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We discuss diffeomorphism and gauge invariant theories in three dimensions, motivated by the fact that
some models of interest do not have a suitable action description yet. The construction is based on a
canonical representation of symmetry generators and on building of the corresponding canonical action.
We obtain a class of theories whose number of local degrees of freedom depends on the dimension of the
gauge group and the number of the independent constraints. By choosing the latter, we focus on three
special cases, starting with a theory with the maximal local number of degrees of freedom and finishing
with a theory with zero degrees of freedom (Chern-Simons).
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I. INTRODUCTION

Building a suitable theory which would provide, through
the principle of least action, a dynamical description of a
physical system of interest, has been a long-standing
problem in theoretical physics. Once having the action,
one can use well-established procedures to address different
questions such as the existence of symmetries, conserved
charges, count of degrees of freedom, interactions, quan-
tization of the theory, its renormalization, etc., especially
the ones relevant off shell. The problem becomes even
more important if one considers effective actions, which
capture effective dynamics of the system restricted to
particular observable quantities. The least action principle
remains central in modern physics and mathematics.
However, many physically interesting models still lack

their actions and are studied at the level of equations of
motion, or are only defined as quantum theories. For
example, higher-spin theories, which are quantum theories
of massless fields with a spin greater or equal to 2, do not
have action principle formulated yet, except for some
particular toy models. One of them is a three-dimensional
higher-spin gravity [1], whose fields of spin n ≥ 2 trans-
form as the adjoint representations of the gauge group

SLðn;RÞ × SLðn;RÞ. Gravitational field is one of them
because AdS3 ≃ SLð2;RÞ × SLð2;RÞ is a subgroup of the
full gauge group. An important feature of this action is that
it is invariant under two local symmetries which are usually
difficult to unite—namely, spacetime diffeomorphisms and
non-Abelian gauge symmetry.
Other examples that have drawn the recent attention of

the high energy physics community are motivated by the
success of AdS=CFT correspondence in the description of
strongly coupled field theories, in particular condensed-
matter systems [2]. They are usually nonrelativistic, and
their fields may scale differently with respect to time and
space reparametrizations; thus, their effective theories are
dominated by nonrelativistic symmetries described, for
example, by the Schrödinger algebra [3,4] in the case of
asymmetrical time and space scaling, or the Galilean
algebra [5] in the symmetric case. Newton-Cartan gravity
[6,7] is a geometric version of Newtonian gravity, con-
structed through gauging of a centrally extended form of
the Galilean algebra (Bargmann algebra) [8]. However,
until recently, it did not have a suitable developed action
principle, when it was constructed with the help of auxiliary
gauge fields in the form of the extended string Newton-
Cartan gravity [9]. This example shows a complexity of
formulation of an action invariant under a given non-
Abelian symmetry.
On the other hand, one of the nice predictions of the

string theory is an existence of a discrete family of quantum
field theories in six dimensions invariant under a non-
Abelian group symmetry described by the largest super-
conformal algebra that does not contain higher spin
particles, known as the (2,0) algebra. The relevance
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of these field theories is that a large class of lower-
dimensional supersymmetric field theories can be obtained
geometrically by their compactifications, such as N ¼ 2
superconformal field theories in four [10] and three [11]
dimensions. [For more general discussion about other
possible theories coming from the six-dimensional (2,0)
theory, see [12].] However, there is no known description of
these theories in terms of an action functional.
Above examples show that there are still many open

problems in finding an appropriate action of (relativistic or
nonrelativistic) gravity theories. Thismotivated us to employ
a systematic way to construct a non-Abelian gauge theory
which is also invariant under general coordinate transforma-
tions, in pursuit of a simple description of an (effective)
action invariant under two sets of local symmetries.
With this respect, it is well-known that gravity can be

obtained as a Poincaré gauge theory, where the fundamen-
tal field belongs to the representation of the Poincaré gauge
group (see, for example, the textbook [13], and the
references therein). In particular, when the spacetime is
Riemannean, the action becomes the Palatini one [14–16],
invariant under Lorentz transformations and spacetime
diffeomorphisms. In these cases, the theories are diffeo-
morphism invariant so that the non-Abelian gauge fields
describe gravitational degrees of freedom, while the matter
fields are additional ingredients, and are not part of the
same gauge connection.
One of our aims is to provide a symmetry-based argument

to include gravitational interactions and matter-gravity
interactions in a theory. The models which have already
implemented that description are Chern-Simons gravity
and supergravity for de Sitter, anti–de Sitter or Poincaré
gauge groups in three [17,18] and any other odd spacetime
dimension [19,20]. Inclusion of the new bosonic and
fermionic fields in these theories becomes simply an exten-
sion of the gauge group (for example, to a higher-spin group
or super group), at the same time fixing the interaction in an
almost unique way, using only the group theory arguments.
In this work, we use the method based on Hamiltonian

formalism [21], where the basic property of the diffeo-
morphism-invariant theories is that their Hamiltonian van-
ishes on shell. It means that the diffeomorphism-invariant
Hamiltonian becomes a linear combination of all its con-
straints that generate local symmetries in the theory. The
opposite statement, in general, is not true—the vanishing
Hamiltonian does not necessarily imply that the theory is
invariant under general coordinate transformations.
In a standard approach, one starts from a given action,

performs a Legendre transformation in order to obtain the
canonical Hamiltonian of the theory, and explores its
symmetries using the Dirac method [22] (for a review,
see, for example, [13,21]). It results in obtaining an extended
Hamiltonian as a linear combination of all symmetry-
generating constraints of canonical fields present in the
theory.

In our approach, we will invert the Dirac’s procedure and
construct an extended Hamiltonian, which is a linear
combination of our desired symmetry generators (space-
time diffeomorphisms and non-Abelian gauge symmetry).
Having the Hamiltonian, we will seek for an inverse
Legendre transformation that will give us a corresponding
canonical action. A result is an effective action of the theory
invariant under given local symmetries.
The main challenge of our method is to find a canonical

representation of the constraints in terms of the canonical
variables, a connectionAa

μðxÞwhich transforms in the adjoint
representation of the gauge group and the corresponding
canonical momenta πμaðxÞ. With respect to spacetime diffeo-
morphisms, in principle one could be able to construct a
representation of the so-called hypersurface deformation
algebra, or Dirac algebra [23,24], that generates diffeo-
morphisms on shell. However, since the Dirac algebra is
not a Lie algebra, it turns out that the representation of the
generator of timelike diffeomorphisms is particulary intri-
cate. For that reason, as the first step, in this work, we will
focus solely on the canonical representations of the gener-
ators of gauge transformations and spatial diffeomorphisms,
not requiring invariance under the time reparametrizations.
The actions obtained in that way are suitable for the
description of nonrelativistic models, for example.
Let us emphasize that, when the action is known, it is

straightforward to find canonical representations of gen-
erators using the Dirac’s method. Such examples which are
diffeomorphism and gauge invariant in any dimension D
are topological BF theories [25,26], whose fundamental
fields are the connection (with the field strength F) and the
field B which is the D − 2 form. Under some additional
restrictions, BF theories describe gravity in first order
formalism, either in the complex self-dual Ashtekar con-
nection or the real Ashtekar-Barbero connection [27–29].
Nevertheless, even though these examples use non-Abelian
connection, they possess additional fields and, in order to
obtain gravity, the original symmetry of the BF theory must
be broken when D > 3. In two dimensions, the approach
based on Ashtekar-Barbero variables can be applied for
dilaton gravity and leads to the corresponding canonical
representation of symmetry and spacetime diffeomor-
phisms generators [30].
Another relevant issue is related to the uniqueness of the

