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Quantum fields in cosmological spacetimes can experience particle production due to their interaction
with the expanding background. This effect is particularly relevant for models of the very early universe,
when the energy density generated through this process may backreact on the cosmological expansion.
Yet, these scenarios have not been fully explored due to the several technical hurdles imposed by the
backreaction calculations. In this work we review the basics of cosmological quantum particle production
and demonstrate a numerical algorithm to solve the backreaction problem in regimes dominated by particle
production. As an illustration, we compute the effects of a massive quantized scalar field on a cosmological
bounce scenario, explicitly showing that quantum particle production can cause the contracting phase to
end in a radiation crunch, or can delay the bounce. Finally, we discuss the relevance of quantum particle
production/annihilation to bounce and inflationary models of the early universe.
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I. INTRODUCTION

In his pioneering 1968 Ph.D. thesis, Leonard Parker
discovered the surprising phenomenon that evolving cos-
mological spacetimes can produce quantum particles [1–3].
This work laid much of the theoretical framework for our
current understanding of quantum fields in curved space-
times (see, e.g., the textbooks [4,5]). The phenomenon has
since been investigated in astrophysical and cosmological
contexts, leading to fundamental theoretical results including
the emission ofHawking radiation by black holes [6–14] and
the generation of primordial fluctuations during inflation
[15–21].
Cosmological quantum particle production differs from

other particle production processes in that it results solely
from the shifting quantum vacuum state due to spacetime
expansion. A given mode of a quantum field can begin in a
state with no particles but at a later time have a nonzero
particle number expectation value. Parker showed that
while this does not happen for massless conformally
coupled fields, it is generic for massive scalar fields of
arbitrary coupling to the spacetime curvature. Typically, the
particle production is significant when the particle mass m
is of the order of the expansion rate H, or when m2 ≃ _H.
Simple dimensional arguments show that in a universe with
critical density ρc ≃ 3H2=8πG, quantum particle produc-
tion can contribute significantly to the energy density of the

universe at early epochs when H is not too far below the
Planck scale.
This effect naturally suggests that quantum particle

production may have a significant impact on the expansion
rate of the universe at early times. The backreaction
problem consists in understanding how the energy density
generated through this process alters the evolution of the
background spacetime. This seemingly straightforward
calculation is actually subtle due to two technical chal-
lenges of quantum fields in curved spacetimes. First, the
definition of the quantum vacuum and particle are not
formally well defined in time-varying spacetimes. Second,
the energy-momentum tensor of a quantized field propa-
gating on a curved background possesses a formally infinite
expectation value, and must be regularized to yield physi-
cally sensible results. In homogeneous and isotropic space-
times, both problems can be addressed via the method
of adiabatic regularization [22–27], which is particularly
useful for numerical computations. The adiabatic notion of
a particle offers a clear way to track the particle number
in a spacetime that is expanding sufficiently slowly. This
representation has the special property of defining a vacuum
state which comes closest to the Minkowski vacuum when
the background expansion is sufficiently slow. However,
adiabatic regularization introduces several technical compli-
cations to the backreaction problem. As a consequence,
ambiguities arise in specifying initial conditions, and com-
putationally the problem becomes very complicated with
potential numerical instabilities [28–32]. In practice, the
ambiguities and complexities together have prevented any
general numerical solution, although the test-field limit in
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which backreaction effects are neglected has been inves-
tigated in several studies [33–37].
Formal developments clarified aspects of the adiabatic

regularization approach, offering a clear separation between
the energy density due to the field particle content and the
divergent contributions from the zero-point energy [37–40].
However, the notion of the adiabatic particle appearing in the
energy density suffers from ambiguities. For a typical mode
of a quantum field, its associated particle number during
times of significant particle production depends on the
perturbative order of adiabatic regularization employed.
This is obviously an unphysical result, since the dominant
term in the energy density is often just a simple function of
the particle number density. Typically, successive orders of
adiabatic regularization gives the particle number in a given
mode as a divergent asymptotic series. Recent important
papers by Dabrowski and Dunne [41,42] employed a
remarkable result of asymptotic analysis [43–47] to sum
the divergent series and provide a sensible notion of the
particle that is valid at all times. Since any remaining physical
ambiguity is then removed from the problem, this result
points the way to a general numerical solution.
We combine these recent results into an approach that

numerically solves the quantum backreaction problem in
regimes with field energy density dominated by particle
production. We then apply this technique to a toy cosmo-
logical model, that of a positive-curvature spacetime with a
constant energy density (the closed de Sitter model). In the
absence of any quantum fields or other particle content, this
spacetime exhibits a bounce behavior, contracting to a
minimum scale factor and then expanding again. Here we
show explicitly that the existence of a massive scalar field
in a particular mass range will cause large changes in the
spacetime evolution: even if the contracting spacetime
initially contains a quantum field in its adiabatic vacuum
state, quantum particle production can create enough energy
density to push the spacetime into a radiation crunch. Special
values of the field mass can also delay but not eliminate
the bounce. This appears to be the first general solution for
the quantum backreaction problem in cosmology.
In Sec. II we review standard results for quantized scalar

fields propagating in cosmological spacetimes, while Sec. III
discusses the adiabatic field representation and the semi-
classical notion of the adiabatic particle number. Section IV
recasts quantum particle production in terms of the Stokes
phenomenon of the complex-plane wave equation for spe-
cific modes, including interference between different modes.
Section V formulates the backreaction problem for scenarios
in which the field particle content or particle production
dominates the field energy density. Section VI outlines our
numerical implementation of the mathematical results in
Secs. IVand V. Physical results for a closed de Sitter model
are presented in Sec. VII. Finally, in Sec. VIII we discuss
the prospects for more general situations, including quantum
fields with spin and interacting quantum fields, and the

possible relevance of quantum particle production to early
universemodels, including inflationaryandbounce scenarios.
Salient technical details are summarized in the Appendix.
Natural units with ℏ ¼ c ¼ 1 are adopted throughout.

II. SCALAR FIELDS IN FLRW SPACETIMES

We first summarize basic results for scalar fields in
spatially isotropic and homogeneous spacetimes (see, e.g.,
[4,5]). Consider a universe described by the Friedmann-
Lemaître-Robertson-Walker (FLRW) metric

ds2 ¼ gabdxadxb ¼ −dt2 þ a2ðtÞgijdxidxj; ð1Þ

with

gijdxidxj ¼
dr2

1 − Kr2
þ r2dθ2 þ r2 sin2 θdφ2: ð2Þ

Here aðtÞ is the scale factor that describes the cosmological
expansion history, and K ¼ −1; 0;þ1 corresponds to the
curvature parameter of an open, flat, and closed universe,
respectively. The nonvanishing components of the Ricci
tensor Rab are

R00ðtÞ ¼ 3½ _HðtÞ þH2ðtÞ�g00; ð3aÞ

RijðtÞ ¼ ½ _HðtÞ þ 3H2ðtÞ þ 2K=a2ðtÞ�gij; ð3bÞ

and the Ricci scalar R ¼ gabRab is

RðtÞ ¼ 6½ _HðtÞ þ 2H2ðtÞ þ K=a2ðtÞ�; ð4Þ

where

HðtÞ≡ _aðtÞ
aðtÞ ð5Þ

is the Hubble parameter. Overdots indicate differentiation
with respect to proper time t.
We are interested in the evolution of a free scalar field

Φðt;xÞ of arbitrary mass and curvature coupling in this
spacetime. The action for such a field can be expressed
generically as

S ¼ −
1

2

Z ffiffiffiffiffiffi
−g

p
d4x½ð∇aΦÞgabð∇bΦÞ þm2Φ2 þ ξRΦ2�;

ð6Þ

where ∇a is the covariant derivative, g ¼ detðgabÞ, m is the
field mass, and ξ is the field coupling to the spacetime
curvature. Applying the variational principle to this action
yields the equation of motion

