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The eikonalized parton-parton scattering amplitude at large
ffiffiffi
s

p
and large impact parameter, is dominated

by the exchange of a hyperbolic surface in walled AdS. Its analytical continuation yields a world sheet
instanton that is at the origin of the Reggeization of the amplitude and a thermallike quantum entropy ST.
We explicitly construct the entangled density matrix following from the exchanged surface, and show that
its von-Neumann entanglement entropy SE coincides with the thermallike entropy, i.e., ST ¼ SE. The ratio
of the entanglement entropy to the transverse growth of the exchanged surface is similar to the Bekenstein
entropy ratio for a black hole, with a natural definition of saturation and the on-set of chaos in high energy
collisions. The largest eigenvalues of the entangled density matrix obey a cascade equation in rapidity,
reminiscent of nonlinear QCD evolution of wee-dipoles at low-x and weak coupling. We suggest that the
largest eigenvalues describe the probability distributions of wee-quanta at low-x and strong coupling that
maybe measurable at present and future pp and ep colliders.

DOI: 10.1103/PhysRevD.100.046005

I. INTRODUCTION

Entanglement in quantum mechanics is still one of the
most subtle concept that permeates our description of the
quantum world. The canonical example is the entangled
Einstein-Podolsky-Rosen pair whereby the measurement of
one of the state in the pair forces the state of the partner.
This conundrum has recently been revisited in many areas
of physics, ranging from low-dimensional quantum critical
systems [1,2] to wormholes in gravity [3,4].
Recently the holographic principle was used to derive

the entanglement of boundary conformal field theories in
terms of pertinent area of finite dimensional surfaces in
bulk [5], reviving the idea that the entanglement entropy
bears similarities with the Bekenstein entropy for black
holes [6]. These relationships are important in our
understanding of the concept of information storage or
loss whether in quantum mechanics or around a black
hole.
Current high multiplicity pp collisions at collider ener-

gies display rapid collectivization [7], an indication of early

entropy deposition and thermalization. This leads us to ask
about the origin of this fast scrambling of information in the
prompt phase of the process. One of the purpose of this
paper is to show that parton-parton scattering at large

ffiffiffi
s

p
is

highly entangled, with an entanglement entropy matching
the thermodynamical entropy initially discussed in [8].
Entanglement entropies in the context of perturbative QCD
evolution were recently discussed in [9,10].
Below we briefly review the Reggeization of the parton-

parton scattering at large
ffiffiffi
s

p
, through the exchange of a

minimal surface using the AdS/CFT correspondence. The
transverse fluctuations on the surface are shown to be
entangled with an entropy that equals that of critical
conformal field theories in lower dimension. The largest
eigenvalues of the entangled density matrix describe the
probability distributions of wee-quanta at low-x and strong
coupling.

II. REGGEIZED SCATTERING
FROM AdS/CFT

Elastic hadron-hadron and lepton-hadron collisions at
large

ffiffiffi
s

p
are dominated by Pomeron and Reggeon

exchanges [11,12]. Perturbative QCD evolution describes
these exchanges through ordered gluon ladders [13,14],
while nonperturbative holographic descriptions suggest
string exchanges [15–18] or Reggeized bulk gravitons
[19]. Throughout, we will present the holographic string
version. A brief review of this approach will be given in
this section.
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A. Motivation

At large Nc, QCD processes are dominated by planar
graphs. In the Pomeron limit with s ≫ −t, the scattering
between a pair dipoles DD or quarks QQ̄ is characterized
by the exchange of planar graphs which can be regarded as
the exchange of a closed string (Pomeron) or an open string
(Reggeon). In the holographic limit of a large number of
colors and strong coupling Nc ≫ λ ≫ 1, the exchanged
gluons are qualitatively ordered as suggested in [20].
For an intuitive understanding of this ordering, it is

best to consider the original Maldacena’s modified
Coulomb law [21]. For that, consider the ordered gluon
contribution for the potential between two heavy quarks
as illustrated in Fig. 2. In Feynman gauge where the
retardation is manifest, the ordered gluons contribute to
the potential as

VðbÞ ¼ −
λ

4π2

Z
dt12

t212 þ b2
ð1Þ

In the Abelian case, the interaction takes place at all
virtualities with typically the dominant and large times
Δt12 ∼ b, leading to the standard Coulomb potential
VðbÞ ∼ −λ=b. At strong coupling, the non-Abelian modi-
fied Coulomb law is seen to be dominated by short time
exchanges Δt12 ∼ b=

ffiffiffi
λ

p
≪ b, with (1) giving

VðbÞ ∼ −
λΔt12
b2

∼ −
ffiffiffi
λ

p

b
ð2Þ

At strong coupling, the coherence captured by the potential
can only build if the exchanged non-Abelian gluons travel
superluminally, for otherwise they will undergo multiple
splitting and lose coherence because of the large gauge
coupling λ. These rapid exchanges are suggestive of the
ordering in Figs. 1,2. We emphasize the qualitative and
intuitive character of this argument, which does not allow
for fixing the overall coefficient in (2) for instance.

