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Supersymmetric DBI equations in diverse dimensions from the BRS
invariance of a pure spinor superstring
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We examine the BRS invariance of the open pure spinor superstring in the presence of background
superfields on a D p-brane. It is shown that the BRS invariance leads not only to boundary conditions on the
spacetime spinors, but also to supersymmetric Dirac-Born-Infeld (DBI) equations of motion for the

background superfields on the D p-brane. These DBI equations are consistent with the supersymmetric DBI

equations for a D9-brane.
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I. INTRODUCTION

Dirac-Born-Infeld (DBI) theory is known as a nonlinear
generalization of Maxwell theory and may describe, along
with the Wess-Zumino action, the low-energy effective
dynamics on a single D-brane in string theory. The bosonic
DBI action is derived from the world-sheet analysis of the
bosonic open string [1]. A supersymmetric DBI action
should be a part of the effective action on a D-brane in
type II superstring theory. In the Ramond-Neveu-Schwarz
(RNS) formulation, however, it is difficult to read off the
target space geometry coupling to Ramond-Ramond fields,
because space-time supersymmetry becomes manifest only
after the Gliozzi-Scherk-Olive projection. So the RNS
superstring has led to the only bosonic sector of the super-
symmetric DBI action [2].

The Green-Schwarz (GS) formulation has an advantage
in this direction. The Wess-Zumino term which ensures the
k-invariance of the world-volume action of a D-brane is
constructed in [3]. In [4], the x-symmetric approach, so-
called the superembedding formalism [5], is shown to lead
to linearized supersymmetric DBI equations of motion for a
D9-brane, which have the ten-dimensional A" = 2 super-
symmetry. Furthermore, in [6], the classical k-invariance of
an open GS superstring in an Abelian background is shown
to imply that the background fields should satisfy full
nonlinear equations of motion for a supersymmetric DBI
action. The non-Abelian extension of this formalism is
discussed in [7] as the boundary fermion formalism where
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Chan-Patton factors describing coincident D-branes are
replaced by boundary fermions.'

Unlike the formulations mentioned above, the pure
spinor formulation [23] enables us to quantize a superstring
in a super-Poincaré covariant manner. In this formulation,
the k-symmetry in the GS formulation is replaced with the
BRS symmetry. It is shown in [24], correspondingly to the
K-symmetry analysis [6], that the classical BRS invariance
of an open pure spinor superstring leads to supersymmetric
DBI equations of motion on a D9-brane, which have the
nonlinear N' = 1 supersymmetry as well as the manifest
N = 1 supersymmetry. These equations precisely coincide
with those obtained in the superembedding formalism [25].
Furthermore, the non-Abelian extension of supersymmetric
DBI equations is proposed. In [26] (see also [27,28]),
D-brane boundary states are constructed in the pure spinor
formulation. Especially, calculating the disk scattering
amplitude suggests that the coupling of the boundary state
to the background fields will reproduce the DBI kinetic
term and the Wess-Zumino term of the D9-brane effective
action. These achievements might imply the fact that the
low-energy effective theory on the D9-brane is determined
uniquely by the ten-dimensional A = 2 supersymmetry.

In this paper we will derive supersymmetric DBI
equations of motion on a D p-brane, as well as a D9-brane,
from the BRS invariance of the open pure spinor super-
string. Our approach is similar to that taken in [24] for a
DO-brane. However the inclusion of Dirichlet components
requires improvements which are not just a dimensional
reduction of the case of a D9-brane. As in [24], we will
provide two boundary terms, the counterterm S, for the
N =1 supersymmetry transformation of the world-sheet
action S, and the background superfield coupling V as a

'Other than this study, there have been many attempts to
extend to the non-Abelian DBI theory based on various ap-
proaches [8-22].
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relevant extension of the pure spinor vertex operator. It is
found that the contribution of Dirichlet components in them
cannot be determined unless considering the BRS invari-
ance. In [24], by using nontrivial boundary conditions
given by the general variation of Sy 4+ S, + V, the BRS
charge conservation leads to supersymmetric DBI equa-
tions for the D9-brane. On the other hand, we will show that
supersymmetric DBI equations in diverse dimensions are
extracted only from the BRS transformation of Sy+S,+V
under an identification on the D-brane position.

This paper is organized as follows. After introducing the
type II pure spinor open superstring action in Sec. II, we
construct the boundary term for the AV = 1 supersymmetry
invariance of this action in Sec. III. In Sec. IVA, back-
ground superfield coupling is found by considering the
modification of a vertex operator in the open pure spinor

|

1 - _ A . A
So = E/dzdz{i Ox"0x,, + pa00” + P00 + w04 + (f)aaﬂa},

where x™ (m = 0, 1, ...,9) is a ten-dimensional coordinate,
0* and %(a = 1,...,16) are left- and right-moving ten-
dimensional Majorana-Weyl spinors, respectively, and A%
and A% are bosonic ghosts satisfying pure spinor constrains
Ay™A = dy™i = 0. The (p,. p,) and (w,. @,) are conjugate
to (6%,6%) and (A%, 1%), respectively. The world-sheet
derivatives @ and O denote d =0, + 0, and 0 =9, — 0,
respectively. It implies dzdz = —%drda. The action is

|

Ay
0.0% = €%, 0.0% = €%,

1 1
8Dy = Eaxm (Ym€)g — 3 (€7™0)(yn00),.

superstring. In Sec. IV B, we confirm that these back-
ground superfields satisfy supersymmetric DBI equations
of motion. The last section is devoted to summary and
discussions. In addition, we give a brief review of the
covariant approach for the ten-dimensional A" = 1 super-
Yang-Mills theory in Appendix A. We will formulate a
vertex operator in the open pure spinor superstring in
Appendix B. We show that our result can be derived also
from improving the method used in [24] to include
Dirichlet components in Appendix C.

