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We study 3d N ¼ 2 Chern-Simons (CS) quiver theories on S3 and Σg × S1. Using localization results,
we examine their partition functions in the large rank limit and requiring the resulting matrix models to be

local, find a large class of quiver theories that include quivers in one-to-one correspondence with the dADE
Dynkin diagrams. We compute explicitly the partition function on S3 for D̂ quivers and that on Σg × S1 forcAD quivers, which lead to certain predictions for their holographic duals. We also provide a new and simple
proof of the “index theorem,” extending its applicability to a larger class of theories than considered before
in the literature.
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I. INTRODUCTION AND OUTLINE

Supersymmetric localization has made a whole host of
theories accessible to nonperturbative analysis. It provides
a powerful framework to construct and compute quantities
along the renormalization group flow nonperturbatively.
One of them is the exact partition function Z for super-
symmetric gauge theories put on various curved manifolds
in different dimensions (see [1] and references therein).
This has led to a deeper understanding, checks and/or
discovery of various dualities among field theories, even
across dimensions. Since one gets access to exact results,
one can test AdS=CFT correspondence in the regime
relating weak gravity results (may or may not have been
obtained via localization) to strong coupling results in the
field theory (highly likely to have been obtained via
localization). We will focus here on this latter possibility
with the study of supersymmetric quiver gauge theories in
three-dimensions, i.e., an example of AdS4=CFT3.
Free energy. Localization was successfully applied to

compute the partition function of 3d Chern-Simons-matter
(CSm) theories placed on 3-sphere S3 in [2–4]. The first
explicit construction of a 3d N ¼ 6 gauge theory with
M-theory dual was presented in [5] and is now known as
ABJM theory. It involved two UðNÞ gauge groups with CS
terms at levels �k and four bifundamental chiral multiplets
(in terms of N ¼ 2 multiplets). The dual geometry

involved placing N M2-branes at the tip of a C4=Zk

singularity such that in large N limit, the AdS4×S7=Zk
vacuum solution of M-theory was obtained. Following this,
a large number of N ≥ 2 dual pairs have been identified,
with the M-theory dual of the form AdS4 × Y7, where Y7 is
a (tri-)Sasaki-Einstein manifold given by the base of a
certain 8d (hyper-)Kähler cone [6–12]. The AdS=CFT
dictionary relates VolðY7Þ to the free energy FS3 of the
dual gauge theories in the large N limit [7,13]

FS3 ¼ − log jZS3 j ¼ N3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π6

27VolðY7Þ

s
: ð1:1Þ

This provides an important tool to compute the volumes via
computations in the dual field theory.
We will consider general N ¼ 2 quiver gauge theories

on S3 involving matter multiplets with arbitrary R-charges
Δ’s in the large N limit. This will lead us to a large class of
quiver theories whose free energy scales as N3=2 from
requiring that the long-range forces in the resulting matrix
model cancel (or equivalently, that the matrix model be
local) along with a constraint on the R-charges of bifun-
damental multiplets given by (2.6). A subset of this

constraint leads to the dADE classification via a simple
constraint on the bifundamental R-charges:

Δða;bÞ þ Δðb;aÞ ¼ 1: ð1:2Þ

Note that for N ≥ 3 case, this condition is automatic since
the supersymmetry enhancement fixes the R-charges to be 1

2

and dADE classification was presented in [14]. We will then
explicitly solve the large N matrix model of the N ¼ 2 D̂
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quiver theories,1 whose dual geometry involves certain
7-dimensional Sasaki-Einstein manifolds Y7. Computation
of their volumes directly does not necessarily give the
volume for the Calabi-Yau (CY) metric necessary for the
AdS=CFT correspondence.2 This can be circumvented by
using the geometrical result of volume minimization that
fixes the Reeb vector and gives the correct volume of
the Ricci-flat Kähler manifold, which corresponds in
the dual field theory to F-maximization that fixes the
R-charges at the IR fixed point [8,18,19]. We will leave the
check of this correspondence in the case of D̂ quivers for
future work and treat the FS3 computed in Sec. IV as
predicting the volumes of the relevant Sasaki-Einstein Y7’s.
Twisted index. Localization has also been used to

compute the partition function of 3d CSm theories on
Σg × S1 with a partial topological twist [20] on the
Riemann surface (Σg) of genus g [21–23]. This partition
function is usually called topologically twisted index and
depends on chemical potentials ν≡ Abg

t þ _ισbg (complex
mass parameters constructed from the background vector
multiplets coupled to the flavor symmetries) as well as
background magnetic fluxes n through Σg for the flavor
and R-symmetry. It was shown in [24] that the large N limit
of ℜ logZS2×S1 for ABJM theory reproduces the macro-
scopic entropy SBH of supersymmetric magnetic AdS4
black holes discussed in [25]. The large N limit for many
other theories has been considered in [26,27], which
revealed a connection of Bethe potential V—obtained
as an intermediate step while computing the twisted
index—to the FS3 discussed above. In addition, a relation
dubbed “index theorem”3 was proven which showed
that the twisted index could be written directly in terms
of the V and its derivatives with respect to the chemical
potentials.
We will again consider general N ¼ 2 quiver gauge

theories on Σg × S1 in large N limit and find that dADE
classification [as a subset of quiver theories which satisfy
(3.7) and (3.12)] follows from the requirement that the
matrix model is local and the following set of constraints is
satisfied:

νða;bÞ þ νðb;aÞ ¼
1

2
and nða;bÞ þ nðb;aÞ ¼ 1: ð1:3Þ

We will then compute the large N limit of the topologically

twisted index for cAD quivers. Abusing the terminology
slightly, we will denote I ¼ log jZΣg×S1 j and call it the
twisted index most of the time.4 Along the way, we will
extend (and simplify) the proof of the relation between the
Bethe potential and the twisted index to cover not just the
Â-type quiver theories [26] but a large class of theories
including the cDE quivers. Once again, we will not construct
the dual AdS4 black hole solutions to compute the entropy
SBH explicitly (see the recent review [31] and references
therein for more on twisted index and entropy matching).
Assuming AdS=CFT correspondence to hold, we can
conjecture that the twisted index computed in Sec. V forcAD quivers is the entropy for the corresponding dual black
holes (after extremization with respect to the chemical
potentials), leaving an explicit check for future. However,
for the specific case of the universal twist [32,33], we
provide further evidence for the AdS=CFT correspondence.
In this case, due to holographic renormalization group flow
from AdS4 to AdS2, the black hole entropy follows a
simple relation (g > 1):

SBH ¼ ðg − 1ÞFS3 : ð1:4Þ

The twisted index is also proportional to the free energy and
a simple relation between various quantities introduced till
now follows

SBH

�
Δ
2

�
¼ I

�
Δ
2

�

¼ ðg − 1Þ
�
4V

�
Δ
2

�
¼ FS3 ½Δ� ¼

4πN3=2

3
μ½Δ�

�

with
1

8μ2
¼ VolðY7Þ

VolðS7Þ : ð1:5Þ

Here, Δ’s are the R-charges of the bifundamental fields

appearing in the dADE quiver at a superconformal fixed

point where FS3 is extremized, i.e.,
∂FS3∂Δða;bÞ

¼ 0.

Outline. In Sec. II we review the computation of free
energy on S3 in large N limit. In Sec. III we revisit the
twisted index computation in large N limit and set up our
notation consistent with the previous section. Along the
way, we provide some new results including a simple proof
of the relation between I and V. In Sec. IV we specialize to
the free energy computation: we review the result for Âm

quivers; provide an explicit example of D̂4 quiver and
conjecture the result for D̂n quivers. In Sec. V we move on

1The N ¼ 2 Â quivers have been discussed in detail in [15]
and Ê quivers can be solved using the approach discussed in this
paper, but due to increasing complexity (and decreasing clarity)
of the expressions, we refrain from giving the explicit results
here.

2It was not the case forN ≥ 3 theories where the hyper-Kähler
structure guarantees the CY condition, which was used to
calculate explicit volumes for toric quivers like Â in [16] and
nontoric ones like D̂ in [17].

3This nomenclature was introduced in [26] and has stuck in the
derivative literature since then. It has no relation to the (Atiyah-
Singer) theorem about the index of elliptic differential operators.

4We will consider here field theories having M-theory duals
only. Theories with type IIA duals can also be similarly
considered as have been done in [28–30].
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to the twisted index computation: we provide explicit
computations for Â3 and D̂4 quivers, and present the
general results for Âm

5 and D̂n quivers based on the
previous section. We conclude with Sec. VI and
the Appendix where we collect some derivations and
proofs to make this paper self-contained.

II. S3 AND FREE ENERGY

We consider N ¼ 2 quiver CS gauge theories involving
vector multiplets (VM) with gauge group G ¼⊗a UðNaÞ
and matter multiplets (MM) in representation ⊗i Ri of G.
We will deal with (anti)bifundamental and (anti)fundamen-
tal representations only. VM consists of a gauge field Aμ, an
auxiliary complex fermion λα (α ¼ 1, 2) and two auxiliary
real scalars σ and D. MM consists of a complex scalar ϕ, a
complex fermion ψα and an auxiliary complex scalar F.
The theories in consideration have been localized on S3

in [2–4]. According to them, ZS3 gets localized on
configurations where σa in the N ¼ 2 VMs are constant
Na × Na matrices and thus the original path integral
reduces to a matrix model:

ZS3 ¼
1

jWj
Z �Y

a

Y
Cartan

dσa

�
e_ιπ

P
a
katrðσ2aÞ

×
Y
a

detAdð2 sinhðπαðσaÞÞÞ
Y
MMin
repRi

detRi
ðelð1−Δiþ_ιρiðσÞÞÞ;

ð2:1Þ

lðzÞ ¼ _ι

2π
Li2ðe2π_ιzÞ þ

_ιπ

2
z2 − z logð1 − e2π_ιzÞ − _ιπ

12
;

l0ðzÞ ¼ −πz cotðπzÞ; ð2:2Þ

where ka are the CS levels of the VM corresponding to
UðNaÞ, Δi are the R-charges of the corresponding MM in
representation Ri, and αðσÞ, ρðσÞ are the roots and weights
of the appropriate gauge group representations. Denoting
the eigenvalues of σa matrices by λa;i with i ¼ 1;…; Na

leads to a simple expression for free energy:

FS3 ¼ − log jZS3 j⇒ ZS3 ¼
Z Y

a;i

dλa;ie
−FS3 ðfλa;igÞ

⇒ FS3 ≈−_ιπ
X
a;i

kaλ2a;i − 2
X
a

X
i>j

log j2 sinhðπλa;i − πλa;jÞj

−
X

ða;bÞ∈E

X
i;j

lð1−Δða;bÞ þ _ιðλa;i − λb;jÞÞ

−
X
a

X
ffag

X
i

lð1−Δfa þ _ιλa;iÞ: ð2:3Þ

Here, we have included only bifundamental and funda-
mental representations explicitly; the (anti)reps can be
similarly added and will be added below as required.
We are most concerned with the above expression’s large
rank limit, keeping the CS levels fixed. For that purpose, we
rewrite Na → naN for some integers nað≥1Þ and then take
N → ∞ by going to a continuum limit. We will mostly
follow [7,10,14,15,34] in our saddle point analysis of FS3

so most of this section has appeared before in the literature
in one form or the other, apart from the explicit identi-

fication of N ¼ 2 dADE quivers.
The saddle point equation following from (2.3) for λa;i is

0 ¼ ∂FS3

∂λa;i ∝ 2
X
j≠i

coth½πðλa;i − λa;jÞ�

−
X

bjða;bÞ∈E;j
ð1 − Δða;bÞ þ _ιðλa;i − λb;jÞÞ

× coth½πðλa;i − λb;j þ _ιΔða;bÞÞ�
−

X
bjða;bÞ∈E;j

ð1 − Δðb;aÞ − _ιðλa;i − λb;jÞÞ

× coth½πðλa;i − λb;j − _ιΔðb;aÞÞ�: ð2:4Þ

The CS term and terms from fundamental matter are
subleading compared to the vector and bifundamental
contribution so we do not write them above. To take the
continuum limit, we assume the eigenvalue distribution for
UðnaNÞ to be

λa;i → λa;IðxÞ ¼ Nαxþ _ιya;IðxÞ ðwith I ¼ 1;…; naÞ;
ð2:5Þ

and introduce an eigenvalue density ρðxÞ ¼ 1
N

P
iδðx − xiÞ

such that
R
dxρðxÞ ¼ 1. This allows us to use the large

argument approximation for coth½πðλa;i−λb;jÞ�≈sgnðx−x0Þ
and convert

P
i → N

R
dxρðxÞPI. Note that if we demand

the same number of bifundamental and antibifundamental
matters at each edge, then no contributions arise at
OðN1þαÞ. The contribution at OðNÞ then gives a constraint
on na’s and R-charges as follows:

0 ¼ ∂FS3

∂λa;i ∝
�
2na −

X
bjða;bÞ∈E

ð2 − Δða;bÞ − Δðb;aÞÞnb
�

× N
Z

dx0ρðx0Þsgnðx − x0Þ

⇒ 2na ¼
X

bjða;bÞ∈E
ð2 − Δða;bÞ − Δðb;aÞÞnb: ð2:6Þ

This constraint originating from the saddle point analysis
guarantees the cancellation of long-range forces and the
expression for free energy will turn out to be local. We will