½□ −m2 − ξRðtÞ�Φðt;xÞ ¼ 0; ð7Þ
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where□ ¼ gab∇a∇b is the d’Alembert operator associated
with the spacetime.
Due to the homogeneity and isotropy of the background

metric, the solutions of Eq. (7) can be separated into purely
temporal and spatial parts. As a consequence, the quantized
field operator can be written as

Φ̂ðt;xÞ ¼ a−3=2ðtÞ
Z

dμðkÞ½akfkðtÞYkðxÞ

þ a†kf
�
kðtÞY�

kðxÞ�; ð8Þ

where the raising and lowering operators a†k and ak satisfy
the canonical commutation relations

½ak; a†k0 � ¼ δk;k0 ; ð9Þ

and dμðkÞ is a geometry-dependent integration measure
given by

Z
dμðkÞ ¼

(P∞
k¼1 k

2; for K ¼ þ1;R∞
0 k2dk; for K ¼ 0;−1:

ð10Þ

The functions YkðxÞ and fkðtÞ contain the spatial and
temporal dependence of each k mode. The harmonic
functions YkðxÞ are eigenfunctions of the Laplace-
Beltrami operator associated with the geometry of spatial
hypersurfaces, while the mode functions fkðtÞ obey the
harmnonic oscillator equation

f̈kðtÞ þ Ω2
kðtÞfkðtÞ ¼ 0 ð11Þ

with the time-dependent frequency function

Ω2
kðtÞ ¼ ω2

kðtÞ þ
�
ξ −

1

6

�
RðtÞ −

�
_HðtÞ
2

þH2ðtÞ
4

�
; ð12Þ

where

ωkðtÞ ¼
�

k2

a2ðtÞ þm2

�
1=2

: ð13Þ

The complex mode functions fkðtÞ and f�kðtÞ also satisfy
the Wronskian condition

fkðtÞ _f�kðtÞ − _fkðtÞf�kðtÞ ¼ i: ð14Þ

If Eq. (14) holds at some particular time t, then Eq. (11)
guarantees it will also hold at all future times.
The quantization procedure outlined above naturally

leads to the construction of the Fock space of field states.
The base element of this space is the vacuum state, which is
defined as the normalized state that is annihilated by all
lowering operators:

akj0i ¼ 0 and h0j0i ¼ 1: ð15Þ

All remaining states are generated from the vacuum by the
successive application of raising operators, such as

jk1;k2;…i ¼ a†k1
a†k2

� � � j0i; ð16Þ
and normalizedby the requirement ofmutual orthonormality.
In what follows, we will be interested in the family of field
states which are spatially isotropic and homogeneous, as
these constitute viable sources of the FLRW metric.
The field operator Φ̂ðt;xÞ admits numerous representa-

tions of the form shown inEq. (8), each ofwhich is associated
with a different mode function pertaining to the set of
solutions of Eq. (11). These representations are related:
the complex mode functions fkðtÞ and hkðtÞ belonging to
any two different representations can be expressed in terms
of one another through the Bogolyubov transformations

fkðtÞ ¼ αkhkðtÞ þ βkh�kðtÞ; ð17aÞ
f�kðtÞ ¼ β�khkðtÞ þ α�kh

�
kðtÞ; ð17bÞ

where αk and βk are known as Bogolyubov coefficients.
Because of the homogeneity and isotropy, these coeffi-
cients depend only on k ¼ jkj. Substituting these expres-
sions into Eq. (8) leads to similar transformations relating
the raising and lowering operators belonging to these
representations:

ak ¼ α�kbk − β�kb
†
k; ð18aÞ

a†k ¼ αkb
†
k − βkbk; ð18bÞ

from which it follows that the Bogolyubov coefficients
must satisfy

jαkj2 − jβkj2 ¼ 1 ð19Þ
in order to guarantee that the commutation relations of
Eq. (9) are valid across all representations.
A direct consequence of Eqs. (18) is that the notion of

vacuum is not unique for a quantized field defined on a
FLRW spacetime [4,5]. This is evident from the following
simple calculation, which shows that the vacuum defined
in Eq. (15) is not necessarily devoid of particles according
to the number operator belonging to a different field
representation:

N k ¼ h0jb†kbkj0i
¼ jαkj2h0ja†kakj0i þ jβkj2h0jaka†kj0i
¼ jβkj2: ð20Þ

Therefore, different choices of representation inevitably
lead to distinct notions of vacuum and, consequently, to
distinct notions of particle. This result is a quite general
feature of quantum field theory defined on curved
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spacetimes, and although it initially seems troublesome, it
actually becomes useful in numerical backreaction cal-
culations. To that end, we introduce in the next section a
particularly useful representation which defines the most
physical notion of the particle in a FLRW spacetime.

III. ADIABATIC REPRESENTATION

Despite the multitude of available representations for a
quantized scalar field defined on a FLRW spacetime, one
particular choice referred to as the adiabatic representation
stands out. This representation has the special property of
defining a vacuum state that comes closest to theMinkowski
vacuumwhen the background expansion is sufficiently slow.
As a consequence, the adiabatic representation provides
the most meaningful notion of the physical particle in an
expanding homogeneous and isotropic universe. Here we
discuss this representation closely following Ref. [37].
The adiabatic representation is characterized by mode

functions which are the phase-integral solutions [1–3] of
Eq. (11),

hkðtÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2WkðtÞ
p exp

�
−i

Z
t
WkðsÞds

�
; ð21Þ

where the integral in the exponent can be computed from
any convenient reference time, and the function WkðtÞ is
given by the formal asymptotic series

WkðtÞ≡ ΩkðtÞ
X∞
n¼0

φk;2nðtÞ: ð22Þ

The terms φk;2nðtÞ are obtained by substituting Eqs. (22)
and (21) into Eq. (11). The expressions that ensue from
these substitutions are standard results of the phase-integral
method [48,49]; up to fourth order they are

φk;0ðtÞ ¼ 1; ð23aÞ

φk;2ðtÞ ¼
1

2
εk;0ðtÞ; ð23bÞ

φk;4ðtÞ ¼ −
1

8
½ε2k;0ðtÞ þ εk;2ðtÞ�; ð23cÞ

for which the quantities appearing on the right-hand sides
are given by

εk;0ðtÞ≡Ω−3=2
k ðtÞ d

2

dt2
½Ω−1=2

k ðtÞ�; ð24aÞ

εk;mðtÞ≡
�
Ω−1

k ðtÞ d
dt

�
m
εk;0ðtÞ: ð24bÞ

In a sense, the functions WkðtÞ capture the overall time
dependence of each k-mode due to the evolving FLRW
metric, leaving behind only the Minkowski-like mode
oscillations that take place on top of this background
[41,42]. It is this property that makes the adiabatic mode
functionshkðtÞ andh�kðtÞ suchgood templates for probing the
particle content of fields evolving in cosmological space-
times. This template role is made precise by the following
time-dependent generalization of Eqs. (17) [1–3], which
expresses the field modes fkðtÞ as linear combinations of
the adiabatic mode functions:

fkðtÞ ¼ αkðtÞhkðtÞ þ βkðtÞh�kðtÞ; ð25Þ

where the Bogolyubov coefficients αkðtÞ and βkðtÞ are
analogous to those appearing in Eqs. (17) and (18), but
are here regarded as time-dependent quantities due to the fact
that hkðtÞ and h�kðtÞ are merely approximate solutions of
Eq. (11). In order to completely specify these coefficient
functions, an additional expression must be provided. For
that purpose, it is common to introduce a condition on the
time derivative of the mode function that preserves the
Wronskian relation of Eq. (14). In its most general form,
this condition can be stated as [37]

_fkðtÞ ¼
�
−iWkðtÞ þ

VkðtÞ
2

�
αkðtÞhkðtÞ

þ
�
iWkðtÞ þ

VkðtÞ
2

�
βkðtÞh�kðtÞ: ð26Þ

Here the arbitrary function VkðtÞ contains the residual
freedom in the definition of the adiabatic vacuum. In this
work we will choose this function to be

