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We discuss several aspects of particle production in (a) a time-dependent electric field and (b) an
expanding Friedmann background. In the first part of the paper, we provide an algebraic mapping between
the differential equations describing these two phenomena. This mapping allows a direct comparison
between a and b, and we highlight several interesting features of both cases using this approach. We
determine the form of the (equivalent) electric field corresponding to different Friedmann spacetimes and
discover, e.g., a time-dependent electric field, which, in a specific limit, leads to a Planck spectrum of
particles. We also discuss the conditions under which the particle production in an expanding background
will be nonanalytic in the parameter which encodes the coupling to the curved spacetime, in close analogy
with the generalized Schwinger effect. In the second part of the paper, we study the situation in which both
a time-dependent electric field and an expanding background are simultaneously present. We compute
particle production rate in this context by several different methods, paying special attention to its limiting
forms and possible nonanalytic behavior. We also clarify several conceptual issues related to definitions of
in vacuum and out vacuum in these systems.
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I. INTRODUCTION

Two examples of particle production in external
backgrounds—discussed extensively in the literature—
correspond to (a) quantum field theory of a complex scalar
field in an external, homogeneous, electric field [1] and
(b) quantum field theory of a scalar field in an expanding
Friedmann background [2]. We will be dealing with several
aspects of these two systems in this paper.
The first of these two examples includes the famous

Schwinger effect [1,3], corresponding to a constant elec-
tric field, and its generalizations, which deal with time-
dependent electric fields (see, e.g., Refs. [4–13]). In the
case of constant electric field, the number density of par-
ticles produced from the vacuum has a nonanalytic depen-
dence on the coupling constant, which implies that this
result cannot be obtained from perturbative QED. The
situation changes when the electric field is time dependent
(see, e.g., Refs. [14–18]). Broadly speaking, if the electric
field is sharply localized in a time interval, the particle
production rate exhibits an analytic dependence on the
coupling constant. It is possible to construct examples in
which the particle production rate makes a smooth transition
between nonanalytic to analytic behavior (with respect to the

coupling constant), when a parameter which controls the
time dependence of the electric field is varied.
In the first part of this paper, we will show that there

exists a purely algebraic correspondence between the
differential equations governing the scalar field in the
cases a and b mentioned above. (Though some authors
have noticed a parallel between particle production in an
expanding universe and the Schwinger effect in the past—
one of the earliest works we know being Ref. [19] and a
more recent one being [20]—the utility of this parallel has
not been adequately exploited in the literature.) Using this
correspondence, it is possible to translate the results
obtained in the case of a time-dependent electric field to
those in an expanding Friedmann background and vice
versa. For example, it turns out that the constant electric
field case can be mapped to a radiation dominated universe,
while the de Sitter universe maps back to a singular electric
field. Further, the Milne universe maps to an electric field in
flat spacetime, which produces a Planckian spectrum of
particles, in a specific limit, thereby providing yet another
“black hole analogue” [21].
Just as the particle production in an external electric

field vanishes when a coupling constant in the problem
goes to zero, the particle production in an expanding
universe will vanish when the parameter describing the
expansion of the universe goes to zero, thereby reducing
the Friedmann universe to a flat spacetime. (For example,
the spatially flat de Sitter universe will become flat
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spacetime when H → 0.) This vanishing of the particle
production in the expanding universe can, again, have
either an analytic or nonanalytic dependence in the relevant
coupling constant, just as it happens in the case of a time-
dependent electric field. In a previous work [22], we
provided a criterion to distinguish between these two types
of behavior for a broad class of time-dependent electric
fields. The mapping between the two cases a and b allows
us to translate the results in Ref. [22] to the case of particle
production in Friedmann universes and obtain a criterion
for analytic vs nonanalytic dependence of the coupling
constant in this context.
In the second part of the paper, we study situations in

which both the time-dependent electric field as well as
background expansion are present in the form of a time-
dependent electric field in the de Sitter universe. (The
effects of pair production in such settings are believed to be
relevant in the study of inflationary magnetogenesis; see,
e.g., Refs. [23–25]). The particle production in this context
should reduce to two previously known limits when we
switch off the electric field or the de Sitter expansion. To
understand these limits properly, we first describe certain
peculiar features which arise in the study of particle
production in the de Sitter background. The conventional
method for studying the particle production in an expand-
ing background is based on calculating the Bogoliubov
coefficients between the in modes and the out modes. The
straightforward application of this method works in a de
Sitter background only when ðM=HÞ > 3=2 (where M is
the mass of the scalar field quanta and H is the Hubble
constant) and fails when ðM=HÞ < 3=2. It turns out that
similar issues arise when we study particle production due
to the combined effect of electric field and de Sitter
expansion. We also pay careful attention to the two limits
E → 0 and H → 0 and ensure that our results have the
correct limiting forms. (This has not been the case in some
of the previous literature in this subject.)
The structure of the paper is as follows. In Sec. II, we