5To our knowledge, the general result for twisted index of Âm
quivers presented here is new and only certain limits of that result
are available in the literature.
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present the off-shell expression for free energy with generic R-charges but for explicit computation of free energy, we will

consider a stricter constraint: Δða;bÞ þ Δðb;aÞ ¼ 1. It is easy to see that this gives us an dADE classification (see Fig. 1) for
these N ¼ 2 quivers just like in the N ¼ 3 case.6 This condition can also be motivated from the analysis of superpotential
as discussed in [15].
Now moving to FS3 , we have from (2.3)

FS3 ≈ −_ιπN
Z

dxρðxÞ
X
a;I

kaðNαxþ _ιya;IðxÞÞ2

− N2

Z
dxdx0ρðxÞρðx0Þ

X
a;I;J

log j2 sinhðπNαðx − x0Þ þ _ιπðya;IðxÞ − ya;Jðx0ÞÞÞj

− N2

Z
dxdx0ρðxÞρðx0Þ

X
ða;bÞ∈E

X
I;J

lð1 − Δða;bÞ þ _ιNαðx − x0Þ − ðya;IðxÞ − yb;Jðx0ÞÞÞ

− N
Z

dxρðxÞ
X

a;ffag;I
lð1 − Δfa þ _ιNαx − ya;IÞ − N

Z
dxρðxÞ

X
a;ff̄ag;I

lð1 − Δ̄fa − _ιNαxþ ya;IÞ:

We change variables from Nαðx − x0Þ → ξ where required and keep at most two highest orders of N in each term to get7

FS3 ≈ −_ιπN1þ2α
X
a

ðnakaÞ
Z

dxρðxÞx2 þ 2πN1þα

Z
dxρðxÞ

X
a;I

kaxya;IðxÞ

þ 1

4π
N2−α

Z
dxρðxÞ2

X
a;I;J

argðe2π_ιðya;I−ya;J−1=2ÞÞ2

−
1

4π
N2−α

Z
dxρðxÞ2

X
ða;bÞ∈E

X
I;J

�
ð1 − Δða;bÞ − ðya;I − yb;JÞÞ argðe2π_ιð1=2−Δða;bÞ−ðya;I−yb;JÞÞÞ2

þ 1

3π
argðe2π_ιð1=2−Δða;bÞ−ðya;I−yb;JÞÞÞðπ2 − argðe2π_ιð1=2−Δða;bÞ−ðya;I−yb;JÞÞÞ2Þ þ ðΔðb;aÞtermsÞ

�

þ _ιπ

2
N1þ2α

X
a

ðfana − f̄anaÞ
Z

dxρðxÞx2

þ πN1þα
X
a;I

Z
dxρðxÞjxj

�X
ffag

ð1 − Δfa − ya;IÞ þ
X
ff̄ag

ð1 − Δ̄fa þ ya;IÞ
�
: ð2:7Þ

FIG. 1. dADE quivers with comarks na written inside the nodes. (For D̂n quivers, CS levels are also marked.)

6This is not the only simple solution of (2.6). For example, ABJM theory (Â1) and other odd Â quivers can still be constructed with the
less strict condition: Δða−1;aÞ þ Δða;a−1Þ þ Δða;aþ1Þ þ Δðaþ1;aÞ ¼ 2. It would be interesting to study generic non- dADE theories with
nontrivial constraints on R-charges compatible with (2.6).

7We use argðe2π_ιxÞ ¼ 2πxþ 2πb1
2
− xc later. We have omitted divergent (as well as constant) terms that cancel due to (2.6). See

Appendix for details.
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Here, faðf̄aÞ are the total number of (anti)fundamental fields at node a. We see 3 powers ofN so let us assume
P

anaka ¼ 0

and
P

aðfa − f̄aÞna ¼ 0 so that we can match N1þα ¼ N2−α giving us the expected α ¼ 1
2
. We also point out that to get

nontrivial solutions, a much stricter equality fa ¼ f̄a needs to be imposed8 leading us to the final expression to be
extremized:

FS3 ¼ N3=2

Z
dxρðxÞ

�
2πx

X
a;I

kaya;IðxÞ þ
1

4π
ρðxÞ

�X
a;I;J

argðe2π_ιðya;I−ya;J−1=2ÞÞ2

−
X

ða;bÞ∈E

X
I;J

�
ð1 − Δða;bÞ − ðya;I − yb;JÞÞ argðe2π_ιð1=2−Δða;bÞ−ðya;I−yb;JÞÞÞ2

þ 1

3π
argðe2π_ιð1=2−Δða;bÞ−ðya;I−yb;JÞÞÞðπ2 − argðe2π_ιð1=2−Δða;bÞ−ðya;I−yb;JÞÞÞ2Þ þ ðΔðb;aÞtermsÞ

��

þ πjxjð2nF − ΔFÞ
�
− 2πμN3=2

�Z
dxρðxÞ − 1

�
: ð2:8Þ

We defined nF ¼ P
af

ana ¼
P

af̄
ana, ΔF ¼ P

a

P
ffag naðΔfa þ Δ̄faÞ and have added a Lagrange multiplier (μ) term to

enforce the normalizability of the eigenvalue density. On general grounds [11], extremizing FS3 gives

F̄S3 ¼
4πN3=2

3
μ: ð2:9Þ

Wewill sometimes use a bar to denote an on-shell quantity as in (2.9) above, when compared to the off-shell quantity given
by an integral expression as in (2.8).
This completes the review of the free energy FS3. Let us now turn to computation of the twisted index.

III. Σg × S1 AND TWISTED INDEX

The topologically twisted index is the
P

g × S1 partition function with a topological twist along the Riemann surface of
genus g, Σg. It was derived for Σg ¼ S2 in [21] and extended to generic g in [22]. The main result reads (we choose unit
radius for the circle S1):

ZΣg×S1 ¼
1

jWj
X
ma

I �Y
a

Y
Cartan

dua

�
Bge2π

P
a
kaua·ma

Y
a

�Y
α∈G

ð1 − e2παðuaÞÞ1−g
Y
α>0

ð−1ÞαðmaÞ
�

×
Y
I

Y
ρ∈RI

�
eπρðuIÞþπ_ινI

1 − e2πρðuIÞþ2π_ινI

�
ρIðmÞþðg−1ÞðnIþðΔI−1ÞÞ

; ð3:1Þ

where u ¼ _ιðRS1 Aþ _ισÞ are the holonomies and
m ¼ 1

2π

R
Σg
F are the magnetic fluxes corresponding to

the gauge group,9 ν ¼ ðRS1 Abg þ _ισbgÞ are the holonomies
(or chemical potentials) and n are the fluxes for the

background vector multiplet coupled to flavor symmetry
such that nðg − 1Þ is integer-quantized.10 The real part of ν
is defined modulo 1 so we choose ν to satisfy 0 < ν < 1.
The Hessian B is a contribution due to fermionic zero-
modes and (up to some constant factors) is given by

B ≈ detai;bj
∂2Zclþ1-loop

∂uia∂mj
b

, where Zclþ1-loop is the full integrand

appearing in (3.1) except for the Bg factor.
8While solving the matrix models explicitly, we will set fa ¼ 0

since nonzero fa modify the resulting expressions in a well-
known (and trivial) way (see for example [34,35]).

9We have kept the ð−1ÞαðmÞ contribution of the vector
multiplet explicitly as it contributes to the Bethe potential and
is required for a consistent result, the way we take the large N
limit (see Appendix).

10The different definitions for the same quantities correspond-
ing to gauge and flavor groups are chosen for later convenience
when comparing the large N results for twisted index to those for
free energy on S3.
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As with ZS3 , we are interested in the large N limit of the
above expression. It was studied for ABJM theory ðÂ1Þ in
[24] and for Â-type quiver theories in [26]. As discussed
there, due to the sum over magnetic fluxes, evaluating this
limit becomes a two-step process: (1) Sum over magnetic
fluxes, ma; (2) Integrate over the holonomies, ua. The first
step involves summing a geometric series, which generates
factors like 1

1−e_ιB
i
aðuaÞ

leading to poles at ûa such that

e_ιB
i
aðûaÞ ¼ 1. We solve for ûa by constructing an auxiliary

object called the “Bethe potential” V defined as ∂V
∂uia ¼ Bi

a

such that extremizing V gives the Bethe ansatz equations
(BAEs): ∂V

∂uia ju¼û ¼ Bi
aðûÞ ¼ 0.11 V once again turns out to

be related to FS3 so we can easily solve it in the large N
limit. The second step then involves substituting this
solution back in ZΣg×S1 and using the residue theorem to
get the final result:

ZΣg×S1 ¼
X

û∈BAE
ðBðûÞÞg−1

Y
a

Y
α∈G

ð1 − e2παðûaÞÞ1−g

×
Y
I

Y
ρ∈RI

�
eπρðûIÞþπ_ινI

1 − e2πρðûIÞþ2π_ινI

�ðg−1Þðn̂I−1Þ
; ð3:2Þ

where the Hessian can now be rewritten as B ¼
detai;bj

∂2V
∂uia∂ujb

and we have shifted the flavor flux with

the R-charge n̂ ¼ ðnþ ΔÞ but we will suppress the ^over n
in what follows. Again, we will evaluate this final expres-
sion only in the large N limit.

A. Summing fluxes → V

We consider N ¼ 2 quiver theories with gauge group
⊗a UðNaÞ now so most expressions below have a non-
trivial summation

P
bjða;bÞ∈E accompanying the vector and

bifundamental matter contributions when compared to
similar expressions in the literature.
We begin with the BAEs which are obtained as coef-

ficients ofmi
a from the exponentiated form of the integrand

in (3.1):

0 ¼ _ιBi
a ¼ 2πkauia þ

X
j

sgnðj − iÞ_ιπ

þ
X

bjða;bÞ∈E

X
j

ðv0ðuia − ujb þ _ινða;bÞÞ

− v0ðujb − uia þ _ινðb;aÞÞÞ
þ
X
fa

v0ðuia þ _ινfaÞ −
X
f̄a

v0ð−uia þ _ιν̄faÞ:

ð3:3Þ

These can be derived from the following Bethe potential V
via Bi

a ¼ ∂V
∂uia:

V ¼ −_ι
X
a;i

πkaðuiaÞ2 þ
1

2

X
a;i;j

πsgnðj − iÞðuia − ujaÞ

− _ι
X

ða;bÞ∈E

X
i;j

ðvðuia − ujb þ _ινða;bÞÞ

þ vðujb − uia þ _ινðb;aÞÞÞ
− _ι

X
a;i

X
fa

vðuia þ _ινfaÞ − _ι
X
a;i

X
f̄a

vð−uia þ _ιν̄faÞ;

ð3:4Þ
where we defined, in analogy to lðzÞ,

vðzÞ ¼ 1

2π
Li2ðe2πzÞ þ

π

2
z2 −

π

12
;

v0ðzÞ ¼ Li1ðe2πzÞ þ πz: ð3:5Þ
We chose vðzÞ such that vð0Þ ¼ 0, however, v0ðzÞ is
divergent at z ¼ 0.
To take the continuum limit, we again denote the

eigenvalues of the ua matrices by λa;i and assume the
eigenvalue distribution for a node with UðnaNÞ group to be
the same as before:

λa;i → λa;IðxÞ ¼ Nαxþ _ιya;IðxÞ ðwith I ¼ 1;…; naÞ;
ð3:6Þ

with an associated eigenvalue density ρðxÞ normalized asR
dxρðxÞ ¼ 1. We convert

P
i → N

R
dxρðxÞPI and note

that we again need the same number of bifundamental and
anti-bifundamental matters at each edge to cancel higher
order terms. To cancel potential divergent terms (as before),
we are led to a constraint relating the comarks na’s and
chemical potentials ν’s as follows (see Appendix for
details): X

a

n2a
2

¼
X

ða;bÞ∈E
ð1 − νða;bÞ − νðb;aÞÞnanb: ð3:7Þ

This leads to a larger class of theories than those considered
in the literature whose twisted index turns out to scale as
N3=2 in the largeN limit. We note that for νða;bÞ þ νðb;aÞ ¼ 1

2
,

we get an dADE classification just like the FS3 as the above
equation becomes equivalent to 2na ¼

P
bjða;bÞ∈Enb.

12 This
condition can also be derived from the analysis of possible
superpotential terms as discussed in [24,26]. Thus, we are
led to the same constraint on α as before (1þ α ¼ 2 − α)
implying α ¼ 1

2
and the Bethe potential in largeN limit reads

11Bi
aðûÞ ¼ 0 is stricter than e_ιB

i
aðûaÞ ¼ 1 but we will see that the

solution obtained is consistent with known results and has
expected behavior in simplifying limits of ν’s.