II. OPEN PURE SPINOR SUPERSTRING

The world-sheet action of the type II pure spinor open
superstring [23] is given as

(2.1)

[
invariant under the gauge transformations d m, =
A" (yA), and 83, = A™(y,u4),. We use 16 x 16 sym-
metric matrices Yap and y"* which are off-diagonal
blocks of the 32 x32 gamma matrices and satisfy
Yo"’ 4 yagy™ = 21" 8,. We frequently use the Fierz
identity ym(aﬂy% s=0.

The action (2.1) is invariant under the ten-dimensional
N =2 supersymmetry transformations,

1 14
O X" = 597/’"6 + 597/’"@,

R R I
66p(l = Eaxm(yme)a - g (67/ 9)(}/,”89)&, (22)

where parameters € and € correspond to ten-dimensional Majorana-Weyl spinors. For an open superstring, we are left with a

surface term,

5.5

2rd

where “|” means “evaluated at the boundary” and we will
omit it for brevity in the following. A dot on a field denotes
the z-derivative of the field, while a prime does the o-
derivative. If there are no background fields, the surface
term (2.3) can be eliminated by imposing usual boundary
conditions for D p—branes,2

*We must impose the same boundary condition on € and A
since BRS transformations relate them to each other. These
boundary conditions also eliminate the surface term which comes
from the BRS transformation of the world-sheet action S,. See
[29,30] for related topics.

1 1 N L s mdn g
/ dr{i (€70 — &y"6) 3, + 15 (er"0)(Ornb) — 15 (€r™0) (%6’)}

A

, (2.3)

12

(2.4)

and AN =1 supersymmetry condition &= y!"7e.
These boundary conditions imply that p = odd for the
type IIB string while p = even for the type IIA string. As
usual, x*(u =0, ..., p) are Neumann coordinates, while
x'(i=p+1,...,9) are Dirichlet coordinates.

Instead of imposing boundary conditions, we will con-
sider coupling to the background superfields preserving the
N = 1 supersymmetry specified by é = y!""P¢. To preserve
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N = 1 supersymmetry, we must introduce a boundary term
which eliminates (2.3).

II. A" =1 SUPERSYMMETRY AND
BOUNDARY TERM

Here we will introduce a boundary term S, which leaves
So + Sy, invariant under the " = 1 supersymmetry. For this
purpose, it is convenient to introduce the following objects,

1

0 = é(l + 1‘“1’9 a , d(;i: — \/E aa:l: l“‘pd ’

i \/i( (r'r6)*) (dy £ (y'7d),)
1 4

Y A — )](Z + l..p/{ a , wg — \/5 (;)a + ]...pw ,

i \/2( (r'72)%) (@ £ (1P w),)

(3.1)

where da:pa_%axm(yme)a_%(Qymag)(ymG%z and aa =

Do —10x"(y,,0) — £ (070 0)(1,,0), are invariant under
the e- and é-supersymmetry in (2.2), respectively. By using
|

these variables, the AV = 1 supersymmetry transformations
specified by é = y!""Pe are represented as
0,00 =n°, 6,02 =0,

1
57]'xﬂ = 5 9—0—7”'77

. 1 .
S =20y 5,15 = 8,07 =0, (3.2)

where we introduced by n = % (é+7y'"Pe). The N =1
supersymmetry transformation of S, is found to be

1 1 S
5,80 = ~ 5 / df{i (ny*6-)x, + 5(117 0.,)%;

1 . 1 .
+0"0.00-120.,) 4 5 0001 |

1 1 1. . 1 . 1 _ .
Sp = radl / dT{EHinrVug—) - 5y1(9+7i9+) - §(9+7’”9—)(9+7ﬂ‘9+) + 8 (0.7'0_)(0,7:0.)

24

1 . 1 1 ..
+—(0,y"0_)(0_y,0-) + ¢ ATO* + Eczwj/l‘i + y,»l'[ﬂr},

where ¢; and ¢, are constants. We have introduced the following,

[N 1 .
IT, =5 (I +11) = (6_r*6_).
. 1 . 1 .
M = = (1" = TI*) — = (0_+*0
L =50 ) =5 (0-r6.),

. 1 .
yo=x'+ 5 (0.7'0-),
1

N 1 . A
Ai = d; + 5 (yﬂe—)a(Hﬂ - Hﬂ) + 5 (7/19—)(1<Hi + Hi)’

where I1" = 9x™ + 36y 96 and " = ox™ + %9}/’"3 0 are
e- and é-supersymmetry invariants, respectively. Objects in
(3.5) are invariant under the A/ = 1 supersymmetry. To
show this, we have to treat objects like &', at the boundary.
For this, we require that at the boundary

0, =—0., X =—Ir (3.6)

These are consistent with the bulk equations of motion
007 = 90" = 9A* = DA* = 0. It is shown that this choice
leads to DBI equations in this paper. We also note that the
last three terms in (3.4) are invariant under the N =1

supersymmetry separately. This implies that they are not
determined from the N = 1 supersymmetry. It is worth

(3.3)
where we have used the Fierz identity.
The boundary term S, we found is
(3.4)
I —l(ﬁ"+ni) l(er i9.)
-=3 7 -rvy),
i = L -y~ L oo
t72 2\
(3.5)

[

noting that (3.4) cannot be extracted as a dimensional
reduction of the one for the D9-brane.