representation, for a given choice of canonical variables.
One of the important results is given in Ref. [23], where the
unique canonical representation of the hypersurface defor-
mation algebra in four dimensions has been constructed
(up to a canonical transformation of momenta) in the case
when the canonical variables are the spatial three-metric
and its conjugate momentum. Furthermore, it coincides
with the Arnowitt-Deser-Misner expressions for the con-
straints [31].
The choice of the phase space variables is crucial for

our analysis. For example, the gauge theories in curved
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background spacetimes are not diffeomorphism invariant,
but can be made invariant by including the embedding
variables to the configuration space [32]. The resulting
theory on this extended phase space is called a para-
metrized field theory and is equivalent to the original one
only if additional constraints are imposed. The parame-
trized theories are gauge and diffeomorphism invariant.
Other extensions of the phase space which enable diffeo-
morphism invariance are possible, as for the parametrized
Maxwell theory, but as a result the gauge symmetry is
broken [33].
The method adopted in this work was first applied

successfully in two dimensions to obtain the gauged
Wess-Zumino-Witten action [34] as a Lagrangian realiza-
tion of the Virasoro algebra that its constraints satisfy and
its supersymmetric version [35]. Similarly, the Liouville
theory was obtained as a gravitational Wess-Zumino action
of the Polyakov string in [36], and an action for the
spinning string was found in Refs. [37–39]. First attempts
to apply the method in three dimensions are presented in
Ref. [40]. The last work was inspired by Hamiltonian
analysis of Chern-Simons theories performed in higher
dimensions [41].
It is worthwhile noticing that the theories described by

canonical actions will be first order by construction.
In what follows, we focus on three-dimensional space-

times. In Sec. II, we define the method in a precise way and
list our assumptions. In Sec. III, we construct symmetry
generators in terms of canonical variables for both gauge
generators and spatial diffeomorphisms. In Sec. IV, we find
canonical actions in three different settings, one of them
reproducing the well-known Chern Simons gravity. We
summarize our results in Sec. V, pointing out open
problems and possible future lines of research.

II. PRELIMINARIES

Consider a theory that is gauge-invariant under trans-
formations of a semisimple Lie group G. For simplicity, we
consider a three-dimensional spacetime, parametrized by
the local coordinates xμ ¼ ðx0; xiÞ, i ¼ 1, 2, of the topology
R × Σ and the signature ð−;þ;þÞ, where x0 ¼ t is the time
coordinate.
Let Ta, a ¼ 1;…; n, be anti-Hermitean generators of the

corresponding Lie algebra,

½Ta; Tb� ¼ f c
abTc; gab ¼ iTrðTaTbÞ; ð2:1Þ

where f c
ab are the structure constants and gab is the

nondegenerate Cartan-Killing metric. The basic field is a
connection Aa

μðxÞ which transforms in the adjoint repre-
sentations of the gauge group, such that the covariant
derivative of a vector field reads DμVa ¼ ∂μVa þ fabcA

b
μVc

and the corresponding field strength is given by the
standard expression, Fa

μν ¼ ∂μAa
ν − ∂νAa

μ þ f a
bcA

b
μAc

ν.

In the phase space, the fundamental fields are conjugated
variables Aa

μðxÞ and the corresponding canonical momenta
πμaðxÞ, whose Poisson bracket is given by

fAa
μðt; x⃗Þ; πνbðt; x⃗0Þg ¼ δabδ

μ
νδð2Þðx⃗ − x⃗0Þ: ð2:2Þ

From now on, we will use the short-hand notation
fAa

μ; π0νb g ¼ δabδ
μ
νδ.

In the canonical formalism, the dynamics of the theory is
governed by the Hamiltonian density HðA; π; uÞ, that can
also depend on the arbitrary multipliers uðxÞ. An alternative
way to describe the dynamics is in terms of the canonical
action, obtained as a Legendre transformation of the
Hamiltonian density,

I½A; π; u� ¼
Z

dtd2x½ _Aa
μπ

μ
a −HðA; π; uÞ�: ð2:3Þ

In Dirac formalism, the systems with local symmetries
have constraints or on shell vanishing functions of canoni-
cal variables. There are two types of them: first class
constraints that generate gauge symmetries and second
class constraints that do not generate any symmetry, but
they eliminate redundant degrees of freedom.
Keeping that in mind, we assume that our theory (2.3)

fulfills the following conditions, which ensure that it is both
gauge and diffeomorphism invariant:

(i) The theory is invariant under the action of the gauge
group G, so there are 2n independent first class
constraints GaðA; πÞ ¼ 0 and ḠaðA; πÞ ¼ 0 generat-
ing a local symmetry with the parameters λaðxÞ and
εaðxÞ, respectively.

(ii) It is also invariant under general coordinate trans-
formations (spacetime diffeomorphisms), generated
by first class constraints HμðA; πÞ ¼ 0, with an
associated local parameter ξμðxÞ.

(iii) A corresponding Hamiltonian density is a pure
constraint, HðA; π; uÞ ¼ 0, as a consequence of
reparametrization symmetry.

(iv) There is an even number of second class constraints,
ϕMðA; πÞ ¼ 0, M ¼ 1;…; 2m (m ≥ 0). The func-
tions ϕM must be gauge and diffeomorphism
covariant.

To justify the condition (i), recall that first class con-
straints are related to local symmetries through some local
parameter λaðxÞ and its time derivatives. However, in the
Hamiltonian formalism, all time derivatives of parameters
are treated as independent parameters. Since our aim is to
obtain a Lagrangian whose equations of motion contain at
most second time derivatives, the parameter of gauge
transformations depends at most on first time derivatives.
Thus, each time when there is a local symmetry with
a parameter λa, there is also a local symmetry with a
parameter εa ∼ _λa. In consequence, there are two sets of
first class constraints [42], as expressed in the condition (i).

NON-ABELIAN GAUGE THEORIES INVARIANT UNDER … PHYS. REV. D 100, 045025 (2019)

045025-3



If the gauge transformations are linear in time derivatives,
λa and εa are the complete set of gauge parameters.
We also assume that the constraints are independent.

This requirement is known as the regularity condition (see,
for example, Ref. [21]). So-called irregular systems do not
fulfill this condition and the dependence of constraints
produces a change in the number of symmetries and
degrees of freedom [43,44].
The condition (ii) ensures first class constraints which

generate spacetime diffeomorphisms. As discussed in
details in Refs. [24,27], it is still an open question how
to construct a canonical representation of generators of
timelike diffeomorphisms on the full phase space and off
shell. For that reason, we shall focus on a representation of
the spatial diffeomorphisms and construct a theory that is
invariant under the transformations generated by them. The
spatial diffeomorphisms can be either linearly independent
or dependent on gauge symmetries. For example, all spatial
diffeomorphisms are independent in higher-dimensional
Chern-Simons theory and dependent on gauge transforma-
tions in three-dimensional spacetime [41]. Thus, to have a
theory covariant on Σ, the spatial diffeomorphisms are
either all dependent or all independent on the gauge
symmetries, while the timelike diffeomorphisms, that
generate time evolution off Σ, can be treated separately.
Therefore, the number of independent constraints is 2ε for
spatial diffeomorphisms and ε0 for timelike diffeomor-
phism, where ε; ε0 ¼ 0 or 1.
In general case, the representation of the generator of the