B. Eikonal amplitude

In the eikonal limit, the probe and target partons support
Wilson lines running along the light cone and sourcing

gluon fields [22]. Specifically, the parton-parton scattering
amplitude at large Nc, is given by (t ¼ −q2)

T ij;klðs; tÞ ¼ −2is
Z

db eiq·bWWij;kl; ð3Þ

with the connected Wilson loop correlator

WWij;kl ≡ hWijðC1ÞWklðC2Þicon ð4Þ

traced over colors, and subject to the normalization
hWiii ¼ Nc. The Wilson lines Wij are evaluated along
C1;2 on the light cone at fixed separation b ¼ jbj

WijðC1;2Þ ¼ ðPeig
R
C1;2

AÞij ð5Þ

as illustrated in Fig. 3 following [15,16,22]. The averaging
in (4) is over the Yang-Mills gauge fields. The integrand
in (3) is the impact parameter representation of the
scattering amplitude in the s-channel.
Vacuum gauge invariance allows the decomposition

of (3) into a singlet and octet contribution

T ij;kl ¼ T 0δijδkl þ T N2
c−1T

a
ijT

a
kl ð6Þ

where Ta are the generators of SUðNcÞ in the fundamental
representation. Each of the amplitudes in (6) can be
obtained by a pertinent closing of the C1;2 contours at
infinity, leading to

FIG. 1. Schematic description of the string exchange in large
Nc (planar graphs) and holographic limit (ordered ladders)
between a pair of dipoles (DD) or partons (QQ̄). See text.

FIG. 2. Ordered exchange at strong coupling.

FIG. 3. Wilson lines with the attached string 0 ≤ z ≤ z0.

YIZHUANG LIU and ISMAIL ZAHED PHYS. REV. D 100, 046005 (2019)

046005-2



T 0 ¼
1

N2
c
hWWii;jji − 1

T 0 þ
N2

c − 1

2Nc
T N2

c−1 ¼
1

Nc
hWWij;jii − 1: ð7Þ

Both the singlet and octet amplitudes are gauge invariant
and can be assessed using perturbative or nonperturbative
arguments. We choose to evaluate them using nonpertur-
bative arguments in the context of holography which we
now present.

C. Holography

In the holographic limit, these gauge invariant ampli-
tudes are dominated by string exchanges. In leading order,
the correlator of Wilson lines involve surface exchange in a
slice of AdS with a metric

ds2 ¼ R2

z2
ð−dt2 þ dz2 þ dxidxiÞ ð8Þ

for 0 ≤ z ≤ z0 withD⊥ ¼ 3. The invariant correlators in (7)
are dominated by the minimal surface attached to C1;2 [21]

WW ∼ e−σTAmin ≡ e−Smin ð9Þ

The singlet amplitude involves the exchange of a closed
surface with the topology of a cylinder, while the octet
amplitude involves the exchange of an open surface with
the topology of a disc, as discussed in [15–18]. Here, we
present a simplified analysis where the inelasticity carried
by the exchanged surfaces is encoded in a generic world
sheet instanton irrespective of the topology of the surface.
Consider the open string exchange. For large impact

parameter b, the extremal surface is composed of two
straight strips joined by a surface at z ¼ z0 as shown in
Fig. 3. The two straight strips contribute about 1 in (7) with
the normalization hWiii ¼ Nc. To assess the joining sur-
face at z ¼ z0 where the metric is nearly flat, we use the
Polyakov action in the conformal gauge with mostly
positive Minkowski signature (a ¼ τ, σ)

S ¼ σT
2

Z
T

0

dτ
Z

1

0

dσ∂ax · ∂axþ b:c: ð10Þ

with the string tension

σT ¼ R2

ð2πα0Xz20Þ
∼

ffiffiffi
λ

p

ð2πz20Þ
ð11Þ

Our treatment of the closed (X ¼ P) and open (X ¼ R)
topologies will be similar except for: 1= an adjustment of
the string tension by choosing

