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We study the polarization tensor of a Dirac field in (3þ 1) dimensions confined to a half-space—a
problem motivated by applications to the condensed matter physics, and to topological insulators in
particular. Although the Pauli-Villars regularization scheme has a number of advantages, like explicit gauge
invariance and decoupling of heavy modes, it is not applicable on manifolds with boundaries. Here, we
modify this scheme by giving an axial mass to the regulators and to the physical field. We compute the
renormalized polarization tensor in coordinate representation. We discuss then the induced Chern-Simons
type action on the boundary and compare it to the effective action of a (2þ 1)-dimensional Dirac fermion.
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I. INTRODUCTION

Various applications to the physics of new materials
sparked a lot of interest in quantum field theory (QFT) with
boundaries or interfaces. A recent example is the mixed
dimensional QED [1–5] in which the photons propagate
in the (3þ 1)-dimensional Minkowski space while the
fermions are confined to a (2þ 1)-dimensional surface.
This model describes graphene interacting with the usual
Maxwell field. QFT computations [6,7] of the Casimir
interaction of graphene may be considered as a resumma-
tion of certain types of Feynman diagrams in this model.
Such QFT computations are in a very good agreement [8]
with the experiment [9], which demonstrates once again
the efficiency of QFT in describing the physics of advanced
materials.
The model that we consider in this work describes the

Dirac fermions confined to a half-space in (3þ 1) dimen-
sions interacting with the photons propagating in the whole

space. This is a field theory model of topological insulators
[10]. Only the fermions will be quantized. We shall
concentrate on a single Feynman diagram that gives the
polarization tensor of external electromagnetic field. This
quantity is definitely of practical interest since it describes
the conductivity of topological insulators. Besides, there
are some more theoretical questions to be answered. One of
them is related to the induced Chern-Simons action on
the boundary leading to a Hall-type conductivity. In some
range of the parameters, Dirac fermions on (3þ 1)-
dimensional manifolds with boundaries have surface states,
that are (2þ 1)-dimensional fermionic modes. The fer-
mions in (2þ 1) dimensions possess a parity anomaly [11–
13] that leads to the Chern-Simons action of level k ¼ 1=2
for the electromagnetic field. Some authors [14] provided
arguments that the (2þ 1)-dimensional parity anomaly
does not lead to the Chern-Simons action on a boundary
in (3þ 1) dimensions, though their computations used in
fact domain walls rather than boundaries. Direct evaluation
of the parity anomaly in four (Euclidean) dimensions for
massless Dirac fermions confirmed the existence of the
Chern-Simons term on the boundary for both electromag-
netic [15] and gravitational [16] fields. Remarkably, the level
of the Chern-Simons action appeared to be 1=4, i.e., a half
of the parity anomaly in three dimensions. In the present
work we are going to resolve this problem by computing the
induced boundary Chern-Simons–type action for a Dirac
fermion having both bulk and boundary mass gaps.
Most of this paper will actually be dedicated to the

development of QFT methods with boundaries. First of all,
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we shall propose a suitable modification of the Pauli-Villars
(PV) regularization scheme. This scheme has many advan-
tages. It preserves the manifest gauge invariance. Besides,
the PV subtraction ensures decoupling of massive modes,
which is a very reasonable requirement in effective theories
and condensed matter applications. However, in the pres-
ence of a boundary the PV scheme is not immediately
applicable since the usual bulk mass fails to provide a gap
to specific boundary excitations. To solve this problem it
was suggested [17] to add an axial mass term. In the present
work we follow the same approach. As we show below, the
axial mass indeed gives a mass gap to all states. Apart from
enabling us to use the PV scheme, this mass also allows to
describe topological insulators with gapped surface states,
see e.g., [18]. We shall formulate the PV scheme, prove the
finiteness of regularized effective action and obtain the
renormalized expressions. Although these expressions will
appear to be rather long and complicated, we shall be able
to extract some simple and interesting physical information
from the parity-odd part of the polarization tensor. After
integration over the normal coordinates, this tensor will
give a Hall-type conductivity near the boundary. We shall
compare this integrated tensor with the parity-odd part
of the polarization tensor for a Dirac fermion in (2þ 1)
dimensions.
Under a different name, the polarization tensor of

electromagnetic field in the presence of boundaries
was considered in the condensed matter literature,
see e.g., [19,20]. In these papers, however, nonrelativ-
istic (non-Dirac) dispersion relations for quasiparticles
were used. More recently, for a Dirac field in half-space
in (2þ 1) dimensions a one-point function [21] and the
polarization tensor [22] were computed. A Weyl
anomaly induced current on the boundary was studied
in [23].
Throughout this work we use the natural units ℏ ¼

c ¼ 1. To facilitate applications to the condensed matter
problems we introduce the Fermi velocity vF. Since the vF
dependence of polarization tensor may be recovered by
using some simple rules, in most of the paper we keep
vF ¼ 1, but restore vF ≠ 1 whenever necessary. This paper
is organized as follows. In Sec. II we define the main
notions and study the spectrum of boundary modes. The
PV renormalization of polarization tensor without boun-
daries is considered in Sec. III, where we also discuss the
effects due to vF ≠ 1. The main part of this work is Sec. IV
where we formulate the rules of the PV scheme with
boundaries and compute the renormalized polarization
tensor. In Sec. V we compute the Hall conductivity near
the boundary and compare to that of a Dirac spinor in
(2þ 1) dimensions. Concluding remarks will be presented
in Sec. VI. Some technicalities are contained in the
Appendixes: the parity-odd part of the effective action is
computed in Appendix A, while some useful formulas are
collected in Appendix B.