12As discussed in footnote 6, for ABJM theory and other odd Â
quivers, the condition can be made less strict: νða−1;aÞ þ νða;a−1Þþ
νða;aþ1Þ þ νðaþ1;aÞ ¼ 1. However, we will not discuss non- dADE
constraints in detail.
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V ≈ N3=2

Z
dxρðxÞ

�
2πx

X
a;I

kaya;IðxÞ −
1

24π2
ρðxÞ

X
ða;bÞ∈E

X
I;J

�
argðe2π_ιðya;I−yb;Jþνða;bÞ−1=2ÞÞ

× ðπ2 − argðe2π_ιðya;I−yb;Jþνða;bÞ−1=2ÞÞ2Þ þ ðνðb;aÞtermÞ
�
þ πjxjðnF − νFÞ

�
− 2πμ̃N3=2

�Z
dxρðxÞ − 1

�
: ð3:8Þ

Here, νF ¼ P
a

P
ffag naðνfa þ ν̄faÞ and we have again setP

anaka ¼ 0, fa ¼ f̄a. We have also added a Lagrange
multiplier (μ̃) term to enforce the normalizability of the
eigenvalue density. We can also simplify the exponent by
using the constraint νða;bÞ þ νðb;aÞ ¼ 1

2
, which will be

employed below to derive the twisted index in terms of
the Bethe potential. Notice the similarities and differences
of the above expression with the expression for FS3 in (2.8),
especially the scaling N3=2 and missing vector contribu-
tions. This naïvely seems to suggest that V ≈ FS3 may not
hold for the larger class of theories being considered here.
We will see later that it is not so. On general grounds [11],
extremizing V gives (just like the free energy)

V̄ ¼ 4πN3=2

3
μ̃: ð3:9Þ

It turns out that the large N limit of V is not enough to
compute the twisted index because V has no divergences at
leading order whereas the original BAEs display divergent
behavior. This behavior follows due to bifundamental
contributions involving v0ðzÞ being divergent at z ¼ 0
[24]. Let us separate out the divergent part of (3.3) but
continue to denote rest of the finite terms as BI

a and
schematically introduce exponentially small corrections as
follows:

0 ¼ BI
a þ

X
bjða;bÞ∈E

X
J

�
v0
�
_ιðya;IðxÞ − yb;JðxÞ þ νða;bÞÞ þ e−N

1=2Yþ
ða;I;b;JÞðxÞ

�

− v0
�
_ιðyb;JðxÞ − ya;IðxÞ þ νðb;aÞÞ þ e−N

1=2Y−
ða;I;b;JÞðxÞ

��

⇒ BI
a ≈ −N1=2

X
bjða;bÞ∈E

X
J

�
δðδyab;IJðxÞþνða;bÞ;0ÞY

þ
ða;I;b;JÞðxÞ − δðδyab;IJðxÞ−νðb;aÞ;0ÞY

−
ða;I;b;JÞðxÞ

�
; ð3:10Þ

where δðfðxÞ;0Þ is the Kronecker delta symbol that equals 1
when fðxÞ ¼ 0 and 0 otherwise. We used the following
large N limit:

Li1ðexpð2πe−N1=2YðxÞÞÞ ¼ − logð1 − expð2πe−N1=2YðxÞÞÞ
≈ − logð−2πe−N1=2YðxÞÞ
≈ þN1=2YðxÞ: ð3:11Þ

Note that Y�ðxÞ ≥ 0 for all x so that the exponential
term is subleading and is a consistency check for
explicit computations. We stress that the above equation
is used to extract the Y�ðxÞ functions (while keeping track
of the sign) from (naïve) equations of motion BI

a evaluated
at the saturation values of the yðxÞ’s as denoted by the
δðδyðxÞ�ν;0Þ.

B. Integrating holonomies → I

Moving back to ZΣg×S1 , we now have to derive the large
N limit of (3.2). This limit can be taken in a similar way to

the Bethe potential (see Appendix for some details)
but with fixed α ¼ 1

2
such that the overall scaling of the

index turns out to be N3=2 as expected. To cancel the
divergent terms in order to get local integrands as in
the case of Bethe potential, we are led to a constraint on
the flavor fluxes:

X
a

n2a ¼
X

ða;bÞ∈E
ð2 − nða;bÞ − nðb;aÞÞnanb: ð3:12Þ

This general constraint goes together with (3.7) to define a
larger class of theories with N3=2 scaling of their twisted
index. Note that for nða;bÞ þ nðb;aÞ ¼ 1, we recover thedADE classification which we will impose for evaluating
examples explicitly.13 Finally, the large N limit of the
twisted index reads (see Appendix for some details):

13For ABJM theory and other odd Â quivers, the condition is
less strict: nða−1;aÞ þ nða;a−1Þ þ nða;aþ1Þ þ nðaþ1;aÞ ¼ 2, as ex-
pected by now.
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I ¼ log jZΣg×S1 j ≈ ðg − 1ÞN3=2

Z
dxρðxÞ

�
1

4π
ρðxÞ

�X
a;I;J

argðe2π_ιðya;IðxÞ−ya;JðxÞ−1=2ÞÞ2

−
X

ða;bÞ∈E

X
I;J

½nðb;aÞ argðe2π_ιðya;IðxÞ−yb;JðxÞ−νðb;aÞÞÞ2� − ðnða;bÞtermÞ
�

þ
X

ða;bÞ∈E

X
I;J

δðδyab;IJðxÞ�νð·;·Þ;0Þnð·;·ÞY�
ða;I;b;JÞðxÞ þ πjxjð2nF − nFÞ

�
; ð3:13Þ

where nF is defined similar to νF and the conditions on
nða;bÞ’s and νða;bÞ’s have been used. The above expression is
to be evaluated by substituting fρðxÞ; ya;IðxÞ; Y�

ða;I;b;JÞðxÞg
obtained from extremizing the Bethe potential.

C. Relating I → V

We now present a simple derivation of the relation
between the twisted index I and the Bethe potential V.
As the Bethe potential gets no contribution from vector
multiplets, it seems unlikely at first that V can be directly
related to I . This fact is precisely what comes in handy. We
augment V in (3.8) by terms similar to the bifundamental
contributions that look like adjoint contributions parame-
trized with νa such that for νa ¼ 0, these adjoint terms
vanish. Then, we can write off-shell:

I ¼ ðg − 1Þ
X
I

nI
∂V
∂νI

����
na¼−1;νa¼0

; ð3:14Þ

where I runs over all multiplets and it is understood that for
vectors we set na ¼ −1 and νa ¼ 0 at the end of the
differentiation. This is true simply because V depends on
vðzÞ functions and I on v0ðzÞ multiplied with ðg − 1Þn,
though (3.12) has to be used to cancel some π

12
’s. The

Kronecker δ contributions are also included in this form,
which can be shown by using the equations of motion
(3.10) and chain rule for differentiation, for example,

nða;bÞ
∂V
∂ya;I

∂ya;I
∂νða;bÞ

¼ nða;bÞðδðδyab;IJðxÞþνða;bÞ;0ÞY
þ
ða;I;b;JÞðxÞÞðþ1Þ; ð3:15Þ

which is what appears in (3.13). The nðb;aÞY−ðxÞ term
with proper sign also similarly follows. Thus, we have
proven that the twisted index can be obtained from the
Bethe potential and this relation is valid for a larger
class of theories than considered in [26], as the more
general constraint (3.12) was required to complete the
proof.
The above formula focuses on the integrands and

under certain conditions (for example, whenever definite
integration and differentiation commutes), it is valid even
after the integration is done (i.e., on-shell):

Ī ¼ ðg − 1Þ
X
I

nI
∂V̄
∂νI : ð3:16Þ

It is understood that the index I now runs only over
the matter multiplets since vector νa’s are set to
zero already at the level of the integrand. For (anti-)
fundamental matter contributions, we can take νI ¼
nF − νF and nI ¼ 2nF − nF and the above relation
continues to hold. Note that we are allowed to choose
a suitable basis for the n’s and ν’s by including even
redundant combinations. Thus, to keep the expression for
V̄ tractable, constraints on νða;bÞ and nða;bÞ may be
imposed and that makes the sum over I for all bifunda-
mentals ill-defined leading to violation of (3.16). To
understand this better, let us compare what happens to the
sum

P
ða;bÞ⊕ðb;aÞ if the two constraints νða;bÞ þ νðb;aÞ ¼ 1

2

and nða;bÞ þ nðb;aÞ ¼ 1 are imposed after and before the
differentiation:

After∶
X
I

nI
∂V̄
∂νI ¼ nða;bÞ

∂V̄ðνða;bÞ; � � �Þ
∂νða;bÞ þ nðb;aÞ

∂V̄ðνðb;aÞ; � � �Þ
∂νðb;aÞ þ � � �

¼ nða;bÞV̄ 0ðνða;bÞ; � � �Þ þ ð1 − nða;bÞÞV̄ 0
�
1

2
− νða;bÞ; � � �

�
þ � � � ð3:17Þ
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Before∶
X
I

0nI
∂V̄
∂νI ¼ nða;bÞ

�
V̄ 0ðνða;bÞ; � � �Þ − V̄ 0

�
1

2
− νða;bÞ; � � �

��
þ � � �

¼
X
I

nI
∂V̄
∂νI − V̄ 0

�
1

2
− νða;bÞ; � � �

�
; ð3:18Þ

where
P0 denotes sum over independent set of ν’s, which seems to be missing a term when compared to the full

P
. Let us

look at the following expression now:

X
I

0νI
∂V̄
∂νI ¼ νða;bÞ

�
V̄ 0ðνða;bÞ; � � �Þ − V̄ 0

�
1

2
− νða;bÞ; � � �

��
þ � � �

¼ νða;bÞV̄ 0ðνða;bÞ; � � �Þ þ
�
1

2
− νða;bÞ

�
V̄ 0
�
1

2
− νða;bÞ; � � �

�
−
1

2
V̄ 0
�
1

2
− νða;bÞ; � � �

�
þ � � �

¼
X
I

νI
∂V̄
∂νI −

1

2
V̄ 0
�
1

2
− νða;bÞ; � � �

�
; ð3:19Þ

where the last term is half of the extra term found in (3.18). Now, collecting all the terms, the general relation between
twisted index and Bethe potential follows:

Ī ¼ ðg − 1Þ
X
I

nI
∂V̄
∂νI ¼ ðg − 1Þ

�X
I

0nI
∂V̄
∂νI þ 2

�X
I

νI
∂V̄
∂νI −

X
I

0νI
∂V̄
∂νI

��

¼ ðg − 1Þ
�
2
X
I

νI
∂V̄
∂νI þ

X
I

0ðnI − 2νIÞ
∂V̄
∂νI

�

⇒ Ī ¼ ðg − 1Þ
�
4V̄ þ

X
I

0ðnI − 2νIÞ
∂V̄
∂νI

�
: ð3:20Þ

We used the “homogeneous” property of V̄ such thatP
IνI

∂V̄
∂νI ¼ 2V̄ (proven in Appendix) to write the first

term. We will also see later that 4V̄½ν� ¼ F̄S3 ½2ν� for thedADE quivers. The 2ν’s here become the R-charges Δ’s in
FS3 for this comparison, as can be expected from the
constraints imposed on them to get dADE classification. In
general, I needs to be extremized with respect to ν’s and
critical values for ν’s are obtained in terms of the flavor
fluxes n’s. The resulting expression ĪðνðnÞ;nÞ is supposed
to match the corresponding black hole entropy SBH as
discussed in Sec. I. However, for the case of universal twist,
nI ¼ 2νI [32,33] leading to the expected simple relation fordADE quiver theories and their duals:

Universal twist∶ SBH ¼ Ī ¼ ðg − 1Þ4V̄ ¼ ðg − 1ÞF̄S3

given that
∂V̄
∂νI ≡

∂F̄S3

∂νI ¼ 0: ð3:21Þ

This completes the setup for the twisted index I . Let us
now turn to explicit computation of the free energy of cAD
quivers.

IV. FREE ENERGY AND VOLUME

In this section, we consider the cAD quivers and evaluate
their free energy, or equivalently the VolðY7Þ. We will
follow the algorithm developed in [34] but suitably
modified for the case of general R-charges. We briefly
review it here to introduce the terminology we use when
writing down the explicit solutions.
Algorithm. We take the principle value for the argðÞ

functions leading to the inequalities:

0 < ya;I − ya;J < 1; 0 < ya;I − yb;J þ Δða;bÞ < 1;

− 1 < ya;I − yb;J − Δðb;aÞ < 0:

⇒ jya;I − ya;Jj < 1; −Δða;bÞ < ya;I − yb;J < Δðb;aÞ:

ð4:1Þ

As discussed in previous section, we will insist
Δða;bÞ þ Δðb;aÞ ¼ 1. Since we have pairing up of bifunda-
mentals, while the inequalities are not violated, the con-
tribution from these fields to (2.8) simplifies:
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−
X

ða;bÞ⊕ðb;aÞ
πð2 − Δþ

ða;bÞÞ
Z

dxρðxÞ2
X
I;J

��
ya;I − yb;J þ

Δ−
ða;bÞ
2

�
2

þ 1

12
ð3 − Δþ

ða;bÞÞð1 − Δþ
ða;bÞÞ

�

¼ −
X

ða;bÞ⊕ðb;aÞ
π

Z
dxρðxÞ2

X
I;J

�
ya;I − yb;J þ

Δ−
ða;bÞ
2

�
2

; ð4:2Þ

where Δ�
ða;bÞ ¼ Δða;bÞ � Δðb;aÞ. We will also insist that all

ya;IðxÞ − ya;JðxÞ ¼ 0 initially, which simplifies the vector
contribution to just

P
a

R
dxρðxÞ2PI;J

π
4
.