α0P ¼ 1

2
α0R ≡ α0; ð12Þ

and 2= an additional 1
s suppression of the scattering

amplitude (3) for he open surface exchange due to the
running quark lines on the open boundary [23]. Throughout
we will set R ¼ z0.
For large b, the boundary conditions at z ¼ 0 transfer

almost unchanged to z ¼ z0. These boundaries are straight
lines with rapidity angles χ=2 and −χ=2 for σ ¼ 0, 1
respectively, with χ ¼ ln s ≫ 1. At σ ¼ 0 we have [17]

coshðχ=2Þ∂σx0 þ sinhðχ=2Þ∂σx1 ¼ 0;

sinhðχ=2Þ∂τx0 þ coshðχ=2Þ∂τx1 ¼ 0; ð13Þ

and similarly at σ ¼ 1. The extremal solution to (10) with
∂2
ax ¼ 0 and subject to (13) at z ¼ z0, is the hyperbolic

surface (σ̄ ¼ σ − 1
2
)

ðx0; x1; x⊥; zÞ

¼
�
b
χ
cosh ðχσ̄Þ sinhðχτÞ; b

χ
sinh ðχσ̄Þ sinhðχτÞ; bσ; z0

�
:

ð14Þ

The induced world-sheet metric associated to (14) is
conformal,

ds2W ¼ b2cosh2ðχτÞð−dτ2 þ dσ2Þ ð15Þ

which is consistent (a posteriori) with the gauge choice
in (10). It is free of the wormhole discussed in [4]. Using
the analytical continuation τ → iτ, we have

ds2W → b2cos2ðχτÞðdτ2 þ dσ2Þ ð16Þ

which describes the conformal world sheet of an “instanton”
with period TP ¼ 2π=χ ≪ 1 and finite action

Smin ¼ σT

Z
TP

0

b2cos2ðχτÞdτ
Z

1

0

dσ ¼ 1

2
σTðbTPÞb: ð17Þ

From (12), it follows that the world sheet instanton
contribution for the Pomeron is twice that of the
Reggeon with σP ¼ 2σR and SP ¼ 2SR. The closed surface
exchange can be thought as two glued open surface
exchanges. In Fig. 4 we give an illustration of the
geometrical relationship between the worldsheet instanton
and the hyperbolic surface sustained by the nearly eikonal
trajectories. A more thorough characterization of this
instanton and its relation to the Schwinger mechanism
on the world sheet can be found in [17] (see Sec. III D).

ENTANGLEMENT IN REGGE SCATTERING USING THE … PHYS. REV. D 100, 046005 (2019)

046005-3



D. Reggeized amplitude

Following the AdS/CFT correspondence, we insert (17)
into (10) and define β ¼ bTP, to obtain (9) as

WW ∼ e−Smin−S1loop

¼ e−
1
2
σTβbþD⊥

12
χ ¼ e

− b2

2α0
X

χ
þD⊥

12
χ
: ð18Þ

We have included the 1-loop quantum correction restricted
to the world sheet instanton strip b × β. For χ ≫ 1, the strip
is highly elongated b ≫ β and periodic in β. The 1-loop
contribution is dominated by the Casimir energy or Luscher
term [24]

S1loop ¼
D⊥
2

ln detð−∂2⊥Þ

¼ −
πD⊥
6

b
β
¼ −

D⊥
12

χ: ð19Þ

Inserting (18) in (3) and carrying the transverse Fourier
transform yields the Reggeized scattering amplitude
T X ∼ isαXðtÞ (R ¼ z0)

αPðtÞ ¼ 1þD⊥
12

þ α0

2
t

αRðtÞ ¼ 1 − 1þD⊥
12

þ α0t ð20Þ

in agreement with [17] (see Sec. IV) for the Pomeron, and
with [23] for the Reggeon. Note the −1 from the additional
1
s suppression in this channel as stated earlier.

E. Warped Gribov diffusion

To exponential accuracy, (18) happens to be exactly
the tachyon-mode contribution to the closed string propa-
gator subject to the twisted boundary conditions (13).
Specifically, in the Pomeron channel the exact tachyon
contribution is [18,25]

K0ðt χ ; bÞ ¼
�

1

4πt χ

�D⊥
2

e−
b2
4t χ

þD⊥t χ
6α0 ∼WW ð21Þ

with the rapidity playing the role of time

t χ ¼
α0

2
χ ≡DP χ ð22Þ

and DP playing the role of a diffusion constant. For large
rapidity χ ≫ 1, all other string excitations are suppressed.
The world sheet instanton in (18) captures semiclassically
the tachyon contribution in (21).
(21) embodies the famed Gribov diffusion,

