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We have shown the existence of self-dual solitons in a type of generalized Chern-Simons baby Skyrme
model in which the generalized function (depending only in the Skyrme field) is coupled to the sigma-
model term. The consistent implementation of the Bogomol’nyi-Prasad-Sommerfield formalism requires
the generalizing function becomes the superpotential defining the self-dual potential properly. Thus, we
have obtained a topological energy lower bound (Bogomol’nyi bound) and the self-dual equations satisfied
by the fields saturating such a bound. The Bogomol’nyi bound being proportional to the topological charge
of the Skyrme field is quantized, whereas the total magnetic flux is not. As expected in a Chern-Simons
model, the total magnetic flux and the total electrical charge are proportional to each other. Thus, by
considering the superpotential a well-behaved function in the whole target space, we have shown the
existence of three types of self-dual solutions: compacton solitons, soliton solutions decaying by following
an exponential-law e−αr

2

(α > 0), and solitons having a power-law decay r−β (β > 0). The profiles of the
two last solitons can exhibit compactonlike behavior. The self-dual equations have been solved numerically,
and we have depicted the soliton profiles, commenting on the main characteristics exhibited by them.
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I. INTRODUCTION

Effective field theories have an important role in physics,
especially when they can provide answers or insights about
certain physical properties that could be difficult or even
impossible to extracted from the respective underlying
higher-energy model. Among such effective models, the
Skyrme model [1] was proposed with the aim to give some
critical information about hadronic states, which result
be a hard task when analyzed directly via Quantum
Chromodynamics. The proposal of the Skyrme model is
to substitute by means of a scalar triplet the Goldstone
bosons produced by the chiral symmetry breaking [2]. Such
an approach provides an efficient and very predictive
framework for the study of baryon properties [3], as well
as atomic nuclei [4], nuclear matter [5], and neutron stars
[6]. The baryons emerge as collective excitations described
by topological solitons called Skyrmions. Some modifica-
tion into Skyrme’s model can result in a better description
of the baryon masses, such as that shown in Ref. [7].

The Skyrmions achieved a new status in physics when
researchers found promising applications in condensed
matter physics. Initially, they were studied in systems such
as superfluid 3He [8] and quantum Hall ferromagnets [9].
More recently, the discovery of Skyrmion structures in
magnetic materials has been reported; for example, neutron
scattering experiments have shown that a Skyrmion crystal
configuration is related to phase transitions in a MnSi bulk
[10], and Skyrmion behavior was found in Monte Carlo
simulations running on a discretized model of the chiral
magnet in two dimensions [11]. An important technologi-
cal step was made when a Skyrmion phase was obtained on
a thin film of the chiral magnet Fe1−xCoxSi, which has
energetic stability greater than in three-dimensional sys-
tems [12]. The research on magnetic Skyrmions is a
promising area aiming for technological applications such
as data storage and spintronics.
Recent developments were made on Bose-Einstein

condensates [13] and chiral nematic liquid crystals [14].
There are also remarkable works on superconductivity.
Skyrmions have been predicted for K2Fe4Se5 material
in which superconductivity emerges at room temperature
and stable Skyrmions become Cooper pairs through a
quantum anomaly [15]. Other approaches involving anal-
ogies between vortex in superconductors systems and
Skyrmions in magnetic materials has been investigated
in Refs. [16–20]. A Skyrmion crystal with a triangular
array in magnetic systems was shown to have strong
similarities with the Abrikosov vortex lattice in type-II
superconductors [21].
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All these planar realizations and residual problems in the
Skyrme approach on nuclear physics has inspired the
development of a lower-dimensional version of the Skyrme
model called the baby Skyrme model [22,23]. It can be seen
as a toy model in (2þ 1) dimensions that keeps some
essential qualitative features of its higher-dimensional
counterpart. The gauged versions of the baby Skyrmemodel
havebeen built by introducingminimal covariant derivatives
and the respective dynamical gauge term. Soliton solutions
carrying onlymagnetic fluxwere obtained in a baby Skyrme
model in which the gauge field dynamics is governed by
Maxwell’s term [24]. Until now, it has not been possible to
implement the Bogomol'nyi-Prasad-Sommereld (BPS)
formalism for the baby Skyrme model. However, the
existence of BPS solitons in the gauged nonlinear sigma
model [23,25] leads to an important conclusion: the lower
bound of the full baby Skyrme model is not less than the
sigma-model bound [25].
Nevertheless, the so-called restricted baby Skyrme

model [26] possesses a BPS structure [27]. For the gauged
version with the Maxwell term, the BPS solitons saturating
the energy lower bound were finally found in Ref. [28]. In
general, such models have shown themselves to be an
interesting avenue of investigations in many issues such as
duality between vortices and planar Skyrmions [29],
topological phase transitions [30], the Bogomol’nyi equa-
tion from the strong necessary conditions [31], gauged BPS
baby Skyrmions with quantized magnetic flux [32], super-
symmetry [33–35], and gravitational theories [36].
In (2þ 1) dimensions, besides the Maxwell term with its

obvious relevance in gauged field theories, there is the
topological Chern-Simons term, which has a central physi-
cal role in the emergence of configurations with non-null
total electric charge. The Chern-Simons term plays an
important role in field theory [37,38] and in the description
of some phenomena in bidimensional systems of con-
densed matter physics, such as fractional statistics [39] and
the fractional quantum Hall effect [40]. In the context of
topological defects involving the baby Skyrme model, the
influence of the Chern-Simons term was studied in
Ref. [41], which obtained soliton solutions with interesting
new features such as electrical charge; Ref. [42] analyzed a
Lifshitz version of a gauged baby Skyrme model providing
BPS solitons; the multisoliton configurations and their
changes under the influence of some potentials were
studied in Ref. [43]. Recently, a supersymmetric extension
was implemented in Ref. [44].
The goal of the manuscript is the successful implemen-

tation of the BPS formalism in a generalized version of a
gauged baby Skyrme model in which the gauge field
dynamics is governed solely by the Chern-Simons term.
Such a model is able to engender BPS compacton and
noncompacton solitons, and the latter ones can exhibit
compactonlike behavior. The manuscript is structured as
follows. In Sec. II, we present a Chern-Simons restricted

baby Skyrme model in which the unsuccessful implemen-
tation of the BPS technique has allowed us to glimpse the
guidelines for the construction of a model able to engender
BPS configurations. In Sec. III, based on the previous
section, we construct a true BPS Chern-Simons baby
Skyrme model which allows us to obtain an energy lower
bound and the respective self-dual or BPS equations. In
Sec. IV, we analyze some properties of the rotationally
symmetric solitons such as the behavior at boundaries, the
magnetic flux, and electric charge. Section V is dedicated to
the numerical solutions of the BPS equations. Finally, in
Sec. VI, we present our conclusions and perspectives.