II. THE SETUP

Let us consider one generation of fermions in (3þ 1)
dimensions described by the Dirac operator,

=D ¼ iγ̃μð∂μ þ ieAμÞ þ im5γ
5 þm; ð1Þ

where Aμ is electromagnetic potential. Keeping in mind
applications to the condensed matter physics we introduced
the Fermi velocity vF by rescaling the spatial gamma
matrices,

γ̃μ ¼ ημνγν; η≡ diagð1; vF; vF; vFÞ: ð2Þ

We work in the signature ðþ − −−Þ, so that before the
rescaling ðγ0Þ2 ¼ 1 ¼ −ðγaÞ2, a ¼ 1, 2, 3. γ5 ¼ −iγ0γ1γ2γ3
is the chirality matrix, so that

trðγ5γμγνγργσÞ ¼ 4iεμνρσ ð3Þ

with ε0123 ¼ 1. The role of mass parameters m and m5 will
be clarified below.
We assume that the fermions can propagate in a half-space

x1 > 0. Let us introduce two complementary projectors,

Π� ¼ 1

2
ð1 ∓ iγ1Þ; χ ¼ Πþ − Π− ¼ −iγ1 ð4Þ

and define the bag boundary conditions [24,25] as

Π−ψðxÞjx1¼0 ¼ 0: ð5Þ

For the conjugated spinor, ψ̄ðxÞ≡ ψ†ðxÞγ0, we have

ψ̄ðxÞΠþjx1¼0 ¼ 0: ð6Þ

These boundary conditions ensure that the normal current
vanishes at the boundary, ψ̄γ1ψ jx1 ¼ 0, and thus provide for
the Hermiticity of the Dirac Hamiltonian.
Let us describe classical solutions of the free Dirac

equation

=D0ψ ¼ 0 ð7Þ

with =D0 ≡ =DðA ¼ 0Þ subject to bag boundary conditions
(5). There are oscillating solutions proportional to eikμx

μ

with k2 ¼ m2 þm2
5 that we shall call bulk modes. Other

modes, which will be called boundary modes, decay
exponentially away from the boundary. To analyze these
modes, let us take a particular representation of the gamma
matrices in terms of the Pauli matrices σ:
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γ0 ¼
�

0 σ1

σ1 0

�
; γ1 ¼

�
0 1

−1 0

�
;

γ2;3 ¼ i

�
0 σ2;3

σ2;3 0

�
: ð8Þ

One can easily check that boundary modes have the form

ψb ¼ emx1=vF

�
ΨðxjÞ
iΨðxjÞ

�
; j ¼ 0; 2; 3; ð9Þ

where the 2-spinors Ψ have to satisfy the Dirac equation in
2þ 1 dimensions:

ðiσ1∂0 − vFσ2∂2 − vFσ3∂3 þm5ÞΨ ¼ 0: ð10Þ

Thus, boundary modes exist for m < 0 only, while their
mass is given by m5.
We see that the usual mass m fails to give a gap to all

modes since the boundary modes remain gapless. On the
contrary, the chiral mass m5 gives a gap to all modes, and
this gap tends to infinity for m5 → �∞. This suggests that
it is m5 rather than m that has to be used for the Pauli-
Villars subtraction if a boundary is present. A similar
observation was made in [17] for graphene nanoribbons,
and a similar remedy was suggested.
In this work we are interested in the one-loop effective

action for fermions truncated to the second order in the
external electromagnetic field,

Seff ¼
ie2

2
Tr½γ̃μAμ=D−1

0 γ̃νAν=D−1
0 �; ð11Þ

or, in more simple words, in a fermion loop with two
photon legs. The Green’s function has to satisfy

=D0;x=D−1
0 ðx; yÞ ¼ 1δðx − yÞ

Π−=D−1
0 ðx; yÞjx1¼0 ¼ 0; =D−1

0 ðx; yÞΠþjy1¼0 ¼ 0: ð12Þ

To construct this Green’s function we notice that

=̄D0=D0 ¼ −∂̃μ∂̃μ −m2 ≡□m ð13Þ

with

=̄D0 ¼ iγ̃μ∂μ þ im5γ
5 −m; m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þm2

5

q
: ð14Þ

If there are no boundaries, □m can be easily inverted,

G0ðx − y;mÞ≡ ð□mÞ−1x;y ¼
Z

d4k
ð2πÞ4

eþikðx−yÞ

k̃2 −m2 þ i0

¼ −
im

4π2v3F

K1ðm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−λþ i0

p Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−λþ i0

p ; ð15Þ

where

λ ¼ ðx0 − y0Þ2 − v−2F ðxa − yaÞ2; a ¼ 1; 2; 3; ð16Þ

and K1ðzÞ is the modified Bessel function.
Let xk be a projection of vector x to the boundary plane,

and let x̄ denote a reflected vector, xk ¼ x̄k and x1 ¼ −x̄1.
Then the full propagator in coordinate representation reads

=D−1
0 ðx;yÞ¼ =̄D0;xðG0ðx−y;mÞ−χG0ðx− ȳ;mÞ

þ2Π−Hðx− ȳ;m;m5ÞÞ; ð17Þ

where

Hðx − ȳ; m;m5Þ ¼ −
m
vF

Z
∞

0

dze−zm=vFG0ðxþ z� − ȳ;mÞ:

ð18Þ

Here z� is a vector such that z1� ¼ z and zk� ¼ 0.
Equation (12) is checked by inspection. In what follows,
we shall drop the masses from the notations whenever this
cannot lead to a confusion.
There is an important observation regarding the depend-

ence of propagator in coordinate representation on the
Fermi velocity. To obtain (17), it is sufficient to take the full
propagator with vF ¼ 1 and make the replacement

x0;y0→ vFx0;vFy0; m→m=vF; m5 →m5=vF: ð19Þ

This may be verified directly or demonstrated on general
grounds.
For future use we define a Minkowski norm for space-

time vectors as

jxj ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνxμxν þ i0

q
; ð20Þ

where g ¼ diagðþ1;−1;−1;−1Þ. The sign under the
square root is chosen to simplify the Wick rotation, while
i0 governs the phase. For Wick rotated vectors x0 → −ix4,
and the norm is defined in the usual way, jxEj ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1Þ2 þ ðx2Þ2 þ ðx3Þ2 þ ðx4Þ2

p
.

III. NO-BOUNDARY CASE

In this section we compute the polarization tensor in
Minkowski space without boundaries. The computations
are rather standard, though there are two important
differences: the presence of vF and of both axial and
normal masses. We start with

ΠμνðpÞ ¼ ie2

ð2πÞ4
Z

d4ktr½γ̃μ=D−1
0 ðkÞγ̃ν=D−1

0 ðk − pÞ�; ð21Þ

where
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=D−1
0 ðkÞ ¼ −kμγ̃μ þ im5γ

5 −m

k̃2 −m2
5 −m2

: ð22Þ

After taking the trace and making the change of the
integration variable kμ → k̃μ ¼ ηνμkν in (21) we make an
important observation:

ΠμνðpÞ ¼ v−3F ημαΠ̂αβðp̃Þηνβ; ð23Þ

where Π̂ is the usual polarization tensor computed
for vF ¼ 1 with the ordinary mass equal to m and no
chiral mass parameter. The computation of Π̂ goes as in
textbooks, see e.g., [26]. After performing the Wick
rotation and introducing the Feynman parameters, we arrive
at the integral