Extremizing FS3 now with respect to yðxÞ’s and ρðxÞ, we
find a solution which is consistent only in a bounded region
around the origin (x ¼ 0). This is because as jxj increases,
the differences ya;IðxÞ − yb;JðxÞ≡ δyab;IJðxÞ monotoni-
cally increase (or decrease), saturating at least one of the
inequalities given above at some point on either side of
x ¼ 0, which we label as x�1 . This saturation is maintained
beyond these points, requiring the corresponding ya;IðxÞ’s
to either bifurcate (for na > 1) or develop a kink. Once an
inequality is saturated, we have to remove one of the yðxÞ’s
from the integral expression (2.8) by using the saturation
value and solve the revised equations of motion separately
on both positive and negative side of the x-axis until new
saturation points are encountered on both sides. This leads
to pair of regions on either side of the central region (or
region 1), which we will label as “region 2�” bounded by
x�2 for obvious reason. This procedure needs to be iterated
until either all yðxÞ’s get related or ρðxÞ ¼ 0, determining a
maximum of

P
ana regions for Â quivers and

P
ana − 1

regions for cDE quivers.14 Once the eigenvalue density ρðxÞ
is determined in all the regions, the value of μ is found from
the normalization condition of ρðxÞ, which gives the
quantities we want via the following relations:

F̄S3 ¼
4πN3=2

3
μ;

VolðY7Þ
VolðS7Þ ¼

1

8μ2
: ð4:3Þ

We combined the former equation with (1.1) to get the
latter.

A. Âm revisited

We review the Â quivers dealt succinctly in [15]. The
above discussion applies to this case just by setting the
values of I; J ¼ 1. The contribution from bifundamentals
(4.2) can be rewritten as F̃ given by Eq. (4.2) of [15]. The
solution for free energy is given in terms of the area of the
following polygon:

P ¼
�
ðs; tÞ ∈ R2j

Xmþ1

a¼1

jtþ qasj þ c1tþ c2s ≤ 1

	
;

c1 ≡
X

ða;bÞ∈E
Δ−

ða;bÞ; c2 ≡
X

ða;bÞ∈E
qaΔ−

ða;bÞ: ð4:4Þ

The redefined CS levels qa are constrained parameters
obeying

Pmþ1
a¼1 qa ¼ 0 and are related to ka’s as follows:

qa ¼ ka − kaþ1; a¼ 1;…;m; qmþ1 ¼ kmþ1 − k1:

ð4:5Þ

The AreaðPÞ is related to
R
dxρðxÞ such that we get15

VolðY7Þ
VolðS7Þ ¼

1

8μ2
¼ 1

2
AreaðPÞ

¼ 1

4

Xmþ1

a¼1

�jγa;aþ1j
σaσaþ1

þ jγa;aþ1j
σaþmþ1σaþmþ2

�
: ð4:6Þ

This reduces to the correct N ¼ 3 expression when all
Δða;bÞ ¼ 1

2
as can be directly checked from the definition

of σ’s:

βa ¼
�

1

qa

�
for a ¼ 1;…; mþ 1; βmþ2 ¼ −β1; γa;b ¼ βa ∧ βb;

σa ¼
Xmþ1

b¼1

�
jγa;bj þ γb;aΔ−

ðb;bþ1Þ

�
; σaþmþ1 ¼

Xmþ1

b¼1

�
jγa;bj − γb;aΔ−

ðb;bþ1Þ

�
: ð4:7Þ

A trivial example to check the above formulas is Â1 quiver (consider the ordering q1 ≥ 0 ≥ q2 and q1 ¼ k
2
):

14We count disjointed n� regions as one single region so Â1 has two regions, even though there are four saturation points bounding
three apparent regions f·2− · 1 · 2þ·g.

15It is a fun exercise to show that the definition of P as given in (4.4) can be “integrated” to get precisely the area of P as given
in (4.6) [11].
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VolðY7Þ
VolðS7Þ ¼

1

4

�
2q1

ð4q1ΔA
ð2;1ÞÞð4q1ΔB

ð1;2ÞÞ
þ 2q1
ð4q1ΔB

ð1;2ÞÞð4q1ΔB
ð2;1ÞÞ

þ 2q1
ð4q1ΔB

ð2;1ÞÞð4q1ΔA
ð1;2ÞÞ

þ 2q1
ð4q1ΔA

ð1;2ÞÞð4q1ΔA
ð2;1ÞÞ

�

¼ 1

32ΔA
ð1;2ÞΔ

B
ð1;2ÞΔ

A
ð2;1ÞΔ

B
ð2;1Þq1

: ð4:8Þ

This expression appears in literature a lot and it can be
straightforwardly checked that it reproduces the correct 1k for
ABJM theory when all Δ’s equal 1

2
. A slightly nontrivial

example is Â3 but we will discuss it for twisted index in the
next section.
Let us move on to the D̂ quivers now (specifically D̂4

which is related to Â3 via unfolding procedure in theN ¼ 3
case [34,36]).

B. D̂4 solved

We give the detailed solution for the D̂4 quiver here and
to make the expressions easier to read, we do a bit of
housekeeping first. Let us redefine the five constrained CS
levels k’s to four unconstrained variables p’s as follows:

k1 ¼ −ðp1 þ p2Þ; k2 ¼ p1 − p2; k3 ¼ p3 − p4;

k4 ¼ p3 þ p4; k5 ¼ p2 − p3: ð4:9Þ

Wewill also suppress the second index on the four ya;1 with
a ¼ 1;…; 4. Furthermore, we introduce a “vector” of R-
charges:

αbðΔ−Þ ¼
�
1

2
ðΔ−

ð1;5Þ − Δ−
ð2;5ÞÞ;

1

2
ðΔ−

ð1;5Þ þ Δ−
ð2;5ÞÞ;

−
1

2
ðΔ−

ð4;5Þ þ Δ−
ð3;5ÞÞ;−

1

2
ðΔ−

ð4;5Þ − Δ−
ð3;5ÞÞ

	
;

ð4:10Þ
which will appear in a combination

P
4
b¼1 pbαbðΔ−Þ≡ p ·

αðΔ−Þ below. For generic p’s, there are going to be 5
regions consisting of one central region spanning
both negative and positive side of the x-axis and 4 pairs
of disjointed regions beyond the central one as explained
in the algorithm above. Let us now enumerate the solution
in each region for a particular ordering p1 ≥ p2 ≥
p3 ≥ p4 ≥ 0.

Region 1: − 2μ
4ðp1þp2Þ−2p·αðΔ−Þ ≤ x ≤ 2μ

4ðp1þp2Þþ2p·αðΔ−Þ

ρðxÞ ¼ 1

2
μ −

1

2
xp · αðΔ−Þ;

y1 − y5;2 ¼ −
1

2
Δ−

ð1;5Þ þ
xðp1 þ p2Þ

−μþ xp · αðΔ−Þ ; y2 − y5;2 ¼ −
1

2
Δ−

ð2;5Þ þ
xð−p1 þ p2Þ

−μþ xp · αðΔ−Þ ;

y3 − y5;2 ¼ −
1

2
Δ−

ð3;5Þ þ
xð−p3 þ p4Þ

−μþ xp · αðΔ−Þ ; y4 − y5;2 ¼ −
1

2
Δ−

ð4;5Þ −
xðp3 þ p4Þ

−μþ xp · αðΔ−Þ ; y5;1 − y5;2 ¼ 0:

Region 2−: − 2μ
4p1−2p·αðΔ−Þ ≤ x ≤ − 2μ

4ðp1þp2Þ−2p·αðΔ−Þ

ρðxÞ ¼ 1

2
μ −

1

2
xp · αðΔ−Þ;

y1 − y5;2 ¼ 1 − Δð1;5Þ; y2 − y5;2 ¼
1

2
ð1 − Δ−

ð2;5ÞÞ −
2xp1

−μþ xp · αðΔ−Þ ;

y3 − y5;2 ¼
1

2
ð1 − Δ−

ð3;5ÞÞ −
xðp1 þ p2 þ p3 − p4Þ

−μþ xp · αðΔ−Þ ; y4 − y5;2 ¼
1

2
ð1 − Δ−

ð4;5ÞÞ −
xðp1 þ p2 þ p3 þ p4Þ

−μþ xp · αðΔ−Þ ;

y5;1 − y5;2 ¼ 1 −
2xðp1 þ p2Þ

−μþ xp · αðΔ−Þ :
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Region 2þ: 2μ
4ðp1þp2Þþ2p·αðΔ−Þ ≤ x ≤ 2μ

4p1þ2p·αðΔ−Þ

ρðxÞ ¼ 1

2
μ −

1

2
xp · αðΔ−Þ;

y1 − y5;2 ¼ −Δð1;5Þ; y2 − y5;2 ¼ −
1

2
ð1þ Δ−

ð2;5ÞÞ −
2xp1

−μþ xp · αðΔ−Þ ;

y3 − y5;2 ¼
1

2
ð1 − Δ−

ð3;5ÞÞ −
xðp1 þ p2 þ p3 − p4Þ

−μþ xp · αðΔ−Þ ; y4 − y5;2 ¼
1

2
ð1 − Δ−

ð4;5ÞÞ −
xðp1 þ p2 þ p3 þ p4Þ

−μþ xp · αðΔ−Þ ;

y5;1 − y5;2 ¼ 1 −
2xðp1 þ p2Þ

−μþ xp · αðΔ−Þ :

Region 3−: − 2μ
2ðp1þp2þp3þp4Þ−2p·αðΔ−Þ ≤ x ≤ − 2μ

4p1−2p·αðΔ−Þ

ρðxÞ ¼ μþ xp1 − xp · αðΔ−Þ;

y1 − y5;2 ¼ 1 − Δð1;5Þ; y2 − y5;2 ¼ −Δð2;5Þ; y3 − y5;2 ¼ −
1

2
Δ−

ð3;5Þ −
xðp2 þ p3 − p4Þ

−2μ − 2xp1 þ 2xp · αðΔ−Þ ;

y4 − y5;2 ¼ −
1

2
Δ−

ð4;5Þ −
xðp2 þ p3 þ p4Þ

−2μ − 2xp1 þ 2xp · αðΔ−Þ ; y5;1 − y5;2 ¼ −
2xp2

−2μ − 2xp1 þ 2xp · αðΔ−Þ :

Region 3þ: 2μ
4p1þ2p·αðΔ−Þ ≤ x ≤ 2μ

2ðp1þp2þp3þp4Þþ2p·αðΔ−Þ

ρðxÞ ¼ μ − xp1 − xp · αðΔ−Þ;

y1 − y5;2 ¼ −Δð1;5Þ; y2 − y5;2 ¼ 1 − Δð2;5Þ; y3 − y5;2 ¼ −
1

2
Δ−

ð3;5Þ −
xðp2 þ p3 − p4Þ

−2μþ 2xp1 þ 2xp · αðΔ−Þ ;

y4 − y5;2 ¼ −
1

2
Δ−

ð4;5Þ −
xðp2 þ p3 þ p4Þ

−2μþ 2xp1 þ 2xp · αðΔ−Þ ; y5;1 − y5;2 ¼ −
2xp2

−2μþ 2xp1 þ 2xp · αðΔ−Þ :

Region 4−: − 2μ
2ðp1þp2þp3−p4Þ−2p·αðΔ−Þ ≤ x ≤ − 2μ

2ðp1þp2þp3þp4Þ−2p·αðΔ−Þ

ρðxÞ ¼ 3

2
μþ 1

2
xð3p1 þ p2 þ p3 þ p4Þ −

3

2
xp · αðΔ−Þ;

y1 − y5;2 ¼ 1 − Δð1;5Þ; y2 − y5;2 ¼ −Δð2;5Þ;

y3 − y5;2 ¼ −
1

6
−
1

2
Δ−

ð3;5Þ þ
2xð2p4 − p2 − p3Þ

−9μ − 3xð3p1 þ p2 þ p3 þ p4Þ þ 9xp · αðΔ−Þ ;

y4 − y5;2 ¼ −Δð4;5Þ; y5;1 − y5;2 ¼ −
1

3
þ 2xð−2p2 þ p3 þ p4Þ
−9μ − 3xð3p1 þ p2 þ p3 þ p4Þ þ 9xp · αðΔ−Þ :

Region 4þ: 2μ
2ðp1þp2þp3þp4Þþ2p·αðΔ−Þ ≤ x ≤ 2μ

2ðp1þp2þp3−p4Þþ2p·αðΔ−Þ

ρðxÞ ¼ 3

2
μ −

1

2
xð3p1 þ p2 þ p3 þ p4Þ −

3

2
xp · αðΔ−Þ;

y1 − y5;2 ¼ −Δð1;5Þ; y2 − y5;2 ¼ 1 − Δð2;5Þ;

y3 − y5;2 ¼
1

6
−
1

2
Δ−

ð3;5Þ þ
2xð2p4 − p2 − p3Þ

−9μþ 3xð3p1 þ p2 þ p3 þ p4Þ þ 9xp · αðΔ−Þ ;

y4 − y5;2 ¼ 1 − Δð4;5Þ; y5;1 − y5;2 ¼
1

3
þ 2xð−2p2 þ p3 þ p4Þ
−9μþ 3xð3p1 þ p2 þ p3 þ p4Þ þ 9xp · αðΔ−Þ :
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Region 5−: − 2μ
2ðp1þp2Þ−2p·αðΔ−Þ ≤ x ≤ − 2μ