II. NON-BPS CHERN-SIMONS RESTRICTED
BABY SKYRME MODEL

The baby Skyrme model [22,45] is a (2þ 1)-
dimensional nonlinear field theory supporting topological
solitons described by the Lagrangian density

L ¼ λ20
2
∂μϕ⃗ · ∂μϕ⃗ −

λ2

4
ð∂μϕ⃗ × ∂νϕ⃗Þ2 − V: ð1Þ

The first contribution represents the sigma-model term, the
second one is the Skyrme term, and the third term is the
self-interacting potential, the latter being (in principle) a
function of the quantity n̂ · ϕ⃗ ¼ ϕn, i.e., V ≡ VðϕnÞ. In the
internal space, n̂ is an unitary vector providing a preferred
direction, and the Skyrme field ϕ⃗ defines a triplet of real
scalar fields ϕ⃗ ¼ ðϕ1;ϕ2;ϕ3Þ with fixed norm, ϕ⃗ · ϕ⃗ ¼ 1,
describing a spherical surface with unitary radius.
In the absence of the sigma-model term, the resulting one

is the so-called restricted baby Skyrme model, which is
given by

L ¼ −
λ2

4
ð∂μϕ⃗ × ∂νϕ⃗Þ2 − V: ð2Þ

The sigma-model and Skyrme terms are invariants under
the global SOð3Þ symmetry, whereas the potential breaks
partially it, preserving only the subgroup Uð1Þ of the target
space. The existence of such an unbroken subgroup Uð1Þ
allows us to implement a local gauge symmetry by means
of the introduction of a Uð1Þ gauge field of which the
dynamics can be governed by the Maxwell action [28] or
the Chern-Simons action [41,42] or both [43].
In the remainder of this section, we consider a restricted

baby Skyrme model gauged solely with the Chern-Simons
term described by the following Lagrangian density,

L ¼ −
κ

4
ϵσμνAσFμν −

λ2

4
ðDμϕ⃗ ×Dνϕ⃗Þ2 − VðϕnÞ; ð3Þ

where κ is the Chern-Simons coupling constant, Aμ is the
Abelian gauge field, and Fμν ¼ ∂μAν − ∂νAμ is the field
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strength tensor. The minimal covariant derivative of the
Skyrme field Dμϕ⃗ is given by

Dμϕ⃗ ¼ ∂μϕ⃗þ gAμn̂ × ϕ⃗; ð4Þ

where g is the electromagnetic coupling constant. Here, we
consider the gauge field with mass dimension 1 and the
Skyrme field to be dimensionless. Hence, both the Chern-
Simons coupling constant κ and the electromagnetic one g
become dimensionless, and the λ coupling constant has
mass dimension −1=2.
The gauge field equation obtained from of the

Lagrangian density (3) is

−
κ

2
ϵμαβFαβ ¼ Jμ; ð5Þ

where Jμ is the conserved gauge current density,

Jμ ¼ λ2g½ϕ⃗ · ðDμϕ⃗ ×Dνϕ⃗Þ�ð∂νϕnÞ; ð6Þ

with ∂νϕn ¼ n̂ · ∂νϕ⃗. Similarly, the equation of motion of
the Skyrme field is

λ2Dμf½ϕ⃗ · ðDμϕ⃗ ×Dβϕ⃗Þ�Dβϕ⃗g þ ðn̂ × ϕ⃗Þ ∂V∂ϕn
¼ 0: ð7Þ

We are interested in time-independent solutions of the
model; thus, we write down the respective equations of
motion. The stationary Gauss law reads

κB ¼ λ2g2A0ð∂jϕnÞ2; ð8Þ

where B ¼ F12 ¼ ϵij∂iAj is the magnetic field. We now
can express the scalar potential as

A0 ¼
κ

λ2g2
B

ð∂jϕnÞ2
: ð9Þ

Similarly, the Ampère law is given by

κ∂iA0 ¼ −λ2gð∂iϕnÞQ: ð10Þ

By using (9), it is rewritten as

κ2

λ2g2
∂i

�
B

ð∂jϕnÞ2
�

¼ −λ2gð∂iϕnÞQ; ð11Þ

where we have introduced the quantity Q, defined by

Q ¼ ϕ⃗ · ðD1ϕ⃗ ×D2ϕ⃗Þ: ð12Þ

The stationary equation of motion of the Skyrme field is

0 ¼ ðn̂ × ϕ⃗Þ ∂V∂ϕn
þ λ2ϵijDiðQDjϕ⃗Þ

þ λ2g2ðn̂ × ϕ⃗Þ∂j½ðA0Þ2ð∂jϕnÞ�: ð13Þ

A. BPS formalism: The frustrated implementation

In the stationary regime, the energy density correspond-
ing to the model (3) reads

ε ¼ λ2g2

2
ðA0Þ2ð∂jϕnÞ2 þ

λ2

2
Q2 þ V; ð14Þ

where we have used the identity

ðDiϕ⃗ ×Djϕ⃗Þ2 ¼ 2Q2: ð15Þ

We first use the Gauss law (8), to express A0 in terms of the
magnetic field, such that the energy density (14) becomes

