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We examine the BRS invariance of the open pure spinor superstring in the presence of background
superfields on a Dp-brane. It is shown that the BRS invariance leads not only to boundary conditions on the
spacetime spinors, but also to supersymmetric Dirac-Born-Infeld (DBI) equations of motion for the
background superfields on the Dp-brane. These DBI equations are consistent with the supersymmetric DBI
equations for a D9-brane.
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I. INTRODUCTION

Dirac-Born-Infeld (DBI) theory is known as a nonlinear
generalization of Maxwell theory and may describe, along
with the Wess-Zumino action, the low-energy effective
dynamics on a single D-brane in string theory. The bosonic
DBI action is derived from the world-sheet analysis of the
bosonic open string [1]. A supersymmetric DBI action
should be a part of the effective action on a D-brane in
type II superstring theory. In the Ramond-Neveu-Schwarz
(RNS) formulation, however, it is difficult to read off the
target space geometry coupling to Ramond-Ramond fields,
because space-time supersymmetry becomes manifest only
after the Gliozzi-Scherk-Olive projection. So the RNS
superstring has led to the only bosonic sector of the super-
symmetric DBI action [2].
The Green-Schwarz (GS) formulation has an advantage

in this direction. The Wess-Zumino term which ensures the
κ-invariance of the world-volume action of a D-brane is
constructed in [3]. In [4], the κ-symmetric approach, so-
called the superembedding formalism [5], is shown to lead
to linearized supersymmetric DBI equations of motion for a
D9-brane, which have the ten-dimensional N ¼ 2 super-
symmetry. Furthermore, in [6], the classical κ-invariance of
an open GS superstring in an Abelian background is shown
to imply that the background fields should satisfy full
nonlinear equations of motion for a supersymmetric DBI
action. The non-Abelian extension of this formalism is
discussed in [7] as the boundary fermion formalism where

Chan-Patton factors describing coincident D-branes are
replaced by boundary fermions.1

Unlike the formulations mentioned above, the pure
spinor formulation [23] enables us to quantize a superstring
in a super-Poincaré covariant manner. In this formulation,
the κ-symmetry in the GS formulation is replaced with the
BRS symmetry. It is shown in [24], correspondingly to the
κ-symmetry analysis [6], that the classical BRS invariance
of an open pure spinor superstring leads to supersymmetric
DBI equations of motion on a D9-brane, which have the
nonlinear N ¼ 1 supersymmetry as well as the manifest
N ¼ 1 supersymmetry. These equations precisely coincide
with those obtained in the superembedding formalism [25].
Furthermore, the non-Abelian extension of supersymmetric
DBI equations is proposed. In [26] (see also [27,28]),
D-brane boundary states are constructed in the pure spinor
formulation. Especially, calculating the disk scattering
amplitude suggests that the coupling of the boundary state
to the background fields will reproduce the DBI kinetic
term and the Wess-Zumino term of the D9-brane effective
action. These achievements might imply the fact that the
low-energy effective theory on the D9-brane is determined
uniquely by the ten-dimensional N ¼ 2 supersymmetry.
In this paper we will derive supersymmetric DBI

equations of motion on a Dp-brane, as well as a D9-brane,
from the BRS invariance of the open pure spinor super-
string. Our approach is similar to that taken in [24] for a
D9-brane. However the inclusion of Dirichlet components
requires improvements which are not just a dimensional
reduction of the case of a D9-brane. As in [24], we will
provide two boundary terms, the counterterm Sb for the
N ¼ 1 supersymmetry transformation of the world-sheet
action S0 and the background superfield coupling V as a
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1Other than this study, there have been many attempts to
extend to the non-Abelian DBI theory based on various ap-
proaches [8–22].
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relevant extension of the pure spinor vertex operator. It is
found that the contribution of Dirichlet components in them
cannot be determined unless considering the BRS invari-
ance. In [24], by using nontrivial boundary conditions
given by the general variation of S0 þ Sb þ V, the BRS
charge conservation leads to supersymmetric DBI equa-
tions for the D9-brane. On the other hand, we will show that
supersymmetric DBI equations in diverse dimensions are
extracted only from the BRS transformation of S0þSbþV
under an identification on the D-brane position.
This paper is organized as follows. After introducing the

type II pure spinor open superstring action in Sec. II, we
construct the boundary term for the N ¼ 1 supersymmetry
invariance of this action in Sec. III. In Sec. IVA, back-
ground superfield coupling is found by considering the
modification of a vertex operator in the open pure spinor

superstring. In Sec. IV B, we confirm that these back-
ground superfields satisfy supersymmetric DBI equations
of motion. The last section is devoted to summary and
discussions. In addition, we give a brief review of the
covariant approach for the ten-dimensional N ¼ 1 super-
Yang-Mills theory in Appendix A. We will formulate a
vertex operator in the open pure spinor superstring in
Appendix B. We show that our result can be derived also
from improving the method used in [24] to include
Dirichlet components in Appendix C.

II. OPEN PURE SPINOR SUPERSTRING

The world-sheet action of the type II pure spinor open
superstring [23] is given as

S0 ¼
1

πα0

Z
dzdz̄

�
1

2
∂xm∂̄xm þ pα∂̄θα þ p̂α∂θ̂α þ ωα∂̄λα þ ω̂α∂λ̂α

�
; ð2:1Þ

where xm (m ¼ 0; 1;…; 9) is a ten-dimensional coordinate,
θα and θ̂αðα ¼ 1;…; 16Þ are left- and right-moving ten-
dimensional Majorana-Weyl spinors, respectively, and λα

and λ̂α are bosonic ghosts satisfying pure spinor constrains
λγmλ ¼ λ̂γmλ̂ ¼ 0. The ðpα; p̂αÞ and ðωα; ω̂αÞ are conjugate
to ðθα; θ̂αÞ and ðλα; λ̂αÞ, respectively. The world-sheet
derivatives ∂ and ∂̄ denote ∂ ¼ ∂τ þ ∂σ and ∂̄ ¼ ∂τ − ∂σ,
respectively. It implies dzdz̄ ¼ − 1

2
dτdσ. The action is

invariant under the gauge transformations δΛωα ¼
ΛmðγmλÞα and δΛ̂ω̂α ¼ Λ̂mðγmλ̂Þα. We use 16 × 16 sym-
metric matrices γmαβ and γmαβ which are off-diagonal
blocks of the 32 × 32 gamma matrices and satisfy
γmαβγ

nβγ þ γnαβγ
mβγ ¼ 2ηmnδγα. We frequently use the Fierz

identity γmðαβγmγÞδ ¼ 0.
The action (2.1) is invariant under the ten-dimensional

N ¼ 2 supersymmetry transformations,

δϵθ
α ¼ ϵα; δϵθ̂

α ¼ ϵ̂α; δϵxm ¼ 1

2
θγmϵþ 1

2
θ̂γmϵ̂;