A. BRS symmetry

We shall show that the last term y,-ﬁi in (3.4) is required
by the BRS invariance of S, + S,, when there is no
background superfield coupling.

The action (2.1) is invariant under a pair of BRS
variations, say o; and &,. In the presence of the
boundary, these BRS variations must satisfy o, = 6,
at the boundary. This implies that the BRS transforma-
tions 6y = 6; + 6, remain unbroken in the presence of
the boundary,

046006-3



SOTA HANAZAWA and MAKOTO SAKAGUCHI

PHYS. REV. D 100, 046006 (2019)

0004 = 1%, 0044 =0,
1 1
OpXt = E/lg/"é’+ + E/I_y"ﬁ_,
. 1 ) 1.
Solly = A, 70, + E/l_y”H_ + 5/1_7/”9_,

A 1.
Opx' = E/IJF}/’H_ + E/l_)/’éu,

5Qa)f = d;:,

5Qyi = j”ryig—’
. . 1 . 1. .

OpllL = A y'0_ + 5/1_;/19+ + E/I+y’9_,
- . 1 . 1. .

Oplly = A,7'0, + 5/1_7/’9_ + 5/1_}/’9_,

5QA;_ = _2(7;4/1-&-)&1_[/-4&- - 2(7ii+)aﬁ5r - (}//4&—)0:1:[/i - (Yil—)ani—

— (00,2 700) = (70,0 pubs) = 5 (7007, ).

Again, we find the world-sheet action S, is BRS invariant 5,5, =0 up to a surface term, and satisfies

1
5Q(S() +Sb) = ﬁ/d’[{(l —Cl)nﬂ

1 - -
- 5(01 + )l (Ay,0-) + (1 = eI} (A,7:60-)

2

Aearerers)

Let us assume that there are no background fields. In this
case, the (3.8) must be eliminated by the usual boundary
conditions % = A% = 0. It is obvious to see that these
boundary conditions eliminate (3.8) as expected. It should
be noted that this happens only when we include the term
y;Ili, in (3.4).

Finally we comment on y;. Remarkably, the BRS
transformation of Sy + Sy, at the boundary, is independent
of y;. More generally, we confirm &(Sy + Sy)/8y;| = 0 in
Appendix C. This strongly suggests that y; should represent
the position of the Dp-brane.

IV. SUPERSYMMETRIC DBI EQUATIONS
OF MOTION

In this section, we will give the background coupling V
in terms of superfields on a D p-brane. Examining the BRS
variation of Sy + Sy, + V, we obtain supersymmetric DBI
equations of motion on the Dp-brane.

A. Background superfield coupling for Dp-branes

In Appendix A, we define the ten-dimensional N = 1
superfield Ay = (A,,,A,). We introduce background
superfields on a Dp-brane as a dimensional reduction of
AM: Am = (Aﬂ<xﬂ’6+)’Ai(xﬂ’9+)) and A, = Aa(xﬂ’ 9+)
Obviously they are invariant under the A =1 super-
symmetry. Similarly we introduce W* = W*(x*,0. )

1
+_(C2 - CI)A;/IE + (

(3.7)
" (147,60.) =5 e1 + e (1y,6.)
—§+ L "2) (A_r"6_) (6. 7,0-)
(3.8)

and F,, =F,,(¥*,0,). We use the ten-dimensional
Majorana-Weyl spinor notation throughout this paper.
This means that we are considering the DBI equations
with 16 supersymmetries, for example N = 4 supersym-
metric DBI equations on a D3-brane.

The background coupling V used in [24] is regarded as
an extension of the vertex operator of the open pure spinor
superstring. We give a brief review of the vertex operator in
Appendix B.

The background coupling V we introduce is

Voo [ac a0 A e0,)
FILA(.0,) + 3 AW, 0,)
NG00}, @)

where

1
(N =505

F{xﬁ = 5;),’f(0) + (ymn)aﬁf'gr)l 4 (ymnpq)aﬂfgsgpq. (42)

Note that .7-'<0), ]—'53,3 and ]-'Ej,)mq are some possible
products of any number of vector field strengths

046006-4



SUPERSYMMETRIC DBI EQUATIONS IN DIVERSE ...

PHYS. REV. D 100, 046006 (2019)

F mn,3 which is consistent with analysis for D-brane
boundary states [26] from the viewpoint of the pure spinor
closed superstring. Needless to say, the V is invariant under
the A/ = 1 supersymmetry. Since we have made the factor
1/(2za’) manifest in V, dimensions of these superfields
differ from conventional ones. In this sense, we assign
dimensions to [A,], [A,,], W*] and [F,,,] as —3, =1, — 3 and
0, respectively.

B. DBI equations from BRS symmetry

In this subsection, we will add the background superfield
coupling Vin (IV A) to the action S + S, and then require that
the BRS variation 6, (S + S, + V) vanishes. This require-
ment leads to boundary conditions on spacetime spinors and
conditions on background superfields. The latter is found to be
supersymmetric DBI equations of motion for them.