show that there is a well-defined algebraic correspondence
between the differential equations describing the pair pro-
duction of a massive scalar field in the Friedmann universe
and a massive complex scalar in a homogeneous but time-
dependent electric field in Minkowski spacetime. We illus-
trate this correspondence in physically relevant examples
and their useful limiting cases. Using the correspondence
established in Sec. II and the techniques developed in
Ref. [22] to study the generalized Schwinger effect, we
analyze the analytic vs nonanalytic dependence of pair
production in Friedmann universe in Sec. III. Finally, we
discuss the Schwinger effect in de Sitter in Sec. IVusing two
approximate methods (namely the Landau procedure and the
Euclidean action method) and one exact method (using the
mode functions) and compare the results. In Sec. V, we
complement the results of Sec. II by studying the pair
production in a homogeneous but time-dependent electric
field in a de Sitter universe.

The last section summarizes the paper and gives a
list of new—conceptual and technical—results obtained
in this work.

II. CORRESPONDENCE BETWEEN THE
GENERALIZED SCHWINGER EFFECT AND PAIR
PRODUCTION IN AN EXPANDING UNIVERSE

Two time-dependent quantum systems of importance, in
the discussion of quantum fields in nontrivial backgrounds,
are (a) a massive scalar field in the Friedmann universe and
(b) a massive complex scalar field in a homogeneous but
time-dependent electric field. In this section, we will briefly
review the algebraic correspondence between these two and
study several properties using this correspondence. One of
the common features of these systems is that the time
dependence of the background fields (viz., the metric and
the electric field) leads to the creation of particle pairs from
the vacuum. Though these effects are usually studied
separately in the literature for these two systems, it is
possible to establish an algebraic mapping between them.
This allows us to translate the particle production rate in
one case to the same in the other. In this section, we will
establish this precise correspondence (see, e.g., Ref. [19])
and demonstrate possible applications.
The Friedmann metric describing a spatially flat, iso-

tropic, and homogeneous universe contains a single time-
dependent parameter aðtÞ and is given by

ds2 ¼ −dt2 þ a2ðtÞjdxj2: ð1Þ

It is convenient to transform to the conformal time
coordinate η defined by dη ¼ dt=aðtÞ, such that the line
element takes the following form,

ds2 ¼ aðηÞ2ð−dη2 þ jdxj2Þ; ð2Þ

which is conformally flat in the η coordinate. We will
consider a conformally coupled, massive, scalar field in this
background with the action

A ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
ϕ

�
□ −

R
6
−M2

�
ϕ: ð3Þ

In the massless limit, the presence of the Ricci scalar
term ensures that this action is invariant under conformal
transformations. Thus, for the conformally flat background
given in Eq. (7), when M ¼ 0, the above action is
equivalent to that of a massless field Φ ¼ aϕ, in flat
spacetime. However, when M ≠ 0, the action in Eq. (3)
transforms to the form

A ¼ 1

2

Z
d4xΦ½□flat −M2a2�Φ; ð4Þ

where □flat is the flat spacetime Laplacian and Φ ¼ aϕ.
We will Fourier transform the field Φ in the spatial
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coordinates and introduce the Fourier modes Φk. In terms
of Φk, the action simplifies to that of a bunch of time-
dependent harmonic oscillators, each labeled by the wave
number k. The corresponding Lagrangian associated with
Φk is given by

Lk ¼
�
1

2
jΦ0

kj2 −
1

2
ðk2 þ a2M2ÞjΦkj2

�
; ð5Þ

where the prime denotes a derivative with respect to the
conformal time coordinate η. Variation of the above
Lagrangian with respect to Φk yields its equation of
motion, which can be written as

Φ00
k þ fk2 þM2a2ðηÞgΦk ¼ 0; ð6Þ

with k2 ¼ jkj2. This describes a time-dependent harmonic
oscillator of unit mass and frequency ωkðηÞ given by

ω2
kðηÞ ¼ k2 þM2aðηÞ2: ð7Þ

We will next describe the correspondence between this
differential equation and the one which arises in the case of
a time-dependent electric field in flat spacetime. To do this,
wewill consider a complex scalar fieldΨ in the background
of a homogeneous, but time-dependent, electric field in flat
spacetime (with the metric ds2 ¼ −dη2 þ dx2) and obtain
an algebraic one-to-one correspondence between the two
systems. Without loss of generality, let us assume that the
electric field is along the z direction and choose the vector
potential to be Aa ¼ f0; 0; 0; AzðηÞg. The field equation
for the complex scalar field, minimally coupled to this
background electric field, is given by

ð∂a − iqAaÞð∂a − iqAaÞΨ −m2Ψ ¼ 0: ð8Þ
As in the previous case, we introduce the Fourier transform
Ψp of the complex scalar field Ψ, defined by

