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The Feynman propagatorGðx1; x2Þ encodes all of the physics contained in a free field and transforms as a
covariant biscalar. Therefore, we should be able to discover the thermality of the Rindler horizon just by
probing the structure of the propagator, expressed in the Rindler coordinates.We show that the thermal nature
of the Rindler horizon is indeed contained—though hidden—in the standard, inertial, Feynman propagator.
The probability PðEÞ for a particle to propagate between two events with energy E can be related to the
temporal Fourier transform of the propagator. A strikingly simple computation reveals that (i) PðEÞ is equal
toPð−EÞ if the propagation is between two events in the same Rindler wedge, while (ii) they are related by a
Boltzmann factor with temperature T ¼ g=2π if the two events are separated by a horizon. A more detailed
computation reveals that the propagator itself can be expressed as a sum of two terms, governing absorption
and emission, weighted correctly by the factors ð1þ nνÞ and nν, where nν is a Planck distribution at the
temperature T ¼ g=2π. In fact, one can discover the Rindler vacuum and the alternative (Rindler)
quantization just by probing the structure of the inertial propagator. These results can be extended to local
Rindler horizons around any event in a curved spacetime. The implications are discussed.
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I. THE MAIN RESULT: INERTIAL
PROPAGATOR KNOWS ALL!

The path-integral representation of the (Feynman) propa-
gator is given by the sum-over-paths prescription using the
(square-root) action for a relativistic particle:

X
paths

exp ½−imlðx1; x2Þ� ¼ Gðx1; x2Þ; ð1Þ

where lðx1; x2Þ is the length of the path. This suggests that
one can interpret Gðx1; x2Þ as an amplitude for a particle/
antiparticle to propagate between two events in the space-
time.1 This interpretation acquires an operational meaning
in the presence of a source JðxÞ capable of emitting/
absorbing the particles [1]. Then, the vacuum persistence
amplitude

houtjiniJ ¼ houtjiniJ¼0 exp

�
−
1

2

Z
dDx1

ffiffiffiffiffiffiffiffi
−g1

p

×
Z

dDx2
ffiffiffiffiffiffiffiffi
−g2

p
Jðx1ÞGðx1; x2ÞJðx2Þ

�
ð2Þ

can be thought of as describing the emission/absorption at
the two events [controlled by Jðx1Þ; Jðx2Þ] and the propa-
gation between the events governed by Gðx1; x2Þ.
We are interested in the stationary situations in which the

propagator depends on the time coordinates only through
the time difference, so that Gðx1; x2Þ ¼ Gðτ; x1; x2Þ with
τ≡ ðx01 − x02Þ≡ ðτ1 − τ2Þ. Such stationarity is assured if
there exists a Killing vector field ξa which, in a suitable
coordinate system, can be represented as ξa ¼ ∂=∂τ. One
can then interpret the temporal Fourier transform

AðΩ; x1;x2Þ¼
Z

∞

−∞
dτGðτ; x1;x2ÞeiΩτ; τ¼ðτ1−τ2Þ ð3Þ

as the amplitude for the particle to propagate between x1 and
x2 with energyΩ, introduced as the Fourier conjugate to the
time coordinate τ. In what follows we will simplify the
notation and write GðτÞ for Gðτ; x1; x2Þ and AðΩÞ for
AðΩ; x1; x2Þ, suppressing the spatial coordinates. While
evaluating the amplitude AðΩÞ in Eq. (3) it is convenient
to assume thatΩ > 0 and interpret Að−ΩÞ as the expression
obtained by replacingΩwith−Ω in the result of the integral
in Eq. (3). My interest lies in comparing Að−ΩÞ with AðΩÞ.
If they are equal, then the amplitudes for the particle to
propagate with an energyΩ or −Ω are the same; however, if
they are unequal this indicates some interesting physics.
To probe this issue, let us consider the explicit form of

GðτÞ in a D-dimensional flat spacetime given by (with m2

treated as m2 − iϵ)

*paddy@iucaa.in
1We use mostly negative signature—except when specified

otherwise—and natural units. The propagator in momentum
space GðpÞ ¼ iðp2 −m2 − iϵÞ−1 is defined with an i factor, so
that Gðx1; x2Þ ¼ h0jT½ϕðx1Þϕðx2Þ�j0i.
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GðτÞ ¼ i

�
1

4πi

�
D=2

Z
∞

0

ds

sD=2 exp

�
−ism2 −

i
4s

σ2ðτÞ
�
; ð4Þ

where σ2ðτÞ≡ σ2ðx1; x2Þ is the squared line interval
between the two events. The fact that σ2 depends only
on τ ¼ τ1 − τ2 again arises from the stationarity of
the background and the existence of the Killing vector
∂=∂τ. From the structure of the integral in Eq. (3) it is
obvious that, if GðτÞ ¼ Gð−τÞ, AðΩÞ ¼ Að−ΩÞ and thus
nothing very interesting happens. This is, of course,
trivially true if we take τ to be the standard inertial time
coordinate t so that σ2ðtÞ ¼ t2 − jx1 − x2j2. This makes σ2

and G even functions of the time difference, leading to
AðΩÞ ¼ Að−ΩÞ.
Interestingly enough, the same result holds even

when both events x1 and x2 are on the right Rindler
wedge (R), with τ being the Rindler time coordinate.
In R the Rindler coordinates ðτ; ρÞ can be defined2 in
the usual manner as t ¼ ρ sinh τ and x ¼ ρ cosh τ. The
line interval σ2RR for two events in the right wedge has the
form