We find that the BRS variation 6,V may be expressed as

1 1
5V =5 / dr{ni [—/ﬁaﬂAa + 21Dy + 5 (1r"0-)(9,4, — D,A,) ~ (/1+yﬂvv)]

. 1 1 . 1 1
1L W) = 002 P + =5 W) = 0,00

- 1 1
+ 1T, {—(@in) + 2D + 5 (4-p"0_)0 A} +545

1 1
[—Ail)awﬁ -5 (A_r*0_)0 W + 4,11}%]

1 1 1
+ o N [A“Dafﬁ +5 (1-r0)0), Fﬂ] +& {—lﬁDﬁA(l—xliD(,A/;—E(/l_yﬂe_)ﬁﬂAﬂ—k (7"2,) 4A

Lomal) 0

1
—(A_y™0_)DsA
+2(_J/ —) p m+2

W) + 1 (7”’9—)ﬂ(/1_7mW) +

GOm0, 1P

+é [— % (A 7™0_) (¥ W) ,,} } (4.4)
Note that the supercovariant derivative on the Dp-brane is defined by
Du = g +3 00,0, (4.5)
Gathering (3.8) and (4.4) together, we obtain the BRS variation of S, + S, + V as
So(So+Sp+V) =5 / dr{n’ixﬂ + I X, + LY, +T14Y, — % ASAP + %Nﬂ,az{i +670F + éi@;}, (4.6)
where X,,, Y,,, A?, Zf, and © are given as follows:
X = (1= 1) (epu-) = A0+ KDy, =3 Ay 0) Dy = D,A) = (pa W), @)
Yo = 5 (1 €2)(Agu) = 5 (AeraW) =5 () AP, 48
N = (¢ =) + 22D WP + 2( _r"0_)o W’ ——i il (4.9)
2= ELD, P+ 3 000, P, (4.10)
There are no more higher forms because of the property,
@ (y™ ) I = im (=D)ftemmme, @y ) (4.3)

where the sign in the right-hand side depends on the chirality of 4.
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1
) 70 irat-) = 2. (Duty + D) = (1010,

1 1
(7" )ulhm + 5 0" 00D oA 45 (772,07, V)

1 1
+ Z (ymg_)a(ﬂ_ymW) + 1_6 (ymg—)a(ymg—>y/1ﬁF}//}7 (411)
1 1 1
0, =3 <C1 - g) (r"0-)a(A1rm0-) =5 (A 7r"0-) (1 WV)a- (4.12)
In the following, we will examine conditions that each term P S
in (4.6) vanishes. =g, (4.18)

To achieve our purpose, first, we focus on the term ﬁiX,»
in (4.6) which takes the form
I (=207 igp (162 +WP) + 8o (yi + A))). (4.13)
Here we assume that §,(y; + A;) = 0. This follows from
the fact that we fix degrees of freedom for the D-brane
position by
In fact, this identification turns to y; = 0 in the ' — 0 limit
after the scaling A; — (2za’)A;. It implies that we consider
a D-brane sitting at the origin. As we will see below, the
BRS transformation of (4.14) turns into one of the DBI
equations and the derivation of (4.14) with respect to the
time-coordinate 7 also turns into the Dirichlet boundary
condition. One may add a constant to the right-hand side of
(4.14) to consider a D-brane sitting outside the origin, but
this will not affect the DBI equation and the Dirichlet

boundary condition as anticipated. In addition, we obtain
the boundary condition on 6_ as

o — -1
9]

(4.15)

This eliminates 6 from (4.6) completely. Hereafter we
understand 6% as (4.15). Note that (4.15) also leads to

) 1 .
& = —C—l(niaﬂwﬁ +&.DWF).  (4.16)
Second, the terms IT"Y; and ﬁ’iYﬂ reduce to

| (cxte 3 20F% ) (W] @)

and imply the boundary condition on 4_,

This eliminates A% from (4.6) completely. Hereafter we
understand A% as (4.18).

Here, it is better to comment on two consequences of the
boundary conditions (4.15) and (4.18). First, consider
the limit & — 0. The limit & — 0, after rescaling A, —
(2zd')A,, A, — (27d)A,,, W* —» 22d/)W* and F,,, —
(27’ )F ,,,, turns the boundary conditions (4.15) and (4.18)
to the usual boundary conditions % = A% = 0. The BRS
invariance 6y (Sy + S, + V) =0 then implies 5,V = 0,
since 64(Sy + S,) = 0 under these boundary conditions.
We can show that 5,V = 0 with usual boundary conditions
leads to the super-Yang-Mills equations of motion (B9)—
(B11) as discussed in Appendix B.

We consider the BRS variation d,(y; +A;) = 0. To evalu-
ate it, we note that 5,A; = A9 D,A; +%(A_y*6_)9,A;. Under
the boundary conditions (4.15) and (4.18), the equation
So(y; +A;) =0 is shown to reduce to the following
equation:

1 1
—D,A; +— (W), ———FF (7*W),0,A; = 0.
a l+cl (th)a 86102F a(y W)/)’ pthi

(4.19)

This is one of the DBI equations. Furthermore, noting that
Ai = é‘j’rDaA,» + H’jﬁ”Ai, one finds that the time derivative
of (4.14) turns into the Dirichlet boundary condition given
in (C11).