δϵpα ¼
1

2
∂xmðγmϵÞα − 1

8
ðϵγmθÞðγm∂θÞα; δϵp̂α ¼

1

2
∂̄xmðγmϵ̂Þα − 1

8
ðϵ̂γmθ̂Þðγm∂̄ θ̂Þα; ð2:2Þ

where parameters ϵ and ϵ̂ correspond to ten-dimensional Majorana-Weyl spinors. For an open superstring, we are left with a
surface term,

δϵS0 ¼
1

2πα0

Z
dτ

�
1

2
ðϵγmθ − ϵ̂γmθ̂Þ_xm þ 1

12
ðϵγmθÞðθγm _θÞ −

1

12
ðϵ̂γmθ̂Þðθ̂γm _̂θÞ

�����; ð2:3Þ

where “j” means “evaluated at the boundary” and we will
omit it for brevity in the following. A dot on a field denotes
the τ-derivative of the field, while a prime does the σ-
derivative. If there are no background fields, the surface
term (2.3) can be eliminated by imposing usual boundary
conditions for Dp-branes,2

x0μ ¼ 0; _xi ¼ 0; θ̂ ¼ γ1���pθ; λ̂ ¼ γ1���pλ;

ð2:4Þ

and N ¼ 1 supersymmetry condition ϵ̂ ¼ γ1���pϵ.
These boundary conditions imply that p ¼ odd for the
type IIB string while p ¼ even for the type IIA string. As
usual, xμðμ ¼ 0;…; pÞ are Neumann coordinates, while
xiði ¼ pþ 1;…; 9Þ are Dirichlet coordinates.
Instead of imposing boundary conditions, we will con-

sider coupling to the background superfields preserving the
N ¼ 1 supersymmetry specified by ϵ̂ ¼ γ1���pϵ. To preserve

2We must impose the same boundary condition on θ and λ
since BRS transformations relate them to each other. These
boundary conditions also eliminate the surface term which comes
from the BRS transformation of the world-sheet action S0. See
[29,30] for related topics.
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N ¼ 1 supersymmetry, we must introduce a boundary term
which eliminates (2.3).

III. N = 1 SUPERSYMMETRY AND
BOUNDARY TERM

Here we will introduce a boundary term Sb which leaves
S0 þ Sb invariant under theN ¼ 1 supersymmetry. For this
purpose, it is convenient to introduce the following objects,

θα� ¼ 1ffiffiffi
2

p ðθ̂α � ðγ1���pθÞαÞ; d�α ¼
ffiffiffi
2

p
ðd̂α � ðγ1���pdÞαÞ;

λα� ¼ 1ffiffiffi
2

p ðλ̂α � ðγ1���pλÞαÞ; ω�
α ¼

ffiffiffi
2

p
ðω̂α � ðγ1���pωÞαÞ;

ð3:1Þ

where dα¼pα− 1
2
∂xmðγmθÞα− 1

8
ðθγm∂θÞðγmθÞα and d̂α ¼

p̂α − 1
2
∂̄xmðγmθ̂Þα − 1

8
ðθ̂γm∂̄ θ̂Þðγmθ̂Þα are invariant under

the ϵ- and ϵ̂-supersymmetry in (2.2), respectively. By using

these variables, the N ¼ 1 supersymmetry transformations
specified by ϵ̂ ¼ γ1���pϵ are represented as

δηθ
αþ ¼ ηα; δηθ

α
− ¼ 0; δηxμ ¼

1

2
θþγμη;

δηxi ¼
1

2
θ−γ

iη; δηλ
α
� ¼ δηω

�
α ¼ 0; ð3:2Þ

where we introduced η by η≡ 1ffiffi
2

p ðϵ̂þ γ1���pϵÞ. The N ¼ 1

supersymmetry transformation of S0 is found to be

δηS0 ¼ −
1

2πα0

Z
dτ

�
1

2
ðηγμθ−Þ_xμ þ

1

2
ðηγiθþÞ_xi

þ 1

8
ðηγmθþÞðθ−γm _θþÞ þ

1

24
ðηγmθ−Þðθ−γm _θ−Þ

�
;

ð3:3Þ

where we have used the Fierz identity.
The boundary term Sb we found is

Sb ¼
1

2πα0

Z
dτ

�
1

2
Πμ

þðθþγμθ−Þ −
1

2
yiðθþγi _θþÞ −

1

8
ðθþγμθ−Þðθþγμ _θþÞ þ

1

8
ðθþγiθ−Þðθþγi _θþÞ

þ 1

24
ðθþγmθ−Þðθ−γm _θ−Þ þ

1

2
c1Δþ

α θ
α
− þ 1

2
c2ωþ

α λ
α
− þ yiΠ̃iþ

�
; ð3:4Þ

where c1 and c2 are constants. We have introduced the following,

Πμ
þ ¼ 1

2
ðΠ̂μ þ ΠμÞ − 1

2
ðθ−γμ _θ−Þ; Πi

− ¼ 1

2
ðΠ̂i þ ΠiÞ − 1

2
ðθ−γi _θþÞ;

Π̃μ
− ¼ 1

2
ðΠ̂μ − ΠμÞ − 1

2
ðθ−γμ _θþÞ; Π̃iþ ¼ 1

2
ðΠ̂i − ΠiÞ − 1

2
ðθ−γi _θ−Þ;

yi ¼ xi þ 1

2
ðθþγiθ−Þ;

Δþ
α ¼ dþα þ 1

2
ðγμθ−ÞαðΠ̂μ − ΠμÞ þ

1

2
ðγiθ−ÞαðΠ̂i þ ΠiÞ; ð3:5Þ

where Πm ¼ ∂xm þ 1
2
θγm∂θ and Π̂m ¼ ∂̄xm þ 1

2
θ̂γm∂̄ θ̂ are

ϵ- and ϵ̂-supersymmetry invariants, respectively. Objects in
(3.5) are invariant under the N ¼ 1 supersymmetry. To
show this, we have to treat objects like θ0� at the boundary.
For this, we require that at the boundary

θ0� ¼ −_θ∓; λ0� ¼ −_λ∓: ð3:6Þ
These are consistent with the bulk equations of motion
∂̄θα ¼ ∂θ̂α ¼ ∂̄λα ¼ ∂λ̂α ¼ 0. It is shown that this choice
leads to DBI equations in this paper. We also note that the
last three terms in (3.4) are invariant under the N ¼ 1
supersymmetry separately. This implies that they are not
determined from the N ¼ 1 supersymmetry. It is worth

noting that (3.4) cannot be extracted as a dimensional
reduction of the one for the D9-brane.