σ2RRðτÞ ¼ −L2
1 þ 2ρ1ρ2 cosh τ; ð5Þ

where L2
1 ¼ ðΔx2⊥ þ 2ξ1 þ 2ξ2Þ, with the ξ coordinate

defined through the relation x2 − t2 ≡ 2ξ. (In R, 2ξ ¼ ρ2).
The σ2RRðτÞ is clearly an even function of τ and hence we
reach the following conclusion: when a particle propagates
between any two events within the right Rindler wedge R, we
have AðΩÞ ¼ Að−ΩÞ.3
Let us next consider what happens when we take one

event to be in R and the second event to be in F, where the
Rindler-like coordinate system is introduced through
t ¼ ρ cosh τ and x ¼ ρ sinh τ. (If one uses the ξ coordinate,
then the relation x2 − t2 ¼ 2ξ allows the region F to be
covered by the range −∞ < ξ < 0 and the region R to be
covered by the range 0 < ξ < ∞.) The line interval σ2FRðτÞ
between an event ðτF; ρFÞ in F and an event ðτR; ρRÞ in R is
given by

σ2FRðτÞ≡ ðtF − tRÞ2 − ðxF − xRÞ2 − Δx2⊥ ð6Þ

¼ ðρF cosh τF − ρR sinh τRÞ2
− ðρF sinh τF − ρR cosh τRÞ2 − Δx2⊥ ð7Þ

¼ ρ2F − ρ2R − 2ρFρR sinhðτR − τFÞ − Δx2⊥ ð8Þ

≡ − L2
2 − 2ρFρR sinh τ; τ≡ ðτR − τFÞ; ð9Þ

with L2
2 ≡ ðΔx2⊥ þ 2ξR þ 2jξFjÞ. We displayed this

calculation in gory detail because there is a bit of
algebraic sorcery involved in it. (This is the only nontrivial
calculation in this paper!) The line interval σ2ðP1;P2Þ
between any two events in the spacetime, of course, is
symmetric with respect to the interchange of events,
σ2ðP1;P2Þ ¼ σ2ðP2;P1Þ. In our case, the two events have
the coordinates

P1 ¼PF ¼ðtF;xF;x⊥
F Þ¼ ðρF coshτF;ρF sinhτF;x⊥

F Þ ð10Þ

and

P2 ¼PR ¼ðtR;xR;x⊥
R Þ¼ ðρR sinhτR;ρR coshτR;x⊥

R Þ: ð11Þ

The symmetry of the line interval is manifest in the
inertial coordinates and we have σ2ðtF;xF; ; tR;xRÞ ¼
σ2ðtR;xR; ; tR;xFÞ. But we cannot obtain the same sym-
metry by interchanging the relevant Rindler coordinates!
From Eq. (8) we see that

σ2ðτF;ρF;x⊥
F ;τR;ρR;x

⊥
R Þ≠ σ2ðτR;ρR;x⊥

R ;τF;ρF;x
⊥
F Þ: ð12Þ

Of course, if we introduce arbitrary coordinate labels to
events in spacetime, there is no assurance that the inter-
change of coordinate labels will correspond to the inter-
change of events when two different coordinate charts are
involved. This is precisely what happens here: it is obvious
from Eqs. (10) and (11) that the interchange ðτF; ρFÞ ⇔
ðτR; ρRÞ of the coordinate labels that we are using does not
lead to the interchange of the events P1 ⇔ P2 because two
different coordinate charts4 are used in R and F.
We will now compute the Fourier transform in

Eq. (3) with respect to τ≡ ðτR − τFÞ. The sign convention
in Eq. (3) implies that G picks up a contribution
AðΩÞ exp−iΩðτR − τFÞ which will correspond to a positive

2We will work with units such that the acceleration g of the
Rindler frame is unity. In the coordinate transformation from
ðt; x; x⊥Þ to ðτ; ρ; x⊥Þ, the transverse coordinates x⊥ remain
invariant and we will not display them unless necessary.

3The Unruh-DeWitt detector response [2], for a uniformly
accelerated trajectory in R, is computed by a Fourier transform
similar to the one in Eq. (3), for events with ρ2 ¼ ρ1, Δx⊥ ¼ 0,
with the Wightman function replacing the propagator. This,
of course, leads to Að−ΩÞ ≠ AðΩÞ. The difference arises due
to the difference in the structure of the Wightman function
and the Feynman propagator. Algebraically, ½sinh2ðτ=2Þ − iϵ�
(which occurs in the propagator) is an even function of τ,
while sinh2½ðτ=2Þ − iϵ� (which occurs in the Wightman function)
is not.

4Why does the σ2 between the events in R and F only depend
on the difference in the “time” labels, especially since τ is not
even a time variable in F? This has to do with the fact that one can
indeed introduce a (Schwarzschild-like) coordinate system cover-
ing both R and F in which the two-dimensional metric takes the
form ds2 ¼ ð2ξÞdτ2 − ð2ξÞ−1dξ2. We see that τ retains its Killing
character in both R and F, though ∂=∂τ is timelike only in R. It is
the Killing character which ensures that σ2FR only depends on the
difference in the “time” labels.
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energy with respect to τR whenΩ > 0 (and negative energy
whenΩ < 0Þ. These are defined with respect to τR which is
a valid time coordinate in R. (Thus, we do not have to worry
about the fact that τF has no clear meaning as a time
coordinate in F; it is an ignorable constant which goes
away when we evaluate the integral over the range
−∞ < τ < ∞.) The Fourier transform in Eq. (3) requires
us to compute the integral

I ¼
Z

∞

−∞
dτeiΩτ−

i
4sσ

2
FRðτÞ ¼ 2e

iL2
4s e−πΩ=2KiΩð2αÞ; ð13Þ

where α≡ ðρ1ρ2=2sÞ. This is done using the standard
integral representation for the McDonald function,
leading to

Z
∞

0

dq
q
qiωeiαðq−

1
qÞ ¼ 2e−πω=2Kiωð2αÞ; ðα > 0Þ: ð14Þ

Substituting Eq. (13) into Eq. (3), we find that the relevant
amplitude is given by