Let us return to the subject. Third, the term A;Aﬂ in (4.6)
is examined. We see that A = 0 reduces to

1 1
_Dawﬂ - —Fﬁa + Fya(yﬂw)yaywﬁ =0.
(&) 4C2

2
8cicy

(4.20)

This is one of the DBI equations on a Dp-brane. This
equation ensures that conditions (4.15) and (4.18) are
consistent with BRS transformations 6,0% = A% and
0042 = 0.
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As was done in [24], it is convenient to introduce a
covariant derivative D, by

N 1
D,=D 7 (rH a,. 4.21
a ot 8C1C2 F a(y W)y " ( )
Applying it to CllWﬁ , we obtain
1Dwﬁ—lnw+ Fr L (7PW)., 0, WP = F
) 8cic, et “
(4.22)

where in the last equality (4.20) is used. On the other hand,
as (4.20) implies

-1

1 1 1
s )

— =D (5, - 4.3
4C2 F a Cl aW ( ﬂ ( )

D, is expressed as

1
D,=D,+

221) W5<

1 -1
o W) (W),
1
(4.24)

It follows that it satisfies the following anticommutation
relation:

{DwDﬂ} = <7ﬂﬂ 16¢ zF aF /)’y”(S)
R 1 -1
=0+ zaﬂwa( % =5tV W“)
X ('W)40,. (4.25)

Fourth, the term (N+);}Zﬁa in (4.6) is examined. Using
(4.22) and (4.25), it turns to

45
/1(1&7( (1F>—laﬂ< DW)
1
= /1_’_}1’_ (7/71;/ + FC%F(S(:F”}'}/I;”)

x—@ WH,

(4.26)
Ci

which vanishes due to the pure spinor constraint
ApytAdy +A_ytA_ = 0.

Fifth, we consider terms including IT in (4.6), IT| X,—
ﬁH’i@MW“Q; , where the second term comes from (4.16).

It is straightforward to see that it is eliminated by

1 1
ayAa - DaAy + C— (},ﬂW)a + @ (an)a(WynaﬂW)
1 1
1
n A, —0,A,) = 4.27
+ 8CIC2 a W)ﬂ<a;4 n an /4) 0’ ( )

which is one of the DBI equations. Combining it with
(4.19), we obtain

1
me)a +—3 (ynw)a(WynamW)

1
OnAg = DA, +—

W) (DA, — DyA) = 0. (4.28)

a

+ 8c 1C2
Finally, we consider terms including H‘i in (4.6),
0,
from (4.16). These terms are eliminated by

—cilé{iDﬂW“@; , where the second term comes

1
-~ 3 (}/mW)aO/VVmDﬂW)

-D,A
ah 60?

- DﬂAa + 7(’?/}Am

+ ez Pl WilraV),

FJ/ (7/ W) (amAﬁ -

DyA,,) = 0. (4.29)

8C]C2

By eliminating 0,,A; — DgA,, by (4.28), it reduces to

1
- DaAﬂ - DﬂAa + yglﬁAm - 6_6‘;' (ymw)aO/VVmDﬂW)

( "W)s(rmW),

6
{__Fya Féa(ynw) 9 WV}
1

+ @}W"F(s/f(ymW)y(an>5(ainAn - anAm) - 0

(4.30)

Finally substituting (4.20) into the expression in the curly
braces in (4.30), we obtain

1
-3 (]/mW)aO/V]/mD/;'W)

~ Dufp = Dy + VipAn =
1

1
- F (ymW)ﬂ (W}/mDaW)
1

F aF(S ( mW)y(an)é‘(amAn - 8nAm) =0.

64c2 2
(4.31)

As a result, we have obtained not only boundary
conditions (4.15) and (4.18), but also independent equa-
tions for background superfields (4.28), (4.31) and (4.20)
which eliminates (4.6). We note that ¢, and c, can be
absorbed into redefinitions of YW* and F*, as —- W" - W
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and CLZF/”,X — JFP,. So we will set ¢; = ¢, = 1 without loss
of generality.4

Summarizing, we have obtained supersymmetric DBI
equations of motion on a Dp-brane:

1
aont - DaAm + (}/mW)a + 6 (V”W)a(w}’namw)
1
+ gF/}a(an)ﬁ(amAn - anAm) = 01 (432)
1
DaAﬂ + DﬂAa - 721/}Am + 6 (VmW)aO/V}/mDﬁW)

+ (}’mW)ﬁ(W}’mDaW)

—_ QN —

I VaF‘Sﬁ(ymW)y(y”W)g(amAn -0,A,) =0, (4.33)

1 1

DaW‘B - ZFﬂa +§Wa(y”W)78,,Wﬁ =0. (4.34)
In the last equation, the index u may be replaced with m
because O, /¥ = 0. Now it is manifest that our DBI
equations on a Dp-brane can be expressed in a ten-
dimensional covariant fashion. In other words, our result
coincides with the dimensional reduction of those for a
DO-brane, though the ten-dimensional covariance was
absent in the beginning of our analysis.

V. SUMMARY AND DISCUSSIONS

We have examined the BRS invariance of the open pure
spinor superstring in the presence of background super-
fields on a Dp-brane. It was shown that the BRS invariance
leads not only to boundary conditions on the spacetime
spinors, but also to supersymmetric DBI equations of
motion for the background superfields on a Dp-brane.
These DBI equations precisely coincide with those
obtained by a dimensional reduction of the supersymmetric
DBI equations for the Abelian D9-brane given in [24,25].