∂t χK0 þ ðM2
0 −∇2⊥ÞK0 ¼ 0 ð23Þ

with the tachyon mass M2
0 ¼ −D⊥=6α0. It acts as a source

term in the diffusion process. The Pomeron intercept, the
Luscher term and the tachyon mass are intimatly related in
our analysis. It is now clear, that the effects of warping
amount to a warped Gribov diffusion

∂t χK0 þ
�
M2

0 −
1ffiffiffiffiffiffi
g⊥

p ∂μg
μν
⊥

ffiffiffiffiffiffi
g⊥

p ∂ν

�
K0 ¼ 0 ð24Þ

with g⊥ the transverse AdS-metric. The transverse
directions include the holographic z-direction, so that
K0ðt; bÞ → K0ðt; b; zÞ as z ¼ z0 is now relaxed. For AdS
the solution to (24) can be obtained in closed form.
Specifically, for z ≪ b and D⊥ ¼ 3 we have [18] [see
Eq. (38)]

1

zz0
K0ðt χ ; b; zÞ ≈

eðαPð0Þ−1ÞÞ

ð4πt χÞ32
2z
z0b2

ln

�
b2

zz0

�
e−

1
4t χ

ln2ð b2zz0Þ: ð25Þ

Modulo the string parameters αP and DP, (25) is identical
to Mueller’s Balitsky-Fadin-Kuraev-Lipatov density of
wee-dipoles of size z in onium-onium scattering in the
1-Pomeron approximation at weak coupling [26] [see
Eq. (8) in Sec. II].
Remarkably, (24) interpolates between the scattering

amplitude of the soft Pomeron (21) and the hard Pomeron
(25) in impact parameter space for exactly D⊥ ¼ 3.
Therefore, it is natural to interpret the string zero point
fluctuations in the exchanged instanton world sheet as
wee-dipoles at strong coupling, much like Mueller’s
wee-dipoles at weak coupling. We will return to this point
below.

III. THERMALLIKE ENTROPY

The exchanged instanton period or tunneling time,
plays the role of an inverse temperature for the zero point
fluctuations on the induced world sheet

β ¼ bTP ¼ 2πb
χ

: ð26Þ

This temperature is kinematical in origin, as it arises from
the rapidity χ of the colliding pairs for fixed impact
parameter b. The larger the rapidity and/or smaller the

FIG. 4. Eikonal scattering with the instanton exchange.
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impact paramer, the shorter the tunneling time or higher
the temperature.
This physical observation is important. It shows that the

Casimir energy or Luscher term in (19) is the free energy
F T ofD⊥ massless bosons confined to a 1-dimensional box
of length b at temperature 1=β,

βF T ¼ D⊥
Z

bdp
2π

lnð1 − e−βjpjÞ

¼ −
πD⊥
6

b
β

¼ S1loop: ð27Þ

The zero point fluctuations on the instanton world sheet are
thermallikeHence, the exchanged instanton plus zero-point
motion carry a thermal entropy ST that follows from
standard thermodynamics

ST ¼ β∂F T

∂ ln β
¼ D⊥

Z
bdp
2π

2βjpj
eβjpj − 1

¼ D⊥
6

χ ¼ 2ðαPð0Þ − 1Þχ ð28Þ

in agreement with the initial observation in [8,25]. The
thermallike entropy (28) per unit rapidity χ is fixed by the
Pomeron intercept αPð0Þ. It is at the origin of the rise of
the scattering cross section and ultimately the multiplicities
in high energy scattering as discussed in [8,25].

IV. ENTANGLEMENT ENTROPY

In this section we show that the string thermallike
entropy ST in (28) is identical to the entanglement von
Neumann entropy SE following from the blocked density
matrix of the transverse part of the exchanged string. The
longitudinal part of the string freezes out due to Lorentz
contraction at large rapidity. Throughout this section we
will set α0 ¼ 1

4
, and reinstate it when needed by inspection.