AðΩÞ ¼ e−πΩ=2
Z

∞

0

dsFðsÞKiΩð2αÞ; ð15Þ

where

FðsÞ ¼ 2i

�
1

4πis

�
D=2

e−im
2sþiL2

2
4s : ð16Þ

Since KiΩ ¼ K−iΩ is an even function of Ω, it follows that

Að−ΩÞ ¼ eπΩ=2
Z

∞

0

dsFðsÞKiΩð2αÞ ¼ eπΩAðΩÞ; ð17Þ

leading to the familiar Boltzmann factor

jAðΩÞj2
jAð−ΩÞj2 ¼ e−2πΩ ð18Þ

corresponding to the Davis-Unruh [3] temperature T ¼
g=2π ¼ 1=2π in our units.5 This result is equivalent to
attributing a temperature T ¼ 1=2π to the horizon when
viewed from R. The propagation of a particle with energyΩ
from a spatial location in F to a spatial location in R can be
thought of as an emission of a particle by the horizon
surface, since an observer confined to R cannot (classically)
detect anything beyond the horizon. By the same token, the
propagation of a particle with energy −Ω can be thought of
as the absorption of energyΩ by the horizon. Therefore, we
have Pe=Pa ¼ jAðΩÞj2=jAð−ΩÞj2, where Pe, Pa denote the
probabilities for emission and absorption. On the other

hand, if we think of the horizon as a hot surface, with
fictitious two-level systems in thermal equilibrium, then
Pe ∝ Nup and Pa ∝ Ndown, where Nup and Ndown are the
population of the upper and lower levels separated by
energy Ω. Therefore, our result in Eq. (18) implies that
Nup=Ndown ¼ e−2πΩ, showing that the level population of a
two-level system on the horizon surface satisfies the
Boltzmann distribution corresponding to the temperature
T ¼ 1=2π. This is a more concrete, physical interpretation
of the result in Eq. (18).
It is particularly gratifying that the propagator can dis-

tinguish so nicely between the propagation across the
horizon and the propagation within one side of the horizon.
Let us stress how this fact prevents us from interpreting
(“understanding”) Eq. (18) in a trivial manner. We might
think, at first sight, that if we are Fourier transformingGwith
respect to the Rindler time τ (and defining positive/negative
energies through exp ∓iΩτ) then it is a foregone conclusion
that we will get the thermal factor. This is simply not true.
Recall that, whenwe do the Fourier transformwith respect to
Rindler time, etc., but for two events within the right wedge
R, we do not get a thermal factor. So the usual suspect, viz.,
exp−iΩt (being a superposition of exp ∓iΩτ) is not
responsible for this result. There are two other crucial
ingredientswhich go into it. First,we need a horizon crossing
to break the symmetry between GðτÞ and Gð−τÞ; this is
obtained (as stated above) by the only nontrivial calculation
in this paper, leading to Eq. (9). Second, it is crucial that the
result in Eq. (9) depends only on the difference
τ≡ ðτR − τFÞ. So when we integrate over all τ, we do not
have to worry about what τF means, since it is not a time
coordinate in F. We can stay in R and interpret everything
using τR. Therefore, it is not just using the Rindler time
coordinate which leads to the result. The structure of the
propagator is more nontrivial than one would first imagine.
As far as we know, this is the first study to obtain the

thermality of the Rindler horizon directly from the propa-
gation amplitude across the horizon in a clean, direct
manner, without using Rindler modes, Rindler quantiza-
tion, the Rindler vacuum, etc. To do this, we have to use the
Feynman propagator which describes the propagation
amplitude; other two-point functions can describe vacuum
correlations but they do not describe the propagation
amplitude. Previous attempts have obtained thermality
either by extracting the spectrum of vacuum fluctuations
(as in detector response) or by studying the entanglement
and correlations between the R and F wedges (see Ref. [4]
as well as Ref. [5]). To make the conceptual difference
between these attempts clearer, let me emphasize the
physical distinction between vacuum correlations [repre-
sented by two-point-functions like the Wightman function
Gþðx1; x2Þ] and propagation [represented by the Feynman
propagator Gðx1; x2Þ].
The fact that the Feynman propagator evolves positive

frequencies forward in time and negative frequencies

5The analysis leads to similar conclusions for other situations
when the events are separated by a horizon, e.g., between regions
P and L. We will concentrate on F and R.
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backward in time is crucial for describing relativistic
propagation. (For more details, see, e.g., Sec 1.5.1 of
Ref. [1].) The spatial Fourier transform Gðt; kÞ [of the
Feynman propagator Gðt; xÞ] has the factor expð−iωkjtjÞ,
where ωk ¼ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
. [See e.g., Eq. (1.85) of Ref. [1]].

The modulus sign in jtj is crucial for the interpretation
which, in turn, is equivalent to the time ordering of
ϕðxÞϕðyÞ in the vacuum expectation value. On the other
hand, the spatial Fourier transform of the Wightman
function Gþ has the factor expð−iωktÞ (without the
modulus on t), and hence it only has forward-in-time
evolution; similarly, G− only has backward-in-time evolu-
tion.6 Therefore, in quantum field theory (QFT), to study
the propagation of a particle between events (especially
across the horizon) we must use Gðx1; x2Þ; the Wightman
function Gþðx1; x2Þ is insufficient and inappropriate. This
is also obvious from the following two facts stated right at
the beginning of the paper: (a) The path integral for a
relativistic particle in Eq. (1) sums over paths that go both
backward and forward in time and leads naturally to
Gðx1; x2Þ [and not to Gþðx1; x2Þ]. Similarly, the path-
integral average of ϕðx1Þϕ†ðx2Þ will also lead to
Gðx1; x2Þ. (b) The emission and absorption of particles
by a source JðxÞ in Eq. (2) are described using Gðx1; x2Þ
[and not Gþðx1; x2Þ]. This is linked to the crucial fact that,
in QFT, any source which emits particles must also absorb
them, which forms a cornerstone of Schwinger’s source
theory. In our case, the emission and absorption of particles
by the horizon involves “backward” propagation from F to
R and hence has to be discussed in terms of Gðx1; x2Þ.
It is certainly possible to obtain the Rindler temperature

using Gþðx1; x2Þ either (i) in the context of the response of
particle detectors or (ii) in terms of the entanglement and
correlations between R and F (see Ref. [4] as well as
Ref. [5]). In approach (i), the horizon plays no role; the
detector will respond in several trajectories which do not
asymptote to a horizon because it merely records the
spectrum of vacuum fluctuations encoded in Gþðx1; x2Þ.
In addition, in approach (ii) (adopted in Refs. [4,5]), no
propagation across the horizon is used or computed any-
where; in fact, Gþðx1; x2Þ is incapable of describing
propagation. So, while this approach is interesting and

provides a different, complementary perspective of the
horizon thermality, it is distinctly different from the analysis
presented here.
In obtaining this result, we worked entirely in the