A. BRS symmetry

We shall show that the last term yiΠ̃iþ in (3.4) is required
by the BRS invariance of S0 þ Sb, when there is no
background superfield coupling.
The action (2.1) is invariant under a pair of BRS

variations, say δ1 and δ2. In the presence of the
boundary, these BRS variations must satisfy δ1 ¼ δ2
at the boundary. This implies that the BRS transforma-
tions δQ ¼ δ1 þ δ2 remain unbroken in the presence of
the boundary,
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δQθ
α
� ¼ λα�; δQλ

α
� ¼ 0; δQω

�
α ¼ d�α ;

δQxμ ¼
1

2
λþγμθþ þ 1

2
λ−γ

μθ−; δQxi ¼
1

2
λþγiθ− þ 1

2
λ−γ

iθþ; δQyi ¼ λþγiθ−;

δQΠ
μ
þ ¼ λþγμ _θþ þ 1

2
λ−γ

μ _θ− þ 1

2
_λ−γ

μθ−; δQΠi
− ¼ λþγi _θ− þ 1

2
λ−γ

i _θþ þ 1

2
_λþγiθ−;

δQΠ̃μ
− ¼ λþγμ _θ− þ 1

2
λ−γ

μ _θþ þ 1

2
_λþγμθ−; δQΠ̃iþ ¼ λþγi _θþ þ 1

2
λ−γ

i _θ− þ 1

2
_λ−γ

iθ−;

δQΔþ
α ¼ −2ðγμλþÞαΠμ

þ − 2ðγiλþÞαΠ̃iþ − ðγμλ−ÞαΠ̃μ
− − ðγiλ−ÞαΠi

−

− ðγm _θ−Þαðλþγmθ−Þ − ðγmθ−Þαðλ−γm _θþÞ −
1

2
ðγmλ−Þαðθ−γm _θþÞ: ð3:7Þ

Again, we find the world-sheet action S0 is BRS invariant δQS0 ¼ 0 up to a surface term, and satisfies

δQðS0 þ SbÞ ¼
1

2πα0

Z
dτ

�
ð1 − c1ÞΠμ

þðλþγμθ−Þ −
1

2
ðc1 þ c2ÞΠi

−ðλ−γiθ−Þ

−
1

2
ðc1 þ c2ÞΠ̃μ

−ðλ−γμθ−Þ þ ð1 − c1ÞΠ̃iþðλþγiθ−Þ

þ 1

2
ðc2 − c1ÞΔþ

β λ
β
− þ

�
−
1

3
þ c1 þ c2

4

�
ðλ−γmθ−Þð_θþγmθ−Þ

þ 1

2

�
1

3
− c1

�
ðλþγmθ−Þðθ−γm _θ−Þ

�
: ð3:8Þ

Let us assume that there are no background fields. In this
case, the (3.8) must be eliminated by the usual boundary
conditions θα− ¼ λα− ¼ 0. It is obvious to see that these
boundary conditions eliminate (3.8) as expected. It should
be noted that this happens only when we include the term
yiΠ̃iþ in (3.4).
Finally we comment on yi. Remarkably, the BRS

transformation of S0 þ Sb, at the boundary, is independent
of yi. More generally, we confirm δðS0 þ SbÞ=δyij ¼ 0 in
Appendix C. This strongly suggests that yi should represent
the position of the Dp-brane.

IV. SUPERSYMMETRIC DBI EQUATIONS
OF MOTION

In this section, we will give the background coupling V
in terms of superfields on a Dp-brane. Examining the BRS
variation of S0 þ Sb þ V, we obtain supersymmetric DBI
equations of motion on the Dp-brane.

A. Background superfield coupling for Dp-branes

In Appendix A, we define the ten-dimensional N ¼ 1
superfield AM ¼ ðAm; AαÞ. We introduce background
superfields on a Dp-brane as a dimensional reduction of
AM: Am ¼ ðAμðxμ; θþÞ; Aiðxμ; θþÞÞ and Aα ¼ Aαðxμ; θþÞ.
Obviously they are invariant under the N ¼ 1 super-
symmetry. Similarly we introduce Wα ¼ Wαðxμ; θþÞ

and Fmn ¼ Fmnðxμ; θþÞ. We use the ten-dimensional
Majorana-Weyl spinor notation throughout this paper.
This means that we are considering the DBI equations
with 16 supersymmetries, for example N ¼ 4 supersym-
metric DBI equations on a D3-brane.
The background coupling V used in [24] is regarded as

an extension of the vertex operator of the open pure spinor
superstring. We give a brief review of the vertex operator in
Appendix B.
The background coupling V we introduce is

V ¼ 1

2πα0

Z
dτ

�
_θαþAαðxμ; θþÞ þ Πμ

þAμðxμ; θþÞ

þ Π̃iþAiðxμ; θþÞ þ
1

2
Δþ

αWαðxμ; θþÞ

þ 1

4
Nþ=Fðxμ; θþÞ

�
; ð4:1Þ

where

ðNþÞβα ¼
1

2
ωþ
α λ

β
þ;

=Fα
β ¼ δαβF

ð0Þ þ ðγmnÞαβF ð2Þ
mn þ ðγmnpqÞαβF ð4Þ

mnpq: ð4:2Þ

Note that F ð0Þ, F ð2Þ
mn and F ð4Þ

mnpq are some possible
products of any number of vector field strengths
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Fmn,
3 which is consistent with analysis for D-brane

boundary states [26] from the viewpoint of the pure spinor
closed superstring. Needless to say, the V is invariant under
the N ¼ 1 supersymmetry. Since we have made the factor
1=ð2πα0Þ manifest in V, dimensions of these superfields
differ from conventional ones. In this sense, we assign
dimensions to ½Aα�, ½Am�, ½Wα� and ½Fmn� as − 3

2
, −1, − 1

2
and

0, respectively.

B. DBI equations from BRS symmetry

In this subsection, we will add the background superfield
couplingV in (IVA) to theactionS0 þ Sb and then require that
the BRS variation δQðS0 þ Sb þ VÞ vanishes. This require-
ment leads to boundary conditions on spacetime spinors and
conditionsonbackgroundsuperfields.The latter is found tobe
supersymmetric DBI equations of motion for them.
We find that the BRS variation δQV may be expressed as

δQV ¼ 1

2πα0

Z
dτ

�
Πμ

þ

�
−λαþ∂μAα þ λαþDαAμ þ

1

2
ðλ−γnθ−Þð∂nAμ − ∂μAnÞ − ðλþγμWÞ

	

þ Πi
−

�
−
1

2
ðλ−γiWÞ − 1

8
ðγiθ−Þαλβþ=Fα

β

	
þ Π̃μ

−

�
−
1

2
ðλ−γμWÞ − 1

8
ðγμθ−Þαλβþ=Fα

β

	

þ Π̃iþ

�
−ðλþγiWÞ þ λαþDαAi þ

1

2
ðλ−γμθ−Þ∂μAi

	
þ 1

2
Δþ

β

�
−λαþDαWβ −

1

2
ðλ−γμθ−Þ∂μWβ þ 1

4
λαþ=Fβ

α

	