timelike diffeomorphism H0, when it is independent on
gauge transformations, is not unique. In order to avoid
technical difficulties related to its representation, we shall
not include it. It means we will set ε0 ¼ 0, which can imply
that the obtained theory is not invariant under the timelike
diffeomorphism. Then one can ask whether the extended
Hamiltonian still vanishes on shell. As pointed out in [21],
the answer is—not necessarily; one example is an (effec-
tive) theory invariant under spatial diffeomorphisms with
the canonical Hamiltonian different than zero [45].
However, since our ultimate goal is obtention of a fully
covariant theory, we will not consider these cases. On the
contrary, when possible, we can try to covariantize the final
action, so that it becomes a scalar density under the general
coordinate transformations, expecting that the Hamiltonian
constraint would be implemented in that way dynamically.
In other cases, when the covariantization is not possible,
the new action should be seen as the one with reduced
symmetry, describing in that way theories such as non-
relativistic ones or the ones in presence of a membrane.
The condition (iii) is a property of a diffeomorphism

invariant theory. Note that here and throughout this manu-
script, the sign of equality refers also to on shell equality.
As for the last condition (iv), we permit the existence of

second class constraints, whose number is always even. In
order to perform the inverse Legendre transformations,

when it is possible, we can only use the second class
constraints, definitions of velocities _AðA; πÞ, and values for
u obtained from the evolution of the constraints. We cannot
use all equations of motion because then the action vanishes
on shell, as it becomes a boundary term [46].
At the end, let us count the degrees of freedom of our

system. We start with 3n Lagrangian fields Aa
μ, and have

2nþ 2ε first class constraints (Ga, Ḡa;Hi) and 2m second
class constraints ϕM. A number of degrees of freedom N in
the theory is, therefore, 3n − ð2nþ 2εÞ − 1

2
2m or

N ¼ n −m − 2ε: ð2:4Þ

In the following section, we will construct a representa-
tion of the constraints, as a first step towards the formu-
lation of the canonical action.

III. CANONICAL REPRESENTATION
OF THE GENERATORS

We seek for a theory invariant under internal gauge
transformations and spatial diffeomorphisms. To this end,
we need a representation of the generators in terms of
canonical variables ðA; πÞ. This representation is not, in
general, unique, and we will choose a particular one and
discuss possible generalizations.

A. Gauge generators

As mentioned before, the canonical gauge generators
GaðA; πÞ are first class constraints and they satisfy the Lie
algebra,

fGa;G0
bg ¼ f c

abGcδ: ð3:1Þ

Remind that we are using the short-hand notation, such that
G0

b ¼ Gbðt; x⃗0Þ. The algebra of the generators ḠaðA; πÞ
does not have predetermined form and has to be such that
they generate, together with Ga, via the Poisson brackets,
desired gauge transformations,

δAa
μ ¼ fAa

μ; G½λ; ε�g ¼ −Dμλ
a; ð3:2Þ

using the total, smeared symmetry generator,

G½λ; ε� ¼
Z

d2xðλaGa þ εaḠaÞ: ð3:3Þ

It is worthwhile to emphasize that the smeared generator,
as well as the Hamiltonian and all functionals of canonical
variables, have to be differentiable quantities in order to
have well-defined Poisson brackets. This is achieved by
supplementing them with suitable boundary terms. This
step is essential also for the definition of canonical
conserved charges [47,48]. In this text, however, we will
not discuss the differentiability of the functionals as we are,
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at the initial stage, concerned with the construction of the
canonical action possessing given symmetries. The ques-
tion of the boundary terms should be, however, addressed
later on. From now on, we will neglect all boundary terms
in our calculations.
Recall that we introduced the additional set of generators

Ḡa in order to deal, in a canonical way, with the time
derivatives of the local parameters that appear in the gauge
transformation. Namely, since _λa becomes an independent
parameter represented by εa, the relation between them is
naturally induced by the gauge transformation of the form
(3.2), namely,

δAa
i ¼ fAa

i ;G½λ; ε�g ¼ −Diλ
a;

δAa
0 ¼ fAa

0;G½λ; ε�g ¼ −D0λ
a ≡ εa: ð3:4Þ

Therefore, Ga and Ḡa have to be such that the above
transformation law is satisfied.
Let us start with the transformation law of the spatial

components Aa
i . The first line in (3.4) and independence of

λb and εb lead to the following functional equations in Ga

and Ḡa:

Z
d2x0λ0bfAa

i ; G
0
bg ¼ −Diλ

a;
Z

d2x0ε0bfAa
i ; Ḡ

0
bg ¼ 0; ð3:5Þ

or equivalently,

∂G0
b

∂πia ¼ δab∂ 0
iδþ f a

bcA
0c
i δ;

∂Ḡ0
b

∂πia ¼ 0: ð3:6Þ

Note that, since Ga and Ḡa can depend at most on first
spatial derivatives of the gauge field, the quantities of the
type ∂Ga

∂A0b
i
or ∂Ga∂π0ib are distributions (Dirac delta function and its

first spatial derivatives).
The general solution of Eqs. (3.6) reads

Ga ¼ Diπ
i
a þ haðAb

μ; π0bÞ;
Ḡa ¼ ḠaðAb

μ; π0bÞ; ð3:7Þ

where ha and Ḡa are arbitrary phase space functions
independent on πia. In the special case when ha ¼ 0, Ga
reduces to the Gauss constraint, which is the analogue of
Gauss law of electromagnetism with the momentum being
an electric field. Equations (3.7) are its generalization to the
non-Abelian case.
On the other hand, from the transformation law of the

timelike component Aa
0 , it follows that

Z
d2x0λ0bfAa

0; G
0
bg ¼ 0;

Z
d2x0ε0bfAa

0; Ḡ
0
bg ¼ εa; ð3:8Þ

or equivalently,

∂h0b
∂π0a ¼ 0;

∂Ḡ0
b

∂π0a ¼ δabδ; ð3:9Þ

leading to the solution,

ha ¼ haðAb
μÞ;

Ḡa ¼ π0a þ h̄aðAb
μÞ: ð3:10Þ

We conclude that both first class constraints Ga and Ḡa
are linear in momenta in case of non-Abelian gauge
symmetries.
The algebra of the gauge generators given by the

expressions (3.7) and (3.10) has the following form:

fGa;G0
bg ¼ f c

abGcδþ ΔGð1Þ
ab ;

fGa; Ḡ0
bg ¼ ΔGð2Þ

ab ;

fḠa; Ḡ0
bg ¼ ΔGð3Þ

ab ; ð3:11Þ

where

ΔGð1Þ
ab ðx; x0Þ ¼ −f c

abhcδþ f d
bcA

c
i
∂h0d
∂Aa

i
− f d

acA0c
i
∂hd
∂A0b

i

þD0
i

�∂ha
∂A0b

i

�
−Di

�∂h0b
∂Aa

i

�
;

ΔGð2Þ
ab ðx; x0Þ ¼ −Di

�∂h̄0b
∂Aa

i

�
þ f d

bcA
c
i
∂h̄0d
∂Aa

i
þ ∂ha
∂A0b

0

;

ΔGð3Þ
ab ðx; x0Þ ¼ −

∂h̄0b
∂Aa

0

þ ∂h̄a
∂A0b

0

: ð3:12Þ

In order to describe a considered non-Abelian symmetry,
the algebra has to close without addition of new constraints,
so the right-hand side should be either equal to zero or
proportional to the constraints (3.7) linear in momenta. It
implies that, because ha and h̄a do not depend on the
momenta, all extra terms depending on these functions on
the right-hand side of Eqs. (3.12) have to vanish.
The result are the restrictions,