Lorentzian sector with a well-defined causal structure
and the horizons at x2 − t2 ¼ 0. We have also emphasized
the key role played by the horizon in obtaining this result.
One may wonder what happens to this analysis if it is
done with the inertial propagator in the Euclidean sector.
In the conventional approach, the right wedge (with
t ¼ ρ sinh τ; x ¼ ρ cosh τ) itself will fill the entire
Euclidean plane ðtE; xEÞ if we take it ¼ tE; iτ ¼ τE, leading
to tE ¼ ρ sin τE; x ¼ ρ cos τE. The horizons (x2 − t2 ¼ 0)
map to the origin (x2 þ t2E ¼ 0) and the F, P, and L wedges
seem to disappear! At first sight, it is not clear how to
recover the information contained in the F, P, and L wedges
if we start with the Euclidean, inertial propagator. However,
it can be done but one needs to use four different types of
analytic continuations to proceed from the Euclidean plane
to the four Lorentzian sectors (R, F, L, and P). We describe
this briefly in the Appendix for the sake of completeness.

II. THE HORIZON THERMALITY HIDING
IN THE INERTIAL PROPAGATOR

Given these facts, let us probe the structure of the inertial
propagator a little more closely. While obtaining the above
result we did not compute the final integral in Eq. (15)
because it was unnecessary. However, this can be done both
for events in R and for two events separated by a horizon. It
is easier to express the relevant integrals if we first get rid of
the transverse coordinates by Fourier transforming both
sides of Eq. (3) with respect to the transverse coordinate
difference (x⊥1 − x⊥2 ), thereby introducing the conjugate
variable k⊥. [As usual, we will simply write GðRRÞðτÞ for
Gðτ; ρ; ρ0;k⊥Þ when both events are in R, etc.] It can be
shown that, when both events are located in R, the relevant
Fourier transform in Eq. (3) is given by

ARRðΩÞ¼
Z

∞

−∞
dτGðRRÞðτÞeiΩτ

¼ i
π
KiΩðμρ2ÞKiΩð−μρ1Þ; τ¼ðτ1− τ2Þ; ð19Þ

with the ordering ρ1 < ρ2. But if the events are in F and R
the corresponding Fourier transform is

AFRðΩÞ¼
Z

∞

−∞
dτGðFRÞðτÞeiΩτ

¼ 1

2
Hð2Þ

iΩ ðμρFÞKiΩðμρRÞ; τ¼ðτR− τFÞ; ð20Þ

where μ2 ≡ k2⊥ þm2. (We sketch the derivation in the
Appendix. The result is also closely related to the form of
the Minkowski-Bessel modes [6] in R and F.) The presence

6This difference is very apparent in the case of a complex
scalar field, but it of course exists for the real scalar field as well.
For a complex field, written as ϕðxÞ≡ AðxÞ þ B†ðxÞ [where AðxÞ
and BðxÞ are made of positive-frequency modes], Gðx1; x2Þ ¼
hMjAðx1ÞA†ðx2ÞjMi if x01 > x02 while it is Gðx1; x2Þ ¼
hMjBðx1ÞB†ðx2ÞjMi if x01 < x02; here, jMi is the inertial
vacuum state. On the other hand, Gþðx1; x2Þ is always
hMjAðx1ÞA†ðx2ÞjMi and misses the antiparticle (“backward-in-
time”) propagation contained in BðxÞ. That piece of information
is contained in the complementary function G−ðx1; x2Þ which
will always be hMjBðx1ÞB†ðx2ÞjMi, thereby missing the particle
(“forward-in-time”) propagation; the Feynman propagator has
both pieces of information.
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of the Hankel function Hð2Þ
iΩ in Eq. (20) [in contrast to the

McDonald function in Eq. (19)] makes all the difference
because—while the McDonald function has even indices—

the Hankel function has the propertyHð2Þ
iν ¼ e−πνHð2Þ

−iν. This
immediately gives

�
AðΩÞ
Að−ΩÞ

�
FR

¼ Hð2Þ
iΩ

Hð2Þ
−iΩ

¼ e−πΩ; ð21Þ

which is the same as Eq. (17). On the other hand, because
KiΩ ¼ K−iΩ we trivially get ARRðΩÞ ¼ ARRð−ΩÞ. So the
explicit computation verifies the previous result but—as we
will argue later—the original approach offers greater
generality.
This is not the only manner in which the inertial

propagator hides the thermal nature of the Rindler horizon.
We will give one more example which actually takes us to
the Rindler quantization—something we have judiciously
avoided so far—from the structure of the inertial propa-
gator. To do this, let us start with the Euclidean version of
the inertial propagator for two events in R:

Ginertial
Eu ðk⊥; ρ1; ρ2; θ − θ0Þ

¼ 1

2π2

Z
∞

−∞
dνeπνKiνðμρ2ÞKiνðμρ1Þe−νjθ−θ0j: ð22Þ

As before, we have already Fourier transformed with
respect to the transverse coordinate difference (x⊥1 − x⊥2 ),
thereby introducing the conjugate variable k⊥. Further,
μ2 ¼ k2⊥ þm2. [This expression with the term jθ − θ0j is
well known in the literature and is very easy to derive. Its
derivation can be found in the Appendix, as well as its
relation with the form of Eq. (19), which is based on
another variant with ðθ − θ0Þ; this one is rather nontrivial to
derive.] Using just a series of Bessel function identities and
no physics input, this result can be reexpressed in the
following form:

Ginertial
Eu ðθ − θ0Þ ¼

X∞
n¼−∞

GRindler
Eu ½θ − θ0 þ 2πn�; ð23Þ

where the function GRindler
Eu is given by

GRindler
Eu ≡ 1

π2

Z
∞

0

dωðsinh πωÞKiωðμρÞKiωðμρ0Þe−ωjθ−θ0j:

ð24Þ

This result tells us two things. (a) First, the Euclidean
version of our standard inertial propagator can be expressed
as an infinite, periodic sum in the (Euclideanized) Rindler
time. The fact that the inertial propagator is periodic in
(Euclideanized) Rindler time is a trivial result; we only
need to note that the σ2RR in Eq. (5) is periodic in iτ.

But Eqs. (23) and (24) give us a lot more information. They
explicitly express Ginertial

Eu as an infinite periodic sum of
another specific function, GRindler

Eu . (b) From the product
structure of GRindler

Eu we learn that, when analytically
continued back to the Lorentzian sector, it can be thought
of as a propagator built from another set of mode
functions,

ϕνðτ; ρÞ ¼
1

π
ðsinh πνÞ1=2KiνðμρÞe−iντ; ð25Þ

in the standard fashion with time ordering with respect
to τ. This allows us to discover the Rindler mode functions,
Rindler vacuum, and the Rindler propagator just from
analyzing the inertial propagator and rewriting it as in
Eqs. (23) and (24). [Of course, the modes in Eq. (25)
satisfy the Klein-Gordon equation and are properly nor-
malized.] Thus, just by staring with the inertial propagator,
we can discover the Rindler modes and the Rindler
vacuum.
There is another closely related feature. To show this, we

will introduce a reflected wave function ϕðrÞ
ν by the

definition

ϕðrÞ
ν ðρ; τÞ ¼ ϕνð−ρ; τ − iπÞ ¼ ϕνðρr; τrÞ: ð26Þ

The adjective “reflected” is justified by the fact that (i) the
coordinates ρ and −ρ are obtained by a reflection through
the origin, and (ii) the replacement of τ by τ − iπ in
the Rindler coordinate transformation takes us from R to L.
[If we replace ρ by −ρ and also replace τ by τ − iπ in the
coordinate relations (x ¼ ρ cosh τ; t ¼ ρ sinh τ), we will get

back to the same event in R. But ϕðrÞ
ν ðρ; τÞ ≠ ϕνðρ; τÞ,

making the reflected wave function different from the
original one.] It turns out that the propagator for two
events within the right wedge can be expressed in a very
suggestive form as7

GðRRÞ ¼
Z

∞

0

dν½ðnν þ 1Þϕνϕ
ðrÞ
ν þ nνϕ�

νϕ
ðrÞ�
ν �; ð27Þ

where nν is the thermal population:

nν ¼
1

e2πν − 1
: ð28Þ

Obviously, the second term in Eq. (27) suggests an absorp-
tion process weighted by nν, while the first term could
represent emission with the factor nν þ 1 coming from a
combination of stimulated emission and spontaneous emis-
sion. If we think of ϕν and ϕr

ν as the wave functions for a

7The proofs for all of these claims, like, e.g., Eqs. (22)–(24) are
sketched in the Appendix.
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fictitious particle, then this structure again encodes the usual
thermality.8

Since the Rindler frame is just a coordinate transforma-
tion of the inertial frame and the propagator Gðx1; x2Þ
transforms as a biscalar under a coordinate transformation,
we can trivially represent it in Rindler coordinates. Further,
because Gðx1; x2Þ encodes all of the physics contained in a
free field we should be able to discover the thermality just
by staring at Gðx1; x2Þ. In other words, it should not be
necessary for us to quantize the field in Rindler coordinates,
identify positive-frequency modes, construct the Rindler
vacuum and particles, etc. Everything should flow out of
Gðx1; x2Þ expressed in Rindler coordinates, including the
alternative, Rindler quantization. This is what we have
achieved in the above discussion.

III. DISCUSSION

A. Comparison with other approaches

There are three othermain approaches that follow a similar
philosophy—viz., to obtain the Davies-Unruh temperature
without using an explicit Rindler quantization—as far as
thermality of the horizon is concerned. (None of them,
however, take us beyond that to the results we obtained in
Sec. II.) The first one is through the response of an Unruh-
DeWitt detector in which one merely calculates a Fourier
transform of theWightman function. The second is the path-
integral approach used in Ref. [7]. Finally, the horizon
tunneling approach (see, e.g., Ref. [8]) has some superficial
similarity with the ideas presented above.
The approach in Sec. I of this paper is quite different

from all three approaches mentioned above. To begin with,
it makes use of the Feynman propagator—the central
quantity in QFT—and obtains the thermality from it. We
stress that the Feynman propagator has a hidden structure
which ensures that the notion of thermality arises when
events are separated by a horizon but not otherwise. So the
“horizon crossing” plays a crucial but hidden role. This is
not the case with the calculation of the detector response. In
a calculation confined within R, the exact role (if any)
played by the horizon is not obvious. In fact, a detector in
any nontrivial trajectory will respond—albeit in a compli-
cated and time-dependent manner—even if there is no
horizon. So the superficial similarity, i.e., of evaluating the
Fourier transform of a two-point function should not
mislead us in this matter.