Π̂μνðkÞ ¼ −
e2

2π2
ðkμkν − gμνk2Þ

×
Z

1

0

dx
Z

∞

0

dα
xðx − 1Þ

α
e−αðxð1−xÞk2þm2Þ: ð24Þ

The integral over α is divergent at the lower limit. To make
the Π̂ finite, it is sufficient to add two PV regulators with
weights ci and m2 replaced by M2

i ¼ m2
i þm2

5;i, i ¼ 1, 2
satisfying the conditions1

1þ c1 þ c2 ¼ 0; m2 þ c1M2
1 þ c2M2

2 ¼ 0: ð25Þ

Finally, after returning to the Minkowski signature, we
obtain

Π̂μνðpÞ ¼ −
e2

2π2
½pμpν − gμνp2�

×

�
c1 lnðM2

1=m
2Þ

6
þ c2 lnðM2

2=m
2Þ

6

þ
Z

1

0

dxxð1 − xÞ ln
�
1 −

xð1 − xÞp2

m2

��
; ð26Þ

where we dropped the terms that vanish in the limit
M2

1;2 → ∞. The terms with lnM2
i are divergent at this

limit, and these divergences have to be removed by suitable
counterterms.
Counterterms needed to renormalize a theory should

all be local expressions having correct invariance proper-
ties and correct canonical mass dimensions. Since all
quasirelativistic symmetries are broken by the presence of
different characteristic velocities for fermions and pho-
tons, the allowed counterterms depending just on the

electromagnetic field have the form of the Maxwell action
in a media,2

SEM¼1

2

Z
d4x

�
ϵE⃗2−

1

μ
B⃗2

�

¼1

2

Z
d4p
ð2πÞ4

�
ϵE⃗ð−pÞ · E⃗ðpÞ−1

μ
B⃗ð−pÞ · B⃗ðpÞ

�
: ð27Þ

Let us write the one-loop effective action following from
(26) as

Seff ¼
1

2

Z
d4p
ð2πÞ4Aμð−pÞΠμνðpÞAνðpÞ

¼−1

2

Z
d4p
ð2πÞ4

e2

2π2
ðv−1F E⃗ð−pÞ · E⃗ðpÞ

−vFB⃗ð−pÞ · B⃗ðpÞÞ
�
c1
6
ln
M2

1

m2
þc2

6
ln
M2

2

m2
þfðp̃2=m2Þ

�
:

ð28Þ

Here we restored the vF dependence according to (23), and
defined

fðzÞ≡
Z

1

0

dxxð1−xÞ lnð1−xð1−xÞzÞ

¼−
ffiffiffi
z

p ð12þ5zÞþ6ðzþ2Þ ffiffiffiffiffiffiffiffiffiffi
4−z

p
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z=ð4− zÞp

18z3=2
;

z∈ ð0;4Þ: ð29Þ

An analytical continuation to other values of z is assumed
when necessary.
The divergences in (28) are canceled by the following

renormalization of ϵ and μ:

δ1ϵ ¼ þ e2

2π2vF

�
c1
6
ln
M2

1

m2
þ c2

6
ln
M2

2

m2

�
þ finite ð30Þ

δ1
1

μ
¼ þ e2vF

2π2

�
c1
6
ln
M2

1

m2
þ c2

6
ln
M2

2

m2

�
þ finite: ð31Þ

Finite parts in (30) and (31) have to be fixed by a suitable
normalization condition. We request that the kernel of (28)
jointly with contributions from the counterterms vanishes

1In the no-boundary case the polarization tensor depends on
the masses only in the combinationsm2 (orM2

i ). Thus, there is no
need to introduce axial masses here. These masses, however, will
be essential in the presence of a boundary.

2Since the parity invariance has been already violated by the
presence of γ5 in the Dirac operator, a term E⃗ · B⃗ is also allowed.
This term is a total derivative and thus is not essential on R4.
In the presence of a boundary, however, this term leads to a shift
of the Chern-Simons coupling. The resulting ambiguity is
removed by requiring that the effective action vanishes in the
limit of an infinite mass gap, jm5j → ∞. In this way, one recovers
the results reported in Secs. III and V. We shall not return to this
issue any more.
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when p̃2 ¼ λ2 for some scale λ. The renormalized one-loop
effective action becomes

Sreneff ¼ − 1

2

Z
d4p
ð2πÞ4

e2

2π2
ðv−1F E⃗ð−pÞ · E⃗ðpÞ

− vFB⃗ð−pÞ · B⃗ðpÞÞðfðp̃2=m2Þ − fðλ2=m2ÞÞ: ð32Þ

This means that ϵ and μ in the classical action (27) have the
values measured for the photons with p̃2 ¼ λ2. Since
physics cannot depend on the choice of λ, the scale
dependence of the dielectric constant and magnetic per-
meability is defined by fðλ2=m2Þ. However, in a full theory
of quantized photons and fermions all parameters (e, vF,
etc.) become scale dependent, as dictated by the renorm-
alization group equations, see [27]. A single computation
of the polarization tensor is not enough to fix the running of
ϵ and μ, but one can draw some qualitative conclusions
regarding this running already here. First of all, due to the
presence of v2F in p̃2, the dependence of ϵ and μ on the
spatial momenta is very small. The amplitude of quantum
corrections to ϵ is of the order e2=vF, while to μ—of the
order of e2vF. Therefore, we expect the scale dependence
of ϵ to be of the order of unity, while the scale dependence
of μ to be negligible. Qualitatively, all these conclusions are
consistent with what we know about dielectric properties of
the bulk of topological insulators.
One can easily check that Sreneff vanishes in the limit

m2 → ∞ and is regular at p̃2 → 0 and at m2 → 0.

IV. POLARIZATION TENSOR IN THE PRESENCE
OF A BOUNDARY

A. Unregularized expressions

In the presence of a boundary, it is convenient to work in
the coordinate representation. The effective action (11)
reads

Seff ¼
ie2

2

Z
d4x

Z
d4yAμðxÞAνðyÞtrðγ̃μ=D−1

0 ðx;yÞγ̃ν=D−1
0 ðy;xÞÞ

≡1

2

Z
d4x

Z
d4yAμðxÞAνðyÞΠμνðx;yÞ; ð33Þ

where the integration runs over the half-space Rþ ×R3.
The propagator =D−1

0 has been defined in Eq. (17).
Again, there are simple rules to reintroduce vF in the

polarization tensor. One has to take the tensor Π̂ computed
with vF ¼ 1, contract it with η (2), and make the replace-
ment as in Eq. (19). Symbolically,

Πμνðx; yÞ ¼ ημαηνβΠ̂
αβðx; yÞjEq:ð19Þ: ð34Þ

Note that this rule differs from (23) that we used in the
Fourier representation.