A. Transverse Hamiltonian

The transverse fluctuations at the origin of (19)–(28) are
associated to the Polyakov action (10) with x → x⊥ and
fixed endpoints around the hyperbolic configuration (14),

S⊥ ¼ σT
2

Z
T

0

dτ
Z

1

0

dσð_x⊥2 − x0⊥2Þ þ b:c: ð29Þ

The action density can be thought as that of a collection of
N strings connected by identical springs for z ¼ z0, and
discretized as follows [27–29]

1

N

XN
k¼0

ð_xi⊥ðkÞÞ2 −
1

N

XN
k¼1

�
xi⊥ðkÞ − xi⊥ðk − 1Þ

π
N

�
2

ð30Þ

where the summation over i ¼ 1;…; D⊥ is subsumed. Note
that (30) reduces to (29) as N → ∞. (30) describes N
coupled harmonic oscillators in D⊥ dimensions, with a
transverse Hamiltonian

2

N
H⊥ ¼ 1

2

XN
k¼0

ðpi
kÞ2 þ

1

2

XN
k;l¼1

xikKklxil ð31Þ

where K is a banded matrix

Kkl ¼
4

π2
ð2δkl − δk;lþ1 − δk;l−1Þ ð32Þ

with positive eigenvalues. Ignoring warping at large b, the
ground state wave function of (31) is

Ψ½x� ¼
�jΩj
πN

�D⊥
4

e−
1
2

P
N
k;l¼1

xikΩklxil ð33Þ

where Ω is the square root of K.
Since K is real symmetric, it diagonalizes by orthogonal

rotation with K ¼ U†KDU andΩ ¼ U† ffiffiffiffiffiffiffi
KD

p
U. The eigen-

values and eigenvectors of K are respectively

λk ¼
8

π2

�
1 − cos

πk
2pþ 1

�

αnk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

2pþ 1

s
sin

πkn
2pþ 1

ð34Þ

with k labeling the eigenvalues and n labeling the entries,
k; n ¼ 1; 2;…2p. The matrices U, Ω can be found in
explicit form, with Ukn ¼ αnk and

Ωmn ¼
X
s¼�

sC

cos πðm−snÞ
2pþ1

− cos π
4pþ2

ð35Þ

with C an overall unimportant constant. Given Ωmn, the
derivation of the entanglement entropy is essentially an
exercise in the diagonalization of nested Gaussians as
in [6].

B. Density matrix

The transverse string density matrix is Ψ½x�Ψ�½x0�. To
quantify the entanglement of the string bits in transverse
space, we follow Srednicki [6] and define the entanglement
density

ρE½x̄; x̄0� ¼
Z

d½x�Ψ½x; x̄�Ψ�½x; x̄0� ð36Þ
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where we used the notation ½x� → ½x; x̄� with dim x ¼ n and
dim x̄ ¼ N − n. The positive eigenvalues of (36) follow by
diagonalizationZ

d½x̄0�ρE½x̄; x̄0�φl½x̄0� ¼ plφl½x̄�: ð37Þ

The entanglement entropy is the Von-Neumann entropy for
the transverse string

SEðn;NÞ ¼ −
X∞
l¼0

pl lnðplÞ: ð38Þ

C. Von-Neumann entropy

For the 2 limiting cases n ¼ 1 and n ¼ N=2 (38) can be
obtained in closed form. For general n the eigenvalues pl
can only be obtained numerically. For that, we fix the
endpoints through the boundary condition xNþ1 ¼ x1 ¼ 0.
Without loss of generality, we set N ¼ 2p and subdivide N
into

½N� ¼ ½n� ∪ ½N − n�: ð39Þ
The entanglement entropy between the subsystem with
size [n] and the one with size [N − n] can be calculated by
splitting the matrix Ω in (35) as

BN;n ¼ Ωmm̄; m ∈ ð1;…nÞ; m̄ ∈ ðnþ 1;…NÞ
ð40Þ

and defining the squared matrix β̃ through

βN;n ¼ Ω−1
2

N;nBN;nΩ−1
N;N−nB

T
N;nΩ

−1
2

N;n ≡Ω−1
2

N;nβ̃N;nΩ
1
2

N;n: ð41Þ
The corresponding eigenvalue spectrum follows from

β̃N;nvN;n;i ¼ χN;n;ivN;n;i ð42Þ
with 0 ≤ i ≤ n. For each transverse dimension 1;…; D⊥,
the eigenvalues of the entangled density matrix (37) are [6]

pl½N; n; i� ¼ ð1 − ξN;n;iÞξlN;n;i ð43Þ

with

ξN;n;i ¼
χN;n;i

χN;n;i þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2N;n;i

q : ð44Þ

The entanglement entropy (38) is then

SEðn;NÞ ¼ −D⊥
Xn
i¼1

X∞
l¼0

pl½N;n; i� lnpl½N;n; i�

¼ −D⊥
Xn
i¼1

�
lnð1− ξN;n;iÞ þ

ξN;n;i

1− ξN;n;i
lnξN;n;i

�
:

ð45Þ

In Fig. 5 we show our results for SEðn;N ¼ 2nÞ versus
lnðnÞ per D⊥, in the range 50 ≤ n ≤ 250,

SEðn;NÞ ¼ D⊥
6

lnðnÞ → D⊥
6

ln

�
N
π
sin

�
nπ
N

��
: ð46Þ

Because of the midpoint symmetry of the chain, the last
equation follows. We have checked that for the string
with periodic boundary conditions, i.e., xNþ1 ¼ x1, (46)
is also recovered with 1=6 → 1=3 (2 boundary points). (46)
is identical to the thermodynamical entropy (28) for 1 ≪
n ≪ N with the identification of the rapidity χ ¼ lnðnÞ (see
below). It is consistent with results from conformal field
theories and spin chains with central charge D⊥ [1]
(1 boundary point).