ε ¼ κ2

2λ2g2
B2

ð∂jϕnÞ2
þ λ2

2
Q2 þ V; ð16Þ

while the system energy is written as

E ¼
Z

d2x

�
κ2

2λ2g2
B2

ð∂jϕnÞ2
þ λ2

2
Q2 þ V

�
: ð17Þ

After some algebraic manipulations, the implementation of
the BPS formalism allows us to express the energy as

E ¼
Z

d2x

�
λ2

2
ðQ ∓ ZÞ2 þ κ2

2λ2g2
½B� ð∂jϕnÞ2W�2

ð∂jϕnÞ2

� λ2QZ ∓ κ2BW
λ2g2

þ V −
λ2Z2

2
−
κ2ð∂jϕnÞ2W2

2λ2g2

�
;

ð18Þ

where we have conveniently introduced two functions
WðϕnÞ and ZðϕnÞwhich should be determined a posteriori.
Such a procedure is already utilized in the literature with the
aim to attain a successful implementation of the BPS
formalism. For example, it has already been used in the
context of Skyrmions [28,42] and some generalized ver-
sions of the Maxwell-Higgs model [46].
By expressing the quantity Q defined in (12) as

Q ¼ ϕ⃗ · ð∂1ϕ⃗ × ∂2ϕ⃗Þ − gϵijAjð∂iϕnÞ; ð19Þ

the energy (18) becomes

SELF-DUAL SOLITONS IN A GENERALIZED CHERN-SIMONS … PHYS. REV. D 100, 045022 (2019)

045022-3



E ¼
Z

d2x

�
κ2

2λ2g2
½B� ð∂jϕnÞ2W�2

ð∂jϕnÞ2
þ λ2

2
ðQ ∓ ZÞ2

� λ2Zϕ⃗ · ð∂1ϕ⃗ × ∂2ϕ⃗Þ ∓ λ2gϵijAjZð∂iϕnÞ

∓ κ2BW
λ2g2

þ
�
V −

λ2Z2

2
−
κ2ð∂jϕnÞ2W2

2λ2g2

��
: ð20Þ

The term ϕ⃗ · ð∂1ϕ⃗ × ∂2ϕ⃗Þ in the second row is related to the
topological degree (topological charge or winding number)
of the Skyrme field, which is defined by

deg½ϕ⃗� ¼ −
1

4π

Z
d2xϕ⃗ · ð∂1ϕ⃗ × ∂2ϕ⃗Þ ¼ k; ð21Þ

where k is a non-null integer. Consequently, the term
�λ2Zϕ⃗ · ð∂1ϕ⃗ × ∂2ϕ⃗Þ will provide the BPS energy.
To continue the implementation of the BPS formalism,

we perform the following procedures in Eq. (20). First, we
transform the fourth and fifth terms in a total derivative by
imposing the condition

Zð∂jϕnÞ ¼
κ2

λ4g3
∂iW such that Z ¼ κ2

λ4g3
∂W
∂ϕn

: ð22Þ

Second, in the third row, setting the term in square brackets
to be null leads to the potential

V ¼ κ4

2λ6g6

�∂W
∂ϕn

�
2

þ κ2

2λ2g2
ð∂jϕnÞ2W2; ð23Þ

where we see the function WðϕnÞ plays the role of a
“superpotential” such as has been pointed out in the
literature [28,42]. It follows that the energy becomes

E ¼
Z

d2x

�
κ2

2λ2g2
½B� ð∂jϕnÞ2W�2

ð∂jϕnÞ2

þ λ2

2

�
Q ∓ κ2

λ4g3
∂W
∂ϕn

�
2

� κ2

λ2g2
ϵij∂jðWAiÞ

� κ2

λ2g3
∂W
∂ϕn

ϕ⃗ · ð∂1ϕ⃗ × ∂2ϕ⃗Þ
�
: ð24Þ

The squared terms would be the BPS equations, while the
third term being a total derivative would give a null
contribution to the total energy if limϕn→1WðϕnÞ ¼
limjxj→∞WðϕnÞ ¼ 0. The fourth term related to the topo-
logical charge of the Skyrme field would provide the BPS
limit for the total energy.
Until now, the implementation of the BPS formalism

looks successful; however, there is a contradiction with the
hypothesis about the functional dependence of the potential
shown in the Lagrangian density (3). This contradiction can
observed in Eq. (23) where the BPS potential now has
explicit dependence on both the Skyrme field and its

derivative. Consequently, the stationary Euler-Lagrange
equation (13) of the Skyrme fields is not recovered from
such BPS equations.
Despite our first attempt to implement the BPS formal-

ism has been unsuccessful, the potential (23) suggests a
way to introduce new terms in the model (3) making it
capable to engender BPS configurations. The modified
model with such a property is introduced in the next section.

III. BPS CHERN-SIMONS BABY
SKYRME MODEL

The previous procedure suggests that the existence of
BPS configurations can be well established in a modified
version of the model (3). Such a modification is not
arbitrary; the guidelines to perform such a change are
given by the derivative term of Eq. (23), which indicates
that a term proportional to ðn̂ ·Dμϕ⃗Þ2W2 must be intro-
duced in the Lagrangian density (3). Thus, the new model
capable of engendering BPS configurations is described by
the Lagrangian density

L ¼ −
κ

4
ϵσμνAσFμν −

λ2

4
ðDμϕ⃗ ×Dνϕ⃗Þ2

þ κ2

2λ2g2
ðn̂ ·Dμϕ⃗Þ2W2 − U; ð25Þ

where both the dimensionless function W and the potential
U depend only in the variable ϕn. The third term modifies
the dynamics of the component along the direction n̂ of the
Skyrme field. In this way, the last two terms partially break
the SOð3Þ symmetry preserving the Uð1Þ subgroup of this
symmetry.
It is worthwhile to point out that the model proposed in