þ 1

4
Nþβ

γ

�
λαþDα=Fβ

γ þ
1

2
ðλ−γμθ−Þ∂μ=Fβ

γ

	
þ _θβþ

�
−λαþDβAα − λαþDαAβ −

1

2
ðλ−γμθ−Þ∂μAβ þ ðγmλþÞβAm

þ 1

2
ðλ−γmθ−ÞDβAm þ 1

2
ðγmλ−Þβðθ−γmWÞ þ 1

4
ðγmθ−Þβðλ−γmWÞ þ 1

16
ðγmθ−Þβðγmθ−Þγλαþ=Fγ

α

	

þ _θβ−

�
−
1

2
ðλþγmθ−ÞðγmWÞβ

	�
: ð4:4Þ

Note that the supercovariant derivative on the Dp-brane is defined by

Dα ¼
∂

∂θαþ þ 1

2
ðγμθþÞα∂μ: ð4:5Þ

Gathering (3.8) and (4.4) together, we obtain the BRS variation of S0 þ Sb þ V as

δQðS0 þ Sb þ VÞ ¼ 1

2πα0

Z
dτ

�
Πμ

þXμ þ Π̃iþXi þ Πi
−Yi þ Π̃μ

−Yμ −
1

2
Δþ

β Λβ þ 1

4
Nþβ

αZβ
α þ _θαþΘþ

α þ _θα−Θ−
α

�
; ð4:6Þ

where Xm, Ym, Λβ, Zβ
α and Θ�

α are given as follows:

Xm ≡ ð1 − c1Þðλþγmθ−Þ − λαþ∂mAα þ λαþDαAm −
1

2
ðλ−γnθ−Þð∂mAn − ∂nAmÞ − ðλþγmWÞ; ð4:7Þ

Ym ≡ −
1

2
ðc1 þ c2Þðλ−γmθ−Þ −

1

2
ðλ−γmWÞ − 1

8
ðγmθ−Þαλβþ=Fα

β; ð4:8Þ

Λβ ≡ ðc1 − c2Þλβ− þ λαþDαWβ þ 1

2
ðλ−γμθ−Þ∂μWβ −

1

4
λαþ=Fβ

α; ð4:9Þ

Zβ
α ≡ λγþDγ=Fβ

α þ
1

2
ðλ−γμθ−Þ∂μ=Fβ

α; ð4:10Þ

3There are no more higher forms because of the property,

ωαðγm1���m2kÞαβλβ ¼ � 1

ð10 − 2kÞ! ð−1Þ
kþ1ϵm1���m2k

n1���n10−2kωαðγn1���n10−2kÞαβλβ; ð4:3Þ

where the sign in the right-hand side depends on the chirality of λ.
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Θþ
α ≡

�
−
1

3
þ c1 þ c2

4

�
ðγmθ−Þαðλ−γmθ−Þ − λβþðDαAβ þDβAαÞ −

1

2
ðλ−γμθ−Þ∂μAα

þ ðγmλþÞαAm þ 1

2
ðλ−γmθ−ÞDαAm þ 1

2
ðγmλ−Þαðθ−γmWÞ

þ 1

4
ðγmθ−Þαðλ−γmWÞ þ 1

16
ðγmθ−Þαðγmθ−Þγλβþ=Fγ

β; ð4:11Þ

Θ−
α ≡ 1

2

�
c1 −

1

3

�
ðγmθ−Þαðλþγmθ−Þ −

1

2
ðλþγmθ−ÞðγmWÞα: ð4:12Þ

In the following, we will examine conditions that each term
in (4.6) vanishes.
To achieve our purpose, first, we focus on the term Π̃iþXi

in (4.6) which takes the form

Π̃iþ½−λαþγiαβðc1θβ− þWβÞ þ δQðyi þ AiÞ�: ð4:13Þ

Here we assume that δQðyi þ AiÞ ¼ 0. This follows from
the fact that we fix degrees of freedom for the D-brane
position by

yi ¼ −Ai: ð4:14Þ

In fact, this identification turns to yi ¼ 0 in the α0 → 0 limit
after the scaling Ai → ð2πα0ÞAi. It implies that we consider
a D-brane sitting at the origin. As we will see below, the
BRS transformation of (4.14) turns into one of the DBI
equations and the derivation of (4.14) with respect to the
time-coordinate τ also turns into the Dirichlet boundary
condition. One may add a constant to the right-hand side of
(4.14) to consider a D-brane sitting outside the origin, but
this will not affect the DBI equation and the Dirichlet
boundary condition as anticipated. In addition, we obtain
the boundary condition on θ− as

θβ− ¼ −
1

c1
Wβ: ð4:15Þ

This eliminates θα− from (4.6) completely. Hereafter we
understand θα− as (4.15). Note that (4.15) also leads to

_θβ− ¼ −
1

c1
ðΠμ

þ∂μWβ þ _θγþDγWβÞ: ð4:16Þ

Second, the terms Πi
−Yi and Π̃μ

−Yμ reduce to

Πm
−

��
c2λα− þ 1

4
λβþ=Fα

β

�
1

c1
ðγmWÞα

	
; ð4:17Þ

and imply the boundary condition on λ−,

λα− ¼ −
1

4c2
λβþ=Fα

β: ð4:18Þ

This eliminates λα− from (4.6) completely. Hereafter we
understand λα− as (4.18).
Here, it is better to comment on two consequences of the

boundary conditions (4.15) and (4.18). First, consider
the limit α0 → 0. The limit α0→0, after rescaling Aα→
ð2πα0ÞAα, Am → ð2πα0ÞAm, Wα → ð2πα0ÞWα and Fmn →
ð2πα0ÞFmn, turns the boundary conditions (4.15) and (4.18)
to the usual boundary conditions θα− ¼ λα− ¼ 0. The BRS
invariance δQðS0 þ Sb þ VÞ ¼ 0 then implies δQV ¼ 0,
since δQðS0 þ SbÞ ¼ 0 under these boundary conditions.
We can show that δQV ¼ 0 with usual boundary conditions
leads to the super-Yang-Mills equations of motion (B9)–
(B11) as discussed in Appendix B.
We consider the BRS variation δQðyiþAiÞ¼0. To evalu-

ate it, we note that δQAi¼ λαþDαAiþ 1
2
ðλ−γμθ−Þ∂μAi. Under

the boundary conditions (4.15) and (4.18), the equation
δQðyi þ AiÞ ¼ 0 is shown to reduce to the following
equation:

−DαAi þ
1

c1
ðγiWÞα −

1

8c1c2
=Fβ

αðγμWÞβ∂μAi ¼ 0:

