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The interplay between acceleration and radiation harbors remarkable and surprising consequences. One
of the most striking is that the Larmor radiation emitted by a charge can be seen as a consequence of the
Unruh thermal bath. Indeed, this connection between the Unruh effect and classical bremsstrahlung was
used recently to propose an experiment to confirm (as directly as possible) the existence of the Unruh
thermal bath. This situation may sound puzzling in two ways: first, because the Unruh effect is a strictly
quantum effect while Larmor radiation is a classical one, and second, because of the crucial role played by
zero-frequency Rindler photons in this context. In this paper we settle these two issues by showing how the
quantum evolution leads naturally to all relevant aspects of Larmor radiation and, especially, how the
corresponding classical radiation is entirely built from such zero-Rindler-energy modes.
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I. INTRODUCTION

The connection between acceleration and radiation is a
subject that repeatedly puzzles physicists. It is well known
(e.g., [1]) that an accelerated charge radiates electromag-
netic waves (bremsstrahlung) in the inertial frame with an
emitted power given by the famous Larmor formula [2].
However, ever since the works of Rohrlich [3,4] and
Boulware [5] it has been known that radiation is not a
local, covariant concept. They found that although a
uniformly accelerated electric charge radiates with respect
to distant inertial observers, uniformly coaccelerated
observers see no radiation coming from the charge.
More recently, this issue was investigated within the

framework of quantum field theory (QFT) in curved
spacetimes [6] (see also Refs. [7–10]). This work found
what appears to be a striking connection between brems-
strahlung and a remarkable effect of QFT discovered by
Unruh in 1976 [11]. The Unruh effect states that uniformly
accelerated observers with proper acceleration a detect a
thermal bath of particles with temperature

TU ¼ ℏa=ð2πckBÞ ð1Þ

when the quantum field is in the Minkowski vacuum. By
analyzing the bremsstrahlung effect using QFT in both
inertial and coaccelerated frames, it was shown [6] that
coaccelerating observers with the uniformly accelerated
charge interpret the usual (inertial) emission as the com-
bined rate of emission and absorption of zero-energy
Rindler photons (energy defined with respect to Rindler
time) into and from the Unruh thermal bath, respectively.
The connection between the Unruh effect and the brems-
strahlung was strengthened recently in Ref. [12], where it
was shown that the existence of the Unruh effect is reflected
in the classical Larmor radiation emitted by an accelerated
charge. This connection was used to propose an experiment
reachable under present technology whose result may be
directly interpreted in terms of the Unruh thermal bath (see
also Ref. [13] for more details on the experiment).
This body of work has left two important issues not fully

resolved. The first one is the crucial role played in the QFT
calculations by zero-energy Rindler photons, which (in the
limit of literally zero Rindler frequency) are pressed
completely into the boundary (horizon) of the Rindler
wedge (see Fig. 1). The very idea of a nontrivial zero-
frequency mode is unfamiliar and gives the entire argument
a mysterious air, which has hindered its acceptance. Indeed,
trenchant questions and criticisms by D. N. Page and W. G.
Unruh (private communications) persuaded us of the need
to perform the present deeper investigation and exposition.
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The second issue is how the Unruh temperature (1), a
manifestly quantum effect, becomes codified in the
(classical) Larmor radiation emitted by the charge. In the
present paper, we address these two issues by analyzing
both classical and quantum aspects of the problem in a way
that connects the radiation seen by inertial observers with
the physics of uniformly accelerated ones. For the sake of
simplicity, we focus on the radiation emitted by a scalar
source, since the above issues are already present in such a
case. We first show that zero-energy Rindler modes are
the ones responsible for building the radiation seen by
inertial observers in the classical scenario. Next, we tackle
the problem from the perspective of QFT and show that the
quantum evolution takes the radiation field state from the
vacuum of the inertial observes in the asymptotic past to a
coherent state (with only zero-Rindler-energy excitations
contributing to it) for inertial observes in the asymptotic
future. The field expectation value in such a state is given
by the classical retarded solution, and the (normal-ordered)
stress-energy tensor expectation value coincides with its
classical counterpart. As a side effect, this paper should also
boost the interest of experimentalists to carry on the
proposal of observing the Unruh effect raised in Ref. [12].
The paper is organized as follows. In Sec. II, we discuss