(25) has a N ¼ 2 supersymmetry (SUSY) extension such
as is shown in Ref. [44]. In other words, the model (3),
despite possessing a N ¼ 1 SUSY, does not admit a BPS
structure. However, such as explained in Ref. [44], theN ¼
2 SUSY extension possessing a BPS or self-dual structure
only is possible through the inclusion of the term propor-
tional to ðn̂ ·Dμϕ⃗Þ2W2. Specifically, the function W is
related to the target space area density and the Kähler
metric of the sigma-model part [see Eq. (27) below].
The term ðn̂ ·Dμϕ⃗Þ2 in (25) can be expressed in the form

ðn̂ ·Dμϕ⃗Þ2 ¼ Dμϕ⃗ ·Dμϕ⃗ − ðn̂ ×Dμϕ⃗Þ2; ð26Þ

allowing us to express the Lagrangian density (25) as

L ¼ −
κ

4
ϵσμνAσFμν þ

κ2

2λ2g2
W2Dμϕ⃗ ·Dμϕ⃗

−
λ2

4
ðDμϕ⃗ ×Dνϕ⃗Þ2 −

κ2

2λ2g2
ðn̂ ×Dμϕ⃗Þ2W2 − U:

ð27Þ
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The second term is a generalized gauged sigma model with
the function W playing the role of the generalizing
function, and the third one is the gauged Skyrme term.
In other words, the new model (25) is a type of generalized
Chern-Simons baby Skyrme model modified by the term
proportional to ðn̂ ×Dμϕ⃗Þ2W2.
We point out that the gauge field equation coming from

the Lagrangian density (25) is exactly the same given by
Eq. (5); i.e., the introduction of the function WðϕnÞ does
not modify the gauge field equation of motion.
The equation of motion of the Skyrme field obtained

from the Lagrangian density (25) is

0 ¼ λ2DμfðDβϕ⃗Þ½ϕ⃗ · ðDμϕ⃗ ×Dβϕ⃗Þ�g

þ ðn̂ × ϕ⃗Þ
� ∂U
∂ϕn

þ κ2

λ2g2
∂μ½ðn̂ · ∂μϕ⃗ÞW2�

−
κ2

2λ2g2
ðn̂ · ∂νϕ⃗Þ2

∂W2

∂ϕn

�
; ð28Þ

the stationary version of which reads

λ2ϵijDiðQDjϕ⃗Þ

¼ −ðn̂ × ϕ⃗Þ
� ∂U
∂ϕn

þ κ2ð∂jϕnÞ2
2λ2g2

∂W2

∂ϕn

þ κ2

λ2g2
∂j

�
B2

ð∂jϕnÞ3
�
−

κ2

λ2g2
∂j½ð∂jϕnÞW2�

�
; ð29Þ

where we have used (9) to replace the scalar potential with
the magnetic field.
In the following, we are going to show how to build the

BPS formalism determining the self-interacting potential
UðϕnÞ which allows us to obtain a lower bound for the
energy and the self-dual equations satisfied by the soliton
configurations saturating a BPS bound.

A. BPS configurations

The stationary energy density is written as

ε ¼ κ2

2λ2g2
B2

ð∂jϕnÞ2
þ κ2

2λ2g2
ð∂jϕnÞ2W2 þ λ2

2
Q2 þ U; ð30Þ

where we have used the Gauss law (8) to express the scalar
potential in terms of the magnetic field.
We now implement the BPS formalism, which, after

some algebraic manipulations, allows us to write the total
energy as

E ¼
Z

d2x

�
κ2

2λ2g2
½B� ð∂jϕnÞ2W�2

ð∂jϕnÞ2

þ λ2

2

�
Q ∓

ffiffiffiffiffiffi
2U

p

λ

�
2

� λ
ffiffiffiffiffiffi
2U

p
ϕ⃗ · ð∂1ϕ⃗ × ∂2ϕ⃗Þ

∓ λgϵijAjð∂iϕnÞ
ffiffiffiffiffiffi
2U

p ∓ κ2BW
λ2g2

�
: ð31Þ

The third term is related to the topological charge of the
Skyrme field, and as we will see below, it provides the
Bogomol’nyi limit for the total energy. The implementation
of the BPS formalism is finished by transforming the last
two terms in a total derivative by setting

ð∂iϕnÞ
ffiffiffiffiffiffi
2U

p
¼ κ2

λ3g3
∂iW: ð32Þ

Consequently, the self-interacting potential able to engen-
der self-dual configurations becomes

UðϕnÞ ¼
κ4

2λ6g6

�∂W
∂ϕn

�
2

: ð33Þ

This clearly shows the role of a superpotential fulfilled by
the function WðϕnÞ in the model (25). The superpotential
WðϕnÞ must be constructed or proposed in order for the
potential to satisfy the vacuum condition

lim
ϕn→1

UðϕnÞ ¼ lim
jxj→∞

UðϕnÞ ¼ 0; ð34Þ

implying the following boundary condition on the super-
potential:

lim
ϕn→1

∂W
∂ϕn

¼ lim
jxj→∞

∂W
∂ϕn

¼ 0: ð35Þ

Since the BPS potential was fixed, the energy (31) reads

E ¼
Z

d2x

�
κ2

2λ2g2
½B� ð∂jϕnÞ2W�2

ð∂jϕnÞ2

þ λ2

2

�
Q ∓ κ2

λ4g3
∂W
∂ϕn

�
2

� κ2

λ2g3
∂W
∂ϕn

ϕ⃗ · ð∂1ϕ⃗ × ∂2ϕ⃗Þ ∓ κ2

λ2g2
ϵij∂iðWAjÞ

�
:

ð36Þ

The contribution of the total derivative to the total energy
becomes null, i.e.,

Z
d2xεij∂iðAjWÞ ¼ 0; ð37Þ

by considering the superpotential satisfying the following
boundary condition:
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lim
ϕn→1