ð4:19Þ

This is one of the DBI equations. Furthermore, noting that
_Ai ¼ _θαþDαAi þ Πμ

þ∂μAi, one finds that the time derivative
of (4.14) turns into the Dirichlet boundary condition given
in (C11).
Let us return to the subject. Third, the termΔþ

β Λβ in (4.6)
is examined. We see that Λβ ¼ 0 reduces to

1

c1
DαWβ −

1

4c2
=Fβ

α þ
1

8c21c2
=Fγ

αðγμWÞγ∂μWβ ¼ 0:

ð4:20Þ

This is one of the DBI equations on a Dp-brane. This
equation ensures that conditions (4.15) and (4.18) are
consistent with BRS transformations δQθ

α
− ¼ λα− and

δQλ
α
− ¼ 0.
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As was done in [24], it is convenient to introduce a
covariant derivative D̂α by

D̂α ≡Dα þ
1

8c1c2
=Fγ

αðγμWÞγ∂μ: ð4:21Þ

Applying it to 1
c1
Wβ, we obtain

1

c1
D̂αWβ ¼ 1

c1
DαWβ þ 1

8c21c2
=Fγ

αðγμWÞγ∂μWβ ¼ 1

4c2
=Fβ

α;

ð4:22Þ

where in the last equality (4.20) is used. On the other hand,
as (4.20) implies

1

4c2
=Fβ

α ¼
1

c1
DαWγ

�
δγβ −

1

2c21
ðγμWÞβ∂μWγ

�
−1
; ð4:23Þ

D̂α is expressed as

D̂α¼Dαþ
1

2c21
DαWδ

�
δδγ−

1

2c21
ðγνWÞγ∂νWδ

�
−1
ðγμWÞγ∂μ:

ð4:24Þ

It follows that it satisfies the following anticommutation
relation:

fD̂α; D̂βg ¼
�
γμαβ þ

1

16c22
=Fγ

α=Fδ
βγ

μ
γδ

�
∂̂μ;

∂̂μ ≡ ∂μ þ
1

2c21
∂μWα

�
δαβ −

1

2c21
γνβγW

γ∂νWα

�
−1

× ðγρWÞβ∂ρ: ð4:25Þ

Fourth, the term ðNþÞαβZβ
α in (4.6) is examined. Using

(4.22) and (4.25), it turns to

λαþλ
γ
þ

�
1

c2
D̂α=Fβ

γ

�
¼ λαþλ

γ
þ

�
4

c1
D̂αD̂γWβ

�

¼ λαþλ
γ
þ

�
γμαγ þ 1

16c22
=Fδ

α=Fη
γγ

μ
δη

�

×
2

c1
∂̂μWβ; ð4:26Þ

which vanishes due to the pure spinor constraint
λþγμλþ þ λ−γ

μλ− ¼ 0.
Fifth, we consider terms including Πμ

þ in (4.6), Πμ
þXμ−

1
c1
Πμ

þ∂μWαΘ−
α , where the second term comes from (4.16).

It is straightforward to see that it is eliminated by

∂μAα −DαAμ þ
1

c1
ðγμWÞα þ

1

6c31
ðγnWÞαðWγn∂μWÞ

þ 1

8c1c2
=Fβ

αðγnWÞβð∂μAn − ∂nAμÞ ¼ 0; ð4:27Þ

which is one of the DBI equations. Combining it with
(4.19), we obtain

∂mAα −DαAm þ 1

c1
ðγmWÞα þ

1

6c31
ðγnWÞαðWγn∂mWÞ

þ 1

8c1c2
=Fβ

αðγnWÞβð∂mAn − ∂nAmÞ ¼ 0: ð4:28Þ

Finally, we consider terms including _θαþ in (4.6),
_θαþΘþ

α − 1
c1
_θβþDβWαΘ−

α , where the second term comes
from (4.16). These terms are eliminated by

−DαAβ −DβAα þ γmαβAm −
1

6c31
ðγmWÞαðWγmDβWÞ

þ 1

12c21c2
=Fγ

αðγmWÞβðγmWÞγ

−
1

8c1c2
=Fγ

αðγmWÞγð∂mAβ −DβAmÞ ¼ 0: ð4:29Þ

By eliminating ∂mAβ −DβAm by (4.28), it reduces to

−DαAβ −DβAα þ γmαβAm −
1

6c31
ðγmWÞαðWγmDβWÞ

þ 1

6c21
ðγmWÞβðγmWÞγ

×

�
−

1

4c2
=Fγ

α þ
1

8c21c2
=Fδ

αðγnWÞδ∂nWγ

�

þ 1

64c21c
2
2

=Fγ
α=Fδ

βðγmWÞγðγnWÞδð∂mAn − ∂nAmÞ ¼ 0:

ð4:30Þ
Finally substituting (4.20) into the expression in the curly
braces in (4.30), we obtain

−DαAβ −DβAα þ γmαβAm −
1

6c31
ðγmWÞαðWγmDβWÞ

−
1

6c31
ðγmWÞβðWγmDαWÞ

þ 1

64c21c
2
2

=Fγ
α=Fδ

βðγmWÞγðγnWÞδð∂mAn − ∂nAmÞ ¼ 0:

ð4:31Þ
As a result, we have obtained not only boundary

conditions (4.15) and (4.18), but also independent equa-
tions for background superfields (4.28), (4.31) and (4.20)
which eliminates (4.6). We note that c1 and c2 can be
absorbed into redefinitions ofWα and =Fβ

α as
1
c1
Wα → Wα
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and 1
c2
=Fβ

α → =Fβ
α. So we will set c1 ¼ c2 ¼ 1 without loss

of generality.4

Summarizing, we have obtained supersymmetric DBI
equations of motion on a Dp-brane:

∂mAα −DαAm þ ðγmWÞα þ
1

6
ðγnWÞαðWγn∂mWÞ

þ 1

8
=Fβ

αðγnWÞβð∂mAn − ∂nAmÞ ¼ 0; ð4:32Þ

DαAβ þDβAα − γmαβAm þ 1

6
ðγmWÞαðWγmDβWÞ

þ 1

6
ðγmWÞβðWγmDαWÞ

−
1

64
=Fγ

α=Fδ
βðγmWÞγðγnWÞδð∂mAn − ∂nAmÞ ¼ 0; ð4:33Þ

DαWβ −
1

4
=Fβ

α þ
1

8
=Fγ

αðγμWÞγ∂μWβ ¼ 0: ð4:34Þ

In the last equation, the index μ may be replaced with m
because ∂iWβ ¼ 0. Now it is manifest that our DBI
equations on a Dp-brane can be expressed in a ten-
dimensional covariant fashion. In other words, our result
coincides with the dimensional reduction of those for a
D9-brane, though the ten-dimensional covariance was
absent in the beginning of our analysis.