The path-integral approach in Ref. [7], again, has a
superficial similarity with what we have done here.
However, there are some significant differences. First,
the derivation in Ref. [7] suggests that the probability
for the absorption of a particle by a region beyond the
horizon is related by a thermal factor to the probability for
the emission from that region. This is very different from
the interpretation we are trying to advocate. We can just
look at the propagation amplitude AðΩÞ in the energy
domain and ask how AðΩÞ and Að−ΩÞ are related, for
propagation between the same pair of events. We again
have to stress that the nontrivial structure of the Feynman
propagator ensures that when the events are separated by a
horizon a thermal relationship arises. Second, the analysis
in Ref. [7] crucially used the white hole region (P) to arrive
at the conclusion. My approach just uses F and R and hence
is conceptually clearer.
Finally, my approach is quite distinct from the standard

lore of deriving thermality from horizon tunneling. First,
the tunneling approach—like the path-integral approach—
tries to relate the amplitude for absorption by F to the
emission from F and claims that these two are different
because of the pole structure in the complex plane. We did
not have to resort to procedures like analytic continuation
in the main derivation. Further, it is not very clear how
the structure of quantum field theory—encoded in the
propagator—is incorporated in the tunneling approach. In
contrast, it is very clear in what we have done here.

B. Generalizations

The approach and the result have obvious generaliza-
tions to more complicated situations, and we concentrated
on the Rindler thermality only to keep things simple. To
begin with, the result can be extended to de Sitter spacetime
in a straightforward manner because the dependence of the
propagator on the geodesic distance (see, e.g., Ref. [9])
allows for the same derivation.9 More generally, one can
use this approach to attribute thermality to any local
Rindler horizon along the following lines.
In an arbitrary spacetime, pick an event P and introduce

the Riemann normal coordinates around P. These coor-
dinates will be valid in a region V of size L where the
typical background curvature is of the order of L−2. Now
introduce a local Rindler coordinate system by boosting
with an acceleration g with respect to the local inertial
frame, defined in V. If we now concentrate on events
ðx1; x2Þ within V, then the standard Schwinger-DeWitt

8In the usual approach, the Bogoliubov transformation be-
tween inertial and Rindler modes involves jβj2∼nν;jαj2∼ð1þnνÞ
and one can transform Gðx1;x2Þ¼h0jT½ϕðx1Þϕðx2Þ�j0i expressed
in terms of inertial modes to one involving Rindler modes. This is
a way of connecting Eq. (27) with something more familiar. The
factors multiplying (1þ n) and n can be related to bremsstrah-
lung by an accelerating source. In fact, both terms will correspond
to emission when viewed in the inertial frame.

9In the case of curved spacetimes with horizons (Schwarzchild,
Reissner-Nordström, etc.), we get the same result by explicit
computation in D ¼ 2. In D > 2, we do not have closed
expressions for Gðx; x0Þ, but we can compute it close to the
horizon. This is because, close to the horizon, we again get a two-
dimensional conformal field theory and we can compute the
approximate form of the modes, and through them the propagator
Gðx; x0Þ. This will lead to the same result.
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expansion of the propagator tells us that the form in Eq. (4)
will be (approximately) valid. The Fourier integral in
Eq. (3) can be defined formally, though the range of τ
outside the domain V is not meaningful. To circumvent this,
we have to arrange matters such that most of the contri-
bution to the integral in Eq. (3) comes from the range τ ≲ L.
This, in turn, requires us to concentrate on the high
frequencies with Ω ≫ L−1. In this high-frequency limit
everything will go through as before and one will obtain the
local Rindler temperature as T ¼ g=2π. For consistency, we
also need to ensure that gL ≫ 1 which, of course, can be
done around any event with finite L. (In fact, this approach
suggests a procedure for obtaining the curvature corrections
to the temperature systematically, using the Schwinger-
DeWitt expansion.) We stress that—in this very general
context of a bifurcate Killing horizon, introduced to a local
inertial frame—our approach provides what we would
reasonably expect. After all, in a curved spacetime one
can expect thermality (with approximately constant temper-
ature) only when the modes do not probe the curvature scale;
this is what is achieved by concentrating on the Feynman
propagator at two events that are localized within V.

C. Future directions

There are three avenues of further work which seem
interesting. The first is to probe the uniqueness of the result
in Eqs. (23) and (24). We have shown that, starting from
just the Euclidean version of the inertial propagator and the
coordinate transformation in the right wedge, one can
obtain Eqs. (23) and (24). This is just Bessel function
gymnastics with no physics input. But the resulting
structure in Eq. (24)—involving the product of mode
functions and time ordering with respect to τ, when
analytically continued back into the Lorentzian sector—
immediately suggests an alternative set of mode functions
(with a positive/negative frequency decomposition with
respect to τ), the corresponding Rindler vacuum, and the
Rindler propagator. Then, Eq. (23) tells us that the inertial
vacuum will appear as a thermal state in the new repre-
sentation. The only thing missing is a proof that the form of
the infinite periodic sum in Eqs. (23) and (24) is unique. We
think that this is true, but it might require some analyticity
assumptions.
Second, one might like to probe the details of emission/

absorption by localized sources (e.g., on two sides of a
horizon) using the expression in Eq. (2) and connect it with
the structure of Eq. (27). This will shed more light on how
such processes appear in inertial coordinates versus Rindler
coordinates. In fact, we expect both processes to appear as
emission in the inertial frame.
Third, it will be interesting to see whether the path

integral in Eq. (1) can be computed from first principles in
the Rindler coordinates. It can be done (even with a
nonquadratic action) in inertial coordinates by a lattice
regularization [10]. But it is not clear how to introduce a

suitable lattice, either in polar coordinates in the Euclidean
sector or in the Rindler frame in the Lorentzian sector.
These and related issues are under investigation.
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APPENDIX: THE UNREASONABLE
EFFECTIVENESS OF THE