D. Black-hole and chaos

With increasing rapidity χ, the exchanged string is
longitudinally Lorentz contracted and transversely more
elongated and excited causing it to spread. The string
transverse squared size is given by the averaging

R2⊥ðNÞ ¼ 1

N

XD⊥

i¼1

XN−1

k¼1

hðxikÞ2i ð47Þ

with the probability distribution fixed by (33)

jΨ½x�j2 ¼
����Y
D⊥

i¼1

YN
k¼1

� ffiffiffiffiffi
λk

p
π

�1
4

e−
ffiffiffi
λk

p
2
xi2k

����
2

: ð48Þ

Each of the discretized string bit coordinates xik is normally
distributed with probability jΨ½x�j2. This gives rise to a
random walk of the string bits along the chain in the
transverse direction with fixed endpoints. The transverse
squared size (47) is

4.0 4.2 4.4 4.6 4.8 5.0
ln n

0.70

0.75

0.80

SE n,2n

FIG. 5. The entanglement entropy SEðn; 2nÞ per D⊥ versus
lnðnÞ in the range 50 ≤ n ≤ 150 for a transverse string with
fixed ends.
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R2⊥ðNÞ ¼ D⊥
2N

XN−1

k¼1

1ffiffiffiffiffi
λk

p

≈
D⊥
4

lnN → D⊥α0 lnN ð49Þ

after reinstating the units 1
4
→ α0.

This result is consistent with the unwarped Gribov
diffusion for the Pomeron, since (21) implies a transverse
normal diffusive spread

hb2i ¼ 2D⊥t χ ¼ D⊥α0 χ ð50Þ
with the averaging carried using (21). A comparison of (49)
with (50) shows that the number of string bits N and the
rapidity of the colliding pair χ, are tied

N ¼ e χ ð51Þ

Recall that the rapidity χ and the Lorentz factor γ ¼ 1=ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
in the relativistic limit are tied by χ ¼ ln s ¼

2 ln γ. The more we boost the string, the larger the rapidity
χ, the more string bits N in the transverse plane, the longer
the intrinsic length L ¼ N

ffiffiffiffi
α0

p
of the string.

From (46) it follows that the entanglement entropy
growth is proportional to the squared transverse size of
the string at the same resolution n

SEðnÞ ¼
πR2⊥ðnÞ
6πα0

: ð52Þ

This is reminiscent of the Bekenstein entropy SBH for a
black hole in relation to its area ABH [30]

SBH ¼ ABH

4l2P
¼ πR2

BH

l2P
: ð53Þ

In (52) the string length plays the role of an effective Planck
length lP.
Black holes are maximal scramblers. The correspon-

dence between (52) and (53) implies that the entanglement
entropy density saturates at very large rapidities, with a
saturation momentum

Q2
S ¼

SEðnÞ
πR2⊥ðnÞ

¼ 1

6πα0
≡ 1

l2P
: ð54Þ

This corresponds to 1 unit of entanglement entropy per
effective Planck area. For a string length

ffiffiffiffi
α0

p
¼ 0.1 fm, the

saturation momentum is QS ≈ 0.5 GeV.
We note that in terms of the Gribov diffusionlike time t χ

in (22), the entanglement entropy (28) grows linearly with
t χ . This translates to a constant growth rate

dSE

dt χ
¼ D⊥

3α0
≡ κL: ð55Þ

In Fig. 6 we show the typical evolution of the entanglement
entropy with rapidity χ, or low-x (see below) or Gribov
time. After an initial transient, a linear regime takes place
with a characteristic rate κL ending in the saturation regime.
The typical Gribov time for saturation t χ;S ∼ SE;S=κL is
reached for a rapidity