2ðp1þp2þp3−p4Þ−2p·αðΔ−Þ

ρðxÞ ¼ 2μþ xð2p1 þ p2 þ p3Þ − 2xp · αðΔ−Þ;
y1 − y5;2 ¼ 1 − Δð1;5Þ; y2 − y5;2 ¼ −Δð2;5Þ; y3 − y5;2 ¼ −Δð3;5Þ;

y4 − y5;2 ¼ −Δð4;5Þ; y5;1 − y5;2 ¼ −
1

2
−

xðp2 − p3Þ
−4μ − 2xð2p1 þ p2 þ p3Þ þ 4xp · αðΔ−Þ :

Finally, the last saturation occurs at the end of this region with y5;1 − y5;2 ¼ −1.
Region 5þ: 2μ

2ðp1þp2þp3−p4Þþ2p·αðΔ−Þ ≤ x ≤ 2μ
2ðp1þp2Þþ2p·αðΔ−Þ

ρðxÞ ¼ 2μ − xð2p1 þ p2 þ p3Þ − 2xp · αðΔ−Þ;
y1 − y5;2 ¼ −Δð1;5Þ; y2 − y5;2 ¼ 1 − Δð2;5Þ; y3 − y5;2 ¼ 1 − Δð3;5Þ;

y4 − y5;2 ¼ 1 − Δð4;5Þ; y5;1 − y5;2 ¼
1

2
−

xðp2 − p3Þ
−4μþ 2xð2p1 þ p2 þ p3Þ þ 4xp · αðΔ−Þ :

Finally, the last saturation occurs at the end of this region with y5;1 − y5;2 ¼ 1.
To get a feel for these expressions for ρðxÞ and yðxÞ’s, we have plotted them in Fig. 2 using the numerical values:

p1 ¼ 15, p2 ¼ 8, p3 ¼ 4, p4 ¼ 1 and all Δ’s equal to 2
3
. With the ρðxÞ known in all the regions, we can just use the

normalization condition
R
dxρðxÞ ¼ 1 to get 1

μ2
, which is directly related to the VolðY7Þ. As with the Â quiver, this volume

can be recast as a polygon’s area and for D̂4 quiver, this polygon turns out to be

P ¼
�
ðs; tÞ ∈ R2

����X4
a¼1

ðjtþ pasj þ jt − pasjÞ − 4jtj þ 2p · αðΔ−Þs ≤ 1

	
;with

VolðY7Þ
VolðS7Þ ¼

1

4
AreaðPÞ: ð4:11Þ

For the above mentioned numerical values, the polygon is shown in Fig. 3 with 1
4
AreaðPÞ ¼ 1992856091659101

388764834312025600
≈ 0.005. This

value matches VolðY7Þ
VolðS7Þ ¼ 1

8μ2
exactly. Also, note that this construction is valid for all possible orderings and signs of p’s.

We can, of course, write the explicit volume for D̂4 here but instead we prefer to give the explicit expression for general
D̂n quiver directly.

FIG. 3. Polygon P for D̂4 quiver. (s − t coordinate system rotated by π
2
.)

FIG. 2. Eigenvalue density ρðxÞ and distributions ya;IðxÞ for D̂4 quiver (y5;2ðxÞ ¼ 0).
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C. D̂n result

Given the result for D̂4 quiver above and the known
result for N ¼ 3 D̂n quivers [34], we conjecture the
polygon for N ¼ 2 D̂n quivers to be

P ¼
�
ðs; tÞ ∈ R2

����Xn
a¼1

ðjtþ pasj þ jt − pasjÞ

− 4jtj þ cs ≤ 1

	
; c≡Xn

b¼1

ð2pbÞαbðΔ−Þ; ð4:12Þ

αbðΔ−Þ ¼
�
1

2
ðΔ−

ð1;5Þ − Δ−
ð2;5ÞÞ;

1

2
ðΔ−

ð1;5Þ þ Δ−
ð2;5ÞÞ;

Δ−
ð5;6Þ;…;Δ−

ðn;nþ1Þ;−
1

2
ðΔ−

ð4;nþ1Þ þ Δ−
ð3;nþ1ÞÞ;

−
1

2
ðΔ−

ð4;nþ1Þ − Δ−
ð3;nþ1ÞÞ

	
: ð4:13Þ

For generic n, the p’s are related to the CS levels as follows:

k1 ¼ −ðp1 þ p2Þ; k2 ¼ p1 − p2;

k3 ¼ pn−1 − pn; k4 ¼ pn−1 þ pn;

ki ¼ pi−3 − pi−2; i ¼ 5;…; nþ 1: ð4:14Þ

Note the difference with (4.4) for Â quivers which
requires two constants. As explained in [15], this is due
to the twoUð1Þ isometries of the toric Â quivers so it makes
sense that for the case of nontoric D̂ quivers which has only
oneUð1Þ isometry, we see only one constant in the polygon
formula (4.12).
One can verify that this polygon’s area gives the general

volume formula corresponding to D̂n quivers:

VolðY7Þ
VolðS7Þ ¼

1

8μ2
¼ 1

4
AreaðPÞ ¼ 1

4

Xn
a¼0

�jγa;aþ1j
σ̄þa σ̄þaþ1

þ jγa;aþ1j
σ̄−a σ̄

−
aþ1

�
;

ð4:15Þ

which we have explicitly checked for D̂5;…; D̂10.
16

The definitions of various quantities are slightly elaborate
here:

β0 ¼
�
0

1

�
; β�a ¼

�
1

�pa

�
for a ¼ 1;…; n;

βnþ1 ¼
�
1

0

�
; γa;b ¼ βa ∧ βb;

σ̄�a ¼
Xn
b¼1

�
jγa;bj þ jγa;−bj � ðγa;b − γa;−bÞαbðΔ−Þ

�

− 4jγa;nþ1j: ð4:16Þ

The combination ðγa;b − γa;−bÞ ¼ 2pb for a ≠ 0 is used to
show similarity with the definitions for Â quivers in (4.7),
otherwise it is a simple factor defining c in (4.12).
This completes the free energy or dual volume com-

putation of cAD quivers. Let us now continue with the
computation of their twisted indices.

V. TWISTED INDEX AND ENTROPY

We will again work on cAD quivers and first evaluate
the Bethe potential (3.8) and then the index (3.13)
(equivalently, dual black hole entropy). We will follow
the same algorithm used to evaluate FS3 but start with
the reduced set of inequalities as VM do not contribute
to V:

0 < ya;I − yb;J þ νða;bÞ < 1;

− 1 < ya;I − yb;J − νðb;aÞ < 0: ð5:1Þ

As discussed before, we will insist νða;bÞ þ νðb;aÞ ¼ 1
2
.

Since we have pairing up of bifundamentals, while the
inequalities are not violated, the contribution from these
fields simplify to

−
X

ða;bÞ⊕ðb;aÞ
πð1 − νþða;bÞÞ

Z
dxρðxÞ2

X
I;J

��
ya;I − yb;J þ

ν−ða;bÞ
2

�
2

−
1

12
νþða;bÞð2 − νþða;bÞÞ

�

¼ −
X

ða;bÞ⊕ðb;aÞ

π

2

Z
dxρðxÞ2

X
I;J

��
ya;I − yb;J þ

ν−ða;bÞ
2

�
2

−
1

16

�
; ð5:2Þ

16It is interesting to note that the � structure in (4.15) produces independent terms, which is in contrast to the expression (4.6) of Â
quivers, where the analogous σþ and σ− terms produce one mixed term. However, that is just an artifact of the way we have defined β’s.
β0 is quite redundant if we realize 1

σ̄þ
0
σ̄þ
1

þ 1
σ̄−
0
σ̄−
1

¼ jγ−1;1j
σ̄−
1
σ̄þ
1

.
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where ν�ða;bÞ ¼ νða;bÞ � νðb;aÞ. Comparing (2.8) and (4.2) in
the central region (i.e., ya;I ¼ ya;J) with (3.8) and (5.2), we
find that the two expressions (whether off-shell or on-shell)
are same up to the scalings given in Table I.
Once an inequality is saturated, we have to use the

general expression involving argðÞ functions. This step is to
be taken much more seriously here than the case of free
energy because moving away from the central region
generates terms like ðya;I − ya;JÞ2 leading to new inequal-
ities:

−
1

2
< ya;I − ya;J < 0 or 0 < ya;I − ya;J <

1

2
; ð5:3Þ

which can drastically affect the evaluation of V in the new
regions. This process of generation of new terms and
inequalities that look like coming from vector contributions
of FS3 means that V can indeed be related to FS3 in all the
regions, not just in the central region, even though these
two expressions seemed very different for cDE quivers in
subsection III A. In fact, using the scalings given in Table I,
we can verify that it is indeed so allowing us to use the
results for FS3 to write down V for the same quiver.

As far as saturation points, ρðxÞ and ya;IðxÞ are con-
cerned, we can get them from the similar computations
already done for FS3 but to get the divergent contributions
Y�ðxÞ, we need to perform one more step during extrem-
ization of V in different regions. This step is to substitute
the solutions of each region n� in the equations of motion
BI
a found in the region 1. Of course, BI

a ≠ 0 in other regions
but provide the divergent contributions Y�ðxÞ’s via (3.10).
One technicality is that the BI

a of (3.10) are related to the
equations of motion obtained from V via ∂V

∂ya;I ¼ NρðxÞBI
a.

This step needs a slight modification as discussed in
subsection V. C.

A. Â3 solved

As far as we know, only theories like Â1 quiver (ABJM)
whose matrix models involve just 2 regions have been
discussed in the literature. So we improve the situation by
considering a nontrivial example explicitly for Â quivers:
Â3, whose matrix model involves 4 regions. Let us set up
some notation before presenting the explicit solution. We
use the redefined CS variables following (4.5) with the
given ordering: q1 > q2 > 0 > q3 and q4 ¼ −

P
3
a¼1 qa.

We will again suppress the second index on the four ya;1
with a ¼ 1;…; 4 and introduce two short-hand notations:

Σν ¼ ν−ð1;2Þ þ ν−ð2;3Þ þ ν−ð3;4Þ þ ν−ð4;1Þ;

αbðν−Þ ¼ fðν−ð1;2Þ − ν−ð4;1ÞÞ; ðν−ð2;3Þ − ν−ð4;1ÞÞ; ðν−ð3;4Þ − ν−ð4;1ÞÞg;
ð5:4Þ

which will appear in a combination
P

3
b¼1 qbαbðν−Þ≡ q ·

αðν−Þ below.

Region 1: − 2μ̃
2q1þq1Σν−q·αðν−Þ ≤ x ≤ 2μ̃

2q1−q1Σνþq·αðν−Þ

ρðxÞ ¼ −
32μ̃ − 16xq · αðν−Þ
ðΣν − 2ÞðΣν þ 2Þ ;

ya − yaþ1 ¼
2μ̃ðΣν − 4ν−ða;aþ1ÞÞ þ x½qaðΣν − 2ÞðΣν þ 2Þ − q · αðν−ÞðΣν − 4ν−ða;aþ1ÞÞ�

16μ̃ − 8xq · αðν−Þ ; a ¼ 1; 2; 3:

Region 2−: − 2μ̃
2ðq1þq2þq3Þ−ðq1þq2þq3ÞΣν−q·αðν−Þ ≤ x ≤ − 2μ̃

2q1þq1Σν−q·αðν−Þ

ρðxÞ¼−
24μ̃−4x½q1ðΣν−2Þþ3q ·αðν−Þ�

ðΣν−2ÞðΣνþ1Þ ; y1−y2¼
1

2
−νð1;2Þ;

ya−yaþ1¼
2μ̃ð2Σν−6ν−ða;aþ1Þ−1Þþx½ðq1ð1þ2ν−ða;aþ1ÞÞþ2qaðΣνþ1ÞÞðΣν−2Þ−q ·αðν−Þð2Σν−6ν−ða;aþ1Þ−1Þ�

24μ̃−4xq1ðΣν−2Þ−12xq ·αðν−Þ ; a¼2;3;

Y−
ð1;2Þ ¼−

4πμ̃þ2πx½q1ðΣνþ2Þ−q ·αðν−Þ�
Σνþ1

.

TABLE I. Scaling different parameters to relate FS3 and V.
Note that these scalings are different from those of [26].

Free Energy → Bethe Potential

FS3 → 4V
μ → 4μ̃
Δ → 2ν
y → 2y
x → 2x
ρ → 1

2
ρ
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Region 2þ: 2μ̃
2q1−q1Σνþq·αðν−Þ ≤ x ≤ 2μ̃

2ðq1þq2þq3Þþðq1þq2þq3ÞΣνþq·αðν−Þ

ρðxÞ¼−
24μ̃−4x½q1ðΣνþ2Þþ3q ·αðν−Þ�

ðΣνþ2ÞðΣν−1Þ ; y1−y2¼−νð1;2Þ;

ya−yaþ1¼
2μ̃ð2Σν−6ν−ða;aþ1Þ þ1Þþx½ðq1ð−1þ2ν−ð2;3ÞÞþ2qaðΣν−1ÞÞðΣνþ2Þ−q ·αðν−Þð2Σν−6ν−ða;aþ1Þ þ1Þ�

24μ̃−4xq1ðΣνþ2Þ−12xq ·αðν−Þ ; a¼2;3;

Yþ
ð1;2Þ ¼

4πμ̃þ2πx½q1ðΣν−2Þ−q ·αðν−Þ�
Σν−1

.