WðϕnÞ ¼ lim
jxj→∞

WðϕnÞ ¼ 0: ð38Þ

Hence, we now write the total energy as

E ¼ EBPS þ Ě; ð39Þ

with EBPS defining the energy lower bound

EBPS ¼ � κ2

λ2g3

Z
d2xϕ⃗ · ð∂1ϕ⃗ × ∂2ϕ⃗Þ

∂W
∂ϕn

ð40Þ

and Ě given by

Ě ¼
Z

d2x

�
κ2

2λ2g2
½B� ð∂jϕnÞ2W�2

ð∂jϕnÞ2

þ λ2

2

�
Q ∓ κ2

λ4g3
∂W
∂ϕn

�
2
�
: ð41Þ

From the expression of the total energy (39), we observe
that the following inequality is always satisfied:

E ≥ EBPS: ð42Þ

The lower bound is saturated, i.e., Ě ¼ 0, if the fields
satisfy the self-dual or BPS equations

B ¼ ∓ð∂jϕnÞ2W; ð43Þ

Q ¼ � κ2

λ4g3
∂W
∂ϕn

: ð44Þ

These BPS configurations can be considered as classical
solutions related to an extended supersymmetric theory
[47,48] of the model (25). Indeed, such affirmation was
shown in Ref. [44]; i.e., the BPS equations belong to a
N ¼ 2 SUSYextension model of which the bosonic sector
would be given by the Lagrangian (25). Besides, the
solutions of Eqs. (43) and (44) are of the type 1=4-BPS,
corresponding to the nontrivial phase of the N ¼ 2 SUSY
extension model.

B. Equivalence between the BPS and
Euler-Lagrange equations

In this section, we will show that the BPS equations
(43)–(44) allows us recover the Ampere law (11) and the
Skyrme field equation (29) provided by the Lagrangian
density (25).

1. Ampre’s law

To recover the Ampère law (11), we employ the first
BPS (43)

∂i

�
B

ð∂jϕnÞ2
�

¼ ∓∂iW ¼ ∓ ∂W
∂ϕn

∂iϕn: ð45Þ

We now use the second BPS (44) to substitute ∂W
∂ϕn

above;
thus, we attain our objective,

∂i

�
B

ð∂jϕnÞ2
�

¼ −
λ4g3

κ2
ð∂iϕnÞQ: ð46Þ

2. Skyrmion field equation

With the aim of recovering the Skyrmion field equation
in the BPS limit, we begin with the second BPS (44) by
doing

λ2ϵijDiðQDjϕ⃗Þ ¼ � κ2

λ2g3
ϵijDi

�∂W
∂ϕn

Djϕ⃗

�

¼ � κ2

λ2g3
∂2W
∂ϕ2

n
ϵijð∂iϕnÞDjϕ⃗

� κ2

2λ2g3
∂W
∂ϕn

ϵij½Di;Dj�ϕ⃗: ð47Þ

By using the identities

ϵijð∂iϕnÞDjϕ⃗ ¼ −Qðn̂ × ϕ⃗Þ; ð48Þ

ϵij½Di;Dj�ϕ⃗ ¼ 2gBðn̂ × ϕ⃗Þ; ð49Þ

we obtain

λ2ϵijDiðQDjϕ⃗Þ ¼ ∓ κ2

λ2g3
∂2W
∂ϕ2

n
Qðn̂ × ϕ⃗Þ

� κ2

λ2g2
∂W
∂ϕn

Bðn̂ × ϕ⃗Þ: ð50Þ

We now substitute B and Q with the expressions provided
by the BPS equations, Eqs. (43) and (44), respectively,
to get

λ2ϵijDiðQDjϕ⃗Þ ¼ −
κ4

2λ6g6
∂

∂ϕn

�∂W
∂ϕn

�
2

ðn̂ × ϕ⃗Þ

−
κ2

2λ2g2
ð∂jϕnÞ2

∂W2

∂ϕn
ðn̂ × ϕ⃗Þ: ð51Þ

Finally, we use Eq. (33) to write

0 ¼ λ2ϵijDiðQDjϕ⃗Þ

þ ðn̂ × ϕ⃗Þ
� ∂U
∂ϕn

þ κ2

2λ2g2
ð∂jϕnÞ2

∂W2

∂ϕn

�
; ð52Þ

which is the Skyrmion field equation (29) in the BPS limit.
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Therefore, we have verified that the BPS equations
recover the Euler-Lagrange equations of the model (25)
with the potential given by (33).

IV. ROTATIONALLY SYMMETRIC
BPS SKYRMIONS

Without loss of generality, we set n̂≡ n̂3 ¼ ð0; 0; 1Þ,
such that n̂ · ϕ⃗ ¼ ϕn ¼ ϕ3, and consider the ansatz for the
Skyrme field,

0
B@

ϕ1

ϕ2

ϕ3

1
CA ¼

0
B@

sin fðrÞ cosNθ

sin fðrÞ sinNθ

cos fðrÞ

1
CA; ð53Þ

where N ¼ deg½ϕ⃗� is the winding number of the Skyrme
field. For the gauge field, we use

Ak ¼ −εkj
xj
gr2

½aðrÞ − N�; ð54Þ

thus, the magnetic field is given by

B ¼ 1

gr
da
dr

: ð55Þ

The functions fðrÞ and aðrÞ are well behaved and must
satisfy the boundary conditions,

fð0Þ ¼ π; fð∞Þ ¼ 0; ð56Þ

að0Þ ¼ N; að∞Þ ¼ a∞; ð57Þ

where a∞ is a finite quantity.
To perform our analysis, we introduce the field

redefinition

h ¼ 1

2
ð1þ ϕ3Þ ¼

1

2
ð1þ cos fÞ; ð58Þ

with the field hðrÞ satisfying the boundary conditions

hð0Þ ¼ 0; hð∞Þ ¼ 1: ð59Þ

We consider superpotentials W, satisfying the following
boundary conditions at origin

lim
r→0

WðhÞ ¼ W0; lim
r→0

dW
dr

¼ cte ð60Þ

(W0 being a finite quantity). From Eqs. (35) and (38), we
obtain the boundary conditions for r → ∞,

lim
r→∞

WðhÞ ¼ 0; lim
r→∞

dW
dr

¼ 0; ð61Þ

the last one guaranteeing the superpotential is able to
generate a potential satisfying the vacuum condition,