V. SUMMARY AND DISCUSSIONS

We have examined the BRS invariance of the open pure
spinor superstring in the presence of background super-
fields on a Dp-brane. It was shown that the BRS invariance
leads not only to boundary conditions on the spacetime
spinors, but also to supersymmetric DBI equations of
motion for the background superfields on a Dp-brane.
These DBI equations precisely coincide with those
obtained by a dimensional reduction of the supersymmetric
DBI equations for the Abelian D9-brane given in [24,25].
We have introduced the boundary term Sb and the

background coupling V. Both are determined by the BRS
symmetry. In fact, Sb was shown to satisfy δQðS0 þ SbÞ ¼ 0,
when we take the limit α0 → 0 and turn off the background
couplings. As for V, we have shown that the conditions for
δQðS0 þ Sb þ VÞ ¼ 0 reduce to the dimensional reduction
of the super-Yang-Mills equations when α0 → 0. In fact,
taking the limit α0 → 0, after rescaling Aα→ð2πα0ÞAα,
Am→ð2πα0ÞAm, Wα→ð2πα0ÞWα and Fmn → ð2πα0ÞFmn,
the DBI equations (4.32)–(4.34) reduce to the super-Yang-
Mills equations of motion (B9)–(B11) with an appropriate
dimensional reduction.

We note that the ten-dimensional Lorentz covariance is
manifestly broken by the boundary term Sb as well as the
background coupling V. However the obtained DBI equa-
tions can be expressed in a covariant form. This implies that
our result is consistent with that for a D9-brane.
We expect that we can extend our result so that the BRS

invariance should lead to supersymmetric non-Abelian DBI
equations of motion on a Dp-brane. Wewould like to report
this issue in the near future [33].
As an alternative to our study, non-Abelian deformations

of the maximally supersymmetric Yang-Mills theory can be
specified based on spinorial cohomology [34], which may
be closely related to the pure spinor fields in ten- and
eleven-dimensional spacetime [35–37]. The structure of
higher-derivative invariants in the maximally supersym-
metric Yang-Mills theories are studied in [38]. Moreover, in
[39,40] the pure spinor superspace formalism is developed,
which contains not only (minimal) pure spinor variables
but also nonminimal pure spinor variables [41]. This
enables us to construct the BRS invariant action for the ten-
dimensional supersymmetric DBI theory. Recently, this off-
shell action is studied further in [42,43]. It is interesting to
pursue these issues from the open string point of view.
On the other hand, the classical BRS invariance of a

closed pure spinor superstring in a curved background is
shown to imply that the background fields satisfy full
nonlinear equations of motion for the type II supergravity
[44]. This is similar to the result for the classical
κ-invariance of a closed Green-Schwarz superstring [45].
Moreover, recently in [46] the classical κ-invariance also
leads to the generalized type II supergravity equations of
motion5 whose solutions originally have been found out in
the context of integrable deformations of AdS5 × S5 sigma
models [48]. It is also interesting to consider whether the
generalization of DBI equations can be derived analogously
from the κ or BRS invariance of an open superstring.
An immediate task is to clarify contribution of the

dilaton superfield to Bianchi identities. In that case we
need to investigate closely the DBI equation corresponding
to Imnα ¼ 0 in the super-Yang-Mills theory as we see in
Appendix A. This equation is also useful to confirm that
our result agrees with the one which comes from the
bosonic part of the DBI action.
Finally, it is interesting for us to calculate quantum

higher-derivative corrections to our result by analyzing
the quantum BRS invariance of the open pure spinor
superstring.
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APPENDIX A: TEN-DIMENSIONAL N = 1
SUPER-YANG-MILLS SPACE

We will review the ten-dimensional N ¼ 1 super-Yang-
Mills theory [49]. Introducing a superconnection one-form
A ¼ EMAM, where EM are supervielbeins and AM ¼
ðAm; AαÞ are superconnections, we define the gauge super-
covariant derivative ∇M:

∇m ¼ ∂m þ Am; ∇α ¼ Dα þ Aα; ðA1Þ
where Dα is the supercovariant derivative defined by

Dα ¼
∂
∂θα þ

1

2
ðγmθÞα∂m; ðA2Þ

which satisfies fDα; Dβg ¼ γmαβ∂m. The field strengths FMN

are defined by

½∇M;∇Ng ¼ TMN
R∇R þ FMN; ðA3Þ

where TMN
R are flat torsion tensors whose components are

fixed to zero except for Tm
αβ ¼ γmαβ. According to this

definition, these field strengths are invariant under the
gauge transformations with a superfield parameter Ω:

δAm ¼ ∂mΩ; δAα ¼ DαΩ: ðA4Þ
For the on-shell super-Yang-Mills theory, we might adopt a
constraint [35] (see also [36]),

Fαβ ¼ 0; ðA5Þ

which implies

DαAβ þDβAα þ fAα; Aβg ¼ γmαβAm: ðA6Þ

If we consider a dimensional reduction to four dimensions,
we see that this constraint reduces to the one in the four-
dimensional N ¼ 4 super-Yang-Mills theory [50].
In the following, let us solve the Bianchi identities

represented as

IMNR ¼ ð−1ÞRðMþNÞ∇RFMN − TMN
SFSR

þ ð−1ÞMðRþNÞ∇NFRM − ð−1ÞRðMþNÞTRM
SFSN

þ∇MFNR − ð−1ÞMðNþRÞTNR
SFSM: ðA7Þ

The first identity Iαβγ ¼ 0 implies

−γmαβFmγ − γmγαFmβ − γmβγFmα ¼ 0: ðA8Þ
Thanks to the Fierz identity, we find that the field strength
Fmα must take the form of

Fmα ¼ −γmαβWβ: ðA9Þ
In other words,

∂mAα −DαAm þ ½Am; Aα� ¼ −γmαβWβ: ðA10Þ
Next the second identity Imαβ ¼ 0 together with (A9)
implies

γmαδ∇βWδ þ γmβδ∇αWδ − γnαβFnm ¼ 0: ðA11Þ

Multiplying this by γαβp , we find that

Fmn ¼
1

8
ðγmnÞαβ∇βWα; ðA12Þ

which is equivalent to

∇αWβ ¼ −
1

4
ðγmnÞαβFmn: ðA13Þ

The third identity Imnα ¼ 0 implies

∇αFmn ¼ γnαβ∇mWβ − γmαβ∇nWβ: ðA14Þ
Taking (A13) into account, (A14) yields the result

γmαβ∇mWβ ¼ 0: ðA15Þ
Furthermore, multiplying (A15) by γnγα∇γ we find

∇mFmn ¼ −
1

2
γnαβfWα;Wβg: ðA16Þ

Equations (A16) and (A15) imply the Maxwell equation for
the gauge field ∇mfmn ¼ 0 and the Dirac equation for the
gaugino γmαβ∇mξ

β ¼ 0, respectively.
Finally, the remaining identity Imnp ¼ 0 implies

∇mFnp þ∇nFpm þ∇pFmn ¼ 0; ðA17Þ
and it suggests that Fmn is just the curl of a gauge field Am:

Fmn ¼ ∂mAn − ∂nAm þ ½Am; An�: ðA18Þ
The θ-expansion of these superfields is studied in [51].