We have introduced the boundary term S, and the
background coupling V. Both are determined by the BRS
symmetry. In fact, Sy, was shown to satisfy 8, (Sy + S),) = 0,
when we take the limit  — 0 and turn off the background
couplings. As for V, we have shown that the conditions for
80(So + Sy, + V) = 0 reduce to the dimensional reduction
of the super-Yang-Mills equations when & — 0. In fact,
taking the limit o — 0, after rescaling A, — (2zd)A,,
A, — 2rd)A,,, W*— 2zd )W and F,,, — 2zd)F,,,,
the DBI equations (4.32)—(4.34) reduce to the super-Yang-
Mills equations of motion (B9)-(B11) with an appropriate
dimensional reduction.

“If we construct the k-invariant boundary term which cancels
out an A/ = 1 supersymmetry variation of the Green-Schwarz
action and turn it into the BRS-invariant boundary term like (3.4)
by the method used in [31] (see also Sec. IV.1 in [32]), it must be
shown ¢; = ¢, = 1.

We note that the ten-dimensional Lorentz covariance is
manifestly broken by the boundary term S, as well as the
background coupling V. However the obtained DBI equa-
tions can be expressed in a covariant form. This implies that
our result is consistent with that for a D9-brane.

We expect that we can extend our result so that the BRS
invariance should lead to supersymmetric non-Abelian DBI
equations of motion on a D p-brane. We would like to report
this issue in the near future [33].

As an alternative to our study, non-Abelian deformations
of the maximally supersymmetric Yang-Mills theory can be
specified based on spinorial cohomology [34], which may
be closely related to the pure spinor fields in ten- and
eleven-dimensional spacetime [35-37]. The structure of
higher-derivative invariants in the maximally supersym-
metric Yang-Mills theories are studied in [38]. Moreover, in
[39,40] the pure spinor superspace formalism is developed,
which contains not only (minimal) pure spinor variables
but also nonminimal pure spinor variables [41]. This
enables us to construct the BRS invariant action for the ten-
dimensional supersymmetric DBI theory. Recently, this off-
shell action is studied further in [42,43]. It is interesting to
pursue these issues from the open string point of view.

On the other hand, the classical BRS invariance of a
closed pure spinor superstring in a curved background is
shown to imply that the background fields satisfy full
nonlinear equations of motion for the type II supergravity
[44]. This is similar to the result for the classical
k-invariance of a closed Green-Schwarz superstring [45].
Moreover, recently in [46] the classical x-invariance also
leads to the generalized type II supergravity equations of
motion” whose solutions originally have been found out in
the context of integrable deformations of AdSs x S° sigma
models [48]. It is also interesting to consider whether the
generalization of DBI equations can be derived analogously
from the x or BRS invariance of an open superstring.

An immediate task is to clarify contribution of the
dilaton superfield to Bianchi identities. In that case we
need to investigate closely the DBI equation corresponding
to 1,,, = 0 in the super-Yang-Mills theory as we see in
Appendix A. This equation is also useful to confirm that
our result agrees with the one which comes from the
bosonic part of the DBI action.

Finally, it is interesting for us to calculate quantum
higher-derivative corrections to our result by analyzing
the quantum BRS invariance of the open pure spinor
superstring.
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APPENDIX A: TEN-DIMENSIONAL N =1
SUPER-YANG-MILLS SPACE

We will review the ten-dimensional A = 1 super-Yang-
Mills theory [49]. Introducing a superconnection one-form
A=EMA,, where EM are supervielbeins and A, =
(A,.,A,) are superconnections, we define the gauge super-
covariant derivative V,,:

vm :8m +Am’ va:Da +Aa7 (Al)

where D, is the supercovariant derivative defined by

o 1,
—wﬂLE(J’ 0)uOm>

which satisfies {Dg, Dy} = 7330, The field strengths Fyy
are defined by

D, (A2)

Vi, Va} = Tyn®Ve + Fyn. (A3)

where T,y are flat torsion tensors whose components are
fixed to zero except for Tj,; = yps According to this
definition, these field strengths are invariant under the
gauge transformations with a superfield parameter Q:

SA, =0,Q, A, = D,Q. (A4)

For the on-shell super-Yang-Mills theory, we might adopt a
constraint [35] (see also [36]),

Fa} = 07 (AS)

which implies

D,Ap+ DpAg + {Ag, Ap} = VipAn- (A6)

If we consider a dimensional reduction to four dimensions,
we see that this constraint reduces to the one in the four-
dimensional A" = 4 super-Yang-Mills theory [50].

In the following, let us solve the Bianchi identities
represented as

Iyng = (_I)R(M+N)VRFMN - TMNSFSR
+ (_1)M(R+N)VNFRM - (—I)R(MHV) TRMSFSN
+ Vi Fyg = (~)MNERT 1S gy (A7)

The first identity 7,5, = 0 implies

_yglﬁme - 7/;r{lem/3 - VZ;,Fma =0. (AS)

Thanks to the Fierz identity, we find that the field strength
F,,, must take the form of
Fog = —ymaﬂWﬂ . (A9)
In other words,
OpAg — DA, + [A,, Ayl = —ymaﬁWﬁ. (A10)

Next the second identity /,,,; =0 together with (A9)
implies

]/marévﬂyv(s =+ ym[}’évoz)/vrS - }/gﬂan =0. (Al 1)
Multiplying this by 7%, we find that
1
an = g (ymn)aﬂvﬂwa7 (A12)
which is equivalent to
1
vawﬁ = _Z (ymn)aﬂan' (A13)
The third identity /,,,, = 0 implies
vaan = 7mxﬂvmwﬂ - ymaﬂvnwﬂ' (A14)
Taking (A13) into account, (A14) yields the result
yZ’ﬂVmWﬁ =0. (A15)
Furthermore, multiplying (A15) by y""*V, we find
1
vamn = _Eynaﬂ{wa’wﬁ}' (A16)

Equations (A16) and (A15) imply the Maxwell equation for
the gauge field V,, /™" = 0 and the Dirac equation for the
gaugino y,V,,& = 0, respectively.