EUCLIDEAN CONTINUATION

We will briefly outline the steps involved in obtaining
Eqs. (19), (20), (23), (24), and (27) and some related
results, postponing their detailed discussion to another
publication. We will now use mostly positive signature
so that the analytic continuation of the time coordinate
leads to a positive-definite metric.
One can obtain Eqs. (19) and (20) by doing the remaining

integral in Eq. (15) (and the analogous one for the RR case)
but this requires a fairly complicated manipulation of known
integrals over Bessel functions. But, since we also want to
describe how to do the analytic continuation from the
Euclidean sector to get all four wedges (R, F, L, and P),
we will follow an alternative route. We will start from the
Euclidean propagator and obtain all of the relevant results
we need by careful analytic continuation.
The Euclidean (inertial) propagator can be expressed in

polar coordinates (with x ¼ ρ cos θ; tE ¼ ρ sin θ) in the
following form:

GEuðk⊥; ρ1; ρ2; θÞ ¼
1

2π2

Z
∞

−∞
dνeπνKiνðμρ2ÞKiνðμρ1Þe−νjθj:

ðA1Þ
In obtaining this propagator, we have already Fourier
transformed with respect to the transverse coordinate
difference (x⊥1 − x⊥2 ), thereby introducing the conjugate
variable k⊥. Further, μ2 ¼ k2⊥ þm2. This result is well
known in the literature and is trivial to obtain. One begins
by noting that if we Fourier transform the transverse
coordinates in the Euclidean version of the propagator in
Eq. (4) we just get the reduced (two-dimensional) propa-
gator, viz., K0ðμlÞ=2π, where l ¼ jρ1 − ρ2j. One can then
use the standard identity

1

2π
K0ðμlÞ ¼

1

π2

Z
∞

0

dνKiνðμρ1ÞKiνðμρ2Þ cosh½νðπ − jθjÞ�

ðA2Þ
to express it as an integral over the range 0 < ν < ∞.
Extending the integration range to ð−∞ < ν < ∞Þ, we
obtain Eq. (A1).
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To proceed fromEq. (A2) (which has jθ1 − θ2j) to Eq. (19)
or Eq. (20) [which have ðθ1 − θ2Þ], one needs to do the
analytic continuation of the variables in a specific way. Let
me start with the approach to obtain Eq. (19). Usually, one
does the analytic continuation by θ1 → iτ1; θ2 → iτ2 and
interprets jθ1 − θ2j as ijτ1 − τ2j, transferring the ordering to
the τ coordinate. This, of course, will give the correct
Lorentzian propagator but with an expð−iνjτ1 − τ2jÞ factor.
To get ðτ1 − τ2Þwithout themodulus, we need to employ the
following10 analytic continuation: ðρ>; θÞ → ðρ>; iτÞ and
ðρ<; θ0Þ → ð−ρ<; π þ iτÞ with the ordering ρ> > ρ<. For
complex numbers, we will interpret the relative ordering in
jz − z0j based on the real parts. This leads to the nice result
that we now end up replacing

eπν−νjθ−θ0j ⇒ e−iνðτ−τ0Þ: ðA3Þ
Substituting this into Eq. (A1), one immediately obtains

:GMin ¼
i
π

Z
∞

−∞

dν
2π

Kiνðμρ>ÞKiνð−μρ<Þe−iνðτ−τ0Þ; ðA4Þ

from which Eq. (19) follows. This is a simple way to get the
result.
In case this feels a bit too simplistic, let us show how we

can get this result from published tables of integrals. We
again begin by recalling that, when we Fourier transform
with respect to transverse coordinates in the Lorentzian
propagator, we get the two-dimensional result GMin ¼
iK0ðμlÞ=2π, with l2 ¼ ρ2< þ ρ2> − 2ρ<ρ> coshðτ2 − τ1Þ
where we have ordered the ρ’s as ρ> > ρ< for future
convenience. [The τ ordering is irrelevant; note that, in
Eq. (A4), interchanging τ and τ0 corresponds to reversing the
sign of ν which makes no difference because Kiν is an even
function of ν.] Next, the integral 6.792 (2) of Ref. [12] gives,
as a special case, the result

Z
∞

−∞

dω
π

e−iωτKiωðaÞKiωðbÞ

¼ K0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2 þ 2ab cosh τ

p
Þ;

ðj arg½a�j þ j arg½b�j þ jIm½τ�j < πÞ: ðA5Þ

The left-hand side almost looks likewhat wewant, but on the
right-hand side the argument ofK0 has a termwith ðþ cosh τÞ
while our l2 has ð− cosh τÞ. We need to take care of this and
also ensure that σ2 comes up as the limit of σ2 þ iϵ in the
Lorentzian sector [i.e., Imðσ2Þ > 0]. To this end,wemake the
following identification in Eq. (A5):

a ¼ μρ<eiðπ−ϵÞ; b ¼ μρ>; ðA6Þ

with real τ. Then we have jarg½a�j þ jarg½b�j þ jIm½τ�j ¼
π − ϵ < π, which takes care of the condition in Eq. (A5).
Further, we can verify that the ordering ρ> > ρ< also
ensures that Imðl2Þ > 0, leading to the correct iϵ prescrip-
tion in the Lorentzian sector. [The sign of the imaginary
part is decided by the sign of ðρ> coshðτÞ − ρ<Þ which
remains positive due to our ordering of the ρ’s.]We thus get
our advertised result,

i
2π2

Z
∞

−∞
dωe−iωτKiωð−μρ<ÞKiωðρ>Þ ¼

i
2π

K0ðμlÞ ¼GMin;

ðA7Þ

which is the same as Eq. (A4). However, we prefer the
simpler derivation.
To obtain the structure in Eq. (20) we need to know how

to proceed from the Euclidean sector to the wedge F. This is
nontrivial because in the usual procedure of analytic
continuation (θ → iτ) we go from ðρ sin θ; ρ cos θÞ to
ðiρ sinh τ; ρ cosh τÞ, which only covers the right wedge!
But one can actually get all four wedges from the Euclidean
sector by using the following four sets of analytic contin-
uations (this was discussed in greater detail in Ref. [13]):