APPENDIX B: MASSLESS VERTEX OPERATOR
FOR PURE SPINOR OPEN SUPERSTRING

We present a review of the vertex operators in the open
pure spinor superstring [23] (see also [32]). For simplicity,
we focus on the left-moving sector only.
We consider a ghost number 1 massless vertex operator

given by
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U ¼ λαAαðx; θÞ; ðB1Þ
where Aαðx; θÞ is a spinor superfield. The BRS trans-
formation law is represented as

Qxm ¼ 1

2
λγmθ; Qθα ¼ λα; Qdα ¼ −ΠmðγmλÞα;

Qλα ¼ 0; Qωα ¼ dα; ðB2Þ

where Q denotes δ1 in Sec. III A. Note that Q2ωα ¼
−ΠmðγmλÞα turns out the gauge transformation for ωα.
Then the cohomology condition, QU ¼ 0 up to the gauge
transformation δU ¼ QΩ, implies

DαðγmnpqrÞαβAβ ¼ 0 and δAα ¼ DαΩ; ðB3Þ

where Ωðx; θÞ is a gauge parameter, the derivative Dα is
given in (A2).
To derive (B3), we use the pure spinor constraint for the

commutative bispinor λ:

λαλβ ¼ 1

255!
γαβmnpqrðλγγmnpqr

γδ λδÞ: ðB4Þ

As a result, (B3) is consistent with the super-Yang-Mills
equations of motion and the gauge transformations as we
have seen in Appendix A.
Next, we derive an integrated vertex operator such as

V ¼ R
dzV. Recalling the RNS formulation, V is given as

the anticommutator of the unintegrated vertex operator U
and the b-ghost. However, in the pure spinor formulation,
the reparametrization b-ghost is unclear without introduc-
ing the nonminimal part [41].6 Fortunately, the above facts
can be rephrased in terms of the BRS charge Q as7

QV ¼ ∂U: ðB6Þ
We find the vertex operator V takes the form of

V ¼ ∂θαAαðx; θÞ þ ΠmAmðx; θÞ þ dαWαðx; θÞ

þ 1

2
NmnFmnðx; θÞ; ðB7Þ

where Nmn ¼ 1
2
λγmnω is the ghost Lorentz current. Indeed,

since

QV ¼ ∂ðλαAαÞ þ λα∂θβð−DαAβ −DβAα þ γmαβAmÞ
þ λαΠmðDαAm − ∂mAα − γmαβWβÞ

þ λαdβ

�
−DαWβ þ 1

4
ðγmnÞβαFmn

�
þ 1

2
λαNmnDαFmn;

ðB8Þ
(B7) implies the following equations:

−DαAβ −DβAα þ γmαβAm ¼ 0; ðB9Þ

DαAm − ∂mAα − γmαβWβ ¼ 0; ðB10Þ

−DαWβ þ 1

4
ðγmnÞαβFmn ¼ 0; ðB11Þ

λαλβðγmnÞβγDαFmn ¼ 0: ðB12Þ

Equations (B9)–(B11) certainly correspond to the super-
Yang-Mills equations (A6), (A10) and (A13) in the Abelian
case, respectively. It follows that superfields Aα and Am are
spinor and vector gauge fields in the ten-dimensional N ¼
1 super-Yang-Mills theory, and thatWα and Fmn are spinor
and vector field strengths for them. On the other hand,
(B12) is satisfied by the pure spinor constraint

λαλβðγmnÞβγDαFmn ¼ 4λαλβDαDβWγ

¼ 2ðλγmλÞ∂mWγ ¼ 0; ðB13Þ
where (B11) is used. If (B9) is contracted with ðγmnpqrÞαβ,
we obtain the equation of motion for Aα in (B3).
Contraction of (B9) with γαβn also leads to

Am ¼ 1

8
γαβm DαAβ: ðB14Þ

Then the gauge transformation in (B3) turns to
δAm ¼ ∂mΩ. Similarly contracting (B10) with γmαγ implies
the equation for Wα,

Wβ ¼ 1

10
γmαβðDαAm − ∂mAαÞ; ðB15Þ

and contracting (B11) with ðγpqÞαβ implies the equation
for Fmn,

Fmn ¼
1

8
ðγmnÞαβDβWα: ðB16Þ

Furthermore, utilizing (B14), (B10) and (B16), we derive

∂ ½mAn� ¼ −
1

8
γαβ½mDαð∂n�AβÞ ¼ −

1

8
γαβ½mDαðDβAn� − ðγn�WÞβÞ

¼ 1

8
ðγmnÞαβDαWβ ¼ Fmn: ðB17Þ

Besides, this equation together with (B10) implies

6The nonminimal pure spinor formalism extended to the
Maxwell background is investigated in [52].

7The Jacobi identity implies

QV ¼ ½Q; f
I

dzb; Ug�

¼ −½U; fQ;
I

dzbg� − ½
I

dzb; fU;Qg� ¼ ∂U ðB5Þ

since fQ;Ug ¼ 0, fQ; bg ¼ T and ½H dzT;U� ¼ ∂U for the
conformal weight zero primary operator U.
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DαFmn ¼ ∂ ½mDjαjAn� ¼ ∂ ½mðγn�WÞα: ðB18Þ
(B17) and (B18) certainly correspond to remaining
Bianchi identities (A18) and (A14) for the Abelian case,
respectively.

APPENDIX C: BRS CHARGE
CONSERVATION

We will derive the supersymmetric DBI equations by
modifying the method used in [24] to include the Dirichlet
components.

We require that the general variation δðS0 þ Sb þ VÞ
vanishes. This leads to boundary conditions in the presence
of background superfields. Under these conditions, it is
shown that the BRS charge conservation implies superfield
equations for DBI fields.
Let us begin to examine a general variation of the world-

sheet action S0 in (2.1), its ten-dimensional N ¼ 1 super-
symmetry counterterm Sb in (3.4) and the background
coupling V in (4.1). We find that variations δðS0 þ SbÞ and
δV may be expressed as

δðS0 þ SbÞ ¼
1

2πα0

Z
dτ

�
δθαþ

�
1

2
d−α þ Πμ

þðγμθ−Þα þ Π̃iþðγiθ−Þα − yiðγi _θþÞα þ
1

6
ðθ−γm _θ−Þðγmθ−Þα

	

þ δθα−

�
1

2
ð1 − c1ÞΔþ

α −
1

6
ðθ−γm _θþÞðγmθ−Þα

	
− δyμþ

�
Π̃−μ −

1

2
ðθ−γμ _θþÞ

	

