xϕjx¼0, withC∈R∪f∞g.
In this case, we have again limx→0jxðx; τÞ ¼ 0.]
In the case c > 0, the representation (16) of the

Schrödinger equation exhibits a repulsive potential term
proportional to 1=x2. One might wonder whether this
potential, which is in principle infinitely repelling at the
origin, is sufficient to prohibit flux through a ¼ x ¼ 0.
This appears to be indeed the case, under mild assump-
tions, when c ≥ 3=4. For example, if we require ϕ and
ĥϕ ≔ − 1

2M ∂2
xϕþ c

2M
1
x2 ϕ to be in L2ðRþÞ,7 then ϕ ¼

Oðx3=2Þ and ∂xϕ ¼ Oðx1=2Þ ([25], pp. 249–250), so that
limx→0jxðx; τÞ ¼ 0. [Clearly, for c ¼ 0, the condition that ϕ
and ĥϕ are in L2ðRþÞ is not sufficient to guarantee no flux.]
The condition on ψ could even be weakened, but this will
be discussed in future work.
The requirement that c ≥ 3=4 relates to that fact that

for those values are those for which ĥ is essentially self-
adjoint [26]. By virtue of Stone’s theorem, such essential
self-adjointness corresponds to a situation where a unique
unitary dynamics e−iτĥ can be associated with the oper-
ator ĥ.
If T is taken to be time, then one could take JT to be a

probability distribution by requiring normalizability. Then
the current corresponds to a probability current. This is
also the case in the Bohmian theory, since it follows from
the Bohmian dynamics that T can be treated as a clock
variable.
To conclude, by assuming a certain operator ordering,

together with a mild integrability condition, one can rule
out any flux into singular configurations.

III. CONCLUSION

We investigated the role of operator orderings in the
question of space-time singularities corresponding to a big
bang or big crunch. We used the criterion that quantum
mechanically there are space-time singularities if and only
if there is quantum flux into singular three-metrics. For a
quantum minisuperspace model with dust, an operator
ordering can be chosen in the quantization process such
that big bang or big crunch singularities are avoided,
without assuming any boundary conditions. This is because
of the appearance of an effective potential that repels from
the singularity. This potential falls off rapidly away from
the singularity and hence merely seems to affect the
quantum dynamics near the singularity. Effects away from
the singularity, such as the appearance of an effective

5Similarly, a no-flux criterion might be formulated to avoid
big rip singularities (which classically correspond to a → ∞ in
finite time).

6In the Bohmian theory, limx→0jxðx; τÞ ¼ 0 is enough to
ensure that trajectories do not reach the singularity in finite
cosmic proper time.

7This condition, guarantees that ∂xjx ¼ 2Reðiψ�ĥψÞ is inte-
grable so that the argument concerning (21) can be made in the
first place.
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cosmological constant, described in [27], are presumably
unaffected by such alternative operator orderings. The
situation is similar to that in loop quantum gravity where
the quantum effects also cause a bouncing behavior near
the singularity [9–13].
Perhaps singularities can similarly be avoided in other

minisuperspace models, e.g., with a canonical scalar field,
or in full quantum gravity. In view of the absence of
experimental evidence for one or the other operator order-
ing, the criterion that singularities are prohibited can
perhaps narrow down the possibilities.

In the example of minisuperspace with dust, our singu-
larity criterion actually fits well with the usual way of
dealing with the problem of time. However, it remains to be
seen if this is still the case for other minisuperspace models.
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