the classical aspects of the radiation emitted by the source
and the role played by zero-energy Rindler modes in that
context. In Sec. III we delve into the quantum evolution of
the system and show how it relates to the classical analysis.
Our closing remarks appear in Sec. IV.

We adopt metric signature ð−;þ;þ;þÞ and units where
G ¼ ℏ ¼ c ¼ kB ¼ 1, unless stated otherwise.

II. RADIATION EMITTED BY AN ACCELERATED
CHARGE: CLASSICAL ASPECTS

Let us begin by considering a uniformly accelerated
scalar source j interacting with a classical scalar field ϕ for
a finite proper time T tot ≡ 2T in Minkowski spacetime
ðR4; ηabÞ, ηab being the flat Minkowski metric tensor. The
worldline of a uniformly accelerating pointlike source is,
without loss of generality,

t¼ a−1 sinhaτ; z¼ a−1 coshaτ; x¼ 0; y¼ 0; ð2Þ

where τ and a are the source’s proper time and acceleration,
respectively, and here ðt; x; y; zÞ are the usual Cartesian
coordinates covering Minkowski spacetime. The scalar
source is then given by [14]

j ¼
�
qδðξÞδ2ðx⊥Þ −T < τ < T

0 jτj > T
; q ¼ const; ð3Þ

where we recall that in Rindler coordinates ðτ; ξ;x⊥Þ, τ; ξ ∈
R and x⊥ ¼ ðx; yÞ ∈ R2, covering the right Rindler wedge
(region z > jtj), the Minkowski line element takes the form

ds2 ¼ e2aξð−dτ2 þ dξ2Þ þ dx2 þ dy2 ð4Þ

and the worldline (2) is cast as ξ ¼ x ¼ y ¼ 0.
The source impact on the classical field ϕ is ruled by the

inhomogeneous Klein-Gordon equation,

∇a∇aϕ ¼ j; ð5Þ

where∇a is the torsion-free covariant derivative compatible
with ηab. Let us denote the retarded solution of Eq. (5) by

RjðxÞ≡
Z
R4

d4x0
ffiffiffiffiffiffi
−g

p
Gretðx; x0Þjðx0Þ; ð6Þ

where Gret is the retarded Green function for a spacetime
point source [15]. By choosing a Minkowski space Cauchy
surface Σþ ⊂ R4 − J−ðsupp jÞ, where supp j is the support
of j, we can write the retarded solution on Σþ as

Rj ¼ −ðAj − RjÞ≡ −Ej; ð7Þ

since the advanced solution, Aj, vanishes on R4 −
J−ðsupp jÞ (see Fig. 1).
It is important to understand that (for T → ∞) R ¼ A

inside the right Rindler wedge [5,9]. In that region the
solution is invariant under time reversal and under Rindler
time translation. It is not surprising that the temporal

FIG. 1. The figure shows the conformal Minkowski space-
time with a uniformly accelerated finite-time source satis-
fying z2−t2¼1=2 at the right Rindler wedge I. Σ∓ represent
t¼∓2 past and future Cauchy surfaces of the Minkowski
spacetime.
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Fourier decomposition of such a function involves only the
frequency ω ¼ 0.
Now, let us analyze the radiation emitted by the scalar

source from the perspective of inertial observers in the
asymptotic future. For this purpose, we decompose Eq. (7)
in Σþ using the so-called Unruh modes [11] fw1