Uð∞Þ≡ Uðh ¼ 1Þ ¼ 0: ð62Þ

Under the ansatz, the BPS equations become

1

r
da
dr

¼ ∓4g
�
dh
dr

�
2

W; ð63Þ

a
r
dh
dr

¼ ∓ κ2

4λ4g3
∂W
∂h : ð64Þ

Similarly, the BPS energy density reads

εBPS ¼ 4κ2

λ2g2
W2

�
dh
dr

�
2

þ κ4

4λ6g6

�∂W
∂h

�
2

; ð65Þ

while the BPS energy (40) becomes

EBPS ¼ �2πN
κ2

λ2g3
Wð0Þ: ð66Þ

The total magnetic flux Φ is computed to be

Φ ¼ 2π

Z
∞

0

rdrB ¼ 2π

g
½a∞ − N�; ð67Þ

which is, in general, a nonquantized quantity.
By integrating the Gauss law (8), we also obtain the total

electric chargeQem being proportional to the total magnetic
flux Φ,

Qem ¼ κ

g
Φ; ð68Þ

where the total electric charge was defined by

Qem ¼ gλ2
Z

d2xA0ðn̂ · ∂jϕ⃗Þ2: ð69Þ

In Sec. V, the numerical analysis has shown, for sufficiently
large values of g, that the magnetic flux becomes almost a
topologically quantized observable. This effective quanti-
zation implies the total electric charge is also quantized.

A. Behavior of the profiles at origin

We first solve the BPS equations (63) and (64) around
r ¼ 0 by considering the boundary conditions

hð0Þ ¼ 0; að0Þ ¼ N; Wð0Þ ¼ W0: ð70Þ

The superpotentialWðhÞ is considered to be a well-behaved
function such that behavior for the field profiles hðrÞ and
aðrÞ results in
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hðrÞ ≈ −
κ2ðWhÞh¼0

8Nλ4g3
r2 þ κ4ðWhÞh¼0ðWhhÞh¼0

128N2λ8g6
r4; ð71Þ

aðrÞ ≈ N −
κ4W0ðWhÞ2h¼0

16N2λ8g5
r4 þ κ6W0ðWhÞ2h¼0ðWhhÞh¼0

96N3λ12g8
r6;

ð72Þ

where Wh and Whh represent the first and second deriv-
atives of WðhÞ with respect to h, respectively.
The magnetic field behavior near the origin is

jBðrÞj ≈ κ4W0ðWhÞ2h¼0

4N2λ8g6
r2 −

κ6W0ðWhÞ2h¼0ðWhhÞh¼0

16N3λ12g9
r4;

ð73Þ

and the BPS energy density behaves as

εBPSðrÞ ≈
κ4ðWhÞ2h¼0

4λ6g6

þ κ6ðW0Þ2ðWhÞ2h¼0

4N2λ10g9

�
g −

NðWhhÞh¼0

4ðW0Þ2
�
r2: ð74Þ

For small values of g, the BPS energy density has greater
amplitudes.

B. Behavior of the profiles for large values of r

The analysis for sufficiently large values of r is per-
formed by considering the boundary conditions

hðRÞ ¼ 1; aðRÞ ¼ aR; WðRÞ ¼ 0; ð75Þ

where R > 0 and aR is a real number. For a finite R, it
defines a maximum radius (size) of the topological defect
characterizing the soliton so-called compacton. On the
other hand, when R → ∞ there is topological defects
whose tail decays follows an exponential law or a
power law.
We have considered that the superpotential WðhÞ

behaves when r → R as

WðhÞ ≈ ð1 − hÞσ; ð76Þ

with the parameter σ > 1. Until now, we have found three
types of soliton solutions:

(i) For 1 < σ < 2, there are compacton solitons.
(ii) For σ ¼ 2, the soliton tail decays, following a

exponential law of type e−αr
2

, α > 0.
(iii) For σ > 2, the solitons have a power-law decay of

type r−β, β > 0.

1. Behavior of the profiles for 1 < σ < 2

We consider that the compacton has a maximum radius R
and the superpotential behaves at r ¼ R as

WðhÞ ≈WRð1 − hÞσ: ð77Þ

By considering it and solving the BPS equations, we find
the profile functions behave as

hðrÞ ≈ 1 − ðCðhÞ
R Þ1=ð2−σÞðR − rÞ1=ð2−σÞ; ð78Þ

aðrÞ ≈ aR þ CðaÞ
R ðR − rÞ2σ=ð2−σÞ; ð79Þ

where

CðhÞ
R ¼ σð2 − σÞκ2RWR

4λ4g3aR
; ð80Þ

CðaÞ
R ¼ 2gRWR

σð2 − σÞ ðC
ðhÞ
R Þð2þσÞ=ð2−σÞ: ð81Þ

2. Behavior of the profiles for σ = 2

For the superpotentials following the asymptotic
behavior

WðhÞ ≈Wð2Þ
∞ ð1 − hÞ2; ð82Þ

when r → ∞, the prole functions behave

hðrÞ ≈ 1 − Ce−M
2r2 ; ð83Þ

aðrÞ ≈ a∞ þ 2gWð2Þ
∞ C4M2r2e−4M

2r2 ; ð84Þ

where the quantity M is given by

M2 ¼ κ2Wð2Þ
∞

4λ4g3a∞
: ð85Þ

This verifies that the soliton tail has an exponential
decay law.

3. Behavior of the profiles for σ > 2

We consider that the superpotential for r → ∞
behaves as

WðhÞ ≈W∞ð1 − hÞσ; ð86Þ
and the profiles have the behavior

hðrÞ ≈ 1 −
�
Cð∞Þ

r2

�
1=ðσ−2Þ

; ð87Þ

aðrÞ ≈ a∞ þ 8gW∞

ðσ2 − 4Þ
�
Cð∞Þ

r2

�ð2þσÞ=ðσ−2Þ
; ð88Þ

where

Cð∞Þ ¼ 8λ4g3a∞
κ2W∞σðσ − 2Þ : ð89Þ
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We see that the profiles follow a power-law decay but the
gauge field decays faster than the Skyrme field.