þ δΠ̃iþyi þ
1

2
c1δΔþ

α θ
α
− þ 1

2
ðc2 − 1Þωþ

α δλ
α
− þ 1

2
c2δωþ

α λ
α
− −

1

2
ω−
α δλ

αþ

�
; ðC1Þ

δV ¼ 1

2πα0

Z
dτ

�
δθαþ

�
_θβþðγμαβAμ −DαAβ −DβAαÞ þ Πμ

þðDαAμ − ∂μAαÞ þ Π̃iþDαAi −
1

2
Δþ

β DαWβ þ 1

4
DαðNþ=FÞ

	

þ δyμþ

�
_θαþð∂μAα −DαAμÞ þ Πνþð∂μAν − ∂νAμÞ þ Π̃iþ∂μAi þ

1

2
Δþ

α ∂μWα þ 1

4
∂μðNþ=FÞ

	
þ δΠ̃iþAi

þ 1

2
δΔþ

αWα þ 1

8
δλαþ=Fβ

αω
þ
β þ 1

8
λαþ=Fβ

αδω
þ
β

�
; ðC2Þ

where δyμ defined by

δyμþ ¼ δxμ þ 1

2
ðθþγμδθþÞ ðC3Þ

is invariant under the N ¼ 1 supersymmetry. We also see that δðS0 þ SbÞ=δyij ¼ 0 as mentioned in Sec. III.
To obtain boundary conditions from δðS0 þ Sb þVÞ ¼ 0, first we focus on the terms with δΔþ

α and δωþ
α , and derive

θα− ¼ −
1

c1
Wα; λα− ¼ −

1

4c2
λβþ=Fα

β: ðC4Þ

They also lead to

_θα− ¼ −
1

c1
ðΠμ

þ∂μWα þ _θβþDβWαÞ;

δθα− ¼ −
1

c1
ðδyμþ∂μWα þ δθβþDβWαÞ;

δλα− ¼ −
1

4c2
δλβþ=Fα

β −
1

4c2
ðλβþδyμþ∂μ=Fα

β þ λβþδθ
γ
þDγ=Fα

βÞ: ðC5Þ

Next, examining the terms with δλαþ in δðS0 þ Sb þ VÞ we find

ω−
α ¼ 1

4c2
ωþ
β =F

β
α: ðC6Þ

Boundary conditions for λα− in (C4) and ω−
α in (C6) are consistent with the ghost number charge conservation

λαωαj ¼ λ̂αω̂αj, where “j” means “evaluated at the boundary.” On the other hand, we can eliminate the terms with
δΠ̃iþ in δðS0 þ Sb þ VÞ by the identification (4.14). After substituting the above conditions into δðS0 þ Sb þ VÞ ¼ 0, we
examine the terms with δyμþ and δθαþ. They lead to complicated boundary conditions:
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Π̃−μ ¼ _θαþ

�
∂μAα −DαAμ þ

1

2c1
ðγμWÞα þ

1

6c31
ðγmWÞαðWγm∂μWÞ

�

þ Πνþð∂μAν − ∂νAμÞ þ Π̃iþ∂μAi þ
1

2c1
Δþ

α ∂μWα þ 1

4c2
∂μðNþ=FÞ; ðC7Þ

1

2
d−α ¼ _θβþ

�
DαAβ þDβAα − γmαβAm −

1

6c31
ðWγmDβWÞðγmWÞα −

1

6c31
ðWγmDαWÞðγmWÞβ

�

þ Πμ
þ

�
∂μAα −DαAμ þ

1

c1
ðγμWÞα þ

1

6c31
ðWγm∂μWÞðγmWÞα

�

þ Π̃iþ

�
1

c1
ðγiWÞα −DαAi

�
þ 1

2c1
Δþ

β DαWβ −
1

4c2
DαðNþ=FÞ: ðC8Þ

Equation (C7) is regarded as a modified Neumann boundary condition. Boundary conditions for ω−
α in (C6) and d−α in (C8)

must be consistent with the BRS transformation δQω
−
α ¼ d−α up to the Λ-gauge transformation in Sec. II. In the following

discussion, we will absorb c1 and c2 by rescaling Wα → c1Wα and =Fβ
α → c2=Fβ

α.
To extract DBI equations, we impose the following relation for BRS currents:

λαdαj ¼ λ̂αd̂αj; ðC9Þ
which implies BRS charge conservation

0 ¼ ∂τQtotal ¼
Z

dσ∂τðjτBRSÞ ¼
Z

dσ∂σðjσBRSÞ ¼
Z

dσ∂σðjzBRS − jz̄BRSÞ ¼ ðλαdα − λ̂αd̂αÞj: ðC10Þ

Then we assume the Dirichlet boundary condition

Π−i ¼ −Πμ
þ∂μAi − _θαþDαAi þ

1

2c1
ð_θþγiWÞ: ðC11Þ

This is parallel with the Neumann boundary condition in (C7) and just the derivation of the identification (4.14) with respect
to the time-coordinate τ.
Under these boundary conditions (C4), (C7), (C8) and (C11), the BRS charge conservation (C9) implies

0 ¼ λ̂αd̂α − λαdα

¼ 1

2
λαþd−α þ 1

2
λα−Δþ

α −
1

2
ðλ−γμθ−ÞΠ̃μ

− −
1

2
ðλ−γiθ−ÞΠi

− −
1

4
ðλ−γmθ−Þðθ−γm _θþÞ

¼ λαþ _θ
β
þ

�
DαAβ þDβAα − γmαβAm −

1

6
ðWγmDβWÞðγmWÞα −

1

6
ðWγmDαWÞðγmWÞβ

þ 1

8
=Fγ

αðγmWÞγ
�
∂mAβ −DβAm þ ðγmWÞβ þ

1

6
ðγnWÞβðWγn∂mWÞ

�	

þ λαþΠ
μ
þ

�
∂μAα −DαAμ þ ðγμWÞα þ

1

6
ðWγm∂μWÞðγmWÞα þ

1

8
=Fβ

αðγnWÞβð∂μAn − ∂nAμÞ
	

þ λαþΠ̃iþ

�
−DαAi þ ðγiWÞα −

1

8
=Fβ

αðγμWÞβ∂μAi

	
þ 1

2
λαþΔþ

β

�
DαWβ −

1

4
=Fβ

α þ
1

8
=Fγ

αðγμWÞγ∂μWβ

	

−
1

4
λαþN

β
þγ

�
Dα=Fγ

β þ
1

8
=Fδ

αðγμWÞδ∂μ=Fγ
β

	
: ðC12Þ

Finally, we find that, to eliminate this expression, (4.31), (4.27), (4.19), (4.20) and (4.26) should be required, as expected.
The first four equations are supersymmetric DBI equations of motion on a Dp-brane, and the last one is the pure spinor
constraint.
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