To compute the trace in (33) it is convenient to split the
propagator as

=D−1
0 ðx; yÞ ¼ =̄D0;xðG1ðx; yÞ − χG2ðx; yÞÞ;
G1ðx; yÞ ¼ G0ðx − yÞ þHðx − ȳÞ;
G2ðx; yÞ ¼ G0ðx − ȳÞ þHðx − ȳÞ: ð35Þ

Now the terms under the trace in (33) can be separated in
two groups: the ones containing an even number of gamma
matrices and the ones containing an odd number of them
(recall that χ ¼ −iγ1). According to this separation, we
represent

Seff ¼ Seven þ Sodd: ð36Þ

We shall call these parts parity even (P-even) and parity
odd (P-odd), respectively. The parity transformation is
understood as an inversion of orientation of the space-time
resulting in an inversion of the sign in front of the Levi-
Civita tensor in (3).
The polarization tensor of the P-even part reads

Πμν
evenðx; yÞ ¼ 4ie2ð−Tμλνξ∂λ½x�G1ðx; yÞ · ∂ξ½y�G1ðy; xÞ

þ gμνðm2
5 þm2ÞðG1ðx; yÞÞ2

− T̄μλνξ∂λ½x�G2ðx; yÞ · ∂ξ½y�G2ðy; xÞ
þ ḡμνðm2

5 −m2ÞðG2ðx; yÞÞ2
þm½Tμνξ1G1ðx; yÞ · ∂ξ½y�G2ðy; xÞ
þ Tμ1νξG2ðx; yÞ · ∂ξ½y�G1ðy; xÞ
þ ðμ ↔ ν; x ↔ yÞ�Þ; ð37Þ

where ḡ is the Minkowski metric with a reflected (1,1)
component,

ḡ ¼ diagðþ1;þ1;−1;−1Þ ð38Þ

and

Tμλνξ ¼ gλμgξν − gλξgμν þ gλνgξμ;

T̄μλνξ ¼ gλμgξν − ḡλξḡμν þ ḡλνḡξμ: ð39Þ

The parity-odd part is

Πμν
oddðx; yÞ ¼ −iε1μρν∂ρ½y�Q4ðx; yÞ: ð40Þ

It corresponds to the effective action

Sodd ¼
i
2

Z
d4xd4yðε1ijkAiðxÞ∂j½y�AkðyÞÞ · Q4ðx; yÞ; ð41Þ
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with the form factor

Q4ðx;yÞ¼ 8m5e2G1ðx;yÞG2ðx;yÞ
¼ 8m5e2ðG0ðx−yÞG0ðx− ȳÞþG0ðx−yÞHðx− ȳÞ
þG0ðx− ȳÞHðx− ȳÞþHðx− ȳÞ2Þ: ð42Þ

B. Pauli-Villars regularization and finiteness

Below we analyze the ultraviolet (short distance) singu-
larities of the polarization tensor in the Euclidean region.
As in the boundaryless case we work with two PV
regulators, defining the regularized polarization operator
as follows:

½Πμν�reg ≔ Πμνðm;m5Þ þ
X2
i¼1

ciΠμνðmi;m5;iÞ: ð43Þ

We notice, however, that it depends separately on m and
m5, unlike (24).
The singularities of various constituents of P-even (37)

and P-odd (40) polarization tensors are described by
Eqs. (B1) and (B3). It can be shown now that in ½Πμν

even�reg
almost all nonintegrable singularities disappear under the
conditions (25). However, there still remain the nonintegr-
able singularities of the types

u−2þ u−3− ; u−3þ u−2− ; and u−5þ ð44Þ

with

u− ¼ jxE − yEj; uþ ¼ jxE − ȳEj: ð45Þ

The coefficients in front of these singularities are propor-
tional to the ordinarymass, so that their cancellation requires
an additional condition,

mþ c1m1 þ c2m2 ¼ 0: ð46Þ

In its turn, the parity-odd polarization tensor (40)
contains a dangerous singularity proportional to u−3− u−2þ .
However, in the effective action this tensor is multiplied by
an antisymmetric combination ϵ1μρνAμðxÞAνðyÞ that van-
ishes in the coincidence limit. Thus this singularity
becomes milder and does not lead to any divergence.
We see that in the presence of a boundary the conditions

(25) have to be supplemented by an additional condition
(46). These three equations admit solutions with arbitrarily
large axial masses of the PV fields. For example, one can
takem¼m1¼m2 and axial masses satisfyingm2

5þc1m2
5;1þ

c2m2
5;2¼ 0, which resembles the second condition in (25).

There are, of course, other solutions as well, but we shall not
rely on any particular choice.

Summarizing, our PV prescription is as follows. We take
two PV regulators with the weights c1, c2, masses m1 and
m2, and axial masses m5;1 and m5;2. We impose the
restrictions (25) and (46) on the weights and masses. The
physical limit corresponds to infinite axial masses of the PV
regulators, whilst the ordinarymasses,which,we remind, do
not give mass gaps to the surface modes, are kept finite. As
we shall see, the renormalized effective action will not
depend on a particular choice of a solution of (25) and (46).
We also take the axial massesm5;i of the same sign asm5 for
the reason that will become clear in Sec. IV D.
Let us make an important remark. The conditions (25)

and (46) do not admit a solution with jm1j; jm2j → ∞ and
finite axial masses of PV regulators. On the other side, such
a limit would be the only reasonable opportunity if we did
not introduce the axial masses in this game. Thus, the usual
PV scheme, which does not rely on the axial masses, fails to
give a finite result in the presence of a boundary.
In 2þ 1 dimensions the situation is different. In the case

of a single generation of Dirac fermions there is no second
mass term. However, since the divergences are milder, the
polarization tensor can be computed (presumably) even
without any explicit regularization [22]. (The paper [22]
gives too few details to make more definite statements).
The problems may arise if one attempts to move the results
of [22] closer to condensed matter applications by making a
PV subtraction with respect to the usual mass. As has been
demonstrated in [17] for nanoribbons, the contribution of
edge states to the conductivity is treated incorrectly in such
a procedure. The same problem may persist in half-space
as well.
In conclusion we notice that the regularized effective

action is gauge invariant, as expected. This provides a
useful cross-check for our approach, which is, however, too
long and too technical to be reported here. In what follows
we address its renormalization, i.e., consider the physical
limit jm5;ij → ∞.