V. NUMERICAL SOLUTION OF THE
BPS EQUATIONS

A. Compacton solutions

We have solved the BPS equations (63) and (64) for the
superpotential

WðhÞ ¼ W0ð1 − hÞ3=2; ð90Þ
which provides the potential

UðhÞ ¼ 9κ4W2
0

32λ6g6
ð1 − hÞ: ð91Þ

This is equivalent to the well-known “old baby Skyrme
potential” [28].
In our first analysis, we solved the BPS equations (63)

and (64) by fixing N ¼ 1, κ ¼ 1, W0 ¼ 1, and λ ¼ 2.5 and
running the electromagnetic coupling constant g. The
compacton solutions are depicted in Figs. 1–4.
The Skyrme field profile hðrÞ is depicted in Fig. 1 for

various values of g. The colored solid lines represent the
profiles of the hðrÞ in the interval 0 ≤ r ≤ R, and the
respective colored pointed lines represent the vacuum
value, h ¼ 1, in the interval R ≤ r < ∞. The compacton
radius R for various values of g is shown in Fig. 5.
Figure 2 depicts the gauge field profile aðrÞ. Similar to

the description given in Fig. 1, the colored solid lines
represent the profiles of the aðrÞ in the interval 0 ≤ r ≤ R,
and the respective colored pointed lines represent the
vacuum value, aðRÞ ¼ aR, in the interval R ≤ r < ∞.
The profiles show that the vacuum value, aðRÞ ¼ aR,
diminishes whenever g increases.
The profiles of the magnetic field are presented in Fig. 3.

They are ringlike structures of which the maximum for

FIG. 1. The Skyrme field profile hðrÞ.

FIG. 2. The gauge field profile aðrÞ.

FIG. 3. The magnetic field BðrÞ.

FIG. 4. The BPS energy density εBPSðrÞ.
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small g is located close to the origin, whereas for suffi-
ciently larger values of g, the maximum moves its position
to very near the frontier of the compacton. The amplitude of
the maximum value of the magnetic field is greater for
small values of g. In our case, it happens for 0 < g < 0.5;
despite not being shown in the figure, it can be seen clearly
from the behavior given by Eq. (73).
The profiles of the BPS energy density (65) are presented

in Fig. 4. The behavior at the origin is given by [see Eq. (74)]

εBPS ≈
23.04 × 10−4

g6
þ 5898.24 × 10−8

g9
½g − 0.1875�r2:

ð92Þ
For small values of g, the profiles possess a lumplike format
at the origin. These profiles are not presented in the figure
because their amplitudes (for 0 < g < 0.1875) are bigger
than the ones shown there. For sufficiently large values of g,
the profiles acquire a ringlike form; in our case, Fig. 4 shows
such structures for g > 0.6.
The dependence of the compacton radiusRvs g, the gauge

vacuumvalueaR vs g, and the totalmagnetic flux jΦjvs g (by
fixing all other parameters) are shown in Fig. 5 for N ¼ 1,
κ ¼ 1, W0 ¼ 1, and λ ¼ 2.5. We have observed that the
vacuumvalue,aðRÞ ¼ aR, diminisheswhenever g increases,
i.e., aR → 0 for sufficiently large values of g. Consequently,
we get

Φ → −
2π

g
N; Qem → −

2πκ

g2
N; ð93Þ

being, therefore, quantities topologically quantized.
From Figs. 2 and 5, we observe clearly that the

compacton radius R possess a maximum value for some
specific magnitude of the electromagnetic coupling

constant g. In both figures, g is the only free parameter
whereas all other are fixed.
Similarly, we have analyzed the dependence of the

compacton radius R vs κ and the gauge vacuum value
aR vs κ (by fixing all other parameters). The numerical
analysis has shown that the radius is inversely proportional
to κ (R ∝ κ−1), whereas the gauge vacuum value aR
remains constant. Figure 6 shows R vs κ for N ¼ 1,
g ¼ 0.77, W0 ¼ 1, and λ ¼ 2.5, whereas aR ¼
0.0964097741 for all values of κ.
Our third analysis looks at the dependence of compacton

radius R vs λ and the gauge vacuum value aR vs λ (for all
others parameters set). The numerical analysis shows that
the radius depends quadratically with λ (R ∝ λ2), whereas
the gauge vacuum value aR remains constant. Such a
dependence is depicted in Fig. 7 for N ¼ 1, g ¼ 0.77,

FIG. 5. Behaviors of the compacton radius R vs g (blue color),
the gauge vacuum value aR vs g (red color), and the magnetic flux
jΦj vs g (green color) of compacton solutions of the BPS
equations (63) and (64).

FIG. 6. Compacton radius R vs κ (red dots) and the gauge field
vacuum value aR vs κ (blue dotted line).

FIG. 7. Compacton radius R vs λ (green dots) and the gauge
field vacuum value aR vs λ (red dotted line).
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W0 ¼ 1, and κ ¼ 1, whereas aR ¼ 0.0964097741 for all
values of λ.
Until now, our analysis of the compacton solitons has

allowed us to conclude that the gauge vacuum value aR
only depends on the electromagnetic coupling constant g;
consequently, the total magnetic flux is independent from
the values of κ and λ, and it becomes quantized for
sufficiently large values of g.