ΔGðnÞ
ab ¼ 0; n ¼ 1; 2; 3: ð3:13Þ

One particular family of two-parameter solutions of
these restrictions is

ha ¼ αgabεij∂iAb
j ; h̄a ¼ βgabAb

0; ð3:14Þ
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where α and β are real constants, which can also be zero.
Indeed, it is straightforward to show that all covariant

derivatives appearing in ΔGðnÞ
ab vanish individually; for

example, Dið∂h
0
b∂Aa
i
Þ ¼ 0, and similarly for other covariant

derivatives. Using also the facts that ha and h̄a are
independent on Ab

0 and Ab
i , respectively, the other terms

cancel out; for example,

f d
bcA

c
i
∂h0d
∂Aa

i
−f d

acA0c
i
∂hd
∂A0b

i
¼−αf c

abε
ijgcdðAd

i ∂ 0
jδþA0d

i ∂jδÞ

¼ f c
abhcδ: ð3:15Þ

In that way, the choice (3.14) yieldsΔGðnÞ
ab ðx; x0Þ ¼ 0 for all

n and the non-Abelian gauge algebra closes.
The algebra of the constraints becomes

fGa; Ḡ0
bg ¼ 0; fḠa; Ḡ0

bg ¼ 0;

fGa;G0
bg ¼ fcabGcδ; ð3:16Þ

and the generator of gauge transformations acquires the
form,

G½λ; ε� ¼
Z

d2x½λaðDiπ
i
a þ haðAÞÞ þ εaðπ0a þ h̄aðAÞÞ�;

ð3:17Þ

where haðAÞ and h̄aðAÞ satisfy the conditions (3.13).

B. Diffeomorphism generators

Now we focus on the representation of the generator of
general coordinate transformations, δxμ ¼ −ξμðxÞ, that acts
on the fields as a Lie derivative, δAa

μ ¼ £ξAa
μ. A canonical

representation of the generators of these transformations,
spacetime diffeomorphisms, should be such that the
smeared generator D½ξ� ¼ R

d2xξμHμ acts on an arbitrary
function of phase space variables FðA; πÞ as

δξFðA; πÞ ¼ fFðA; πÞ; D½ξ�g ¼ Fð£ξA; £ξπÞ: ð3:18Þ

The diffeomorphism group represents a kinematical
symmetry of any diffeomorphism invariant action. In the
standard approach, one starts from the Lagrangian of a
diffeomorphism invariant theory and constructs the canoni-
cal representation of the generators of spacetime diffeo-
morphisms. The canonical representation of generators of
spacelike diffeomorphisms, HiðA; πÞ, is independent on
the Lagrangian, while the generator of timelike diffeo-
morphism, so-called the Hamiltonian constraint, H0ðA; πÞ,
depends on the dynamics of the theory (the form of the
Lagrangian). For that reason, they generate a dynamical
symmetry of the theory. The fact that the dynamics
takes place on spacelike hypersurfaces embedded in a

spacetime with a Lorentzian signature is reflected in the
algebra of the constraints ðH0;HiÞ, which is Dirac algebra,
also known as hypersurface deformation algebra, of the
form [22,33],

fH0;H0
0g ¼ ðqijHj þ q0ijH0

jÞ∂iδ; ð3:19Þ

fHi;H0
0g ¼ H0∂iδ; ð3:20Þ

fHi;H0
jg ¼ H0

i∂jδþHj∂iδ; ð3:21Þ

where qij is the inverse of the induced metric on the spatial
hypersurface. The Dirac algebra is not a Lie algebra,
because of the structure functions qijðxÞ in the brackets
of the Hamiltonian constraints (3.19). For that reason, the
canonical representations of the Hamiltonian constraint and
the spatial diffeomorphism generator cannot be derived in
the same way.
In particular, the time evolution off Σ is determined by

the Hamiltonian constraint H0, so its representation is
theory dependent and cannot be obtained in a straightfor-
ward way by our methods. As explained in the previous
section [see discussion about the point (ii)], we shall focus
only on the spatial diffeomorphisms. Under their action, the
field Aa

0 transforms as a scalar and the field Aa
i transforms as

a one form. Similarly, π0a and πia are scalar and vector
densities, respectively.
Now we can make use of the fact that, apart from general

coordinate transformations, we also have gauge symmetry.
Recall that the Cartan’s identity,

£ξAa
μ ¼ DμðξνAa

νÞ − ξνFa
μν; ð3:22Þ

relates the field-dependent gauge transformation DμðξνAa
νÞ

to the diffeomorphisms £ξAa
μ. In the special case of theories

where the equations of motion are Fa
μν ¼ 0, these two

sets of local transformations are dependent on shell,
£ξAa

μ ¼ Dμλ
a. Clearly, in these theories, Aa

μ is a pure gauge,
so the theory has no local degrees of freedom, N ¼ 0.
Local symmetry represented by the second term on the

rhs of Eq. (3.22), relevant only when N ≠ 0, is also called
improved diffeomorphism [49].
The identity (3.22) applied to the spatial diffeomor-

phisms suggests the form of the spatial diffeomorphism
generators as

Haux
i ¼ −Ab

i Gb þ Fb
ikπ

k
b

¼ −Ab
i ∂kπ

k
b þ ð∂iAb

k − ∂kAb
i Þπkb − Ab

i hb; ð3:23Þ

so that the smeared generator would read

Haux½ξ� ¼
Z

d2xξiHaux
i : ð3:24Þ
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In that case, it is straightforward to check that, under spatial
diffeomorphisms, Aa

i transforms like a one form, for any
function hb,

fAa
i ;H

aux½ξ�g ¼ ∂iξ
jAa

j þ ξj∂jAa
i ¼ £ξAa

i ; ð3:25Þ

while πia should change as a vector density of the weight
one £ξπia ¼ ∂jðξjπiaÞ − ð∂jξ

iÞπja. A straightforward calcu-
lation gives

fπia;Haux½ξ�g ¼ £ξπia þ
Z

d2x0ξ0j
∂

∂Aa
i
ðA0b

j h
0
bÞ; ð3:26Þ

implying that the last term in the above formula has to
vanish (on shell or off shell). However, if we exclude the
term −Ab

i hb from the diffeomorphism generator, we obtain
a good transformation law of the fields in any case, and
independently on the function ha. We shall, therefore,
define the spatial diffeomorphisms generator as

H½ξ� ¼
Z

d2xξiHi; ð3:27Þ

where Hi is linear in Aa
i and πia,

Hi ¼ −Ab
i Dkπ

k
b þ Fb

ikπ
k
b

¼ −Ab
i ∂kπ

k
b þ ð∂iAb

k − ∂kAb
i Þπkb: ð3:28Þ

Then, δξFðA; πÞ ¼ fFðA; πÞ;H½ξ�g ¼ Fð£ξA; £ξπÞ, is sat-
isfied for any function on the phase space.
Direct checkup shows that Hi close the spatial diffeo-

morphisms subalgebra (3.21), but the algebra with gauge
generators fGa;H0

ig does not close, when haðAÞ ≠ 0, even
if the conditions (3.13) are fulfilled. For that reason, for
now, we shall restrict our analysis to the case when ha ¼ 0

and h̄a ¼ 0, leading to

fGa;H0
ig ¼ G0

a∂iδ;

fḠa;H0
ig ¼ 0: ð3:29Þ

The cases ha, h̄a ≠ 0 will become relevant when the second
class constrains are included and will be discussed in the
next section.
Furthermore, it is more convenient to replaceHi by other

first class constraints Ki,

Ki ≡ Fb
ikπ

k
b ¼ Hi þ Ab

i Gb: ð3:30Þ

It turns out that Ki are generators of improved spatial
diffeomorphisms [49], which differ from spatial diffeo-
morphisms by a gauge transformation. Namely, if we
define a smeared generator,