VkðtÞ ¼ −
_WkðtÞ
WkðtÞ

; ð27Þ

as this choice leads to important simplifications in the
backreaction problem.
Gathering Eqs. (8) and (25), we find that the ladder

operators associated with the adiabatic representation
satisfy the transformations

ak ¼ α�kðtÞbkðtÞ − β�kðtÞb†kðtÞ; ð28aÞ

a†k ¼ αkðtÞb†kðtÞ − βkðtÞbkðtÞ; ð28bÞ

which in turn imply a time-dependent version of Eq. (19),

jαkðtÞj2 − jβkðtÞj2 ¼ 1: ð29Þ

Finally, it is useful to characterize field states according
to the values of the nontrivial adiabatic bilinears
hb†kðtÞbkðtÞi and hbkðtÞbkðtÞi. The first of these bilinears
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tracks the adiabatic particle content per comoving volume
in the k mode under consideration. Using the transforma-
tions established above by Eqs. (28), it follows that

N kðtÞ ¼ hb†kðtÞbkðtÞi
¼ jαkðtÞj2ha†kaki þ jβkðtÞj2haka†ki
¼ Nk þ σkjβkðtÞj2; ð30Þ

where Nk ¼ ha†kaki is a constant of motion that can be
understood as the initial number of adiabatic particles per
comoving volume populating the field mode of wave
number k, and σk ¼ 1þ 2Nk is the Bose-Einstein param-
eter responsible for stimulated particle production. The
second bilinear can be expressed as

MkðtÞ ¼ hbkðtÞbkðtÞi
¼ αkðtÞβ�kðtÞha†kaki þ αkðtÞβ�kðtÞhaka†ki
¼ σkαkðtÞβ�kðtÞ: ð31Þ

In principle, these bilinears contain all the required
information to track the field evolution and, consequently,
the time dependence of the field energy density and pressure.
In practice, however, these quantities suffer from an irre-
ducible ambiguity that is particularly pronounced when
N kðtÞ andMkðtÞ incur rapid changes, such as when particle
production occurs. The root of this issue can be traced back
to the asymptotic representation of WkðtÞ, which is usually
handled by simply truncating the series in Eq. (22) at a finite
order. However, the values of the bilinears depend strongly
on where the series is truncated if they are rapidly changing
(see Ref. [41] for striking graphical representations). In the
next section, we discuss a technique for finding the exact
universal evolution for both adiabatic bilinears that the
asymptotic series represents.

IV. PARTICLE PRODUCTION AND THE
STOKES PHENOMENON

The adiabatic representation introduced in the previous
section provides an accurate description of the bilinears
N kðtÞ and MkðtÞ whenever jεk;0j ≪ 1. The more severely
this condition is violated, the more unreliable these
adiabatic quantities become. Adiabatic particle production,
for instance, coincides with the momentary violation of
this condition, implying that the notion of particle remains
uncertain until particle production ceases. Nonetheless, a
universal notion of particle can be restored for all times
when particle production events are understood in terms
of the Stokes phenomenon.
The sharp transitions between asymptotic solutions of a

given differential equation that are valid in different regions
of the complex plane are termed the Stokes phenomenon.
These regions are bounded by the so-called Stokes and

anti-Stokes lines. In the context of a scalar field evolving in
a FLRW spacetime, the differential equation of interest is
the equation of motion for a given field mode extended to a
complex time variable z,

f00kðzÞ þ Ω2
kðzÞfkðzÞ ¼ 0; ð32Þ

in which the primes stand for differentiation with respect to
z, the proper time is given by t≡ Rez, andΩkðzÞ represents
the analytic continuation of the time-dependent frequency
of Eq. (12). The Stokes lines associated with Eq. (32) are
those lines that emanate from the zeros (also known as
turning points) and poles of ΩkðzÞ and along which
Re½Ωkdz� ¼ 0. An illustration of such a line is shown in
Fig. 1. The asymptotic solutions susceptible to the Stokes
phenomenon are given by

fkðzÞ ¼ αkðzÞhkðzÞ þ βkðzÞh�kðzÞ; ð33Þ

where hkðzÞ and h�kðzÞ are the complex extensions of the
adiabatic mode functions defined in the previous section.
As this solution evolves across a Stokes line, the values
of the Bogolyubov coefficients αkðzÞ and βkðzÞ change
abruptly. By Eqs. (30) and (31), this implies a sudden
change in the adiabatic bilinears and, in particular, the
production of adiabatic particles. Remarkably, a result from
asymptotic analysis guarantees the existence of a smooth
universal form for this rapid transition between different
asymptotic regimes. Below we outline the derivation of

FIG. 1. A depiction of the Stokes line sourced by a conjugate
pair of simple turning points ðz0; z�0Þ of a frequency function
ΩkðzÞ. Here the Stokes line crosses the real axis at the point s0,
which corresponds to the time at which particle production occurs
for the mode of wave number k. The guiding lines show the
directions for which the condition Re½Ωkdz� ¼ 0 is locally
satisfied.
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this important result and summarize the quantities that
determine the functional form of such smooth Stokes
jumps.
We start by defining Dingle’s singulant variable [43]

anchored at z0,

Fð0Þ
k ðzÞ ¼ 2i

Z
z

z0

ΩkðwÞdw; ð34Þ

where z0 is a solution of ΩkðzÞ ¼ 0 that sources the Stokes
line of interest, is closest to the real axis, and is located in
the upper half-plane. The singulant is a convenient variable
for tracking the change incurred by the Bogolyubov
coefficients αkðzÞ and βkðzÞ across a Stokes line. Indeed,
it was shown by Berry [44–47] that these coefficients
satisfy the following differential equations in the vicinity of
a Stokes line:

dβk

dFð0Þ
k

¼ Cð0Þ
β;kαk; ð35aÞ

dαk

dFð0Þ
k

¼ Cð0Þ
α;kβk; ð35bÞ

where Cð0Þ
β;k and Cð0Þ

α;k are coupling functions that depend on
the order at which the series representation of WkðzÞ is
truncated. A remarkable discovery by Dingle [43] states
that the large-order terms in the asymptotic series of
Eq. (22) have a closed form given by

φk;2nðzÞ ∼ −
ð2n − 1Þ!
πFð0Þ2n

k

for n ≫ 1: ð36Þ

It is clear from this result that the smallest term in such a

series corresponds to n ≈ jFð0Þ
k j. Terminating the series at

this order leads to optimal closed form expressions for Cð0Þ
β;k

and Cð0Þ
α;k, which can be substituted in Eqs. (35) to yield the

following universal behaviors for βkðtÞ and αkðtÞ along the
real axis and across the Stokes line under consideration:

βkðtÞ ≈
i
2
Erfcð−ϑð0Þk ðtÞÞδð0Þk ; ð37aÞ

αkðtÞ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jβkðtÞj2

q
; ð37bÞ

where ϑð0Þk ðtÞ is a natural time evolution parameter that

determines the sharpness of the Stokes jump and δð0Þk
corresponds to the jump’s amplitude. Both of these param-
eters are expressible in terms of the singulant variable
evaluated over the real axis,

ϑð0Þk ðtÞ ¼ Im½Fð0Þ
k ðtÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Re½Fð0Þ
k ðtÞ�

q ; ð38aÞ

δð0Þk ¼ expð−Fð0Þ
k ðs0ÞÞ: ð38bÞ

Here Fð0Þ
k ðs0Þ is simply the singulant computed at the point

z ¼ s0, where the Stokes line sourced by z0 intersects the
real axis, i.e.,

Fð0Þ
k ðs0Þ ¼ 2i

Z
s0

z0

ΩkðwÞdw ¼ i
Z

z�
0

z0

ΩkðwÞdw; ð39Þ

where the last equality follows from the reality of ΩkðzÞ
over the real axis. Putting together Eqs. (30), (31), and (37)
yields a universal functional form that describes the time
evolution of the adiabatic bilinears associated with the field
mode of wave number k:

N k ≈ Nk þ
σk
4
jErfcð−ϑð0Þk Þδð0Þk j2; ð40aÞ

Mk ≈ −i
σk
2
½Erfcð−ϑð0Þk Þδð0Þk �½1þN k�1=2: ð40bÞ

These results can be further generalized to account for
multiple Stokes line crossings, as well as the interference
effects between them [41]. Define the accumulated phase
between the first and the pth pair of zeros of ΩkðzÞ as

θðpÞk ¼
Z

sp

s0

ΩkðwÞdw; ð41Þ

where sp corresponds to the point where the Stokes line
associated with the pth conjugate pair of zeros crosses the
real axis. The functions that describe both adiabatic
bilinears are then given by

N k ≈ Nk þ
σk
4

����X
p

Erfcð−ϑðpÞk ÞδðpÞk expð2iθðpÞk Þ
����2; ð42aÞ

Mk ≈ −i
σk
2

�X
p

Erfcð−ϑðpÞk ÞδðpÞk expð−2iθðpÞk Þ
�

× ½1þN k�1=2 ð42bÞ

with δðpÞk and ϑðpÞk ðtÞ being the amplitude and time
evolution parameter associated with the pth Stokes line.
Therefore, by monitoring the turning points and Stokes

lines that accompany each mode’s frequency function
on the complex plane, we can track the evolution of the
adiabatic bilinears related to any physically acceptable field
state. In the next section we examine how this evolution
affects the universe’s scale factor through the semiclassical
Einstein equations.
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V. THE SEMICLASSICAL EINSTEIN EQUATIONS

If cosmological quantum particle production occurs at
a sufficiently high rate, it can in principle backreact on
the cosmic evolution through the semiclassical Einstein
equations

Rab −
1

2
Rgab þ Λgab ¼ M−2hT̂abi; ð43Þ

where Λ represents the cosmological constant, M ¼
ð8πGÞ−1=2 stands for the reduced Planck mass, and hT̂abi
corresponds to the expectation value of the energy-
momentum tensor operator, including contributions from
both the scalar field we are considering and any other stress-
energy sources. The canonical expression for T̂ab due to the
scalar field is constructed byvarying the action inEq. (6)with
respect to the metric gab, and subsequently substituting the
field operator Φ̂ from Eq. (8) into the resulting expression:

T̂ab ¼ ð∇aΦ̂Þð∇bΦ̂Þ − 1

2
gabð∇cΦ̂Þð∇cΦ̂Þ

þ ξ

�
gab□ −∇a∇b þ Rab −

1

2
Rgab −

m2

2
gab

�
Φ̂2:

ð44Þ

For a statistically homogeneous and isotropic field state,
hT̂abi is equivalent to the energy-momentum tensor of
a perfect fluid for which the field energy density and pressure
are given, respectively, by ρðtÞ ¼ hT̂00i and PðtÞ ¼
1
3
gijhT̂iji. As a consequence, such a state naturally sources

an FLRW metric, reducing Eq. (43) to the usual Friedmann
equations:

H2ðtÞ ¼ 1

3
M−2ρðtÞ þ Λ

3
−

K
a2ðtÞ ; ð45aÞ

_HðtÞ þH2ðtÞ ¼ −
1

6
M−2½ρðtÞ þ 3PðtÞ� þ Λ

3
: ð45bÞ

Furthermore, it can be shown that hT̂abi is covariantly
conserved, resulting in the cosmological continuity equation

_ρðtÞ þ 3HðtÞ½ρðtÞ þ PðtÞ� ¼ 0: ð46Þ

However, at this stage these equations are merely formal,
because both the pressure and energy density of a quantized
field are in general divergent and need to be regularized.
In a FLRW spacetime, these divergences can be partially
isolated by expressing ρðtÞ and PðtÞ in terms of the
adiabatic bilinears N kðtÞ and MkðtÞ [37]. Substituting
Eqs. (8), (25), and (26) into the expectation value of
Eq. (44) and collecting terms with the same adiabatic factor
gives

ρðtÞ ¼ hT̂00i

¼ 1

4πa3ðtÞ
Z

dμðkÞ
�
ρNk ðtÞ

�
N kðtÞ þ

1

2

�

þ ρRk ðtÞRkðtÞ þ ρIk ðtÞIkðtÞ
	
; ð47aÞ

PðtÞ ¼ 1

3
gijhT̂iji ¼

1

4πa3ðtÞ
Z

dμðkÞ
�
PN
k ðtÞ

�
N kðtÞ þ

1

2

�

þ PR
k ðtÞRkðtÞ þ PI

k ðtÞIkðtÞ
	
: ð47bÞ

The terms proportional to N kðtÞ capture the contribution
to the energy density and pressure due to the evolving
distribution of adiabatic particles populating the fieldmodes,
while the quantum interference terms contain RkðtÞ ¼
Re½MkðtÞ� and IkðtÞ ¼ Im½MkðtÞ� [50]. The prefactors
in each of these terms are defined as

ρNk ðtÞ≡ 1

WkðtÞ
�
W2

kðtÞ þ ω2
kðtÞ þ

1

4
½VkðtÞ −HðtÞ�2

þ ð6ξ − 1Þ
�
HðtÞVkðtÞ − 2H2ðtÞ þ K

a2ðtÞ
�	

;

ð48aÞ

ρRk ðtÞ≡ 1

WkðtÞ
�
−W2

kðtÞ þ ω2
kðtÞ þ

1

4
½VkðtÞ −HðtÞ�2

þ ð6ξ − 1Þ
�
HðtÞVkðtÞ − 2H2ðtÞ þ K

a2ðtÞ
�	

;

ð48bÞ

ρIk ðtÞ≡ VkðtÞ −HðtÞ þ 2HðtÞð6ξ − 1Þ; ð48cÞ

PN
k ðtÞ≡ 1

3WkðtÞ
�
W2

kðtÞþω2
kðtÞ−2m2þ1

4
½VkðtÞ−HðtÞ�2

þ1

3
ð6ξ−1Þ2RðtÞþð6ξ−1Þ

�
−2W2

kðtÞ−
1

2
V2
kðtÞ

þ4HðtÞVkðtÞþ2ω2
kðtÞþ2 _HðtÞþ K

a2ðtÞ−
5

2
H2ðtÞ

�	
;

ð48dÞ

PR
k ðtÞ≡ 1

3WkðtÞ
�
−W2

kðtÞþω2
kðtÞ−2m2þ1

4
½VkðtÞ−HðtÞ�2

þ1

3
ð6ξ−1Þ2RðtÞþð6ξ−1Þ

�
2W2

kðtÞ−
1

2
V2
kðtÞ

þ4HðtÞVkðtÞþ2ω2
kðtÞþ2 _HðtÞ

þ K
a2ðtÞ−

5

2
H2ðtÞ

�	
; ð48eÞ
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PI
k ðtÞ≡ 1

3
½VkðtÞ −HðtÞ� þ 2

3
ð6ξ − 1Þ½4HðtÞ − VkðtÞ�:

ð48fÞ
For adiabatic field states, the contributions to the energy
density and pressure due to the real bilinears N kðtÞ, RkðtÞ,
and IkðtÞ are always finite. This implies that the divergences
in Eqs. (47a) and (47b) are isolated in the vacuumlike terms
characterized by the 1