ωk⊥ ; w
2
ωk⊥g,

where ω ∈ Rþ and k⊥ ∈ R2. They can be written in terms
of left- and right-Rindler modes vRωk⊥ and vLωk⊥ , respec-
tively, as

w1
ωk⊥ ≡ vRωk⊥ þ e−πω=avL�ω−k⊥ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e−2πω=a
p ; ð8Þ

w2
ωk⊥ ≡ vLωk⊥ þ e−πω=avR�ω−k⊥ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e−2πω=a
p : ð9Þ

The modes vRωk⊥ vanish in the left-Rindler wedge and take
the following form in the right-Rindler wedge:

vRωk⊥ ¼ e−iωτFωk⊥ðξ;x⊥Þ; ð10Þ

with

Fωk⊥ðξ;x⊥Þ≡
�
sinhðπω=aÞ

4π4a

�
1=2

Kiω=a

�
k⊥
a
eaξ

�
eik⊥·x⊥ :

ð11Þ

The modes vLωk⊥ are defined by vLωk⊥ðt; x; y; zÞ ¼
vR�ωk⊥ð−t; x; y;−zÞ. Hence, they vanish in the right-
Rindler wedge and take the form (10) in Rindler coor-
dinates covering the left-Rindler wedge.
The Unruh modes (8) and (9), together with their

Hermitian conjugates, form a complete orthonormal set
(with respect to the Klein-Gordon inner product [16]) of
solutions of the homogeneous Klein-Gordon equation with
initial data in certain natural Hilbert spaces. Although
they are labeled by Rindler energy ω and transverse
momentum k⊥, they are positive frequency with respect
to the inertial time t. This makes them particularly suitable
to analyze the relation between radiation seen by inertial
observers and the physics of uniformly accelerated observ-
ers. Mathematically, they provide a factorization of the
complicated Bogolubov transformation relating the Rindler
modes to the conventional modes in Minkowski space: The
mapping (Rindler ↔ Unruh) mixes positive and negative
frequency but does not change the spatial dependence of
the functions, while the mapping (Unruh ↔ Minkowski)
does not mix the sign of frequency (particles with anti-
particles) but interchanges the Rindler eigenfunctions (11)
with the conventional plane waves.
Using Eq. (7) and the fact that∇a∇aRj ¼ 0 outside supp

j, we can express Rj on Σþ in terms of the modes wσ
ωk⊥

(σ ¼ 1, 2) as

Rj ¼ −
X2
σ¼1

Z
∞

0

dω
Z

d2k⊥hwσ
ωk⊥ ; EjiKGwσ

ωk⊥ þ c:c:;

ð12Þ

where h:; :iKG denotes the Klein-Gordon inner product.
By means of the identity [17]

hwσ
ωk⊥ ; EjiKG ¼ i

Z
R4

d4x
ffiffiffiffiffiffi
−g

p
wσ�
ωk⊥ðxÞjðxÞ ð13Þ

together with Eqs. (3) and (8)–(11), we can compute the
expansion coefficients of Eq. (12) as

hw1
ωk⊥ ; EjiKG ¼ iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e−2πω=a
p

Z
R4

d4x
ffiffiffiffiffiffi
−g

p
vR�ωk⊥ðxÞjðxÞ

¼ 2iqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2πω=a

p sinðωTÞ
ω

F�
ωk⊥ð0Þ ð14Þ

and

hw2
ωk⊥ ; EjiKG ¼ ie−πω=affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e−2πω=a
p

Z
R4

d4x
ffiffiffiffiffiffi
−g

p
vRω−k⊥ðxÞjðxÞ

¼ 2iqe−πω=affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2πω=a

p sinðωTÞ
ω

Fω−k⊥ð0Þ: ð15Þ

Using Eq. (11) in Eqs. (14) and (15) and taking the limit
T → ∞, where the source is uniformly accelerated forever,
we obtain

hw1
ωk⊥ ; EjiKG ¼ hw2

ωk⊥ ; EjiKG ¼ iqK0ðk⊥=aÞffiffiffiffiffiffiffiffiffiffi
2π2a

p δðωÞ; ð16Þ

where we have used that limA→∞ sinðAxÞ=x ¼ πδðxÞ.
Now, using Eq. (16) in Eq. (12) together with the fact
that w1