Region 3−: − 2μ̃
q1þq2þq3Σν−q·αðν−Þ ≤ x ≤ − 2μ̃

2ðq1þq2þq3Þ−ðq1þq2þq3ÞΣν−q·αðν−Þ

ρðxÞ¼−16μ̃−4x½2q1þðq2þq3Þð1þΣνÞ−2q ·αðν−Þ�
ðΣνþ1ÞðΣν−1Þ ; y1−y2¼

1

2
−νð1;2Þ; y4−y1¼−νð4;1Þ;

y3−y4¼
4μ̃ðΣν−2ν−ð3;4ÞÞþx½2q1ðΣν−2ν−ð3;4ÞÞþðq2ð1−2ν−ð3;4ÞÞ−q3ð1−2Σνþ2ν−ð3;4ÞÞÞðΣνþ1Þ−2q ·αðν−ÞðΣν−2ν−ð3;4ÞÞ�

16μ̃þ8xq1þ4xðq2þq3ÞðΣνþ1Þ−8xq ·αðν−Þ ;

Y−
ð1;2Þ ¼

−4πμ̃−2πx½q1ðΣνþ2Þ−q ·αðν−Þ�
Σνþ1

; Yþ
ð4;1Þ ¼

4πμ̃−2πx½ðq1þq2þq3ÞðΣν−2Þþq ·αðν−Þ�
Σν−1

.

Region 3þ: 2μ̃
2ðq1þq2þq3Þþðq1þq2þq3ÞΣνþq·αðν−Þ ≤ x ≤ 2μ̃

q1þq2−q2Σνþq·αðν−Þ

ρðxÞ¼−16μ̃þ4x½2q1−ðq2þq3ÞðΣν−1Þþ2q ·αðν−Þ�
ðΣνþ1ÞðΣν−1Þ ; y1−y2¼−νð1;2Þ; y4−y1¼

1

2
−νð4;1Þ;

y3−y4¼
4μ̃ðΣν−2ν−ð3;4ÞÞ−x½2q1ðΣν−2ν−ð3;4ÞÞþðq2ð1þ2ν−ð3;4ÞÞ−q3ð1þ2Σν−2ν−ð3;4ÞÞÞðΣν−1Þþ2q ·αðν−ÞðΣν−2ν−ð3;4ÞÞ�

16μ̃−8xq1þ4xðq2þq3ÞðΣν−1Þ−8xq ·αðν−Þ ;

Yþ
ð1;2Þ ¼

4πμ̃þ2πx½q1ðΣν−2Þ−q ·αðν−Þ�
Σν−1

; Y−
ð4;1Þ ¼

−4πμ̃þ2πx½ðq1þq2þq3ÞðΣνþ2Þþq ·αðν−Þ�
Σνþ1

.

Region 4−: − 2μ̃
q1þq2þq2Σν−q·αðν−Þ ≤ x ≤ − 2μ̃

q1þq2þq3Σν−q·αðν−Þ

ρðxÞ¼−8μ̃−4x½q1þq2ð1þΣνÞ−q ·αðν−Þ�
ΣνðΣνþ1Þ ; y1−y2¼

1

2
−νð1;2Þ; y3−y4¼−νð3;4Þ; y4−y1¼−νð4;1Þ;

Y−
ð1;2Þ ¼

−4πμ̃−2πx½q1ðΣνþ2Þ−q ·αðν−Þ�
Σνþ1

; Yþ
ð3;4Þ ¼

4πμ̃þ2πx½q1þq2þq3Σν−q ·αðν−Þ�
Σν

;

Yþ
ð4;1Þ ¼

4πμ̃þ2πx½q1þq2−ðq1þq2þq3ÞΣν−q ·αðν−Þ�
Σν

.

Region 4þ: 2μ̃
q1þq2−q2Σνþq·αðν−Þ≤x≤ 2μ̃

q1þq2−q3Σνþq·αðν−Þ

ρðxÞ¼−8μ̃þ4x½q1þq2−q3Σνþq ·αðν−Þ�
ΣνðΣνþ1Þ ; y1−y2¼−νð1;2Þ; y2−y3¼−νð2;3Þ; y4−y1¼

1

2
−νð4;1Þ;

Yþ
ð1;2Þ ¼

4πμ̃þ2πx½q1Σν−ðq1þq2Þ−q ·αðν−Þ�
Σν

; Yþ
ð2;3Þ ¼

4πμ̃−2πx½q1−q2ðΣν−1Þþq ·αðν−Þ�
Σν

;

Y−
ð4;1Þ ¼

−4πμ̃þ2πx½ðq1þq2þq3ÞðΣνþ2Þþq ·αðν−Þ�
Σνþ1

.
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Let us visualize all these expressions for ρðxÞ and yðxÞ’s
in Fig. 4 using the numerical values: q1 ¼ 78, q2 ¼ 2, q3 ¼
−29 and all Δ’s equal to 1

5
. With the ρðxÞ known in all the

regions, we can just use the normalization conditionR
dxρðxÞ ¼ 1 to get μ̃, which gives the Bethe potential

V ∝ μ̃. Next, we plot the divergent contributions in
Figure 5, which are crucial to get the correct twisted index.
Note that all the Y�ðxÞ’s are in the upper half plane as
required by consistency.
Finally, we have to integrate the expression given in

(3.13) with all the fρðxÞ; ya;IðxÞ; Y�
ða;I;b;JÞg obtained here in

each region carefully. The result is a huge expression and
unless we take the help of (3.20), it is hard to make sense of
it. Though, we can make sure that the integrated expression
and the one obtained via (3.20) are identical, which we
have done for both Â2 and Â3 to check that (3.10) does give
the correct Y�ðxÞ’s. Thus, instead of writing the full
expression for Â3 here, we present the explicit general
result for Âm quiver directly.

B. Âm result

Having discussed the nontrivial case of Â3 quiver of
this class explicitly, we write down the generalization of

(well-known) Â1 and (above-mentioned) Â3 results quite
straightforwardly:

V ¼ 4πN3=2

3
μ̃ with

1

μ̃2
¼ 32

Xmþ1

a¼1

�jγa;aþ1j
σaσaþ1

þ jγa;aþ1j
σaþmþ1σaþmþ2

�
; ð5:5Þ

where only the σ’s definitions slightly changes compared
to (4.7)

σa ¼
Xmþ1

b¼1

�
jγa;bj þ 2γb;aν

−
ðb;bþ1Þ

�
;

σaþmþ1 ¼
Xmþ1

b¼1

�
jγa;bj − 2γb;aν

−
ðb;bþ1Þ

�
: ð5:6Þ

Thus, we see that if we substitute Δ → 2ν in (4.6), we get
for Â quivers:

1

μ½2ν�2 ¼
1

16μ̃½ν�2 ⇒ 4V½ν� ¼ FS3 ½2ν� ð5:7Þ

as promised earlier.
The index is implicitly given by the relation (3.20) but

massaging it a little bit, we can give an explicit expression
in terms of μ̃ that facilitates checking with the expression
given by the integral in (3.13):

Ī ¼ðg−1Þ4πN
3=2

3
μ̃3
�
4

μ̃2
−
1

2

X
I

ðnI −2νIÞ
∂ð 1

μ̃2
Þ

∂νI
�
: ð5:8Þ

The derivative term reads explicitly (after some tedious
algebra) as follows:FIG. 5. Divergent contributions Y�

ða;bÞðxÞ for Â3 quiver.

FIG. 4. Eigenvalue density ρðxÞ and distributions yaðxÞ for Â3 quiver (y4ðxÞ ¼ 0).
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X
I

ðnI − νIÞ
∂ð 1

μ̃2
Þ

∂νI ¼ −64
Xmþ1

a¼1

jγa;aþ1j
�
σaðfaþ1ðnÞ − 2faþ1ðνÞÞ þ ðfaðnÞ − 2faðνÞÞσaþ1

σ2aσ
2
aþ1

þ σaþmþ1ðfaþmþ2ðnÞ − 2faþmþ2ðνÞÞ þ ðfaþmþ1ðnÞ − 2faþmþ1ðνÞÞσaþmþ2

σ2aþmþ1σ
2
aþmþ2

�
;

where faðþmþ1ÞðnÞ ¼ ð−ÞPmþ1
b¼1 2γb;anðb;bþ1Þ, and simi-

larly for faðνÞ.
Let us move on to the D̂ quivers now with an explicit

solution for D̂4 quiver first.

C. D̂4 solved

Given the scalings of Table I, the boundary x-values,
ρðxÞ and ya;IðxÞ follow straightforwardly from Sec. IV B so
we do not repeat them here. Only the divergent contribu-
tions Y�ðxÞ’s are new and we enumerate them region-wise
below (we again suppress the I ¼ 1 index for a ¼ 1;…; 4
and J ¼ 2 for b ¼ 5). It turns out that there are no kinks in
Y�ðxÞ’s here so we write only the new ones appearing in
each given region.
Region 1: − 2μ̃

2ðp1þp2Þ−2p·αðν−Þ ≤ x ≤ 2μ̃
2ðp1þp2Þþ2p·αðν−Þ

NoY�ðxÞ’s yet:

Region 2−: − 2μ̃
2p1−2p·αðν−Þ ≤ x ≤ − 2μ̃

2ðp1þp2Þ−2p·αðν−Þ

Y−
ð1;5Þ ¼ −4πðμ̃þ xðp1 þ p2Þ − xp · αðν−ÞÞ:

Region 2þ: 2μ̃
2ðp1þp2Þþ2p·αðν−Þ ≤ x ≤ 2μ̃

2p1þ2p·αðν−Þ

Yþ
ð1;5Þ ¼ −4πðμ̃ − xðp1 þ p2Þ − xp · αðν−ÞÞ:

Region 3−: − 2μ̃
p1þp2þp3þp4−2p·αðν−Þ ≤ x ≤ − 2μ̃

2p1−2p·αðν−Þ

Yþ
ð2;5Þ ¼ −4πðμ̃þ xp1 − xp · αðν−ÞÞ:

Region 3þ: 2μ̃
2p1þ2p·αðν−Þ ≤ x ≤ 2μ̃

p1þp2þp3þp4þ2p·αðν−Þ

Y−
ð2;5Þ ¼ −4πðμ̃ − xp1 − xp · αðν−ÞÞ:

Region 4−: − 2μ̃
p1þp2þp3−p4−2p·αðν−Þ≤x≤− 2μ̃

p1þp2þp3þp4−2p·αðν−Þ

Yþ
ð4;5Þ ¼ −2πð2μ̃þ xðp1 þ p2 þ p3 þ p4Þ − 2xp · αðν−ÞÞ:

Region 4þ: 2μ̃
p1þp2þp3þp4þ2p·αðν−Þ≤x≤ 2μ̃

p1þp2þp3−p4þ2p·αðν−Þ

Y−
ð4;5Þ ¼ −2πð2μ̃ − xðp1 þ p2 þ p3 þ p4Þ − 2xp · αðν−ÞÞ:

Region 5−: − 2μ̃
p1þp2−2p·αðν−Þ ≤ x ≤ − 2μ̃

p1þp2þp3−p4−2p·αðν−Þ

Yþ
ð3;5Þ ¼ −2πð2μ̃þ xðp1 þ p2 þ p3 − p4Þ − 2xp · αðν−ÞÞ:

Region 5þ: 2μ̃
p1þp2þp3−p4þ2p·αðν−Þ ≤ x ≤ 2μ̃

p1þp2þ2p·αðν−Þ

Y−
ð3;5Þ ¼ −2πð2μ̃ − xðp1 þ p2 þ p3 − p4Þ − 2xp · αðν−ÞÞ:

These Y�ðxÞ’s are plotted in Fig. 6 using the numerical
values: p1 ¼ 15, p2 ¼ 8, p3 ¼ 4, p4 ¼ 1 and all ν’s equal
to 1

3
and we see that all of them are in the upper half plane as

expected.
Finally, we integrate the expression given in (3.13) by

substituting the fρðxÞ; ya;IðxÞ; Y�
ða;I;b;JÞg in each region

carefully. The result is again a huge expression and we
take help of (3.20) to write it concisely. Before we do that, a
comment about insufficiency of (3.10) for D̂n with n > 4 is
in order, after which, we will present the explicit general
result for D̂n quiver.
Comment. Note that the Y�ðxÞ-functions of D̂4 are same

in all the regions and no discontinuity appears unlike the
case of Â3. This might lead one to think that all D̂ quivers
exhibit such a simple behavior but this is a highly
misleading behavior of D̂4 and does not generalize any
further. A true general behavior appears with D̂5 with
discontinuities and subtleties, which breaks down the
algebraic system of equations (3.10) used to solve for
Y�ðxÞ’s. This happens because (assuming similar order
of p’s and similar progression of regions) one of the
original inequalities, say, 0 < y2;1 − y5;1 þ νð2;5Þ < 1 can
change to (a subset of) an already existing inequality, say,
− 1

2
< y5;1 − y6;2 − νð6;5Þ < 0 in some region (via saturation

FIG. 6. Divergent contributions Y�
ða;1;5;2ÞðxÞ for D̂4 quiver.
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sequence like y2;1 → y5;2 → y6;2) and when saturation
occurs y5;1 − y6;2 − νð6;5Þ ¼ 0 in some later region, we will
have one more Y�ðxÞ’s to solve than there are equations in
(3.10). This problem can be solved by demanding the two
relevant Y�ðxÞ’s (Y−

ð2;1;5;1Þ and Yþ
ð5;1;6;2Þ in above scenario)

to be the same. Thus, the algorithm discussed before
subsection VA needs to be modified by augmenting
(3.10) with extra equality constraints among Y�ðxÞ’s that
appear due to saturation of multiple original inequalities.
We have used this modified algorithm for solving D̂5 and
D̂6 matrix models and checked that the twisted index
obtained from the integral expression (3.13) and that
obtained via (3.20) are indeed identical.