K½ξ� ¼
Z

d2xξjKj; ð3:31Þ

then the improved diffeomorphisms transform the fields as

fAa
i ; K½ξ�g ¼ ξjFa

ji ¼ £ξAa
i −DiðξjAa

j Þ: ð3:32Þ

New constraints satisfy the following algebra:

fGa;K0
ig ¼ 0;

fKi; K0
jg ¼ K0

i∂jδþ Kj∂iδ − Fa
ijGaδ: ð3:33Þ

Note that the Poisson brackets of Ki does not close without
the presence of Ga and there are field-dependent structure
functions Fa

ij.
Remarkably, in the Hamiltonian analysis of the higher-

dimensional Chern-Simons theory, the constraints of the
improved diffeomorphisms appear naturally as secondary
first class constraints [41], and the diffeomorphisms are
only an on shell symmetry. This example suggests that it is
simpler to choose Ki as the symmetry generators for
construction of the Hamiltonian action in general.
To summarize, the constraints in the theory invariant

under both gauge transformations and spatial diffeomor-
phisms include the generators of these symmetries, but it
can also contain a set of second class constraints that are not
symmetry generators and whose presence is important for
building a covariant theory. Therefore, the complete set of
the constraints is

First class∶ Ḡa ¼ π0a; n;

Ga ¼ Diπ
i
a; n;

Ki ¼ Fb
ikπ

k
b; 2ε;

Second class∶ ϕM; 2m:

IV. CANONICAL ACTION

When the theory is invariant under general coordinate
transformations, the Hamiltonian becomes a pure constraint.
It enables us towrite themost general Hamiltonian density as
a linear combination of all constraints present in the theory,

H ¼ uaḠa þ vaGa þ ζiKi þ wMϕM; ð4:1Þ

where the associated Hamiltonian multipliers are uaðxÞ,
vaðxÞ, ζiðxÞ, and wMðxÞ.
On the other hand, in the standard approach, one starts

from the Lagrangian description of a theory and then in the
Dirac formalism distinguishes between the primary and
secondary constraints, that is, the ones obtained from
the definition of the canonical momenta (primary) and
the ones obtained from the evolution of the primary
constraints (secondary). The Legendre transformation of
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the Lagrangian evaluated on shell yields the canonical
Hamiltonian, but a proper definition of physical variables in
the reduced phase space requires also to account for the
constraints between canonical variables. It leads to the total
Hamiltonian that includes also the primary constraints and
the extended Hamiltonian that includes all (primary and
secondary) constraints.
We will adopt an approach of Dirac who conjectured that

all first class constraints (primary and secondary) generate
gauge transformations and should be included in the
extended Hamiltonian. In Ref. [42], it was shown that this
is always the case, exceptwhen the powers of someconstraint
ϕ appear, e.g., ϕn. Then the constraint ϕn and the ones
following from its evolution do not enter the extended
Hamiltonian. Thus, only the first class constraints that do
generate gauge transformations are included in the extended
Hamiltonian. The resulting Hamiltonian equations of motion
are not identical to the Lagrangian ones, but the difference is
not physical. For more details, see, for example, Ref. [13].
In this approach, we construct the canonical action which

contains larger number of arbitrary multipliers, obtained
from the extended Hamiltonian. These multipliers can be
partially identified with unphysical components of the
gauge field if one conveniently assumes that some of the
first class constraints are primary and therefore requires that
their evolution produces the other—secondary—first class
constraint. We will make use of this method to reduce a
number of multipliers. Resulting equations of motion
would not depend on the choice of the constraints as
primary or secondary, but the effective Lagrangian could
have a different (physically equivalent) form, in the latter
case containing additional auxiliary fields [50].
So far we have not considered the second class con-

straints, ϕM. Recall that there must be an even number of

these constraints, because their Poisson brackets have the
form,

fϕM;ϕ0
Ng ¼ ΔMNðx; x0Þ; ð4:2Þ

where the tensor ΔMN must be invertible on shell.
Therefore, the rank of ΔMN has to be maximal, and since
it is antisymmetric, it is an even number 2m.
In addition, the constraints ϕM have to commute on shell

with all first class constraints.
At first sight, it seems that there is a huge arbitrariness in

the choice of ϕMðxÞ. However, although their choice is not
unique, there are at least two conditions which drastically
reduce a number of possible choices. First, their number is
limited by the number of degrees of freedom in the theory
and, second, they have to be covariant under both diffeo-
morphisms and gauge transformations, so that the index M
is not arbitrary. More precisely, its tensorial properties are
determined by the indices a; b;… (with the range n) and
i; j;… (with the range 2). From the degrees of freedom
count (2.4), we have

0 ≤ m ≤ n − 2ε; ð4:3Þ

where, as discussed before, we assume ε0 ¼ 0. The above
inequality implies, for example, that for n > 3, ϕM cannot
be an antisymmetric or symmetric group tensor of rank two,
as nðn − 1Þ=2 or nðnþ 1Þ=2 constraints would not satisfy
the above condition.
Keeping this argument in mind, there are the following

allowed multiplets of the constraints ϕM fixed by its
tensorial properties,

Second class constraints∶ ϕ ϕa ϕi ϕai ϕ½ij� ϕðijÞ ϕðijÞk � � �
Number of components∶ 1 n 2 2n 1 3 6 � � �

The sum of all the components present in the theory must
be equal to 2m.
So far, we found a particular representation of first class

constraints and wrote an extended Hamiltonian describing
a theory with n −m − 2ε degrees of freedom. Let us prove
now that this method indeed produces an action invariant
under local transformations.
Before doing it, further simplification can be done in the

Hamiltonian (4.1). Namely, since the second class con-
straints have to satisfy the consistency conditions, we use
Eq. (4.2) and the fact that fϕM;G0

Ag ¼ 0 on shell, to obtain

_ϕM ¼ fϕM;Hg ¼
Z

d2x0w0NΔMNðx; x0Þ ¼ 0: ð4:4Þ

Then, due to invertibility of the matrix ΔMN , the multipliers
associated to second class constraints vanish, wN ¼ 0. As a
result, the extended Hamiltonian density does not depend
on second class constraints, acquiring the form,

H ¼ UAGA ≡ uaḠa þ vaGa þ ζiKi; ð4:5Þ

where GA ¼ ðGa; Ḡa; KiÞ are first class constraints and
UA ¼ ðua; va; ζiÞ are the corresponding multipliers.
Hamiltonian equations are invariant under local trans-

formations generated by the smeared generator,

G½Λ� ¼
Z

d2xΛAGA¼
Z

d2xðλaGaþ εaḠaþξiKiÞ; ð4:6Þ
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where ΛA ¼ ðλa; εa; ξiÞ are local parameters. The algebra
given by Eqs. (3.16) and (3.33) does not have the standard
form. It closes, but with some some structure functions
fABCðxÞ depending on the canonical fields. Also, since the
algebra in general involves distributions δ and ∂iδ, the
derivative term gives rise to another set of the structure
functions, fABCiðxÞ. Thus, the Poisson brackets algebra has
the form,

fGA;G0
Bg ¼ f C

ABGCδþ f Ci
AB GC∂iδ; ð4:7Þ

where the structure functions are not completely arbitrary,
because the brackets are antisymmetric and (4.7) has to
satisfy the Jacobi identity.
Under these conditions, the canonical action,