R∶ ρ → ρ; θ → iτ; x ¼ ρ cosh τ; t ¼ ρ sinh τ; ðA8Þ

F∶ ρ→ iρ;θ→ iτþπ

2
; x¼ ρsinhτ; t¼ ρcoshτ; ðA9Þ

L∶ ρ→ρ;θ→ iτ−π; x¼−ρcoshτ;t¼−ρsinhτ; ðA10Þ

P∶ρ→ iρ;θ¼ iτ−
π

2
; x¼−ρsinhτ;t¼−ρcoshτ: ðA11Þ

Now, by using ðρ;θÞ→ðρ;iτÞ in R and ðρ;θÞ→ðiρ;iτþπ=2Þ
in F, along with the identity

KiνðizÞ ¼ −
iπ
2
e−πν=2Hð2Þ

−iνðzÞ ¼ −
iπ
2
eπν=2Hð2Þ

iν ðzÞ; ðA12Þ

one obtains a result similar to Eq. (A4) with a Hankel
function replacing one McDonald function. This gives
us Eq. (20).
In fact, the analytic continuations in Eqs. (A8)–(A11)

allow us to obtain the propagator for any pair of points
located in any two wedges directly—and rather easily—
from the Euclidean propagator. We get a KiνKiν structure in
RR, LL, RL, and LR. (The notation AB corresponds to the
first event being in wedge A and the second in wedge B.)
In FF, PP, FP, and PF the McDonald functions are replaced
by the Hankel functions. In PR, FL, RF, LP, RP, and LF
we get a product of a Hankel function and a McDonald
function. The interchange of F with P or R with L reverses
the sign of ν, as does the interchange of the two events.

10It is straightforward to verify that the coordinates transform
correctly from the Euclidean-Rindler coordinates to Lorentzian-
Rindler coordinates under this transformation. To get the correct
iϵ prescription in the Lorentzian sector, it is important to interpret
ð−ρ<Þ as the limit of ρ< exp½iðπ − ϵÞ�. This aspect has been
noticed previously, in a different context, in Ref. [11].
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The similarity to the structure of Minkowski-Bessel
modes [6] is obvious. (These results agree with those
in Ref. [14], obtained using a more complicated pro-
cedure, except for some inadvertent typos in Ref. [14]).
We discuss this procedure and results in detail in another
publication [13].
We can now obtain Eq. (27), working in the Lorentzian

sector, by some further straightforward manipulations. One
starts with Eq. (A4) and converts it to an integral over the
range ð0 < ν < ∞Þ. Then, using the results

nν ¼
e−πν

2 sinh πν
m 1þ nν ¼

eπν

2 sinh πν
m ðA13Þ

we can rewrite the propagator as

GðRRÞ ¼ i
π2

Z
∞

0

dνKiνðμρ>ÞKiνð−μρ<Þ

× sinh πν½e−πνðnν þ 1Þe−iντ þ nνeπνeiντ�

¼ i
π2

Z
∞

0

dνKiνðμρ>ÞKiνð−μρ<Þ

× sinh πν½ðnν þ 1Þe−iνðτ−iπÞ þ nνeiνðτ−iπÞ�: ðA14Þ

The prefactors (outside the square brackets) lead to the
product of the wave functions in Eq. (27) and the shift
ðτ − iπÞ leads to the reflected coordinate.
However, the thermal factor in Eq. (27) finds a more

natural home in the Euclidean sector. Here we will show
how this comes about—using again a set of identities related
to Bessel functions—when wework in the Euclidean sector.
First, the Euclidean propagator K0ðμlÞ=2π (obtained after
transverse coordinates are removed by a Fourier transform)
satisfies a Bessel function addition theorem (see p. 351 (8)
of Ref. [15]) given by

GE ¼ 1

2π
K0ðμlÞ

¼ 1

2π

X∞
m¼−∞

Kmðμρ>ÞImðμρ<Þ cosmðθ − θ0Þ: ðA15Þ

The KmIm part of the above result can be rewritten in terms
of another identity [see 6.794(10) of Ref. [12]],

2

π2

Z
∞

0

dωω sinh πω
KiωðμρÞKiωðμρ0Þ

ω2 þm2
¼ Kmðμρ>ÞImðμρ<Þ;

ðA16Þ

which gives

GE ¼ 1

π3
X∞

m¼−∞

Z
∞

0

dωω sinh πω
KiωðμρÞKiωðμρ0Þ

ω2 þm2

× cosmðθ − θ0Þ: ðA17Þ

We can look up the sum in the above expression [see
1.445 (2) of Ref. [12]] and find that it is precisely
the thermal factor in Eq. (27) written in the Euclidean
sector:

T ωðθ − θ0Þ≡ X∞
m¼−∞

1

π

ω

ω2 þm2
cosmðθ − θ0Þ

¼ coshωðπ − jθ − θ0jÞ
sinh πω

¼ ðnω þ 1Þe−ωjθ−θ0j þ nωeωjθ−θ
0j: ðA18Þ

This will lead to the Euclidean version of Eq. (27), given by

GE ¼ 1

π2

Z
∞

0

dωðsinh πωÞKiωðμρÞKiωðμρ0ÞT ωðθ − θ0Þ:

ðA19Þ

The thermal factor in the Euclidean sector can also be
expressed as a periodic sum in the Euclidean angle; that is,
we can easily show that

T ωðθ − θ0Þ ¼
X∞
n¼−∞

e−ωjθ−θ0þ2πnj; ðA20Þ

thereby making the periodicity in the Euclidean, Rindler
time obvious. This is yet another hidden thermal feature of
the inertial propagator! This allows us to write the
Euclidean, inertial propagator as a thermal sum:

GE ¼
X∞
n¼−∞

1

π2

Z
∞

0

dωðsinh πωÞKiωðμρÞKiωðμρ0Þ

× e−ωjθ−θ0þ2πnj: ðA21Þ

This equation has a simple interpretation (which we explore
extensively in Ref. [13]): on the right-hand side the n ¼ 0
terms are just the Euclidean propagator in the Rindler
vacuum. The periodic, infinite sum “thermalizes” it, thereby
producing the inertial propagator.
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