D. D̂n result

It should be no surprise that the result for D̂ quivers will
look similar to that for Â quivers:

V ¼ 4πN3=2

3
μ̃ with

1

μ̃2
¼ 32

Xn
a¼0

�jγa;aþ1j
σ̄þa σ̄þaþ1

þ jγa;aþ1j
σ̄−a σ̄

−
aþ1

�
;

ð5:9Þ

where only the σ̄’s definitions slightly changes compared to
(4.16)

σ̄�a ¼
Xn
b¼1

�
jγa;bj þ jγa;−bj � 2ðγa;b − γa;−bÞαbðν−Þ

�

− 4jγa;nþ1j: ð5:10Þ

Thus, we again see that upon substitutingΔ → 2ν in (4.15),
we get for D̂ quivers

1

μ½2ν�2 ¼
1

16μ̃½ν�2 ⇒ 4V½ν� ¼ FS3 ½2ν� ð5:11Þ

as expected. One caveat here is that the result for Âm

quivers is an exact result whereas that for D̂n quivers is a
conjecture. This boils down to the polygon formulas (4.4)
and (4.12). While the former is a proven solution to the Âm
matrix model [15], the latter is a conjecture that we have
checked for D̂n matrix model up to n ¼ 10.
Finally, the index can be written explicitly as follows:

I ¼ ðg − 1Þ 4πN
3=2

3
μ̃3
�
4

μ̃2
−
1

2

X
I

ðnI − 2νIÞ
∂ð 1

μ̃2
Þ

∂νI
�
;

X
I

ðnI − 2νIÞ
∂ð 1

μ̃2
Þ

∂νI ¼ −64ðfðnÞ − 2fðνÞÞ
�jγ−1;1jðσ̄−1 þ σ̄þ1 Þ

ðσ̄−1 Þ2ðσ̄þ1 Þ2
þ

Xn
�;a¼1

jγa;aþ1jðσ̄�a þ σ̄�aþ1Þ
ðσ̄�a Þ2ðσ̄�aþ1Þ2

�
; ð5:12Þ

where fðnÞ ¼ P
n
b¼1 2ðγa;b − γa;−bÞαbðnÞ, and similarly

for fðνÞ. Due to the fact that ðγa;b − γa;−bÞ ¼ 2pb does
not depend on the subscript a, these fð·Þ’s become an
overall factor and the explicit expression for D̂ quivers’
index simplifies considerably compared to the analogous
expression for Â quivers.

VI. SUMMARY AND OUTLOOK

This paper contains two interconnected results:
Volume:We computed the explicit free energy FS3 for D̂
quivers in terms of the R-charges Δða;bÞ of the
bifundamentals, obtained by combining (2.9) and
(4.15). According to AdS=CFT correspondence, the
formula (4.15) provides a prediction for the volumes
of certain Sasaki-Einstein 7-manifolds Y7, which
describe the AdS4 × Y7 M-theory duals.

Entropy: We computed the explicit twisted index I forcAD quivers, (5.8) and (5.12), in terms of the chemical
potentials νða;bÞ and flavor fluxes nða;bÞ. We expect
that the extremization of these formulas with respect
to ν’s leading to the expression IðνðnÞ;nÞ reproduces

the macroscopic entropy of the dual black hole
solutions in the 4d gauged supergravity uplifted to
M-theory with the above-mentioned Y7’s. In the
simplifying case of universal twist, the extremization
procedure is automatic, leading to nI ¼ 2νI and
SBH ¼ I ¼ ðg − 1ÞFS3 follows via the relation
(3.20) for dADE quivers as shown holographically
in [32,33].

Along the way, we computed the large N limit of the
partition functions for 3d N ¼ 2 quiver theories on S3 and
Σg × S1 involving bifundamental and fundamental matters.
We obtained constraints on relevant parameters (Δ for FS3

and fν;ng for I) under the requirement that the resulting
matrix model be local, leading to a large class of CSm

quiver theories including the dADE quivers. The fundamen-
tal matters contribute in a trivial way and that contribution
can be included in the results presented here following
[34,35]. An intermediate construction to obtain the twisted
index is that of the Bethe potential V, which we find is
related to the free energy via FS3 ½2ν� ¼ 4V½ν� with an
explicit matching of the matrix model. It was shown in [26]
that for Â quivers and related theories, this relation is true
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off-shell too but with a different numerical factor.
We extended this result to cDE quivers and showed that
the relation holds true in all the integration regions with
the same numerical factor of 4. This fact fits nicely with the
simpler proof of the relation (3.20) between the twisted
index and the Bethe potential provided in the main text.
We note that one could study these theories on more

general Seifert manifolds as discussed in [37–39]. The
Mg;p manifolds include both the manifolds studied here as
in M0;1 ¼ S3 and Mg;0 ¼ Σg × S1. In this framework, the
observation 4V½ν� ¼ FS3 ½2ν� in the present context may be
easily explained following the logic of [38]. In addition, it
should be possible to generalize the results presented here
straightforwardly to these manifolds.
An elephant in the room is the fact that expressions

for free energies of Ê6;7;8 are missing in this paper. As is
well-known, even in the N ¼ 3 case [34] the known
expressions are valid only for a subset of CS levels. An
all-encompassing formula in terms of roots or graphs as in
the case of cAD quivers is not known for them. So we
refrained from giving the N ¼ 2 extensions of the N ¼ 3
formulas but comment that it would be much more
interesting to figure out the fully general volume formula
for Ê quivers. The Fermi-gas formalism [40–43] could be a
helpful tool in this quest, given that the polygon formula
appears naturally as a Fermi surface in this formalism.

Finally, it goes without saying that computing volumes
of the Sasaki-Einstein 7-manifolds explicitly and construct-
ing explicit M-theory duals for dADE quivers with nonuni-
versal flavor fluxes would be an interesting exercise to test
the AdS=CFT correspondence.
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APPENDIX: DERIVATIONS AND PROOFS

We collect here some details of the calculations that went
into evaluating free energy and twisted index of the CS
quiver gauge theories. Our derivations have considerably
more overlap with [10,38] than with [24,26].

1. FS3

We start with the expression whose large N limit is to be
obtained:

FS3 ≈ −_ιπN
Z

dxρðxÞ
X
a;I

kaðNαxþ _ιya;IðxÞÞ2

− N2

Z
dxdx0ρðxÞρðx0Þ

X
a;I;J

log j2 sinhðπNαðx − x0Þ þ _ιπðya;IðxÞ − ya;Jðx0ÞÞÞj

− N2

Z
dxdx0ρðxÞρðx0Þ

X
ða;bÞ∈E

X
I;J

lð1 − Δða;bÞ þ _ιNαðx − x0Þ − ðya;IðxÞ − yb;Jðx0ÞÞÞ

− N
Z

dxρðxÞ
X

a;ffag;I
lð1 − Δfa þ _ιNαx − ya;IÞ − N

Z
dxρðxÞ

X
a;ff̄ag;I

lð1 − Δ̄fa − _ιNαxþ ya;IÞ:

The four lines correspond to four different contributions as follows:

a. Chern-Simons

This is pretty straightforward

− _ιπN
Z

dxρðxÞ
X
a;I

kaðN2αx2 þ 2_ιNαxya;IðxÞ − ya;IðxÞ2Þ

¼ −_ιπN1þ2α

Z
dxρðxÞ

X
a

ðnakaÞx2 þ 2πN1þα

Z
dxρðxÞx

X
a;I

kaya;IðxÞ þOðNÞ; ðA1Þ

and we get the first line of equation (2.7).
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b. Vectors

This is again straightforward following [14]. We change variables πNαðx − x0Þ → ξ which implies to leading order
ρðx0Þ → ρðxÞ and yðx0Þ → yðxÞ so we get:

−
N2−α

π

Z
dxρðxÞ2

Z
M

−M
dξ
X
a;I;J

log½2 sinhðjξj þ _ιπsgnðξÞδya;IJðxÞÞ�

¼ −
N2−α

π

Z
dxρðxÞ2

�X
a

n2a

�
M2 þ π2

12

�
−
X
a;I;J

1

4
arg ðe2π_ιðδya;IJðxÞ−1=2ÞÞ2

�
: ðA2Þ

The argðÞ term appears in second line of (2.7) and requiring the value of exponent to lie in the principal branch (i.e.,
− 1

2
< δya;IJ − 1

2
< 1

2
) gives the relevant inequality of (4.1). Now we show that the divergentOðM2Þ [and a finiteOð1Þ] piece

cancels a similar term coming from matter contributions.

c. (Anti)bifundamentals

This is slightly tricky but assuming equal number of bifundamental and antibifundamental matter at each edge
initiates a few cancellations. Following through a direct calculation (refer to [10] for a slightly different
derivation) with a similar change of variables Nαðx − x0Þ → ξ as above and defining Pða;bÞ ¼ 1 − Δða;bÞ − δyab;IJðxÞ,
Pðb;aÞ ¼ 1 − Δðb;aÞ þ δyab;IJðxÞ, we get [using the definition (2.1) of lðzÞ]:

− N2−α
Z

dxρðxÞ2
Z

M

−M
dξ

X
ða;bÞ∈E

X
I;J

ðlðPða;bÞ þ _ιξÞ þ lðPðb;aÞ − _ιξÞÞ

¼ −N2−α
Z

dxρðxÞ2
X

ða;bÞ∈E

X
I;J

0
BBB@

− _ιπ
3
M3 þ _ιπ

6
Mð−1þ 6P2

ða;bÞÞ
− _ι

2π ðM þ _ιPða;bÞÞLi2ðe2πðMþ_ιPða;bÞÞÞ
þ _ι

2π2
Li3ðe2πðMþ_ιPða;bÞÞÞ

1
CCCAþ ðPða;bÞ → Pðb;aÞÞ: ðA3Þ

The following identities are required for polylogs when M → þ∞ and a ∈ R to simplify the above expressions:

Li1ðeMþ2π_ιaÞ → −M − _ι argðe2π_ιðaþ1=2ÞÞ ðA4Þ

Li2ðeMþ2π_ιaÞ → −
M2

2
− _ιM argðe2π_ιðaþ1=2ÞÞ −

�
π2

6
−
1

2
argðe2π_ιðaþ1=2ÞÞ2

�
ðA5Þ

Li3ðeMþ2π_ιaÞ → −
M3

6
−
_ι

2
M2 argðe2π_ιðaþ1=2ÞÞ −M

�
π2

6
−
1

2
argðe2π_ιðaþ1=2ÞÞ2

�

−
_ι

6
argðe2π_ιðaþ1=2ÞÞðπ2 − argðe2π_ιðaþ1=2ÞÞ2Þ: ðA6Þ

The terms at OðM3Þ simply cancel without the need to add Pða;bÞ and Pðb;aÞ contributions. Upon adding both
contributions,17 we get the following terms at various orders of M (suppressing the overall

R
dxρðxÞ2):

OðM2Þ∶ −
N2−α

π

X
ða;bÞ∈E

nanbð−2þ Δða;bÞ þ Δðb;aÞÞ; ðA7Þ

OðMÞ∶ _ιN2−α

4π2
X

ða;bÞ∈E

X
I;J

ðπ2ð1 − 4P2
ða;bÞÞ þ argð� � �Þð4πPða;bÞ − argð� � �ÞÞÞ þ ðPða;bÞ → Pðb;aÞÞ; ðA8Þ

17We also scaled M → M
π to match the transcendentality of other terms and to compare with (A2).
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Oð1Þ∶ −
N2−α

π

X
ða;bÞ∈E

nanb
π2

12
ð−2þ Δða;bÞ þ Δðb;aÞÞ

−
N2−α

4π

X
ða;bÞ∈E

X
I;J

�
Pða;bÞ argð� � �Þ2 þ

1

3π
argð� � �Þðπ2 − argð� � �Þ2Þ

�
þ ðPða;bÞ → Pðb;aÞÞ; ðA9Þ

where � � �≡ e2π_ιðPða;bÞþ1=2Þ. The OðM2Þ term from (A2) and (A7) add up to give the dADE constraint (2.6) that was derived
from the saddle point equation in the main text. This kills theOðM2Þ as well as one of theOð1Þ contributions from VM and
(anti)bifundamental MM. Again, requiring the exponent inside argð� � �Þ to lie in the principal branch gives the relevant
inequalities of (4.1). Effectively, we have to impose 0 ≤ δyab;IJ þ Δða;bÞ < 1 and −1 < δyab;IJ − Δðb;aÞ ≤ 0 (the equalities
denote the saturation values at region boundaries) which lead to the OðMÞ contribution (A8) vanishing identically.
The remaining Oð1Þ contribution from (A9) is what appears in the third and fourth lines of (2.7).

d. (Anti)fundamentals

This contribution follows directly from the definition of the lðzÞ-function after using the polylog identities given above:

− N
Z

dxρðxÞ
X

a;ffag;I

�
−
_ι

2
N2απx2 − Nαπjxjð1 − Δfa − ya;IðxÞÞ þOð1Þ

�

− N
Z

dxρðxÞ
X

a;ff̄ag;I

�
_ι

2
N2απx2 − Nαπjxjð1 − Δ̄fa þ ya;IðxÞÞ þOð1Þ

�
; ðA10Þ

which is what appears in the last two lines of (2.7).