B. Solitons with exponential-law decay

We have solved the BPS equations (63) and (64) for the
superpotential

WðhÞ ¼ W0ð1 − hÞ2; ð94Þ

which provides the potential

UðhÞ ¼ κ4W2
0

2λ6g6
ð1 − hÞ2: ð95Þ

A similar potential was used in Ref. [28].
We performed our analysis by solving the BPS equa-

tions (63) and (64) by setting N ¼ 1, κ ¼ 1, W0 ¼ 0.5,
λ ¼ 1, and various values of g. Figures 8, 9, and 10 present
the profiles of the Skyrme and gauge field, the magnetic
field and the BPS energy, respectively, for increasing values
of g. For a sufficiently large value of g, we observe that all
the profiles acquire a compactonlike structure.
The behaviors of the gauge vacuum value a∞ vs g (red

color) and the magnetic flux jΦj vs g (green color) depicted
in Fig. 11 show a structure similar to the one observed in

FIG. 9. Profiles of the magnetic field BðrÞ with exponential
decay engendered by the superpotential (94).

FIG. 10. Profiles of BPS energy density εBPSðrÞ with expo-
nential decay engendered by the superpotential (94).

FIG. 8. Profiles of the Skyrme field hðrÞ and the gauge
field aðrÞ with exponential decay engendered by the super-
potential (94).

FIG. 11. Behaviors of the gauge vacuum value a∞ vs g (red
color), the magnetic flux jΦj vs g (green color), and the quantity
g3a∞ vs g (blue color) of the solutions with exponential decay
engendered by the superpotential (94).
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the compacton case. Similarly, we show the behavior of the
quantity g3a∞ vs g (blue color), which controls the spread
(85) of the solutions for sufficiently large values of r.
The numerical analysis shows that the gauge vacuum

value a∞ only depends on the values of the electromagnetic
coupling constant g such it happens in the compacton case
analyzed previously in Sec. VA.

C. Solitons with power-law decay

To obtain BPS solitons with power-law decay from
solving the BPS equations (63) and (64), we consider the
superpotential

WðhÞ ¼ W0ð1 − hÞσ; ð96Þ

with σ > 2, providing the potential

UðhÞ ¼ κ4W2
0σ

2

8λ6g6
ð1 − hÞ2ðσ−1Þ: ð97Þ

We performed our analysis by solving the BPS equa-
tions (63) and (64) by setting N ¼ 1, κ ¼ 1, W0 ¼ 0.5,
λ ¼ 1, g ¼ 2.5, and various values of the parameter σ.
Figures 12, 13, 14, and 15 depict the profiles of the Skyrme
field hðrÞ, the gauge field aðrÞ, the magnetic field BðrÞ, and
the BPS energy density εBPSðrÞ, respectively. The behavior
of all the profiles becomes similar to a compactonlike form
when the parameter σ → 2.
For a fixed value of σ > 2, similar to what happens in the

two previous cases, presented in Secs. VA and V B, the
numerical analysis has shown once again that the gauge
vacuum value a∞ only depends on the electromagnetic
coupling constant g. In addition, from Fig. 13, for a fixed
value of g and σ ≫ 2, we have a∞ → 1 which implies the
total magnetic flux Φ → 0 [see Eq. (67)].

FIG. 12. The profiles hðrÞ of the Skyrme field with power-law
decay generated by the superpotential (96).

FIG. 13. The gauge field profiles aðrÞ with power-law decay
generated by the superpotential (96).

FIG. 14. The magnetic field profiles BðrÞ with power-law
decay generated by the superpotential (96).

FIG. 15. The BPS energy density εBPSðrÞ with power-law
decay generated by the superpotential (96).
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VI. CONCLUSIONS AND REMARKS

We have shown the existence of BPS solitons in a type of
generalized Chern-Simons baby Skyrme model (27) in
which the generalized function WðϕnÞ coupled to the
sigma-model term becomes the superpotential that defines
the self-dual potential (33). The guidelines for the con-
struction of such a BPS model (25) or (27) are provided by
the unsuccessful implementation of the BPS formalism in
the Chern-Simons restricted baby Skyrme model intro-
duced in Eq. (3). The successful implementation of the BPS
formalism in the model (25) has allowed us to obtain an
energy lower bound (BPS limit) and the self-dual equations
satisfied by the field saturating such a limit. The BPS
energy is proportional to the topological charge of the
Skyrme field, so it is quantized. On the other hand, the total
magnetic flux and total electric charge are proportional to
each other but in general are not quantized. However, for
sufficiently large values of the electromagnetic coupling
constant g, both become quantized [see Eq. (93)].
The superpotential plays the principal role defining the

BPS solitons; thus, we consider it being a well-behaved
function in the whole target space. We have observed the
existence of three classes of self-dual solutions closely
related with the behavior of the superpotential. The first
class of solitons we have obtained is the so-called com-
pactons, which arise when the superpotential behaves like
WðrÞ ≈ ð1 − hðrÞÞσ for r → R and 1 < σ < 2, where R is
the compacton radius. The other two classes of solitons are
noncompacton structures, i.e., they are regular functions in
0 ≤ r < ∞, but they are different because their respective
tails have different behaviors for r → ∞. Thus, the first
noncompacton solitons are generated by a superpotential
behaving like WðrÞ ≈ ð1 − hðrÞÞ2 for r → ∞ of which the
tail decays, following an exponential law e−αr

2

(α > 0). The

second class of noncompacton solitons possesses a tail
following a power-law decay r−β (β > 0) for r → ∞, and
the superpotential behaves like WðrÞ ≈ ð1 − hðrÞÞσ with
σ > 2. Depending on the parameter values, the two last
solitons can exhibit a compactonlike behavior.
It is important to emphasize the model proposed in the

Lagrangian density (25) has a matching N ¼ 2 SUSY
extension possessing a self-dual or BPS structure, which is
only possible through a set of auxiliary fields. In our
context, the existence of such self-dual equations is ensured
by the inclusion of the term proportional to ðn̂ ·Dμϕ⃗Þ2W2

as in model (25). The superpotential W is related to the
target space area density and the Kähler metric of the
sigma-model part [44]. Besides, the solutions of Eqs. (43)
and (44) are type 1=4-BPS corresponding to the nontrivial
phase of the N ¼ 2 SUSY extension model.
We also are investigating the existence of BPS solitons in

a baby Skyrme model gauged with the Maxwell-Chern-
Simons action and into the presence of Lorentz violation.
The results will be reported elsewhere.
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