−ωk⊥ ¼ w2
ωk⊥ [16] one obtains [18]

Rj ¼ −
iqffiffiffiffiffiffiffiffiffiffi
2π2a

p
Z

d2k⊥K0ðk⊥=aÞw2
0k⊥ þ c:c: ð17Þ

The above expansion explicitly shows that, in the limit
where the charge accelerates forever, only zero-energy
Unruh modes contribute to the classical radiation seen
by inertial observers in the asymptotic future. We
also note that the expansion amplitudes are built entirely
from zero-energy Rindler modes in the right wedge [see
Eqs. (14)–(16)].
Now, in order to compare our results with the usual

results obtained from classical (scalar) electrodynamics, let
us explicitly compute the integrals in Eq. (17) when Rj is
evaluated in the region t > jzj of Minkowski spacetime.
[This future Rindler wedge is also associated with the name
of Kasner (in dimension 4) or Milne (in dimension 2).] As
shown in Ref. [16], the Unruh mode w2

ωk⊥ can be written as
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w2
ωk⊥ ¼ −i

eik⊥·x⊥þiωζffiffiffiffiffiffiffiffiffiffiffiffi
32π2a

p eπω=2aHð2Þ
iω=aðk⊥eaη=aÞ; ð18Þ

where Hð2Þ
ν is the Hankel function of order ν and we have

introduced the coordinates η; ζ ∈ R defined by

t ¼ a−1eaη cosh aζ; z ¼ a−1eaη sinh aζ; ð19Þ

which cover the future wedge. By using Eq. (18) in Eq. (17)
we can write the retarded solution Rj as

Rj ¼ −q
8π2a

Z
d2k⊥eik⊥·x⊥K0ðk⊥=aÞHð2Þ

0

�
k⊥
a
eaη

�
þ c:c:

ð20Þ

In order to compute this integral, let us define polar
coordinates ðk⊥;φÞ by

kx ¼ k⊥ cosφ; ky ¼ k⊥ sinφ:

In such coordinates, we can write k⊥ · x⊥ ¼ k⊥x⊥ cosφ,
with x⊥ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

, d2k⊥ ¼ k⊥dφdk⊥, and

Rj ¼ −q
8π2a

Z
∞

0

k⊥dk⊥
Z

2π

0

dφ

�
eik⊥x⊥ cosφK0ðk⊥=aÞ

×Hð2Þ
0

�
k⊥
a
eaη

��
þ c:c: ð21Þ

We can now perform the integral in φ by means of the
identity

J0ðαÞ ¼
1

2π

Z
2π

0

dφeiα cosφ: ð22Þ

Then, by using Hð2Þ
0 ≡ J0 − iY0 we cast Eq. (21) as

Rj ¼ −q
2πa

Z
∞

0

dk⊥k⊥J0ðk⊥x⊥ÞK0ðk⊥=aÞJ0ðk⊥eaη=aÞ:

ð23Þ

Now, by the equality [see Ref. [19] or Eq. (132) of
Ref. [20]]

Z
∞

0

dk⊥k⊥J0ðk⊥x⊥ÞK0ðk⊥=aÞJ0ðk⊥eaη=aÞ ¼ a=2ρ0ðxÞ;