Finally, the remaining identity /,,,, = 0 implies

VouFuy +VyF, +V,F,, =0, (A17)

np

and it suggests that F,, is just the curl of a gauge field A,,:

an = amAn - anAm + [Am7An} (Alg)

The #-expansion of these superfields is studied in [51].

APPENDIX B: MASSLESS VERTEX OPERATOR
FOR PURE SPINOR OPEN SUPERSTRING

We present a review of the vertex operators in the open
pure spinor superstring [23] (see also [32]). For simplicity,
we focus on the left-moving sector only.

We consider a ghost number 1 massless vertex operator
given by
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U = A7A,(x.6), (B1)

where A,(x,0) is a spinor superfield. The BRS trans-
formation law is represented as

Qda = - (yml)a’
(B2)

1
Ox™ = 5/1},"197 Q0% =},
A% =0, Qa)a = da»

where Q denotes §; in Sec. III A. Note that Q’w, =
—I1"(y,,4), turns out the gauge transformation for w,.
Then the cohomology condition, QU = 0 up to the gauge
transformation 6U = QQ, implies
Dy (Yunpqr)As =0 and 6A, = D,Q, (B3)

where Q(x,0) is a gauge parameter, the derivative D,, is
given in (A2).

To derive (B3), we use the pure spinor constraint for the
commutative bispinor A:

L, mnpqr
Qo = ﬁ ym/:;pqr(/{yyyé Pq /15)

(B4)
As a result, (B3) is consistent with the super-Yang-Mills
equations of motion and the gauge transformations as we
have seen in Appendix A.

Next, we derive an integrated vertex operator such as
V = [dzV. Recalling the RNS formulation, V is given as
the anticommutator of the unintegrated vertex operator U
and the b-ghost. However, in the pure spinor formulation,
the reparametrization b-ghost is unclear without introduc-
ing the nonminimal part [41].° Fortunately, the above facts
can be rephrased in terms of the BRS charge Q as’

QV =0U. (B6)
We find the vertex operator V takes the form of
V = 00°A,(x,0) +1T"A,,(x,0) + d,V*(x,0)
+ lN’""Fm,, (x,0), (B7)

2

where N = %Aym”w is the ghost Lorentz current. Indeed,
since

®The nonminimal pure spinor formalism extended to the
Maxwell background is investigated in [52].
"The Jacobi identity implies

ov=1[0{ 7{ dzb, U]
-, {Q,?{dzb}} - [7{ dzb, {U, Q)] =0U  (BS)

since {Q,U} =0, {Q.b} =T and [§dzT.U] =0U for the
conformal weight zero primary operator U.

QV = a()“aAa) + ’laaeﬂ(_DaA/} - DﬂA(z + 7/glﬂAm)
+ AT (D(lAm - amAa - Yma/}wﬂ)

1 1
+ Aadﬂ <_Dawﬂ + Z (},mn )gan> + E/IaNmnDaan’

(B8)
(B7) implies the following equations:
_D(lAﬂ — DﬁAa + YZ;}Am = 0, (Bg)
DaAm - 8mAaz - ymaﬂwﬂ = O’ (BIO)
1
_DaWﬁ + Z (ymn)aﬂan =0, (Bl 1)
ﬂalﬁ(},mn)ﬁyDaan =0. (B12)

Equations (B9)-(B11) certainly correspond to the super-
Yang-Mills equations (A6), (A10) and (A13) in the Abelian
case, respectively. It follows that superfields A, and A,, are
spinor and vector gauge fields in the ten-dimensional NV =
1 super-Yang-Mills theory, and that WW* and F,,, are spinor
and vector field strengths for them. On the other hand,
(B12) is satisfied by the pure spinor constraint

A998 (ymm) Dol iy = 4/1“/1ﬂDaDﬂW7’

=20y, W' =0,  (BI3)

where (B11) is used. If (B9) is contracted with (ymnpqr)“ﬁ ,
we obtain the equation of motion for A, in (B3).
Contraction of (B9) with yffﬂ also leads to

1
A, = gyf’nﬁDaAﬂ. (B14)
Then the gauge transformation in (B3) turns to

0A,, = 0,,Q. Similarly contracting (B10) with y"* implies
the equation for W7,

1
W/} = 77/"1”/)’ (DaAm

— 0,A),
- )

(B15)

and contracting (B11) with (y?9)§ implies the equation
for F,,,,

1
Fpn= g (Ymn)aﬂDﬂWa'

Furthermore, utilizing (B14), (B10) and (B16), we derive

(B16)

1 a 1 af
a[mAn] = _gy[,fD(l(an]A/}) = _§Y[4D(1(D/}An] - (yn] W)/})
1
vy (ymn);DaWﬂ = Fp-

: (B17)

Besides, this equation together with (B10) implies
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D.F ., = a[mD\a|An] = a[m (yn]w)a' (B18)

(B17) and (B18) certainly correspond to remaining
Bianchi identities (A18) and (A14) for the Abelian case,
respectively.

APPENDIX C: BRS CHARGE
CONSERVATION

We will derive the supersymmetric DBI equations by
modifying the method used in [24] to include the Dirichlet
components.