2
factors, and henceforth identified as

ρvacðtÞ≡ 1

8πa3ðtÞ
Z

dμðkÞρNk ðtÞ; ð49aÞ

PvacðtÞ≡ 1

8πa3ðtÞ
Z

dμðkÞPN
k ðtÞ: ð49bÞ

Regularization consists precisely in controlling the divergent
behavior of ρvacðtÞ and PvacðtÞ so as to obtain finite
expressions for ρðtÞ and PðtÞ which still satisfy the cosmo-
logical continuity equation. Adiabatic regularization
achieves this result by subtracting the fourth-order phase-
integral expansions of ρNk ðtÞ and PN

k ðtÞ from the integrands
of Eqs. (49a) and (49b), respectively [22,27]. From a
technical perspective, however, this procedure introduces
significant challenges to the numerical implementation of
the semiclassical Friedmann equations. Chief among these is
the appearance of higher-order time derivatives ofHðtÞ in the
integrands of Eqs. (47), turning the semiclassical Friedmann
equations into a system of integro-differential equations,
which is not amenable to standard numerical treatments.
We circumvent this difficulty by employing an alternative
regularization scheme that, albeit cruder, yields a good
approximation to ρðtÞ and PðtÞ in regimes dominated by
particle production.
Central to the regularization approach adopted here is the

realization that ρvacðtÞ and PvacðtÞ independently satisfy the
cosmological continuity equation as long as the function
VkðtÞ has the form established in Eq. (27) (see Appendix).
It follows that the vacuum contributions to ρðtÞ and PðtÞ
can be discarded in their entirety while still ensuring that
Eq. (46) remains valid. Despite its simplicity, this pro-
cedure yields a good approximation to the field energy
density and pressure provided the adiabatically regularized
integrands of Eqs. (47) are dominated by the real adiabatic
bilinears N kðtÞ, RkðtÞ, and IkðtÞ. Therefore, in what
follows we take the regularized expressions for the energy
density and pressure to be

ρðtÞ ≈ 1

4πa3ðtÞ
Z

dμðkÞfρNk ðtÞN kðtÞ þ ρRk ðtÞRkðtÞ

þ ρIk ðtÞIkðtÞg; ð50aÞ

PðtÞ ≈ 1

4πa3ðtÞ
Z

dμðkÞfPN
k ðtÞN kðtÞ þ PR

k ðtÞRkðtÞ

þ PI
k ðtÞIkðtÞg; ð50bÞ

where the factors ρNk ðtÞ, ρRk ðtÞ, and ρIk ðtÞ, PN
k ðtÞ, PR

k ðtÞ,
and PI

k ðtÞ are computed by truncating the asymptotic series
Eq. (22) for WkðtÞ at its optimal order.
Finally, the regularization of hT̂abi also induces the

renormalization of the gravitational coupling constants G
andΛ. Moreover, self-consistency demands the introduction
of a covariantly conserved tensor composed of fourth-order
derivatives of the metric into the semiclassical Einstein
equations [23,24]. This tensor is accompanied by a new
unknown coupling constant whose renormalization
assimilates the ultraviolet divergence in the field energy-
momentum tensor. For simplicity, in this work we assume
this new coupling constant to be renormalized to zero, thus
preserving the form of Eq. (43). Nonzero values for this
coupling constant will be considered elsewhere.
Taken together, Eqs. (42), (45), and (50) describe the

coupled field evolution and cosmic evolution in regimes
dominated by particle production. In the next section we
present an algorithm that numerically solves this system of
equations.

VI. NUMERICAL IMPLEMENTATION

The semiclassical Friedmann equations can be formulated
as a discretized initial value problem. We take the domain of
numerical integration to be a band of the complex plane that
is bisected by the real t axis. As illustrated in Fig. 2, this band
is discretized by a uniformly spaced grid where the real-
valued entries tj label the physical time. Initial conditions are

FIG. 2. A grid of uniformly spaced points covering a band of
the complex plane. The grid points lying over the real axis mark
the discretization of physical time. Numerically constructing the
Taylor polynomial associated with the frequency function around
the point tj allows for the optimal evaluation of ΩkðzijÞ at grid
points zij for which Rezij ¼ tj.
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set by an appropriately chosen functional form for the scale
factor aðtÞ, which not only admits an adiabatic field state at
the initial time t0 but which is also consistent with our choice
for the initial distribution of adiabatic particlesN kðt0Þ ¼ Nk
populating the field modes. In addition, we require that

Nk < Oðk−3Þ as k → ∞ ð51Þ
in order to ensure that both the energy density and pressure
associated with the initial particle distribution are finite.
We use a standard finite-difference scheme to step aðtÞ,

HðtÞ, and _HðtÞ along the real axis, and employ B-splines to
scan the Stokes geometry on the complex plane. The latter
is accomplished by generating a numerical sample of ΩkðtÞ
through Eq. (12), and subsequently performing high-order
B-spline interpolations to construct a truncated Taylor
polynomial for this function over the real line up to the
value of t in the current time step. Because of the analyticity
of ΩkðtÞ, this series representation is also valid on the
complex plane, and thus encodes the analytical continu-
ation of the frequency function. Explicitly, given a grid
point zij on the discretized plane, we compute ΩkðzijÞ
through the expression

ΩkðzijÞ ≈
XT
n¼0

1

n!
ðzij − tjÞnΩðnÞ

k ðtjÞ; ð52Þ

where tj ¼ Rezij, as depicted in Fig. 2. The numerical

derivatives ΩðnÞ
k are extracted from B-spline interpolations

over the real axis, and T corresponds to a truncation order
that depends on the density of grid points lying over the real
axis. In addition, we feed Eq. (52) to a Padé approximant
[51] routine to accelerate its convergence and improve its
accuracy. Once this approximate representation of the
frequency function has been computed over the discretized
plane, it can be interpolated and used in the monitoring of
turning points and Stokes lines.
While the turning points ofΩkðzÞ can be located with the

aid of root-finding algorithms designed for multivalued
functions, the problem of determining the Stokes lines
sourced by these points requires the numerical integration
of an ordinary differential equation. This is evident from the
Stokes lines definition Re½Ωkdz� ¼ 0, which implies that,
locally, its line element must satisfy dz ∝ i=ΩkðzÞ. Defining
t ¼ Rez and τ ¼ Imz, this condition can be rewritten as

dz ¼ dtþ idτ ∝
i

ΩkðzÞ
: ð53Þ

Taking the ratio between the matched real and imaginary
parts of this proportionality relation leads to the differential
equation

dt
dτ

¼ ImΩkðzÞ
ReΩkðzÞ

ð54Þ

for the Stokes line, which can be numerically integrated
from the turning point of interest to yield tðτÞ.
Here is a summary of the minimal set of tasks performed

by our algorithm while evolving the physical quantities of
interest by one time step:
(1) Take samples of aðtÞ, HðtÞ, and _HðtÞ describing

the metric along an interval of the real axis. Over this
same interval, sample and interpolate the field
energy density ρðtÞ and pressure PðtÞ.

(2) Numerically integrate the semiclassical Friedmann
equations so as to enlarge the input metric samples
aðtÞ, HðtÞ, and _HðtÞ by a time step Δt.

(3) For each field mode, generate a sample of the
frequency function ΩkðtÞ over the real axis, and
numerically extend this function onto the complex
plane to obtain ΩkðzÞ.

(4) Search for complex turning points of each frequency
function ΩkðzÞ, and numerically trace their corre-
sponding Stokes lines.

(5) If a Stokes line associated with a mode of wave
number k is found to intersect the real axis, update the
real bilinears N kðtÞ, RkðtÞ, and IkðtÞ accordingly.

(6) For each field mode, computeWkðtÞ and VkðtÞ up to
the optimal truncation order set by the last Stokes
line crossing.

(7) Gather the results from all previous steps to evolve
the input samples for the field energy density ρðtÞ
and pressure PðtÞ by a time step Δt.