I ¼
Z

dtd2xðπμa _Aa
μ − UAGAÞ ð4:8Þ

is invariant under the transformation generated by the
smeared generator G½Λ�. Indeed, this action changes under
local transformations as

δI¼
Z

dtd2xðδπμa _Aa
μþπμaδ _Aa

μ−δUAGA−UAδGAÞ: ð4:9Þ

Using the algebra (4.7), the generators vary as

δGA ¼ fGA;G½Λ�g ¼ ðf C
ABΛB þ f Ci

AB ∂iΛBÞGC; ð4:10Þ

while the canonical fields transform [with the functions ha
and h̄a given by Eqs. (3.14)] as

δAa
i ¼ fAa

i ;G½Λ�g ¼−Diλ
aþ ξjFa

ji;

δAa
0 ¼ fAa

0;G½Λ�g ¼ εa;

δπ0a ¼ fπ0a;G½Λ�g ¼−βgabεb;

δπia ¼ fπia;G½Λ�g
¼ f d

abλ
bπidþDjðξjπia− ξiπjaÞ−αgabεij∂jλ

b: ð4:11Þ

Plugging these expressions into δI, after few integrations
by parts, first two terms in δI lead to the identity,

Z
dtd2xðδπμa _Aa

μ þ πμaδ _Aa
μÞ ¼

Z
dtd2xGA

_ΛA; ð4:12Þ

and the full canonical action changes under the local
transformations generated by G½Λ� as

δI¼
Z

dtd2xGAð _ΛA−δUA−f A
BCU

BΛC−f Ai
BCU

B∂iΛCÞ:

ð4:13Þ

The invariance (δI ¼ 0) follows if the indefinite multipliers
change according to the rule,

δUA ¼ _ΛA − f A
BCU

BΛC − f Ai
BC U

B∂iΛC: ð4:14Þ

This transformation law is a generalization of the one given
in the review [51], where the algebra did not contain the ∂iδ
terms and whose structure functions were restricted to the
field-independent structure constants.
In the next section, we will choose particular constraints

(for given m and ε) and construct the corresponding gauge
theories. Recall that we always have ε ¼ 1, except
when Fa

μν ¼ 0.
Let us focus on special cases.

A. Theory with the maximal number
of degrees of freedom

The simplest possible theory has the minimal number of
constraints, which are only the gauge ones, with the
arbitrary functions in the Eqs. (3.7) and (3.10) set to zero,
ha ¼ 0, h̄a ¼ 0, and without second class constraints
(m ¼ 0). The absence of spatial diffeomorphisms will
either produce a theory where all diffeomorphisms are
functionally dependent on the gauge transformations
(ε ¼ 0) or the theory will not be invariant under general
coordinate transformations.
This theory has the maximal number N ¼ n of degrees

of freedom and its constraint structure reads

First class∶ Ḡa ¼ π0a; n;

Ga ¼ Diπ
i
a; n:

It is interesting that here we have the same set of the first
class constraints as in non-Abelian Yang-Mills theory. The
essential difference between two theories is that the Yang-
Mills’ Hamiltonian density contains the usual kinetic term
1
2
π2 which is not a constraint, because the Yang-Mills

theory does not have reparametrization symmetry.
With these constraints, the Hamiltonian density (4.1)

becomes

H ¼ uaπ0a þ vaDiπ
i
a: ð4:15Þ

A time evolution of the variable FðA; πÞ on the phase space
is given by the Poisson bracket,

_F ¼
Z

d2x0fF;H0g: ð4:16Þ

Evolution of the constraints Ga and Ḡa does not generate
the new ones,

Ḡ
·

a ¼ 0;

_Ga ¼ f c
abv

bGc ¼ 0; ð4:17Þ

so we have the complete set of them.
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Now we have a good Hamiltonian that fulfills all
requirements (i)–(iv), and we can obtain the Hamiltonian
equations,

_Aa
0 ¼ ua; _π0a ¼ 0;

_Aa
i ¼ −Diva; _πia ¼ f c

abv
bπic: ð4:18Þ

Let us notice that Fa
μν ¼ 0 is not an equation of motion of

this theory for arbitrary multipliers. For example, Fa
0i ¼

−Diðva þ Aa
0Þ and Fa

ij ≠ 0. According to (3.22), diffeo-
morphisms are not on shell equivalent to gauge trans-
formations, and the theory is not invariant under general
coordinate transformations.
Before moving to the next case, let us analyze this theory

and try to get some insight about possible improvements.
From the definition (2.3), the canonical action becomes

I½A;π;u�¼
Z

dtd2x½ _Aa
μπ

μ
a−ðuaπ0aþvaDiπ

i
aÞ�

¼
Z

dtd2x½ð _Aa
0−uaÞπ0aþð _Aa

i þDivaÞπia�: ð4:19Þ

Now it is explicit that this simple constraints choice does
not lead to a gravitational theory. The action (4.19) is gauge
invariant but not diffeomorphisms invariant. A vanishing
Hamiltonian is, therefore, necessary, but not a sufficient
condition for a theory to be diffeomorphism invariant.
This theory cannot be put in the covariant form without

imposing additional conditions. We can try to determine
Hamiltonian multipliers using the fact that some of the
constraints can be primary and another secondary. For
example, inspired by Yang-Mills theory, we can suppose
that Ḡa ¼ π0a is a primary constraint and allow the
multiplier to depend on the phase space variables. Then
its consistency condition (time evolution) leads, the same as
in the Yang-Mills case, to the secondary constraint
Ga ¼ Diπ

i
a. This assumption now gives

0 ¼ Ḡ
·

a ¼
Z

d2x0
�∂u0b
∂Aa

0

Ḡ0
b þ

∂v0b
∂Aa

0

G0
b

�
; ð4:20Þ

where the first term vanishes on shell, as we already know
that Ḡa ¼ 0. The second term yields a secondary constraint
Ga only if ∂v0b

∂Aa
0

≠ 0. The simplest choice is, again as in

Yang-Mills theory,

va ¼ −Aa
0: ð4:21Þ

The sign minus is added for convenience. This choice
enables to have on shell Fa

0i ¼ 0, but it is still Fa
ij ≠ 0.

The canonical action becomes [40]

I ¼
Z

d3x½ _Aa
i π

i
a þ Aa

0Diπ
i
a þ ð _Aa

0 − uaÞπ0a�

¼
Z

d3xðFa
0iπ

i
a − ūaπ0aÞ; ð4:22Þ

where, in the second line, we redefined the arbitrary
multiplier as ūa ¼ ua − _Aa

0 .
From this form of the action, it is easy to identify that

noninvariance is due to the missing components Fa
ij. Since

here Aa
i are dynamical fields carrying degrees of freedom,

Fa
ij is not a pure gauge and it is not a constraint, so it cannot

appear in the action. Another problem of this action is that
the momenta πia cannot be integrated out to make the action
a functional of the gauge field only. In the case of π0a, this is
not problematic as this field is clearly unphysical, but
dynamical πia needs another treatment.
These two problems of I suggest that a way to improve

the theory would be to add the spatial diffeomorphisms
constraints, Ki, in the Hamiltonian action and also intro-
duce second class constraints that would enforce a relation
πia ¼ Li

aðAÞ, to help integrate out the momenta in a
covariant way.
We shall explore both possibilities. Let us start from the

first option which introduces spatial diffeomorphisms
without involving second class constraints.