ð24Þ

where ρ0ðxÞ≡ a
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−xμxμ þ a−2Þ2 þ 4ðt2 − z2Þ=a2

q
, we

find the retarded solution Rj to be

Rj ¼ −q
4πρ0ðxÞ

: ð25Þ

This is exactly the retarded solution obtained by the usual
Green function method of (scalar) electrodynamics [see, for
instance, Eq. (2.2) of Ref. [9] with ρ → −j].
We stress that the foregoing analysis involves no

quantum theory whatsoever. The Rindler and Unruh modes
enter only as classical special functions describing the
structure of the space of classical solutions of the field
equation. Furthermore, no particle concept was mentioned
and no perturbation theory was employed. Nevertheless, it
is possible [8] to introduce a notion of “classical particle
number” that provides an illuminating comparison with the
quantum calculations to follow: Define the classical num-
ber of particles radiated (as seen by inertial observers) to be

NM ≡ hKRj;KRjiKG; ð26Þ

where

KRj≡ −
iqffiffiffiffiffiffiffiffiffiffi
2π2a

p
Z

d2k⊥K0ðk⊥=aÞw2
0k⊥ ð27Þ

is the (inertial-) positive-frequency part of the retarded
solution in Eq. (17). Using the orthonormality of the Unruh
modes

hwσ
ωk⊥ ; w

σ0
ω0k0⊥iKG ¼ δσσ0δðω − ω0Þδðk⊥ − k0⊥Þ;

we substitute Eq. (27) in Eq. (26) to obtain

NM

T tot
¼ q2

2π2a

Z
∞

0

dk⊥k⊥jK0ðk⊥=aÞj2

¼ q2a
4π2

; ð28Þ

where we have used T tot ¼ 2πδðωÞjω¼0 and

Z
∞

0

dx xjK0ðxÞj2 ¼ 1=2:

This is exactly the result obtained in [9] using tree-level
QFT. We reobtain this result nonperturbatively in the
context of QFT in the next section.

III. RADIATION EMITTED BY AN
ACCELERATED CHARGE:

QUANTUM ASPECTS

Let us now analyze the radiation emitted by the charge
from the point of view of QFT. To unveil the radiation
content seen by an inertial observer in the asymptotic
future, we analyze the impact of the source (3) (which is
still a c-number and a scalar) on a quantum scalar field ϕ̂
satisfying

∇a∇aϕ̂ ¼ j: ð29Þ
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We can write a general solution of this operator equation as

ϕ̂ðt;xÞ ¼ Rjðt;xÞÎ þ ϕ̂inðt;xÞ; ð30Þ

where Rj is given by Eq. (6) and ϕ̂in satisfies the free
(homogeneous) Klein-Gordon equation

∇a∇aϕ̂in ¼ 0: ð31Þ

As a result, we can expand ϕ̂in as

ϕ̂inðt;xÞ≡
X
j

½ujðt;xÞâinðu�jÞ þ u�jðt;xÞâ†inðujÞ�; ð32Þ

where fujg is a set of (Minkowski) positive-frequency
modes (which might be either plane waves or Unruh
modes). Then j0Min i [satisfying âinðu�jÞj0Min i ¼ 0 for all j]
is the vacuum state as defined by inertial observers in the
asymptotic past, and the Fock space built from the action of
â†inðujÞ on j0Min i describes particle states seen by such
observers.
Alternatively, we can write a solution of Eq. (29) as

ϕ̂ðt;xÞ ¼ Ajðt;xÞÎ þ ϕ̂outðt;xÞ; ð33Þ

where we recall that Aj is the advanced solution of Eq. (5)
[which vanishes on R4 − J−ðsupp jÞ] and ϕ̂out satisfies the
free Klein-Gordon equation

∇a∇aϕ̂out ¼ 0: ð34Þ

Therefore, the field ϕ̂out can be expanded as

ϕ̂outðt;xÞ≡
X
j

½vjðt;xÞâoutðv�jÞ þ v�jðt;xÞâ†outðvjÞ�; ð35Þ

where fvjg is again a set of (Minkowski) positive-
frequency modes (possibly the same as the uj). Hence,
j0Mouti [satisfying âoutðv�jÞj0Mouti ¼ 0 for all j] is the vacuum
state as defined by inertial observers in the asymptotic
future and the Fock space built from the action of â†outðvjÞ
on j0Mouti describes particle states seen by such observers.
We can exactly connect the in and out Fock spaces by