In general, the Stokes lines associated with field modes
of comparable wave numbers will cross the real axis within
close proximity of one another, giving rise to overlapping
particle production events. To correctly capture the influ-
ence that such events might have on each other, we apply
the stepping algorithm outlined above in an iterative
fashion. In other words, once the quantities of interest
have been forward stepped up to tj, the following iteration
backtracks to t0 and then proceeds to step the problem up
to tjþ1 ¼ tj þ Δt using as sources for the semiclassical
Friedmann equations the field energy density and pressure
obtained in the previous iteration.
In summary, our numerical implementation allows for

the scale factor and the Stokes geometry to reconfigure
themselves with each iteration and thereby construct a self-
consistent solution to the backreaction problem.

VII. NUMERICAL RESULTS

To assess the accuracy of our numerical approach, we
first neglect backreaction effects and compare numerical
results to known analytic solution for a quantized scalar
field evolving in a closed de Sitter spacetime [52]. This case
is characterized by a positive cosmological constant Λ and
a curvature parameter of K ¼ 1, which together lead to a
bouncing scale factor evolution

aðtÞ ¼ H̄−1 cosh ðH̄tÞ with H̄ ¼
ffiffiffiffiffiffiffiffiffi
Λ=3

p
: ð55Þ
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Here H̄ is the asymptotic value of the Hubble parameter in
the infinite future,

lim
t→�∞

HðtÞ ¼ �H̄: ð56Þ

This model universe contracts for t < 0, reaches its mini-
mum size at t ¼ 0, and subsequently expands for the t > 0.

Substituting Eq. (55) into Eq. (12) yields

Ω2
kðtÞ ¼ H̄2

��
k2 −

1

4

�
sech2ðH̄tÞ þ m2

H̄2
þ 12ξ −

9

4

�
ð57Þ

for the mode frequency function. Analytically extending
this function to the complex plane, locating its turning
points, and tracing its Stokes lines are straightforward.
We verify our numerical calculations against these analytic
results. For definiteness, we choose a scalar field mass
m ¼ 0.1M which is conformally coupled to the scalar
curvature, ξ ¼ 1

6
. We set the cosmological constant to

Λ ¼ 3m2, so that H̄ ¼ 1m. All dimensional quantities
are thus expressed in terms of the field mass.
A comparison between the analytic extension of Eq. (57)

and the numerical analytic continuation produced by our
algorithm is displayed in Fig. 3 for the field mode of
wave number k ¼ 5m. The left panel shows the absolute
value of the numerically obtained frequency function,
while the right panel exhibits how this result deviates from
the analytic expression for ΩkðzÞ. In addition to correctly
reproducing the function’s conjugate pair of zeros ðz0; z�0Þ
located in this region, the numerical analytic continuation
differs from the analytic value by at most 2% in the vicinity
of these points. As a result, the Stokes lines that occupy this
area of the complex plane can be traced with high fidelity.
This is demonstrated in the left panel of Fig. 4, where the
Stokes lines sourced by the pairs of turning points ðz0; z�0Þ
and ðz1; z�1Þ are superimposed over the numerically
obtained frequency function. The effects of each Stokes
line on the adiabatic bilinear N kðtÞ are displayed in the
right panel of Fig. 4, wherein this quantity is tracked as a
function of time. Each burst of particle production is

FIG. 3. A comparison between the numerical analytic continu-
ation of ΩkðzÞ produced by our algorithm and the expected
analytic expression for this function in a closed de Sitter
spacetime. The field parameters are m ¼ 0.1M, ξ ¼ 1

6
, and

k ¼ 5m, while the spacetime is characterized by Λ ¼ 3m2 and
K ¼ 1. The left panel shows the absolute value of the numerically
produced frequency function in the vicinity of the pair of
conjugate turning points ðz0; z�0Þ, while the right panel exhibits
the relative difference between the analytic and numerical results.

FIG. 4. The numerically traced Stokes geometry associated with the frequency function ΩkðzÞ and the adiabatic particle number
evolution N kðtÞ extracted from it. The field parameters are set to m ¼ 0.1M, ξ ¼ 1

6
, k ¼ 5m, and Nk ¼ 0, while the spacetime is

characterized by Λ ¼ 3m2 and K ¼ 1. The left panel shows the Stokes lines sourced by the pairs of turning points ðz0; z�0Þ and ðz1; z�1Þ
superimposed over the absolute value of the numerically obtained frequency function. The real axis corresponds to the central dashed
line. The effects of each Stokes line on the adiabatic particle number N kðtÞ are illustrated on the right panel, wherein this quantity is
tracked as a function of time. Each burst of particle production is prompted by a Stokes line crossing, indicated here by the circular
markers on the horizontal axis. The expected values for the particle number plateaus featured in this image are indicated by the square
markers on the vertical axis, both of which show very good agreement with the numerically produced curve for N kðtÞ. Constructive
interference causes more particles to be produced in the second burst.
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prompted by a Stokes line crossing, the first of which
occurs as the universe contracts and the field mode under
consideration becomes subhorizon; the second burst hap-
pens after the bounce, when the mode reverts back to being
superhorizon due to the universe’s expansion [37]. Despite
the symmetry between these events, constructive interfer-
ence expressed by Eq. (42) causes more particles to be
produced in the second burst. The expected values for the
particle number plateaus are indicated by the square markers
on the vertical axis, both of which agree well with the
numerical curve.
By tracing the Stokes geometry of every field mode, we

can also track the evolution of the field energy density as
the spacetime evolves. Even though backreaction effects
are being neglected, this quantity shows whether the effects
of particle production will eventually become comparable
to the contributions from Λ and K that source the back-
ground de Sitter spacetime. To that end, we track every term
appearing on the right-hand side of the semiclassical
Friedmann Eq. (45), identifying each contribution accord-
ing to the notation

H2
N ;R;I ≡

ρ

3M2
; H2

Λ≡Λ
3
; and H2

K≡−
K
a2

: ð58Þ

Additionally, we define H2
R;I as the contribution to the

right-hand side of Eq. (45a), which stems solely from terms

proportional to the real bilinearsRk and Ik. The left panel of
Fig. 5 displays the evolution of the above-defined quantities
for a bounce that starts at t0 ¼ −5 m−1 with an initial particle
distribution given by N kðt0Þ ¼ 0. Being the only true
sources in this case, H2

Λ and H2
K behave in the standard

way, acting in concert to produce the de Sitter bounce.
Because backreaction effects are neglected, the Hubble
parameter H shown in the right panel of Fig. 5 is entirely
characterized by these two quantities, i.e., H2 ¼ H2

Λ þH2
K .

On the other hand, the field-related quantities H2
N ;R;I and

H2
R;I display an interesting behavior that mirrors the result

found in Ref. [38]. While H2
R;I remains negligible through-

out, H2
N ;R;I grows exponentially as the universe progresses

toward the bounce. In other words, the field energy density
eventually becomes dominated by N k—the field particle
content. Physically, the soaring field energy density is due to
the blueshift experienced by particles produced in the
contracting phase. As a result, the universe is filled with
relativistic particles which effectively behave as radiation,
making the field energy density grow as ρ ∝ a−4. This trend
is then reversed in the ensuing expanding phase, during
which the field energy density drops rapidly as particles are
continuously redshifted.
The preceding calculations demonstrate that backreaction

effects due to particle production can become dynamically

FIG. 5. The evolution of every term appearing on the right-hand side of the semiclassical Friedmann Eq. (45) in a closed de Sitter
spacetime evolution, as well as the quantities describing the metric for this spacetime in the absence of backreaction. The field
parameters are set to m ¼ 0.1M and ξ ¼ 1

6
, while the spacetime is characterized by Λ ¼ 3m2 and K ¼ 1. The bounce starts at

t0 ¼ −5 m−1 with an initial particle distribution given byN kðt0Þ ¼ 0. The left panel follows the evolution of H2
N ;R;I (solid line), H2

R;I

(dot-dashed line), H2
Λ (dotted line), and H2

K (dashed line). While H2
R;I remains negligible throughout, H2

N ;R;I grows exponentially and
eventually comes to dominate over all other contributions. The right panels illustrate the scale factor aðtÞ and Hubble parameter HðtÞ
that describe the de Sitter bounce. Because backreaction effects are being neglected, the Hubble parameter is just H2 ¼ H2