C. Renormalization of the parity-even part

It is convenient to split Πμν
even in three parts:

Πμν
evenðx; yÞ ¼ Πμν

bulkðx; yÞ þ Πμν
mirrðx; yÞ þ Πμν

restðx; yÞ; ð47Þ

where

Πμν
bulkðx; yÞ ¼ 4ie2ð−Tμλνξ∂λ½x�G0ðx; yÞ · ∂ξ½y�G0ðy; xÞ

þ gμνm2ðG0ðx; yÞÞ2Þ;
Πμν

mirrðx; yÞ ¼ 4ie2ð−T̄μλνξ∂λ½x�G0ðx; ȳ;mÞ · ∂ξ½y�G0ðx; ȳÞ
þ ḡμνm2ðG0ðx; ȳÞÞ2Þ: ð48Þ

The tensor Πbulk is obtained from the first line on the right-
hand side of (37) by keeping only G0ðx; yÞ in G1ðx; yÞ.
To obtain Πmirr one has to keep the terms in G2ðx; yÞ
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containing G0ðx; ȳÞ together with one extra term, which
converts −m2 to m2. Both Πbulk and Πmirr can be repre-
sented through a single form factor,

Πμν
bulkðx; yÞ ¼

4ie2

ð2πÞ4 ð∂
μ½x�∂ν½x� − ∂2

½x�g
μνÞm4Pðu−mÞ;

Πμν
mirrðx; yÞ ¼

4ie2

ð2πÞ4 ð∂
μ½x�∂̄ν½x� − ∂2

½x�ḡ
μνÞm4PðuþmÞ ð49Þ

with

PðzÞ≔ ðz2−1ÞðK1ðzÞÞ2− zK1ðzÞK0ðzÞ− z2ðK0ðzÞÞ2
3z2

:

ð50Þ

Let us consider the effective action corresponding to
Πbulk and Πmirr. After integration by parts it can be written
in the form

1

2

Z
d4x d4yAμðxÞ½Πμν

bulkðx; yÞ þ Πμν
mirrðx; yÞ�regAνðyÞ

¼ ðSbulk½A;m�Þreg þ ðSmirr½A;m�Þreg; ð51Þ

where

ðSbulk½A�Þreg
¼ þ ie2

ð2πÞ4
Z

d4x d4yFμνðxÞFμνðyÞ½m4Pðu−mÞ�reg;

ðSmirr½A�Þreg
¼ þ ie2

ð2πÞ4
Z

d4x d4y F̄μνðxÞFμνðyÞ½m4PðuþmÞ�reg:

ð52Þ

Here we defined

F̄μνðxÞ¼ ∂̄μĀνðxÞ− ∂̄νĀμðxÞ; ĀνðxÞ≡ ḡξνAξðxÞ: ð53Þ

Note that the surface terms produced by integration by
parts are canceled in Sbulk þ Smirr but not in each of them
separately. Both Sbulk and Smirr are manifestly gauge
invariant.
The action Sbulk depends on the boundaries through the

integration region only. It can be obtained from (28) by
computing the Fourier integral of the kernel and then
restricting the ranges of coordinates to x1, y1 ≥ 0. The
renormalization thus goes exactly the same way as has been
explained in Sec. III (we checked), though the computa-
tions are much more complicated in the coordinate repre-
sentation. We do not present any details here.
Let us turn to Smirr. This contribution to the effective

action describes interaction of the electromagnetic field
with a “mirror” current. Note that

PðzÞ ≃ −
1

3z4
þOðz−2Þ; at z → 0: ð54Þ

The singularity u−4þ is integrable in the half-space. Thus Smirr
does not require any regularization by itself. However, the
PV subtraction may be nontrivial. To study the jm5j → ∞
limit, let us change the integration variables as

xk − yk ¼ vkjmj−1; yk ¼ wk;

x1 ¼ v1jmj−1; y1 ¼ w1jmj−1: ð55Þ

Then,

m · Smirr ¼ þ ie2

ð2πÞ4
Z

d4vd4wF̄μν

�
wk þ vk

m
;
v1

m

�

× Fμν

�
wk;

w1

m

�
Pðjvk; v1 þ w1jÞ: ð56Þ

Obviously, the limit m → ∞ of the right-hand side of (56)
is finite. Consequently,

lim
m→∞

Smirr ¼ lim
jm5j→∞

Smirr ¼ 0: ð57Þ

Thus, the PV subtraction does not change the expression
(52) for Smirr and

Srenmirr ¼ Smirr: ð58Þ

It remains to renormalize Πrest. In the regularized
expression,

½Πμν
restðx; y; m;m5Þ�reg

≡ Πμν
restðx; y;m;m5Þ þ

X2
i¼1

ciΠ
μν
restðx; y; mi; m5;iÞ; ð59Þ

all singularities are integrable if (25) and (46) are satisfied,
though each of the individual terms has singularities of the
types (44). Before taking the limit jm5;ij → ∞, let us isolate
these singularities [which will allow us to treat the terms in
(59) separately]. To this end, we rewrite the corresponding
effective action as

½Srest�reg ¼
Z

d3zk
Z

∞

0

dx1
Z

∞

0

dy1Φμνðzk; x1; y1Þ

× ½Πμν
restðzk; x1; y1; m;m5Þ�reg; ð60Þ

where we introduced a new integration variable zk ¼
xk − yk and defined

Φμνðzk;x1;y1Þ¼
1

2

Z
d3ykAμðyk þ zk;x1ÞAνðyk;y1Þ: ð61Þ
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Now, we add and subtract the term Φð0; 0; 0Þ under the
integral in (60):

½Srest�reg ¼
Z

d3zk
Z

∞

0

dx1
Z

∞

0

dy1ðΦμνðzk; x1; y1Þ

−Φμνð0; 0; 0ÞÞ½Πμν
restðzk; x1; y1; m;m5Þ�reg

þ
Z

d3zk
Z

∞

0

dx1
Z

∞

0

dy1Φμνð0; 0; 0Þ

× ½Πμν
restðzk; x1; y1; m;m5Þ�reg: ð62Þ

The second line in (62) vanishes. This follows from the
following facts. First, one may represent

Φμνð0;0;0Þ¼∂μ½w�ðwλ ·Φλνð0;0;0ÞÞ; wj≡zj; w1≡x1:

ð63Þ

Second, the regularized Πrest does not contain problematic
singularities, what allows us to integrate by parts. Third,
direct calculations show that ½Πrest�reg is transversal and

satisfies the conditions ½Π1μ
rest�regjx1¼0 ¼ 0 ¼ ½Πμ1

rest�regjy1¼0

that guarantee the absence of boundary terms upon inte-
gration by parts.
The combination Φμνðzk; x1; y1Þ −Φμνð0; 0; 0Þ vanishes

at the point u− ¼ uþ ¼ 0 where the unregularized polari-
zation tensor has a nonintegrable singularity. The singu-
larity of the integrand on the first line of (62) becomes
milder, so that the contributions of the physical field and of
each of the regulators become finite. Let us consider a
contribution of one of the regulator fields. After a rescaling
of the coordinates with jm5;ij, we obtain

jm5;ij
Z

d3zk
Z

∞

0

dx1
Z

∞

0

dy1

×

�
Φμν

�
zk

jm5;ij
;

x1

jm5;ij
;

y1

jm5;ij
�
−Φμνð0; 0; 0Þ

�

× Πμν
restðzk; x1; y1; mi=jm5;ij; 1Þ: ð64Þ

The difference of twoΦμν terms behaves as jm5;ij−1 at large
jm5;ij. All terms in the polarization tensor Πrest contain
either a factor of m or at least one H which is proportional
to the mass. Thus the rescaled Πrest behaves as mi=jm5;ij.
Therefore, we conclude that (64) vanishes in the limit
jm5;ij → ∞, and then

Srenrest ¼ lim
jm5;ij→∞

½Srest�reg

¼ 1

2

Z
d4xd4yðAμðxÞAνðyÞ − Aμðxk; 0ÞAνðxk; 0ÞÞ

× Πμν
restðx; y;m;m5Þ: ð65Þ

It is easy to see that limm5→∞Srenrest ¼ 0.

We conclude this subsection with a short guide to
renormalized expressions for Seven. It is represented by a
sum of three contributions, Srenbulk þ Srenmirr þ Srenrest. The
renormalization of the bulk part has been performed in
Sec. III. The mirror part is given by Eq. (52). It does not
need any PV subtractions. The last term is (65), where the
polarization tensor Πrest is a rather long expression defined
as a difference between Πeven, Eq. (37) and other two
tensors, Πbulk and Πmirr, which are presented in (48).

D. Renormalization of the parity-odd part

It remains to make the Pauli-Villars subtraction in the
parity-odd effective action (41). First of all, we expand the
notations Q4ðx; yÞ → Q4ðxk − yk; x1; y1; m;m5Þ. After
changing the variables similarly to (55),

xk − yk ¼ vkjm5j−1; yk ¼ wk; x1 ¼ v1jm5j−1;
y1 ¼ w1jm5j−1; ð66Þ

we arrive at the expression

Sodd ¼
i
2
sgnðm5Þ

Z
d4vd4wQ4ðvk; vn; wn;m=jm5j; 1ÞAi

×

�
wk þ vk

jm5j
;
v1

jm5j
� ∂
∂wj Ak

�
wk;

w1

jm5j
�
ε1ijk:

ð67Þ

In the large jm5j limit, the contribution from Q4 can be
factored out:

lim
jm5j→∞

Sodd

¼−sgnðm5Þ ·C ·
Z

d3wkAiðwk;0Þ ∂
∂wjAνðwk;0Þεnijk;

ð68Þ

where

C¼−
i
2

Z
d3vk

Z
∞

0

dv1
Z

∞

0

dw1Q4ðvk;v1;w1;0;1Þ: ð69Þ

The integrated form factor

Qðxk − yk; m;m5Þ

≔
Z

∞

0

dx1
Z

∞

0

dy1Q4ðxk − yk; x1; y1; m;m5Þ ð70Þ

will play an important role here and in the subsequent
section. In Appendix B, Eqs. (B8) and (B9), we derive the
following formula:
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Qðxk−yk;m;m5Þ

¼−
e2m5

m
·G3D

0 ðxk−yk;0Þ ·Hðx− ȳ;2m;2m5Þ
���
x1¼0¼y1

;

ð71Þ

where G3D
0 ðxk − yk; 0Þ stands for the (massless) three-

dimensional Green’s function defined in (A3).
Since H is proportional to m, see Eq. (18), the limit

m → 0 in (71) can be done without any problem. By using
this formula together with Eq. (B7) we compute

C ¼ −
ie2

2

Z
d3vkG3D

0 ðvk; 0Þ · G3D
0 ðvk; 2Þ ¼ e2

16π
: ð72Þ

Thus, performing the Pauli-Villars subtraction and going to
the physical limit m5;i → ∞, amounts to adding Eq. (68) to
(41) with overall weight equal to c1 þ c2 ¼ −1, and C
given by the above expression. In this way we obtain the
renormalized parity-odd effective action:

Srenodd ¼
i
2

Z
d4xd4yε1ijkQ4ðx;yÞAiðxÞ∂j½y�AkðyÞ

þe2sgnðm5Þ
16π

Z
d3xkε1ijkAiðxk;0Þ∂jAkðxk;0Þ: ð73Þ

We see that the subtracted term is nothing else but
the Chern-Simons action on the boundary with the level
k ¼ �1=4. The action (73) vanishes in the limit m5 → ∞
since the axial masses m5;i of regulator fields were taken of
the same sign as m5 [see Eq. (68)].

V. HALLCONDUCTIVITYNEARTHEBOUNDARY

In this section we compare the parity-odd effective action
(73) to its three-dimensional counterpart (A6). The action
(73) includes integration over the whole space, but the form
factor decays rapidly away of the boundary. To compare
two actions, we propose to integrate the form factors over
the normal coordinates x1 and y1. Technically, this corre-
sponds to plugging in (73) an electromagnetic potential that
does not depend on the normal coordinate. Physically, we
put the system in an external electromagnetic potential
parallel to the boundary and constant in x1 and measure the
total current integrated over x1. Due to the presence of ε1ijk,
the electric field in some direction parallel to the boundary
leads to the current in a perpendicular direction (also along
the boundary). Thus, we are dealing with a Hall-type
conductivity. The corresponding scalar form factor reads

Qðxk − ykÞ þ e2sgnðm5Þ
8πi

δðxk − ykÞ: ð74Þ

This has to be compared with the corresponding form factor
for a (2þ 1)-dimensional Dirac fermion, which is given by