B. Theory containing only first class constraints

In this section, we assume that spatial diffeomorphisms
are independent first class constraints (ε ¼ 1) and there are
no second class constraints, m ¼ 0. Based on our experi-
ence with the gauge constraints gained in Sec. IVA, some
arbitrary multipliers can be identified with unphysical
gauge field components if we assume that Ḡa is primary
and Ga secondary constraint. In this settings, there are
2nþ 2 first class constraints,

Primary first class∶ Ḡa ¼ π0a; n;

Ki ¼ Fb
ikπ

k
b; 2;

Secondary first class∶ Ga ¼ Diπ
i
a: n;

satisfying the Poisson brackets (3.16) and (3.33). Note that
Ki have to be primary constraints. The number of physical
degrees of freedom is N ¼ n − 2.
The Hamiltonian density is of the form,

H ¼ uaπ0a þ vaDiπ
i
a þ ζiFb

ijπ
j
b; ð4:23Þ

where we have to replace va ¼ −Aa
0 to ensure that the

evolution of Ḡa ¼ 0 leads to Ga ¼ 0. Equations of motion
read
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_Aa
0 ¼ ua; _π0a ¼ 0;

_Aa
i ¼ DiAa

0 þ ζjFa
ji;

_πia ¼ f c
abA

b
0π

i
c þDjðζjπiaÞ −Djζ

iπja: ð4:24Þ

The canonical action becomes

I ¼
Z

d3xð _Aa
μπ

μ
a − uaπ0a þ Aa

0Diπ
i
a − ζiFb

ijπ
j
bÞ ð4:25Þ

or, equivalently, after introducing the multiplier ūa ¼
ua − _Aa

0, the result is

I ¼
Z

d3xðFa
0iπ

i
a − ζiFb

ijπ
j
b − ūaπ0aÞ: ð4:26Þ

This theory illustrates a nontrivial gauge theory also
invariant under spatial diffeomorphisms, which possesses
dynamical degrees of freedom in three dimensions. The
timelike diffeomorphisms are absent. This action can
describe a theory that is not invariant under coordinate
transformations in one direction only, such as diffeomor-
phism invariant theory on a brane or a nonrelativistic model.
Work on possible applications is currently in progress.
If we want a fully diff-invariant theory, we need some

additional ingredients, and one possibility is to consider a
theory with second class constraints. We do it in the next
example.

C. Theory with zero degrees of freedom

Let us analyze another extreme case, where a number of
degrees of freedom is zero, N ¼ 0. Taking into account the
inequality (4.3), we can have N ¼ 0 when the number of
second class constraints 2m depends on the dimension of
non-Abelian group n and the number of independent spatial
diffeomorphisms 2ε, as

m ¼ n − 2ε: ð4:27Þ

There are two possibilities: ε ¼ 0 and ε ¼ 1. In the first
case, we get m ¼ n and according to the table of allowed
multiplets of the second class constraints, this naturally
corresponds to the constraints of the form ϕi

a. Alternatively,
we can also choose two sets of the constraints ϕa or 2n
scalar constraints, etc., but, in general in these cases, it is
difficult for larger n to construct a sufficient number of
independent scalars or vectors satisfying suitable algebra,
whereas for ϕi

a, we need only one covariant set of the
constraints, which clearly becomes the simplest choice to
explore from now on.
Similarly, when ε ¼ 1, we need m ¼ n − 2, and because

there is no one constraint which has 2ðn − 2Þ components,
it implies that we have to take a set of them, for example,
2ðn − 2Þ scalar constraints. As mentioned before, we will
not discuss here these cases.

To conclude, in this section, we analyze the theory with
zero degrees of freedom where the spatial diffeomorphisms
are not an independent symmetry, ε ¼ 0, and there are 2n
second class constraints with the index structure M ¼ ð iaÞ,

Primary first class∶ Ḡa ¼ π0a; n;

Primary or secondary first class∶ Ga ¼ Diπ
i
a; n;

Primary or secondary second class∶ ϕi
a; 2n:

We already saw in previous sections that it is convenient
to divide the constraints into the primary and secondary
ones because, in that way, we can identify some
Hamiltonian multipliers as gauge fields. This separation
is arbitrary, so we define that

(i) there are p primary and n − p secondary con-
straints Ga;

(ii) there are q primary and 2n − q secondary con-
straints ϕi

a.
There are no tertiary constraints because we look at

theories whose Lagrangian equations of motion are at most
second order in time derivatives. Furthermore, since the
secondary constraints are obtained from the primary ones
by means of the consistency conditions, there is always
equal or fewer number of them,

pþ q ≥ n: ð4:28Þ

For covariance, all Ga have to be either primary or
secondary, and similarly for ϕi

a. Thus, there are four
possibilities of the pairs ðp; qÞ, that are (0,0), ðn; 0Þ,
ð0; 2nÞ, and ðn; 2nÞ. But p ¼ q ¼ 0 is not allowed because
it does not fulfill the above inequality, and p ¼ n is not
allowed because, in this case, the theory does not have the
second generation of first class constraints and we saw
earlier that they help to obtain a covariant transformation
law of canonical variables and identify some arbitrary
multipliers with unphysical gauge field components. There
remains only one possibility, that is

Ga are secondary ðp ¼ 0Þ and
ϕi
a are primary ðq ¼ 2nÞ constraints:

Because we already have canonical representations of
the first class constraints, now we focus on second class
ones, ϕi

a. The primary constraints are always linear in
momenta, and the index structure yields

ϕi
a ¼ πia þ Li

aðAÞ: ð4:29Þ

The constraint ϕi
a has to commute on shell with all the

generators. In particular, for Ḡa, that gives
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fϕi
a; Ḡ0

bg ¼ −
∂Li

a

∂A0b
0

; ð4:30Þ

which has to vanish on shell, finding that Li
a does not

depend on shell on Aa
0 ,

Li
a ¼ Li

aðAb
j Þ:

In principle, in the above expression, we can also add the
term Ab

0σ
i
abðAc

jÞ, where σiabðAc
jÞ vanishes on shell, but, as

Ai
0 is a nonphysical variable (conjugated to π0i ¼ 0), this

would only lead to a redefinition of the corresponding
Hamiltonian multiplier. We shall therefore set σiab ¼ 0

without loss of generality.
The second class constraints also have to satisfy the

algebra (4.2), that is

fϕi
a;ϕ

0j
b g ¼ −

∂L0j
b

∂Aa
i
þ ∂Li

a

∂A0b
j
≡ Ωij

abðx; x0Þ; ð4:31Þ

where the symplectic matrix Ωij
ab is invertible on shell.