Λ þH2
K .
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significant in an initially closed de Sitter spacetime. A full
account of these effects is shown in Fig. 6, using the
algorithm for computing backreaction effects described in
the previous section. In this case, the metric evolution
initially matches that of a closed de Sitter spacetime at
t0 ¼ −5 m−1, while the initial particle distribution is given
by N kðt0Þ ¼ 0. These initial conditions self-consistently
satisfy the semiclassical Friedmann equations at the initial
time t0 within our approximations. As in the case without
backreaction, the quantity H2

R;I remains subdominant
throughout the evolution, whileH2

N ;R;I grows exponentially
as newly created particles are continuously blueshifted. Since
they quickly become relativistic, these particles behave as an
additional radiationlike component, destabilizing the initial
de Sitter phase. This is illustrated in the right panels of Fig. 6,
where the scale factor and Hubble parameter can be seen
transitioning from a de Sitter bounce to a radiation-
dominated behavior. The contributions from the regularized
vacuum terms discarded in our approximations remain
negligible at all times. We stop the numerical integration
at t ¼ −1.3 m−1, since beyond this time the Hubble param-
eter becomes of order H ≃M−1, invalidating the semi-
classical picture of gravity on which our calculations rely.
The de Sitter bounce is not always disrupted by particle

production. For N kðt0Þ ¼ 0 and sufficiently low values of

the field mass, the bounce is merely delayed. Figure 7
illustrates a near-limiting case with m ¼ 0.0145M for
which an initial de Sitter evolution is still driven toward
a radiation dominated phase. The contributions due to
particle production H2

N ;R;I only come to dominate over the

combined H2
Λ and H2

K near the bounce at t ¼ 0 m−1. For
field masses m≲ 0.0142M, the negative curvature contri-
butions H2

K neutralize the growth of H2
N ;R;I for long

enough to preserve the bounce. The resulting bounce is
pushed to a slightly later time and occurs at a smaller value
of the scale factor.
Whenever an initial particle distribution is present,

however, the disruption of the de Sitter bounce can occur
at a smaller mass threshold. For instance, if m ¼ 0.0117M
and the initial particle distribution is given by

N kðt0Þ ¼
�
3; for k ≤ 5m;

0; for k > 5m;
ð59Þ

it can be numerically verified that the de Sitter bounce is
still disrupted. Self-consistent initial conditions for this
scenario are obtained through numerical iteration, yielding
an initial functional form for the scale factor aðtÞ corre-
sponding only approximately to that of a closed de Sitter

FIG. 6. The evolution of every term appearing on the right-hand side of the semiclassical Friedmann Eq. (45) and the quantities
describing the metric evolution in a full backreacting calculation. The field parameters arem ¼ 0.1M and ξ ¼ 1

6
, while the cosmological

constant and curvature parameter are Λ ¼ 3m2 and K ¼ 1. The closed de Sitter initial conditions are set at t0 ¼ −5 m−1, along with an
initial particle distribution given byN kðt0Þ ¼ 0. The left panel follows the evolution of H2

N ;R;I (solid line), H2
R;I (dot-dashed line), H2

Λ

(dotted line), andH2
K (dashed line). The exponential growth ofH2

N ;R;I effectively fills the universe with relativistic particles, introducing
an instability to the initial de Sitter phase. The right panels illustrate the scale factor aðtÞ and Hubble parameterHðtÞ transitioning from a
Sitter bounce to a radiation dominated phase. Here the solid lines represent the solutions to the backreaction problem, while the dashed
lines trace the pure de Sitter bounce.
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FIG. 7. The evolution of every source term featured on the right-hand side of the semiclassical Friedmann equation (45) and the
quantities describing the metric evolution in a full backreacting calculation. The field parameters are set to m ¼ 0.0145M and ξ ¼ 1

6
,

while the cosmological constant and curvature parameter are characterized by Λ ¼ 3m2 and K ¼ 1. The closed de Sitter initial
conditions are set at t0 ¼ −5 m−1, along with an initial particle distribution given byN kðt0Þ ¼ 0. The left panel follows the evolution of
H2

N ;R;I (solid line), H2
R;I (dot-dashed line), H2

Λ (dotted line), and H2
K (dashed line). The growth of H2

N ;R;I fills the universe with just
enough relativistic particles to destabilize the initial de Sitter phase. The right panels illustrate the scale factor aðtÞ and Hubble parameter
HðtÞ transitioning from a de Sitter bounce to a radiation dominated phase. Here the solid lines represent the solutions to the backreaction
problem, while the dashed lines trace the pure de Sitter bounce. Had the field mass been set to a value m ≲ 0.0142M, a bounce would
still take place, albeit at a slightly later time and for a smaller value of the scale factor.

FIG. 8. Characterization of the particle production events experienced by each field mode. The field parameters are set to m ¼
0.0117M and ξ ¼ 1

6
, while the cosmological constant and curvature parameter are characterized by Λ ¼ 3m2 and K ¼ 1. The initial

conditions are set at t0 ¼ −5 m−1, along with an initial particle distribution given by N kðt0Þ ¼ 3 for k ≤ 5m and N kðt0Þ ¼ 0 for
k > 5m. The left panel displays the Berry amplitudes of Eq. (38b) for each field mode. Notice that the Berry amplitudes are larger for
smaller values of the wave number k, in contrast to the constant amplitudes encountered over all modes in a pure de Sitter evolution. The
right panel shows the final number of produced particles ΔN k ¼ N k − Nk in each mode. Despite the continuous character of the Berry
amplitudes for all k, those field modes that were originally populated by the initial particle distributionN kðt0Þ ¼ Nk exhibit a markedly
larger final particle number due to stimulated particle production.
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spacetime and compatible with the initial distribution of
adiabatic particles given by Eq. (59). Here, even though
m < 0.0142M, the additional energy density associated
with N kðt0Þ is enough to cause H2

N ;R;I to eventually

dominate over the combined contributions of H2
Λ and H2

K .
As a result, the bounce is once again disrupted and the
cosmic evolution driven toward a radiation crunch. This
scenario also showcases the phenomenon of stimulated
particle production in a fully backreacting calculation. This
is illustrated for each field mode in Fig. 8, in which the
Berry amplitudes are displayed in the left panel, and the
right panel shows the final number of produced particles
ΔN k ¼ N k − Nk. Despite the continuous character of the
Berry amplitudes for all k, those field modes that were
originally populated by the initial particle distribution
exhibit a markedly larger final particle number due to
stimulated particle production. We also note that the Berry
amplitudes are larger for smaller values of the wave number
k, in contrast to the constant amplitudes encountered over
all modes in a pure de Sitter evolution [37,52].