Q3ðxk − ykÞ þ e2sgnðm5Þ
4πi

δðxk − ykÞ; ð75Þ

see Eq. (A6). We identified the coordinates in 3D with
coordinates on the boundary of the 4D case, and the 3D
mass withm5, as is suggested by the Dirac equation (10) for
boundary modes. We also took into account a sign factor in
the Levi-Civita tensor, ε1ijk ¼ −εijk.
The relative strength of the effect in these two models is

measured for xk ≠ yk by the fraction Q=Q3. Equations (71)
and (B7) allow to derive the following relation:

Qðxk−yk;m;m5ÞþQðxk−yk;−m;m5Þ¼Q3ðxk−yk;m5Þ;
ð76Þ

which permits to consider positive or negative masses only.
Some limiting cases may be studied analytically. In

particular, in the small m and short Euclidean distance
limits we have

lim
jxkE−ykEj→0

Qðxk−yk;m;m5Þ
Q3ðxk−yk;m5Þ

¼ 1

2
¼ lim

jmj→0

Qðxk−yk;m;m5Þ
Q3ðxk−yk;m5Þ

:

ð77Þ

This 1=2 combines nicely with the relative factor in front of
the delta function meaning a universal relative factor of 1=2
for the polarization tensors at short distances. In the
opposite limit of large jmj and large Euclidean distances
the form factors behave as

lim
jxkE−ykEj→∞

Qðxk − yk; m;m5Þ
Q3ðxk − yk; m5Þ

¼ 0 ¼ lim
jmj→∞

Qðxk − yk; m;m5Þ
Q3ðxk − yk; m5Þ

for m > 0;

lim
jxkE−ykEj→∞

Qðxk − yk; m;m5Þ
Q3ðxk − yk; m5Þ

¼ 1 ¼ lim
jmj→∞

Qðxk − yk; m;m5Þ
Q3ðxk − yk; m5Þ

for m < 0: ð78Þ

The second line in the equation above follows from the first
one by Eq. (76). For nonasymptotic values of the param-
eters the fraction of form factors is depicted at Fig. 1. We
use Wick-rotated coordinates and Euclidean distance to
simplify the problem. The Euclidean regime is sufficient to
describe some quantum phenomena, like the Casimir effect,
though it does not tell us much about the optical properties
of topological insulators.
Since typical topological insulators have massless boun-

dary states, the most important limit is m5 → 0. As follows
from the explicit expressions (B9) and (A7),
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lim
m5→0

Qðxk − yk; m;m5Þ ¼ lim
m5→0

Q3ðxk − yk; m5Þ ¼ 0: ð79Þ

Thus, in this limit, the parity-odd parts of both effective
actions are given by local Chern-Simons terms. The Chern-
Simons level of effective boundary theory k ¼ sgnðm5Þ=4
does not depend on the bulk massm and is exactly one half
of the Chern-Simons level for a Dirac fermion in (2þ 1)
dimensions. In other words, the Hall conductivity on the
boundary of a topological insulator without surface gap is
one half of that for a single massless Dirac field. Form ¼ 0,
this result was established in [15], where the physical
meaning of this apparently surprising relation was dis-
cussed in detail.
We recall that the dependence of form factors on the

Fermi velocity is restored by the rescalings (19). The limits
(77)–(79) remain valid. The curves on Fig. 1 were drawn
for m5 ¼ 1 and may be interpreted also in terms of

dimensionless variablesm=m5, jðxkE − ykEÞm5j. The fraction
of two masses remains unchanged under the rescaling,

as also jðxkE − ykEÞm5j does if the separation ðxkE − ykÞ is in
the (Euclidean) time directions. For spatial separations,

the rescaling leads to jðxkE − ykEÞm5j → jðxkE − ykEÞm5jv−1F .
For reasonable values of the parameters, m ¼ 0.1 eV,
m5 ¼ 0.01 eV, vF ¼ 10−3, the fraction Q=Q3 assumes
its asymptotic values �1 for spatial separations larger than
a few Angström. This is a position space counterpart of
the phenomenon that we have already discussed at the end
of Sec. III: the dependence of renormalized physical
quantities on spatial momentum is much weaker in this
model than the dependence of the same quantities on the
frequency.

VI. CONCLUSIONS

Here we give a short summary of the main results
obtained in this work. We suggested a modification of
the PV regularization scheme that consists in giving axial
masses to the PV regulators that become infinite in the
physical limit. We demonstrated that this scheme indeed
renormalizes the polarization tensor of Dirac fermions in
half-space, though the usual PV prescription fails to produce
finite results. We computed the renormalized polarization
tensor that appeared to be given by a sum of rather
complicated expressions. However, after the integration over
the normal coordinate the parity-odd part of the polarization
tensor became relatively simple and admitted a comparison
to the corresponding quantity for a (2þ 1)-dimensional
Dirac fermion. This part (corresponding to a distance-
depending Hall-type conductivity) was analyzed in detail.
Our results have somequite immediate applications, like e.g.,
to the study of the possibility of the Casimir repulsion
between topological insulators (see [28] and references
therein), which we are planning to address in the future.
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FIG. 1. The ratio of the integrated four-dimensional form factor Qðxk − yk; m;m5Þ and the three-dimensional form factor Q3ðxk −
yk; m5Þ at m5 ¼ 1. Blue lines correspond to the exact results (77) and (78), whilst red and green curves are obtained numerically.
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APPENDIX A: POLARIZATION DIAGRAM IN
THREE DIMENSIONS

The polarization tensor of Dirac fermions in (2þ 1)
dimensions was computed in the momentum representation
long ago [11,12,29], see also [30]. The mass dependence of
parity anomaly in three dimensions was studied in detail in
[31]. In this Appendix we rederive the parity-odd part of
effective action for photons in a 3D flat space without
boundaries in the coordinate representation. Since the rule
for recovering the vF dependence of polarization tensor in
3D is the same as in 4D modulo a restriction on the range of
the indices, see (34), we make the computations for vF ¼ 1.
We consider a single Dirac fermion in 2þ 1 dimensions
with free Dirac operator,

=D03D ¼ iΓj∂j þm; ðA1Þ

with the gamma matrices Γj, j ¼ 0, 2, 3, satisfying
usual Clifford algebra relations and trðΓiΓjΓkÞ ¼ −2iεijk,
ε023 ¼ 1, cf. Eq. (10). Similarly to the 4D case,