Ω must be antisymmetric under the simultaneous exchange
of the indices ði; a; xÞ ↔ ðj; b; x0Þ. In a local theory,
Ωij

abðx; x0Þ ¼ Ωij
abðxÞδ, and then the antisymmetric indices

½ij� can be realized through the constant Levi-Civitá tensor
εij. The group indices ðabÞ have to be symmetric, so they
are proportional to the invertible Cartan metric gab. It
means that an invertible tensor of an appropriate rank reads

Ωij
abðx; x0Þ ¼ kεijgabδ; ð4:32Þ

where k is a nonvanishing real function of the gauge fields
Aa
i . We shall take k ¼ const ≠ 0 to ensure invertibility in all

points of the spacetime manifold. Then we find a particular
solution,

kϵijgabδ ¼
∂Li

a

∂A0b
j
−
∂L0j

b

∂Aa
i
⇒ Li

a ¼ −
k
2
εijAaj: ð4:33Þ

However, it turns out that this choice of second class
constraints is not consistent with the first class character of
Ga, because their brackets do not vanish,

fϕi
a; G0

bg ¼ fcabϕ
i
cδþ

k
2
εijgab∂jδ: ð4:34Þ

In order to recover the vanishing brackets between ϕ andG,
we redefine these constraints in the following way. For the
gauge constraintGa, we can take the form found previously
in Eq. (3.7), with the function ha given by (3.10), and ϕi

a

can be modified by the addition of the function sia ≠ 0,
that is,

Ga ¼ Diπ
i
a þ haðAÞ;

ϕi
a ¼ πia −

k
2
εijAaj þ siaðAÞ; ð4:35Þ

where ha and sia do not depend on Aa
0 in order to commute

with Ḡa ¼ π0a. Now we require that the Poisson brackets of
the constraints (4.35) vanish on shell. As the result, we find

ha ¼ αεij∂iAaj; sia ¼
k − 2α

2
εijAaj; ð4:36Þ

where α is a real constant. This result matches with
Eq. (3.14). Note that the constant k cancels out in ϕi

a
and the constraints depend only on α, namely

Ga ¼ Diπ
i
a þ αεij∂iAaj;

ϕi
a ¼ πia − αεijAaj: ð4:37Þ

The algebra of constraints becomes

fGa;G0
bg ¼ f c

abGcδ; fϕi
a; G0

bg ¼ f c
abϕ

i
cδ;

fϕi
a;ϕ

0j
b g ¼ 2αεijgabδ; ð4:38Þ

which is the same as before, up to the replacement 2α ↔ k.
As shown in Eq. (4.5), the extended Hamiltonian density

does not contain the second class constraints, and its
explicit form is

H ¼ uaḠa þ vaGa

¼ uaπ0a þ vaðDiπ
i
a þ αεij∂iAajÞ: ð4:39Þ

Similarly as in previous examples, the functionGa arises as
a secondary constraint if va is chosen as

va ¼ −Aa
0: ð4:40Þ

It implies that the Hamiltonian density read

H ¼ uaḠa − Aa
0ðDiπ

i
a þ αεij∂iAajÞ: ð4:41Þ

Hamiltonian equations of motion are

_Aa
0 ¼ ua; _π0a ¼ Diπ

i
a þ αεij∂iAaj ¼ 0;

_Aa
i ¼ DiAa

0; _πia ¼ −fcabAb
0π

i
c þ αεij∂jA0a: ð4:42Þ

Also, we find that Fa
μν ¼ 0 on shell since

Fa
0i ¼ _Aa

i −DiAa
0 ¼ 0;

Fa
ij ¼

1

2
εijε

klFa
kl ¼

1

2α
εijðGa −Dkϕ

kaÞ ¼ 0; ð4:43Þ

in agreement with the fact that the theory does not possess
locally propagating degrees of freedom because the basic
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field is pure gauge. Furthermore, the spatial diffeomor-
phisms become dependent on the gauge transformations, as
discussed before.
Using the expression for the multipliers va and the

constraints ϕi
a to eliminate the nonphysical momenta πia in

the canonical action (2.3), we find

I ¼
Z

d3x½αεijð _Aa
i Aaj þ Aa

0FijaÞ − ūaπ0a�; ð4:44Þ

where we redefined ūa ¼ ua − _Aa
0 . The first two terms in

the previous equation form the action of the Chern-Simons
theory,

ICS½A� ¼ α

Z
d3xεμνρ

�
Aa
μ∂νAaρþ

1

3
fabcAa

μAb
νAc

ρ

�
; ð4:45Þ

with εij ≡ ε0ij, so that the canonical action can be put in the
form,

I ¼ ICS½A� −
Z

d3xūaπ0a: ð4:46Þ

The actions I and ICS are physically equivalent, since their
difference is decoupled from the Chern-Simons term and
on shell it is satisfied π0a ¼ 0 and ūa ¼ 0.
It is interesting that, in this procedure, we obtain Ga as

secondary constraints, whereas the Hamiltonian analysis of
Chern-Simons action gives different secondary constraints
and Ga appear as a linear combination of primary and
secondary ones (see Chap. 6.4 in Ref. [13]). In our approach,
however, we start from the extended Hamiltonian that
includes all constraints, both primary and secondary, and
reconstruct the Chern-Simons action in a different, but
physically equivalent way, finding that it is the unique action
which can be obtained under given assumptions.

V. DISCUSSION AND OUTLOOK

In this work, we showed that a method based on the
Hamiltonian formalism can be successfully applied for the
construction of theories invariant under general coordinate
transformations and possessing a non-Abelian gauge sym-
metry. Our motivation was to build a gravitational theory
coupled to non-Abelian matter or high-spin fields in three
dimensions. The procedure was previously applied in two
dimensions to obtain the Wess-Zumino-Novikov-Witten
model [34] and its supersymmetric extension [35].
The key step in the construction was finding a canonical

representation of symmetry generators in the phase space,
i.e., spatial diffeomorphisms and gauge generators. The
Hamiltonian constraint that generates evolution along a
timelike direction and forms the Dirac algebra with the
generators of spatial diffeomorphisms was not included in

our approach. As shown in Ref. [23], in order to obtain
its canonical representation, some additional assumptions
were necessary. In consequence, the models obtained by our
method, which are not invariant under time reparametriza-
tion, can be used to describe the dynamics of nonrelativistic
theories or, in the case of Hamiltonian evolution along a
spatial direction, the dynamics of geometries containing
membranes (which are diff-invariant submanifolds). Work
on possible applications is currently in progress.
In particular, we applied the method in three different

cases. The first model has a maximal number of degrees of
freedom andminimal number of constraints, but it is a gauge
theory that is not diffeomorphism invariant. In the next
example, we considered a model with first class constraints
only and obtained a nontrivial gauge theory also invariant
under spatial diffeomorphisms. This theory possesses n − 2
dynamical degrees of freedom; it is not equivalent to Yang-
Mills theory and should be better explored in future. Finally,
we studied a system without degrees of freedom, which
turned out to be the Chern-Simons theory.
These three examples show that the method, based on

symmetries and the canonical representations of their
generators, could be used as a powerful tool for exploring
possible dynamics of gauge theories.
The project has many open questions to be addressed in

the future. The most important one is the inclusion of
timelike diffeomorphisms in this formalism, which would
guarantee that the final theory contains gravitational field.
Another of the future tasks is to analyze the uniqueness of
the canonical representations, i.e., discuss nonequivalent
representations of the symmetry generators and the result-
ing canonical actions. For example, one possible extension
would be to include primary constraints nonlinear in
momenta, present in the case of free nonrelativistic point
particle.
An important challenge whose solving is currently in

progress, is the construction of a physically interesting
example of a theory that possesses physical degrees of
freedom in three dimensions, but is also invariant under
spacetime diffeomorphisms. An additional extension con-
cerns the issue of boundary terms, essential for having a
well-defined theory in spacetime regions with a boundary
and definition of conserved quantities, and should also be
addressed later on.
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