means of the S-matrix (see, e.g., Sec. 4.1.4 of Ref. [15]),

Ŝ ¼ exp

�
−i

Z
d4x

ffiffiffiffiffiffi
−g

p
ϕ̂outðxÞjðxÞ

�
: ð36Þ

Let us suppose now that the field is prepared in the in-
vacuum, j0Min i. The S-matrix (36) relates j0Min i and j0Mouti as

j0Min i ¼ Ŝj0Mouti: ð37Þ

Next, we use Eq. (37) to analyze how the in-vacuum is seen
by inertial observers in the asymptotic future and, as a
result, study the radiation emitted by the source. In order to
do this, let us first expand ϕ̂out in terms of Unruh modes (8)
and (9),

ϕ̂outðxÞ ¼
X2
σ¼1

Z
∞

0

dω
Z

d2k⊥½wσ
ωk⊥ðxÞâoutðwσ�

ωk⊥Þ

þ wσ�
ωk⊥ðxÞâ

†
outðwσ

ωk⊥Þ�: ð38Þ

Now, we smear Eq. (38) with j, getting

−iϕ̂outðjÞ≡ −i
Z
R4

d4x
ffiffiffiffiffiffi
−g

p
ϕ̂outðxÞjðxÞ

¼
X2
σ¼1

Z
∞

0

dω
Z

d2k⊥½hwσ
ωk⊥ ; Eji�KGâoutðwσ�

ωk⊥Þ

− hwσ
ωk⊥ ; EjiKGâ†outðwσ

ωk⊥Þ�; ð39Þ

where we have used Eq. (13) to transform the spacetime
integral into the Klein-Gordon inner product. The (inertial-)
positive-frequency part of Ej is given by

KEj≡X2
σ¼1

Z
∞

0

dω
Z

d2k⊥hwσ
ωk⊥ ; EjiKGwσ

ωk⊥ ; ð40Þ

with which we can rewrite Eq. (39) as

iϕ̂outðjÞ ¼ â†outðKEjÞ − âoutðKEj�Þ; ð41Þ

where we have used

â†outðKEjÞ ¼
X2
σ¼1

Z
∞

0

dω
Z

dk⊥hwσ
ωk⊥ ; EjiKGâ

†
outðwσ

ωk⊥Þ

ð42Þ

and analogously for âoutðKEj�Þ. This enables us to cast the
S-matrix as

Ŝ ¼ exp ½âoutðKEj�Þ − â†outðKEjÞ�: ð43Þ

[In Eqs. (41) and (43), KEj� is to be read as ðKEjÞ�; we
prefer not to overload the notation with an extra pair of
parentheses.] Applying the Zassenhaus formula,

eaþb ¼ eaebe−
1
2
½a;b�

when ½a; b� is a c-number, we get from Eqs. (37) and (43)
the following expression for the in-vacuum in terms of out
states:

j0Min i ¼ e−kKEjk2=2e−â
†
outðKEjÞj0Mouti; ð44Þ
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where

½âoutðKEj�Þ; â†outðKEjÞ� ¼ hKEj; KEjiKGÎ
≡ kKEjk2Î:

This is a (multimode) coherent state; i.e., it is an eigenstate of âoutðwσ�
ωk⊥Þwith eigenvalue −hwσ