=D−1
03Dðx; yÞ ¼ =̄D03DðxÞG3D

0 ðx − yÞ ðA2Þ

with

=̄D03D ¼ iΓj∂j−m; G3D
0 ðx−yÞ¼−

i
4π

e−jmjjx−yj

jx−yj : ðA3Þ

As in the 4D case, jx − yj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðx − yÞiðx − yÞjgij þ i0

q
and g ¼ diagðþ1;−1;−1Þ.
The quadratic part of the one-loop effective action for the

electromagnetic field reads

Seff ½A;m� ¼ ie2

2

Z
d3x d3y trðΓi=D−1

03Dðx − yÞ

× Γj=D−1
03Dðy − xÞÞAiðxÞAjðyÞ ðA4Þ

with its parity-odd part (containing an odd number of
gamma matrices under the trace) being

Sodd ¼ −ime2
Z

d3x d3y εijkðG3D
0 ðx − yÞÞ2AiðxÞ∂jAkðyÞ:

ðA5Þ

It is very well known that to make the action (A4) finite,
a single PV subtraction is sufficient. Note that though the
odd part (A5) is finite, the subtraction has to be done in this
part as well. After subtracting from (A5) the contribution of
a spinor with mass M of the same sign as m and taking the
limit jMj → ∞, we obtain

Srenodd ¼−
i
2

Z
d3xd3yεijk

�
Q3ðx−yÞþe2sgnðmÞ

4πi
δðx−yÞ

�

×AiðxÞ∂jAkðyÞ; ðA6Þ

where

Q3ðx − yÞ ¼ 2e2mG3D
0 ðx − yÞ2: ðA7Þ

The basic property of renormalized action (A6) is that it
vanishes in the limit jmj → ∞.

APPENDIX B: SOME USEFUL FORMULAS
INVOLVING GREEN’S FUNCTIONS

Let xE be the Wick rotated coordinate, x0 → −ix4.
The following asymptotic expansions at jxEj → 0 can be
checked by using the explicit form of propagator (15):

G0ðxEÞ≃−
i

4π2
1

x2E
−

i
8π2

ðm2þm2
5Þ lnðjxEjÞþOðjxEj0Þ;

∂μG0ðxEÞ≃ ð∂μjxEjÞ ·
�

i
2π2

1

jxEj3
−

i
8π2

ðm2þm2
5Þ

1

jxEj

þOðjxEj lnðjxEjÞÞ
�
: ðB1Þ

The singularities of HðxÞ also appear at jxEj ¼ 0, but they
depend on the angle ϕ,

tanðϕÞ ¼ x1

jxkj ; 0 ≤ ϕ ≤
π

2
: ðB2Þ

After lengthy but otherwise straightforward computations
we obtain the following estimates:

HðxEÞ ≃ −
im
4π2

·
ϕ − π

2

cosðϕÞ ·
1

jxEj
þ im2

4π2
lnðjxEjÞ þOðjxEj0Þ;

∂iHðxEÞ ≃
∂jxkj
∂xi

�
−

im
8π2

·
−2ϕþ π − sinð2ϕÞ

cos2ðϕÞ ·
1

jxEj2

−
im2

8π2
·
ð−2ϕþ πÞ sinðϕÞ − 2 cosðϕÞ

cos2ðϕÞ ·
1

jxEj

þOðjxEj0Þ
�
;

∂1HðxEÞ ≃ −
im
4π2

1

jxEj2
−
im2

4π2
·
ϕ − π

2

cosðϕÞ ·
1

jxEj
þ im
8π2

ðm2 −m2
5Þ lnðjxEjÞ þOðjxEj0Þ: ðB3Þ

The correction terms OðjxEj0Þ are uniformly bounded over
ϕ ∈ ½0; π=2�. Note that all angular functions in (B3) are
nonsingular.
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In the Euclidean region the Green’s function G0 admits a
proper time integral representation,

G0ðxEÞ ¼ −
i

16π2

Z
∞

0

dt
t2
exp

�
−
jxEj2
4t

−m2t

�
: ðB4Þ

This equation can be integrated over x1 with weight e−x
1m

yielding

Z
∞

0

dx1e−x
1mG0ðxEÞ

¼−
i

16π3=2

Z
∞

0

dt

t3=2
exp

�
−
jxkEj2
4t

−m2
5t

�
erfcðm ffiffi

t
p Þ:

ðB5Þ

By taking into account the proper time representation for
3D propagator

G3D
0 ðxkE;m5Þ¼−

i

8π3=2

Z
∞

0

dt

t3=2
exp

�
−
jxkEj2
4t

−m2
5t

�
; ðB6Þ

combining (B5) for m and −m, and rotating back to the
Minkowski signature, one gets

Z
∞

0

dx1ðe−x1m þ ex
1mÞG0ðxÞ ¼ G3D

0 ðxk;m5Þ: ðB7Þ

Next, we derive Eq. (71) for the integrated form factor Q.
Through a sequence of manipulations with integrals, which
includes changes of variables and integrations by parts, one
arrives at

Q¼ 4m5e2
Z

∞

0

dx1
Z þ∞

−∞
dy1 e−2x

1mG0ðx−yÞG0ðx− ȳÞ:

ðB8Þ

In this formula, we perform the Wick rotation, use the
proper time representation of the Green’s functions and
integrate over x1 and y1 to obtain

Q¼−
m5e2

64π3

Z
∞

0

dt
Z

∞

0

dτ
1

t
3
2τ

3
2

· exp

�
−ðtþτÞm2

5−
�
1

t
þ1

τ

�jxkE−ykEj2
4

�
· erfcðm ffiffiffiffiffiffiffiffiffi

tþτ
p Þ:

After a change of the variables,

t¼ rcos2ðϕÞ; τ¼ rsin2ðϕÞ; r∈ ½0;∞Þ; ϕ∈ ½0;π=2�;

the integration over ϕ is easily performed yielding

Q¼−
m5e2

16π
5
2

·
1

jxkE−ykEj
·
Z

∞

0

dr

r
3
2

exp

�
−
jxkE−ykEj2

r
− r ·m2

5

�

· erfcðm ffiffiffi
r

p Þ:

After changing r ¼ 4t, using the relation (B5) and con-
tinuing the result to Minkowski space, one gets

Q ¼ −
e2m5

m
·

−i
4πjxk − ykj

· ð−2mÞ
Z

∞

0

dz1e−z
1ð2mÞG0ðz; 2mÞjzk¼xk−yk ; ðB9Þ

where one recognizes Eq. (71).
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Correction: Equations (28)–(32), Eqs. (52) and (56) contained
minor errors and have been fixed.
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