2. V

We again start with the expression whose large N limit is to be obtained:

V ¼ −_ι
X
a;i

πkaðuiaÞ2 þ
1

2

X
a;i;j

πsgnðj − iÞðuia − ujaÞ − _ι
X

ða;bÞ∈E

X
i;j

ðvðuia − ujb þ _ινða;bÞÞ

þ vðujb − uia þ _ινðb;aÞÞÞ − _ι
X
a;i

X
ffag

vðuia þ _ινfaÞ − _ι
X
a;i

X
ff̄ag

vð−uia þ _ιν̄faÞ

V ≈ −_ιπN
Z

dxρðxÞ
X
a;I

kaðNαxþ _ιya;IðxÞÞ2

þ π

2
N2

Z
dxdx0ρðxÞρðx0Þ

X
a;I;J

sgnðx0 − xÞðNαðx − x0Þ þ _ιδya;IJðxÞÞ

− _ιN2

Z
dxdx0ρðxÞρðx0Þ

X
ða;bÞ∈E

X
I;J

ðvðNαðx − x0Þ þ _ιðδyab;IJðxÞ þ νða;bÞÞÞ þ ðνðb;aÞtermÞÞ

− _ιN
Z

dxρðxÞ
X

a;ffag;I
vðNαxþ _ιðya;IðxÞ þ νfaÞÞ − _ιN

Z
dxρðxÞ

X
a;ff̄ag;I

vð−Nαx − _ιð� � �ÞÞ:

The four lines above correspond to different contributions as follows:

a. Chern-Simons

This is straightforward to compute and after imposing naka ¼ 0 leads to just one term at leading order:

πN1þα

Z
dxρðxÞ2x

X
a;I

kaya;IðxÞ; ðA11Þ

which appears as the first term in (3.8).
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b. Vectors

This integral is to be done using the same transformation ðNαðx − x0Þ → ξÞ as was done in the case of FS3 which gives us:

π

2
N2−α

Z
dxρðxÞ2

Z
M

−M
dξ
X
a;I;J

sgnð−ξÞðξþ _ιδya;IJðxÞÞ ¼ −
π

2
N2−αM2

X
a

n2a

Z
dxρðxÞ2; ðA12Þ

which is clearly divergent but we expect this to be cancelled by the bifundamental matter contributions as we show next.

c. (Anti)bifundamentals

As done in the FS3 case, we change variables Nαðx − x0Þ → ξ and define Pða;bÞ ¼ δyab;IJðxÞ þ νða;bÞ, Pðb;aÞ ¼
−δyab;IJðxÞ þ νðb;aÞ to get [using the definition (3.5) of vðzÞ]:

− _ιN2−α
Z

dxρðxÞ2
Z

M

−M
dξ

X
ða;bÞ∈E

X
I;J

ðvðξþ _ιPða;bÞÞ þ vð−ξþ _ιPðb;aÞÞÞ

¼ −_ιN2−α
Z

dxρðxÞ2
X

ða;bÞ∈E

X
I;J

� π
3
M3 − π

6
Mð1þ 6P2

ða;bÞÞ
þ 1

4π2
Li3ðe2πðMþ_ιPða;bÞÞÞ

�
þ ðPða;bÞ → Pðb;aÞÞ: ðA13Þ

Again, the terms atOðM3Þ simply cancel after using the polylog identities and we get the following terms at various orders
of M (suppressing

R
dxρðxÞ2):

OðM2Þ∶ − N2−απ
X

ða;bÞ∈E
nanbð−1þ νða;bÞ þ νðb;aÞÞ; ðA14Þ

OðMÞ∶ _ιN2−α

4π

X
ða;bÞ∈E

X
I;J

ðπ2ð1þ 4P2
ða;bÞÞ þ argð� � �Þ2Þ þ ðPða;bÞ → Pðb;aÞÞ; ðA15Þ

Oð1Þ∶ −
N2−α

24π2
X

ða;bÞ∈E

X
I;J

ðargð� � �Þðπ2 − argð� � �Þ2ÞÞ þ ðPða;bÞ → Pðb;aÞÞ; ðA16Þ

where � � �≡ e2π_ιðPða;bÞþ1=2Þ. The OðM2Þ term from (A12) and (A14) can be canceled now leading to the dADE constraint of
(3.7). The OðMÞ term leads to an imaginary constant in V which does not affect the BAEs so we ignore it. The Oð1Þ
contribution in (A16) is what appears in (3.8).

d. (Anti)fundamentals

This contribution follows directly from the definition of the vðzÞ-function after using the polylog identities as done in the
case of FS3 :

− _ιN
Z

dxρðxÞ
X

a;ffag;I

�
−
1

2
N2απx2 − _ιNαπjxjð−1þ ya;IðxÞ þ νfaÞ þOð1Þ

�

− _ιN
Z

dxρðxÞ
X

a;ff̄ag;I

�
1

2
N2απx2 þ _ιNαπjxjðya;IðxÞ − ν̄faÞ þOð1Þ

�
: ðA17Þ

After using the simplifying condition fa ¼ f̄a, x2 and yðxÞ terms above cancel and we get ðnF − νFÞ term of (3.8).

“Homogeneous” V

V as written in the main text is not homogeneous with respect to ν’s so first of all, we make V scale with ν’s (at the very
least) by defining new shifted ν’s or multiplying 2νþ to γa;b terms in σ̄’s. Next, let us look at the on-shell expression for
Bethe potential of D̂4 quiver and combine terms over a common denominator. We find that the highest power of ν that
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survives (after a few simplifications) in the numerator is 6 whereas that in the denominator is 10. The difference between
them is of course −4. Now, looking at the general expression for V in (5.9), we note that a pair of terms with σ̄�5 get included
when moving up to D̂5, which changes the degree of both numerator and denominator by 2 so the difference still continues
to be −4. Thus, by induction, we get that the highest power of ν in the numerator of V for D̂n is 2ðn − 1Þ whereas that in the
denominator is 2ðnþ 1Þ. The difference between them is of course −4 meaning that 1

μ2
is of degree −4, which translates to

the fact that V ∝ μ is of degree 2 as used in the main text. The same counting works for Â quivers (starting with Â1 which has
V of obvious degree −4) and should work out for Ê quivers too.

3. I

The expression to be massaged at large N is obtained from (3.2) [up to a factor of ðg − 1Þ]:

I ¼
X
a;i;j≠i

v0ðuia − ujaÞ þ
X

ða;bÞ∈E

X
i;j

ððnða;bÞ − 1Þv0ðuia − ujb þ _ινða;bÞÞ þ ðnðb;aÞ − 1Þ

× v0ðujb − uia þ _ινðb;aÞÞÞ þ
X

a;ffag;i
ðnfa − 1Þv0ðuia þ _ινfaÞ þ

X
a;ff̄ag;i

ðn̄fa − 1Þv0ð−uia þ _ιν̄faÞ þ logB

I ≈ N2

Z
dxdx0ρðxÞρðx0Þ

X
a;I

v0ð
ffiffiffiffi
N

p
ðx − x0Þ þ _ιδya;IJðxÞÞ

þ N2

Z
dxdx0ρðxÞρðx0Þ

X
ða;bÞ∈E

X
I;J

ððnða;bÞ − 1Þv0ð
ffiffiffiffi
N

p
ðx − x0Þ þ _ιPða;bÞÞ þ ðnðb;aÞtermÞÞ

þ N
Z

dxρðxÞ
X

a;ffag;I
ðnfa − 1Þv0ð

ffiffiffiffi
N

p
xþ _ιðya;IðxÞ þ νfaÞÞ þ N

Z
dxρðxÞ

X
a;ff̄ag;I

ðn̄fa − 1Þv0ð� � �Þ

þ N
Z

dxρðxÞ½Oð
ffiffiffiffi
N

p
Þ term from logB�:

As before, we work out serially each of the four lines above corresponding to different contributions as follows:

a. Vectors

The function v0ðαðuÞÞ appears as the vector contribution becauseQαe
παðuÞ ¼ 1. Using the polylog identities, we simply

get:

−N3=2 1

2π

Z
dxρðxÞ2

�X
a

n2a

�
M2

2
þ π2

6

�
−
X
a;I;J

1

2
arg ðe2π_ιðδya;IJðxÞ−1=2ÞÞ2

�
: ðA18Þ

The argðÞ term appears in (3.13) and again the rest of the terms will cancel the next contribution.18

b. (Anti)bifundamentals

The evaluation of this term is same as above and we get:

− N3=2 1

2π

Z
dxρðxÞ2

X
ða;bÞ∈E

�
ðnða;bÞ − 1Þ

�
nanb

�
M2

2
þ π2

6

�
−
X
I;J

1

2
arg ðe2π_ιðδyab;IJðxÞþνða;bÞ−1=2ÞÞ2

�

þ ðnðb;aÞ − 1Þ
�
nanb

�
M2

2
þ π2

6

�
−
X
I;J

1

2
arg ðe2π_ιð−δyab;IJðxÞþνðb;aÞ−1=2ÞÞ2

�	
: ðA19Þ

We see that the OðM2Þ (and the π2

6
) term cancels between the above expression and (A18) if

18We do not explicitly write the imaginary OðMÞ terms but one can check that using
P

a;I;Jδya;IJðxÞ ¼ 0, yðxÞ-dependence does not
survive and using the dADE constraint, constant pieces cancel between vector and bifundamental contributions, just like the ðM2

2
þ π2

6
Þ

terms.
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X
a

n2a þ
X

ða;bÞ∈E
ðnða;bÞ þ nðb;aÞ − 2Þnanb ¼ 0; ðA20Þ

which is same as (3.12), leading to the dADE constraint when nða;bÞ þ nðb;aÞ ¼ 1 as mentioned in the main text.
The remaining argðÞ terms upon imposing the constraint on ν’s and n’s gives the finite bifundamental contributions
to (3.13).
In addition, there are contributions from bifundamentals when v0ðzÞ diverges at z ¼ 0, which are called tail

contributions in the literature.19 This happens when x ¼ x0 and δyab;IJðxÞ þ νða;bÞ ¼ 0 or δyab;IJðxÞ − νðb;aÞ ¼ 0.
Thus, following the analysis around (3.10), we can write for the divergent bifundamental contributions to I (for specific
a, b, I, J values):

δyab;IJðxÞ þ νða;bÞ ¼ 0∶ − N
Z

dxρðxÞnðb;aÞv0ðe−N
1=2Yþ

ða;I;b;JÞðxÞÞ ≈ −N3=2

Z
dxρðxÞnðb;aÞYþ

ða;I;b;JÞðxÞ

δyab;IJðxÞ − νðb;aÞ ¼ 0∶ − N
Z

dxρðxÞnða;bÞv0ðe−N
1=2Y−

ða;I;b;JÞðxÞÞ ≈ −N3=2

Z
dxρðxÞnða;bÞY−

ða;I;b;JÞðxÞ: ðA21Þ

c. (Anti)fundamentals

This is again a straightforward computation using the polylog identities and imposing fa ¼ f̄a leads to

−N3=2

Z
dxρðxÞπjxj

X
a;ffag;I

ðnfa þ n̄fa − 2Þ; ðA22Þ

which is what appears in the last term of (3.13).

d. Hessian

The logB term is naïvely of OðN logNÞ but due to the diverging nature of v00ðzÞ ¼ −π cothðπzÞ20 at z ¼ 0, there
arise terms of Oð ffiffiffiffi

N
p Þ that contribute to I at the leading order. A careful splitting of divergent and nondivergent

terms of logB has been discussed in [24]. We will just show how the divergent term contributes to the large N limit of the
index. The divergence in B occurs exactly when the bifundamental contribution diverges so the Hessian in large N limit
contributes:

δyab;IJðxÞ þ νða;bÞ ¼ 0∶ N
Z

dxρðxÞ log v00ðe−N1=2Yþ
ða;I;b;JÞðxÞÞ ≈þN3=2

Z
dxρðxÞYþ

ða;I;b;JÞðxÞ

δyab;IJðxÞ − νðb;aÞ ¼ 0∶ N
Z

dxρðxÞ log v00ðe−N1=2Y−
ða;I;b;JÞðxÞÞ ≈þN3=2

Z
dxρðxÞY−

ða;I;b;JÞðxÞ;

where we used that limz→0v00ðzÞ ¼ −z−1. Combining above expressions with the bifundamental contributions (A21), we get
the total divergent contribution to the twisted index as:

δyab;IJðxÞ � νð·;·Þ ¼ 0∶ N3=2

Z
dxρðxÞnð·;·ÞY�

ða;I;b;JÞðxÞ; ðA23Þ

which appears in the last line of (3.13) with the Kronecker δ enforcing the condition on δyðxÞ’s.

19This terminology makes sense in the case of ABJM and other theories which have only 2 regions. As we saw in explicit examples of
Â3 and D̂4, there is no clear demarcation between tail regions and non-tail regions.

20Recall that V depends on vðuia − ujb þ � � �Þ and B ¼ detai;bj
∂2V

∂uia∂ujb
so B would depend on v00ð� � �Þ.
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