1 1 .. ..
3(50+ 50) = 5o [ ac] 80| 1z + 021,00, + . 00, =01,

+59"[ (I—cp)AS

.. 1 1
+0lly; + 5618862 + 5 (c2 = 1)
oV = !
" 2nd
+ oy [éi(aﬂA{, — D,A,) + T (9,4, — 9,A,) + TL0,A; + ~

+25A+W”‘+ 518 FP o + < z « aaa)ﬂ}

where 6y defined by

1
Byt = 8t + - (0.780,.)

- é (9_rm9+)(7m9_)a] -8y, [ﬁ—

We require that the general variation &(Sy + S, + V)
vanishes. This leads to boundary conditions in the presence
of background superfields. Under these conditions, it is
shown that the BRS charge conservation implies superfield
equations for DBI fields.

Let us begin to examine a general variation of the world-
sheet action S in (2.1), its ten-dimensional A" = 1 super-
symmetry counterterm S, in (3.4) and the background
coupling V in (4.1). We find that variations 5(S, + S},) and
oV may be expressed as

0701100,

)= % (9_7,490}

1 1
a)(jé/l‘i + 5 czéwjﬂ‘i - —0)55/11}, (Cl)

2

. _ 1 1
dr{aei {Qi(y’;ﬂAﬂ = DyAy = DpA,) + T (DA, = 9,A,) + T DA =5 AFD IV + ZDG(N+F)]

1 .
AL+ Lo (NJ)] + 81T A

(€2)

(C3)

is invariant under the N' = 1 supersymmetry. We also see that 5(S, + Sy,)/dy;| = 0 as mentioned in Sec. IIL

To obtain boundary conditions from &(Sy + Sy, + V)

=0, first we focus on the terms with A} and Sw, and derive

1
0r=——We, 0= —lﬁ LFep. (C4)
€
They also lead to
. 1 .
07 = - — (LW + &, .DyWe),
1
led 1 H o Hﬁ o
50% = ——(6y+6,,W + 60, DyW?),
1
5% = —4—euiiw ——( bSO, + XL60.D,F%). (C5)
Next, examining the terms with 51 in &(Sy + S, + V) we find
S S
Wy = 47(:20)/} Fﬂa' (C6)

Boundary conditions for A% in (C4) and w, in (C6) are consistent with the ghost number charge conservation
Mw,| = iac?)a|, where “|” means “evaluated at the boundary.” On the other hand, we can eliminate the terms with
ST, in 8(Sy + S, + V) by the identification (4.14). After substituting the above conditions into §(S, + S, + V) = 0, we
examine the terms with 6y and 56%. They lead to complicated boundary conditions:
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(r W), +

, 1
., =6 (aﬂA,, Doy + 5

1
@wma(vvymam)
1

1
FIE.(9,A, - 9,A,) + TT.0,A; +

2A@W+—MMA (C7)

1 . 1
E d; = 9&- <DaAﬂ + DﬂAa - yzl/}Am - 6_6‘? (WymDﬂW) (ymW> —? (WymD W) (ymW) )

1 1
+ Hljr (auAa - D{lAﬂ + c_l (YyW)a +—=3 (Wymaﬂw) (ymw)a>

6¢3
v (2 (W), = DA, + Lo - L. p) (C8)
Vi 261 s~ a 4C2 a + .

Equation (C7) is regarded as a modified Neumann boundary condition. Boundary conditions for @, in (C6) and d, in (C8)
must be consistent with the BRS transformation 6y, = d; up to the A-gauge transformation in Sec. II. In the following
discussion, we will absorb ¢, and ¢, by rescaling W* — ¢, W* and F¥, = ¢, F?,.

To extract DBI equations, we impose the following relation for BRS currents:

(C9)
which implies BRS charge conservation
0 =0;Qota = /daar(j]TSRS> = /daaa(j%RS> = /daaa(j]ZBRS _leBRS> = (4%d, —/iaaa”- (C10)
Then we assume the Dirichlet boundary condition
I, = -I1"9,A;, — 0°D,A; + 2% 0.y V). (C11)

This is parallel with the Neumann boundary condition in (C7) and just the derivation of the identification (4.14) with respect
to the time-coordinate 7.

Under these boundary conditions (C4), (C7), (C8) and (C11), the BRS charge conservation (C9) implies
0 =Ai%d, — 2d,
| = 1 ;o " .
= Eﬂ-kda + Ei—Aa - 5 (A—yug—)n— ) (/1_}/10_)1_1_ 1 (/1—7/ 9—)(6—ym6+)
. 1
1
+ gF},a(ymW)y{amAﬂ - DﬂAm + (ymW>/i + 6 (an)/i(WynamW) }:|
1 1
+ ﬂinﬁ— |:aﬂAa - DaA/d + (Y”W)a += (Wymauw) (7mW)a + gFﬁa(an)ﬂ(aﬂAn - 811A/4>:|
.. 1 1 1
AL | -Dus (W) = g PP W0, + 5487 DI = PPt g Frutrw) 0,0
1
ZliNf—}/ |:DaFy/3 + gFﬁa(yﬂW)ﬁaMFyﬂ} : (C12)

Finally, we find that, to eliminate this expression, (4.31), (4.27), (4.19), (4.20) and (4.26) should be required, as expected.
The first four equations are supersymmetric DBI equations of motion on a Dp-brane, and the last one is the pure spinor
constraint.
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