VIII. DISCUSSION

The backreaction problem addressed in this work
imposes several technical hurdles that have resisted a
satisfactory solution for decades. These difficulties stem
primarily from the necessity to control the divergent nature
of the vacuum energy. Adiabatic regularization accom-
plishes this at the cost of increasing the problem’s complex-
ity. As a result, ambiguities arise in the specification of
initial conditions and in the value of physical quantities
when particle production is rapid, and computationally the
problem becomes susceptible to potential numerical insta-
bilities. In this work we have shown that these issues can be
circumvented in scenarios dominated by particle produc-
tion. Our approach relies on a particular choice of adiabatic
mode functions that isolate the vacuum contributions into a
separate covariantly conserved component of the total
stress energy. In regimes dominated by particle production,
this vacuum component is subdominant and can be dis-
carded in its entirety. By definition, the remaining cova-
riantly conserved portion of the stress-energy dominates, as
it encapsulates the effects of particle production. This
component can be expressed in terms of the particle
number density as described by Berry’s universal form,
resolving the ambiguity in physical quantities, and com-
puted from the analytic continuation of each mode’s
frequency function onto the complex plane (Figs. 4 and 5).
The resulting stress energy is a calculable source term for
the semiclassical Friedmann equations and can be used to
obtain a numerical solution to the backreaction problem.We
have performed this calculation for an initially closed de
Sitter spacetime, demonstrating that the effects of particle
production in this scenario can become strong enough to
drive the cosmic evolution into a radiation-dominated phase

(Figs. 6, 7, and 8). Our results illustrate the reliability of our
numerical implementation, and open the possibility of the
systematic investigation of cosmological scenarios domi-
nated by quantum particle production.
On a technical level, our method relies on some previous

knowledge of the Stokes geometry associated with the
spacetime evolution. For the case studied in this work, all
Stokes lines are sufficiently separated from each other so
that Berry’s universal form for particle production applies
without corrections. In general, however, the spacetime
evolution might result in near-lying Stokes lines for which
higher-order Stokes corrections are required for an accurate
description of particle production. Although not included
in this work, such corrections are well documented in the
literature [53–55] and could in principle be added to our
numerical implementation.More fundamentally, ourmethod
is based on a well-defined semiclassical notion of particle.
Mathematically, this notion is tied to the existence of a
phase-integral expansion for the field mode functions. Such
a representation can always be constructed as long as
jεk;0j ≪ 1. Physically, this requirement typically translates
to an approximate bound on the Hubble rate H ≲m set by
the mass of the field under consideration. Nonetheless, some
scenarios exist for which jεk;0j ≪ 1 is satisfied even when
H > m.
Quantum backreaction is potentially important in models

of the very early universe. Quantum particle production
is actually quite familiar in the context of inflation, as it
provides the standard mechanism for the generation of
perturbations in an inflating spacetime [15–21,56].
Interestingly, it has been suggested that these same ideas
could be applied to the problem of driving inflation itself
[57–63]. Indeed, a phase of accelerated expansion can
result if particles are produced at a high enough rate. A time
derivative of the usual Friedmann equation H2ðtÞ ¼
1
3
M−2ρðtÞ shows that an accelerating expansion ä > 0

occurs when

_ρðtÞ > −
2ffiffiffi
3

p M−1ρ3=2ðtÞ: ð60Þ

Such a scenario has the potential to sidestep some of the
conceptual problems of the standard inflationary paradigm.
For instance, it has been argued that standard inflation
cannot generically start in a patch that is smaller than the
cosmological horizon without violating either causality or
the weak energy condition [64,65]. However, if inflation
is initially driven by an increasing energy density due to
particle production, the weak energy condition is effec-
tively violated. Therefore, inflation driven by such a
mechanism could generically start in small patches con-
tained within the cosmological horizon without violating
causality. Inflation driven by particle production would also
clarify the meaning of the inflaton effective potential by
making manifest the high mass-scale physics it represents.
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Last, it should be noted that inflation driven by cosmological
quantum particle production would differ from warm infla-
tion scenarios [66–68] as its underlying mechanism does
not rely on interactions between different matter fields to
generate particles. Nonetheless, the vacuum misalignment
inevitably leads to some nonzero particle production in
standard inflation scenarios. Even if this is not a dynamically
dominant effect, it can still mimic some aspects of warm
inflation models in that some amount of particles are present
at the end, which could alter the subsequent reheating phase.
The same conditions that lead to quantum particle pro-

duction can also result in particle annihilation. If sufficiently
pronounced, this effect can drive a contracting spacetime
toward a bounce phase. Indeed, it follows from the cosmo-
logical continuity equation that ρðtÞ þ PðtÞ < 0 provided
the particle annihilation rates are high enough to cause the
field energy density to decrease as the universe contracts. In
other words, the null energy condition is effectively violated,
making _HðtÞ > 0 according to the Friedmann equations
[69,70]. Thus, a classical bounce can emerge provided
enough energy density is sequestered by quantum particle
annihilation during a phase of cosmological contraction. If
realized, such a mechanism could provide a natural descrip-
tion for cosmological bounce scenarios that does not require
new physics. Also, successful bounces require constraints on
high mass-scale quantum fields, so that quantum back-
reaction does not push the contracting phase into a radiation
crunch, as with the example solved in this paper.
Another possibly interesting effect is the production of a

relativistic condensate in the early universe. Under certain
circumstances, quantum particle production can lead to large
occupation numbers for some scalar field modes, represent-
ing condensate formation. This phenomenon could lead to
additional interesting phenomenology [71–73].
Finally, the algorithm presented in this work might prove

useful in future stability studies of the Bunch-Davies state
in an initially closed de Sitter spacetime. In the adiabatic
representation, this state is described by a distribution of
phase coherent particles that are completely annihilated in
the contracting phase, and recreated in a time-symmetric
fashion through the subsequent expanding phase. It has
been argued that small deviations from this initially tuned
state should lead to instabilities due to particle production,
ultimately driving cosmic evolution away from the initially
assumed de Sitter phase [38,39]. A complete numerical
solution and characterization of these instabilities in a fully
backreacting calculation will be explored in a future work.
A number of technical questions remain to be answered.

Fermion fields requiremore complex calculations than scalar
fields and may present some different physics [74,75]. How
to handle interacting fields remains an open question, and
multiple fields offer additional possibilities [76–81].Wehave
a long road to travel before the range of interesting early
universe dynamical scenarios driven by quantum particle
production has been fully explored.
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APPENDIX: REGULARIZATION

To avoid the technical difficulties introduced by adiabatic
regularization, we employ an alternative scheme that dis-
cards the vacuum contributions to the field energy-
momentum tensor in their entirety. Albeit cruder, thismethod
yields a good approximation to the field energy density ρðtÞ
and pressure PðtÞ in regimes dominated by particle produc-
tion. Caremust be taken, however, to ensure that the resulting
expressions for these quantities satisfy the cosmological
continuity equation. Below we demonstrate that this can be
achieved by selecting an appropriate definition for the
adiabatic vacuum.
The residual freedom that exists in the definition of the

adiabatic mode functions allows for a slight shift in the
balance between particle andvacuumcontributions to energy
density and pressure expressed in Eqs. (47). Although small,
this latitude can be exploited to ensure that the vacuum
contributions ρvacðtÞ and PvacðtÞ defined by Eqs. (49)
independently satisfy the cosmological continuity equation.
Underlying this separation between particle and vacuum

components are the functionsWkðtÞ and VkðtÞ. The first of
these is given by the asymptotic series in Eq. (22), which is
the solution to the differential equation

W2
kðtÞ ¼ Ω2

kðtÞ þ
3

4

_W2
kðtÞ

W2
kðtÞ

−
1

2

ẄkðtÞ
WkðtÞ

; ðA1Þ

obtained from the substitution of Eq. (21) into Eq. (11).
The function VkðtÞ, on the other hand, encapsulates the
remaining freedom in the definition of the adiabatic
vacuum and can be chosen to have any convenient func-
tional form that satisfies the following constraint:

VkðtÞ −HðtÞ < Oðk−2Þ as k → ∞: ðA2Þ
A natural choice that meets the above requirement is
given by

VkðtÞ ¼ −
_WkðtÞ
WkðtÞ

: ðA3Þ

Interestingly, this functional form also guarantees that
the vacuum contributions ρvacðtÞ and PvacðtÞ satisfy the
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cosmological continuity equation: it can be verified with
the aid of Eqs. (A1) and (A3) that

_ρvacðtÞ ¼ −3HðtÞ½ρvacðtÞ þ PvacðtÞ�; ðA4Þ

where the right-hand side follows from the left-hand side
by explicit calculation. It is worth noting that this result

is valid for all truncation orders of WkðtÞ as given by
Eq. (22).
Hence, provided the function VkðtÞ has the form estab-

lished in Eq. (A3), it follows directly from Eqs. (46)
and (A4) that the vacuum and particle contributions to
the field energy density and pressure independently satisfy
the cosmological continuity equation.
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