χS ¼
�

6

D⊥

�
SE;S →

1

2ðαPð0Þ − 1ÞSE;S: ð56Þ

For pp scattering, SE;S can be estimated from (53)–(54) in
the black disc limit with πR2⊥ ¼ 1 fm2 and a string lengthffiffiffiffi
α0

p
¼ 0.1 fm, i.e., SE;S ¼ 100=ð6πÞ ≈ 5. For D⊥ ¼ 3 the

Pomeron intercept is αPð0Þ ¼ 1.25, this translates to
χS ¼ 10.6, hence a collision energy

ffiffiffi
s

p
=mN ≈ 200. We

note that our estimates are sensitive to the numerical value
of the intercept αPð0Þ.
In general chaotic systems, the growth rate of the entropy

in physical time is usually bounded by the Kolmogorov-
Sinai entropy rate λL, i.e., jdS=dtj ≤ λL, with λL the sum of
all positive Lyapunov exponents [31]. It is a key measure of
chaoticity. The above analogy with the black hole suggests
that the entanglement production rate (55) is at the
chaos bound.
By contrast, the classical entropy of the string SS grows

faster. Specifically, for a string with N-string bits in D⊥
dimensions, the total number of string states are NS ¼ DN⊥,
and its entropy is then

SS ¼ lnNS ¼ N lnD⊥ ¼ e χ lnD⊥: ð57Þ

It is proportional to the total mass or length of the string,
and grows faster than the quantum entanglement entropy
SE. In terms of the Gribov diffusion time, the corresponding
rate is

d lnSS

dt χ
¼ 1

DP
ð58Þ

FIG. 6. Typical production of entanglement entropy by evolu-
tion in rapidity χ [also ln 1

x)] or Gribov time t χ . See text.
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withDP the Pomeron diffusion constant. The scrambling in
Gribov time is now seen to scale logarithmically with SS.
A similar scaling of the scrambling in real time was
noted for black holes [32]. The rate (58) violates the
Kolmogorov-Sinai bound [31]. Such violations usually
occur in a transient regime, as also noted for chaotic maps
[31] (second reference). This rapid growth in the classical
entropy of the string SS is expected to stop when string
self-interactions are included at saturation [29].

V. WEE-QUANTA

We now show that the largest eigenvalue of the entangled
density matrix of the string carries most of the quantum
collectivity, and allows for a global characterization of the
wee-dipoles or wee-quanta at strong coupling. This dis-
cussion offers a complementary view of the Gribov diffusion
discussed earlier, where the warped amplitude for the world
sheet instanton plus zero point motion was shown to carry
identical information to the distribution of Balitsky-Fadin-
Kuraev-Lipatov-like wee-dipoles, albeit at strong coupling.

A. Largest eigenvalues

The entanglement entropy is dominated by the largest
two eigenvalues ξN;n;i¼1;2 with ξN;n;1 ¼ 0.155 lnðnÞ as
shown in Fig. 7, which reproduces the entropy (46) for
small lnðnÞ. The eigenvalue distribution decreases expo-
nentially (Poisson), i.e., ξ2n;n;i>2 ≈ e−ajij, as shown in
Fig. 8 for 2n ¼ 300 and a ¼ 3.65. The dependence of
ξ300;n;1 on n is shown by the dots on the semicircle like
in Fig. 7, with the best fit

ξN;n;1 ¼ 0.963ð1 − e−Δ ln ðNπ sinðnπN ÞÞÞ ð59Þ

for N ¼ 300 and Δ ¼ 0.067. Using (59) in (43) gives the
dominant eigenvalues or probabilities (n ≪ N ¼ 300)

pl½N; n; 1� ≈ e−Δ lnðnÞð1 − e−Δ lnðnÞÞl ð60Þ

with 0.963 → 1 for D⊥ ¼ 1. For large lnðnÞ, the numerical
analysis is more intensive, but we expect Δ ¼ 0.067 → 1

6
as

required by the entropy constraint (46).

B. Cascade equation

In general, we have D⊥ independent copies of string
chains, each with l1;…;D⊥ , n1;…;D⊥ ¼ n. For fixed and
common n (rapidity), and fixed l ¼ l1 þ � � � þ lD⊥ , the
largest eigenvalue (60) is replaced by

pl½D⊥; N; n; 1� ¼
X

l¼l1þ���þlD⊥

YD⊥

M¼1

plM ½N; n; 1�

¼ ðlþD⊥ − 1Þ!
l!D⊥!