ωk⊥ ; EjiKG for all σ ∈ f1; 2g,
ω ∈ Rþ, and k⊥ ∈ R2. To see this, we note that

âoutðwσ�
ωk⊥Þj0Min i ¼ e−kKEjk2=2e−â

†
outðKEjÞðeâ†outðKEjÞâoutðwσ�

ωk⊥Þe−â
†
outðKEjÞÞj0Mouti

¼ e−kKEjk2=2e−â
†
outðKEjÞðâoutðwσ�

ωk⊥Þ þ ½â†outðKEjÞ; âoutðwσ�
ωk⊥Þ�Þj0Mouti; ð45Þ

where we have used in the second line that

eÂB̂e−Â ¼ B̂þ ½Â; B̂� þ 1

2!
½Â; ½Â; B̂�� þ � � � : ð46Þ

Using

½âoutðwσ�
ωk⊥Þ; â†outðKEjÞ� ¼ hwσ

ωk⊥ ; KEjiKGÎ
and âoutðwσ�

ωk⊥Þj0Mouti ¼ 0, we find that

âoutðwσ�
ωk⊥Þj0Min i ¼ −hwσ

ωk⊥ ; EjiKGj0Min i; ð47Þ

where we have also used Eq. (44) and
hwσ

ωk⊥ ; KEjiKG ¼ hwσ
ωk⊥ ; EjiKG.

From Eqs. (38) and (47), it is easy to see that

h0Min jϕ̂outj0Min i ¼ −
X2
σ¼1

Z
∞

0

dω
Z

d2k⊥hwσ
ωk⊥ ; EjiKGwσ

ωk⊥ ;

þ c:c:; ð48Þ

which is just −Ej written in terms of Unruh modes. By
evaluating the above expression on Σþ, where Aj ¼ 0, we
have that −Ej ¼ Rj and thus (in the far future)

h0Min jϕ̂outðxÞj0Min i ¼ RjðxÞ; ð49Þ

which is the classical retarded solution produced by the
uniformly accelerated source. Therefore, for such a source
interacting with a quantum field ϕ̂ in the vacuum state
defined by inertial observers in the asymptotic past, inertial
observers in the asymptotic future will describe this state as
a coherent state with field expectation value given by Rj,
the classical retarded solution [21].
As we have stressed previously, this solution is built

exclusively from zero-energy Rindler modes. Our next task
is to show that this property extends not only to the field
expectation value but to the quantum state as a whole. Let
us delve into the structure of the coherent state (44) to see
how each Unruh mode contributes to it in the limit
T tot → ∞. Use Eqs. (14)–(17) to recast Eq. (42) as

â†outðKEjÞ ¼ iqffiffiffiffiffiffiffiffiffiffi
2π2a

p
Z

d2k⊥K0ðk⊥=aÞâ†outðw2
0k⊥Þ: ð50Þ

Using Eq. (50) in Eq. (44) one obtains

j0Min i ¼ exp ½−T totq2a=ð4π2Þ�

⊗
k⊥

exp

�
iqK0ðk⊥=aÞffiffiffiffiffiffiffiffiffiffi

2π2a
p â†outðw2

0k⊥Þ
�
j0Mouti; ð51Þ

where we have used that

kKEjk2 ¼
X2
σ¼1

Z
∞

0

dω
Z

d2k⊥jhwσ
ωk⊥EjiKGj2

¼ q2aT tot=4π2; ð52Þ

which comes from using Eq. (16) in the above equation
together with T tot ¼ 2πδðωÞjω¼0 (as usual in quantum
scattering theory). Thus, we see from Eq. (51) that only
zero-energy Unruh modes contribute to build the quantum
radiation emitted by the charge when the field is initially in
the Minkowski vacuum state. This result vindicates the
claim that each particle emitted in the inertial frame must
correspond in the accelerated one to either the emission or
the absorption of a zero-energy Rindler particle [6,9].
Let us finish the analysis of the quantum aspects of the

radiation by studying both the mean number of created
particles and the expectation value of the stress-energy
tensor in the asymptotic future. This allows us to clarify
further the connection between the quantum and classical
radiation emissions. We begin by using the fact that j0Min i is
a coherent state for inertial observers in the asymptotic
future—Eq. (47)—to calculate the mean particle number in
each Unruh mode,

h0Min jN̂out
ωk⊥ j0Min i ¼ jhwσ

ωk⊥ ; EjiKGj2; ð53Þ

where N̂out
ωk⊥ ¼ â†outðwσ

ωk⊥Þâoutðwσ�
ωk⊥Þ and we have used

h0Min j0Min i ¼ 1. Integrating over all quantum numbers, we
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find that the total mean particle number created at the
asymptotic future is

h0Min jN̂outj0Min i¼
X2
σ¼1

Z
∞

0

dω
Z

d2k⊥jhwσ
ωk⊥EjiKGj2: ð54Þ

Using Eq. (52) in this equation one obtains

h0Min jN̂outj0Min i
T tot

¼ q2a
4π2

; ð55Þ

which agrees with the classical particle number per proper
time given in Eq. (28).
Moreover, the agreement between the classical and

quantum observables happens not only for the number
of emitted scalar particles but also for the (normal-ordered)
stress-energy tensor,

∶T̂out
ab ∶≡ T̂out

ab − h0MoutjT̂out
ab j0Mouti; ð56Þ

where T̂out
ab ¼ ∇aϕ̂out∇bϕ̂out − 1

2
ηab∇cϕ̂out∇cϕ̂out. To show

this, let us use Eqs. (38), (47), and (12) to straightforwardly
compute (in the asymptotic future)

h0Min j∶∇aϕ̂out∇bϕ̂out∶j0Min i ¼ ∇aRj∇bRj: ð57Þ

It follows by Eqs. (56)–(57) that on R4 − J−ðsupp jÞ we
have

h0Min j∶T̂out
ab ∶j0Min i≡∇aRj∇bRj −

1

2
ηab∇cRj∇cRj; ð58Þ

which is precisely the classical stress-energy tensor asso-
ciated with the retarded solution, Tab½Rj�. As a result, any
observable calculated from the expectation value of the
quantum stress-energy tensor in the (Minkowski) in-vac-
uum is given by its classical counterpart computed from
Tab½Rj�. In particular, the (quantum) energy flux integrated
along a large sphere in the asymptotic future is given by [9]

Z
dSbh0Min j∶T̂out

ab ∶j0Min ið∂tÞa ¼
q2a2

12π
; ð59Þ

which is the usual Larmor formula for the power radiated
by a scalar source (with respect to inertial observers). Here,
dSb is the vector-valued volume element on the sphere and
ð∂tÞa is the Killing field associated with a global inertial
congruence.

IV. CONCLUSIONS

We have analyzed both classical and quantum aspects of
the radiation emitted by a uniformly accelerated scalar
source, with emphasis on the limit where the lifetime T tot of
the source is infinite. In that case we have shown that the
classical radiation is entirely built from zero-energy Unruh
modes and that only zero-energy Rindler modes in the right
Rindler wedge contribute to the expansion amplitudes. By
studying the quantum evolution of the scalar field interact-
ing with a classical uniformly accelerated source, we were
able to show how the quantum and classical analyses relate
to each other. When the field is prepared in the vacuum
state for inertial observers in the asymptotic past, inertial
observers in the asymptotic future will describe this state as
a coherent multiparticle state whose field expectation value
is given by the classical retarded solution Rj. This coherent
state is built only from zero-energy Unruh modes (agreeing
with the classical analysis) and, as in the classical case, only
zero-energy Rindler modes in the right Rindler wedge
contribute to the amplitudes building the coherent state. It is
important to stress that this happens only because the field
state is the Minkowski in-vacuum. By computing the mean
particle number and the expectation value of the stress-
energy tensor in the asymptotic future, we were able to
show that they agree with their classical counterparts
calculated with the retarded solution. As a result, any
(quantum) observables related to the number of particles or
stress-energy tensor can be computed using the classical
retarded solution. More importantly, zero-energy Rindler
modes are not a mathematical artifact; they play a crucial
role in building the radiation both in the classical and in the
quantum realm. We believe that our results put to rest any
doubts about the relationship between the Unruh effect and
the classical Larmor radiation.
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