× e−D⊥Δ lnðnÞð1 − e−Δ lnðnÞÞl ð61Þ
which satisfies a cascade equation in rapidity

dpl

d ln n
¼ −Δðlþ 1Þpl þ ΔðlþD⊥ − 1Þpl−1 ð62Þ

with n ¼ e χ following from (51). In terms of the mean hli,
(61) is a negative binomial distribution

pl½D⊥; N; n; 1� ¼ PNBDðD⊥; hli −D⊥; lÞ: ð63Þ
For D⊥ ¼ 1 and modulo Δ, (63) is identical to the
probability to find l-wee-dipoles inside a hadron at rapidity
χ ¼ lnðnÞ following from a model of nonlinear QCD
evolution at weak coupling [10].

C. Structure function at low-x

Deep inelastic ep scattering at low-x is similar to pp
scattering in the Pomeron regime. The virtual photon
exchange at large Q2 in ep scattering, acts as a dipole of
size 1=Q scattering off the proton as a quark-diquark
dipole, hence the similarity. In the holographic limit, both
involve the exchange of a closed surface. To map the

1.2 1.4 1.6 1.8 2.0 2.2
ln n0.30

0.35

0.40

0.45

400,n,1

50 100 150 200 250 300
n

0.10

0.15

0.20

0.25

300,n,1

FIG. 7. Largest eigenvalue ξ300;n;1 versus n in the full range
0 < n < 300, with the midchain periodicity manifest: dots are the
numerical results and the solid line is a best fit (59). The insert
shows ξ400;n;1 versus lnðnÞ in the range 3 ≤ n ≤ 10.
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40

ln 300,150,i

i 2

FIG. 8. Distribution of the eigenvalues − ln ξ300;150;i versus
i − 2 for 3 ≤ i ≤ 12. The insert shows the largest two eigenvalues
ξ300;150;i¼1;2 on a linear scale.
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kinematical parameters for γ�ðqÞ þ NðpÞ → γ�ðqÞ þ NðpÞ
we note that

s −m2
N ¼ Q2

�
1

x
− 1

�
ð64Þ

with Bjorken-x defined as x¼Q2=2p ·q and Q2¼−q2≥0.
In the Pomeron regime with s ≫ Q2 ≫ −t, we have
s ≈Q2=x. From the identification (51) it follows that for
fixed Q2

χ ¼ ln s ¼ ln n ¼ ln
1

x
: ð65Þ

The larger the boost, the larger the rapidity, the smaller
the range of Bjorken-x probed by the string transverse
fluctuations. Hence, x ¼ 1

n is identified as the fraction of
longitudinal momentum carried by each of the transverse
n-string bits.
It follows that the string fluctuations as wee-quanta carry

longitudinal momentum, where the mean captured by the
F2ðxÞ structure function at low-x is (n ≫ N)

F2ðxÞ ∼
X∞
l¼0

lpl½D⊥; N; n; 1� ¼ D⊥nΔ ¼ D⊥
xΔ

: ð66Þ

The exponent Δ is fixed by the zero point motion or
quantum entanglement of the string through the Pomeron
intercept

Δ ¼ 1

6
→

2

D⊥
ðαPð0Þ − 1Þ ð67Þ

Recall from (56) and the ensuing estimate, that the entan-
glement entropy saturates for χS ¼ 10.6. Using (65), this
translates to a saturation at low-x when xS ≈ 210−5.

VI. CONCLUSIONS

In walled AdS, parton-parton scattering at large
ffiffiffi
s

p
is

dominated by the exchange of a hyperbolic surface that
Reggeizes through a world sheet instanton. The zero point
motion of the string is characterized by a quantum or
thermodynamical entropy ST that is tied to the rise of the
scattering amplitude and multiplicities in hadron-hadron
scattering at large rapidities.
The surface is spatially entangled with an entanglement

or von-Neumann entropy SE that coincides with the
quantum or thermodynamical entropy ST, i.e., ST ¼ SE.
This entanglement entropy coincides with the one in critical
2-dimensional conformal field theories and spin chains
with a central charge D⊥.
At asymptotic rapidities, the ratio of the entanglement

entropy to the transverse area of the string is similar to that
of a black hole. The string appears maximally entangled
with a saturation momentum fixed by the string length. This
suggests that the rate of growth of the entanglement entropy
when cast in terms of Gribov diffusion time, is at the chaos
bound. These observations maybe at the origin of the fast
scrambling of information and collectivization in pp
collisions as recently reported by the CMS collaboration
[7], and argued in [33].
The largest eigenvalues of the entangled density matrix

obey a cascade equation in rapidity. They describe the
probability distributions of wee-quanta at low-x and strong
coupling, much like the Balitsky-Fadin-Kuraev-Lipatov
wee-dipoles at weak coupling. They are measurable
through the multiplicities in hadron-hadron scattering or
structure functions in deep-inelastic scattering at present or
future colliders.
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