Ψðx; ηÞ ¼
Z

∞

−∞

dpz

2π

Z
d2p⊥
ð2πÞ2 e

ip:xΨpðηÞ; ð9Þ

to describe the dynamics. In the above expression, we have
separated the momentum integral into that of the longi-
tudinal (pz) and the transverse (p⊥ ≡ p − pzẑ) components
for later convenience. The equation of motion satisfied by
Ψp takes the form

Ψ00
p þ fm2 þ p2⊥ þ ðpz þ qAzÞ2gΨp ¼ 0: ð10Þ

Under the one-parameter family of gauge transformations1

given by Aa→ Ãa¼f0;0;0;ÃzðηÞg¼f0;0;0;AzðηÞþCg,

where C is a constant, the complex scalar field transforms
to Ψ̃ ¼ eiqCzΨ. This, in turn, implies that the Fourier
transforms of Ψ̃ and Ψ are related by Ψ̃ðpz;p⊥Þ ¼ Ψðp̃z;p⊥Þ,
where p̃z ¼ pz − qC. Therefore, the 3-vector p does not
specify a given physical mode of the complex scalar field in
a gauge-invariant way. On the other hand, the “physical
momentum” 3-vector Πðη0Þ≡ ðΠzðη0Þ ¼ pz þ qAzðη0Þ;
p⊥Þ, where η0 is an arbitrary time, can be used to specify
a physical mode in a gauge-invariant manner, since under a
gauge transformation the quantity pz þ qAzðη0Þ remains
invariant. Once the gauge is fixed, however, we can always
work with p, without any ambiguity.
It is evident that Eq. (10) describes a time-dependent

harmonic oscillator of unit mass and time-dependent
frequency ΩpðηÞ, where

Ω2
pðηÞ ¼ m2 þ p2⊥ þ fpz þ qAzðηÞg2: ð11Þ

Thus, the Fourier modes of both (i) the conformally
coupled, massive, scalar field in an expanding background
and (ii) the complex scalar field in a homogeneous electric
field satisfy the equation for a time-dependent harmonic
oscillator with unit mass. Consequently, for appropriate
choice of the parameters and functional forms for aðηÞ
and AzðηÞ, Eqs. (6) and (10) can be made mathematically
identical. That is, a purely algebraic correspondence
between the equations of motion of the two systems exists
when the following identification is made:

k2 þM2a2ðηÞ ⇄ m2 þ p2⊥ þ fpz þ qAzðηÞg2: ð12Þ

This, in turn, implies that the solutions in one case can be
mapped to those in the other. We stress that this is just a
useful algebraic correspondence, at the level of differential
equations governing the Fourier modes, using the principle
that same equations have the same solutions. (We do not
imply any physical equivalence between the two systems;
e.g., parameters which appear in the two cases do not share
similar physical interpretation.) In the following subsec-
tions, we will investigate what this mapping translates to, in
terms of the particle production, using some special cases.

A. Sauter-type electric field and its
Friedmann analogue

As a warm-up exercise for the above correspondence
between a time-dependent electric field and an expanding
universe, we start by discussing the Sauter-type electric
field. This is a time-dependent electric field and has the
following form:

E ¼ ð0; 0; E0sech2ðληÞÞ: ð13Þ

The corresponding vector potential, called the Sauter-type
potential, is given by

1In the following discussion, unless otherwise specified, by the
phrases “gauge transformation” and “gauge-invariant,” we mean,
respectively, this one-parameter family of gauge transformations
and invariance under the same.
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A ¼ −
�
E0

λ

�
tanh ðληÞẑ ð14Þ

where λ is a constant having dimensions of the inverse of
time. The differential equation for the Fourier modes of a
complex scalar field in this background electric field can be
exactly solved, and hence the particle production rate can
be explicitly calculated. The result is given by (see, e.g.,
Refs. [26,27]),

nk ¼
cosh2

h
π
λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqE0

λ Þ2 − 1

q i
− sinh2½ π

2λ ðω̃þ − ω̃−Þ�
sinhðπω̃þ

2λ Þ sinhðπω̃−
2λ Þ

; ð15Þ

where the frequencies ω̃� are defined as

ω̃� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2⊥ þ

�
pz ∓ qE0

λ

�
2

s
: ð16Þ

We will next discuss how the above expression for the
particle number also arises for a conformally coupled
massive scalar field in an expanding universe, for a certain
choice for the scale factor aðηÞ. To keep the discussion
somewhat general, we will start with the following form of
the scale factor [28],

a2ðηÞ ¼ Aþ B tanhðληÞ þ Ctanh2ðληÞ; ð17Þ

where A, B, and C are dimensionless constants. The
number of produced particles in the asymptotic limit, for
the scale factor presented in Eq. (17), has been explicitly
worked out in Ref. [28] and is given by

nk ¼
cosh ð2π ω−

λ Þ þ cosh
�
π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2C
λ2

− 1

q �
cosh ð2π ωþ

λ Þ − cosh ð2π ω−
λ Þ

; ð18Þ

where the frequencies ω� are defined in terms of the
constants A, B, and C appearing in the scale factor and the
mass M as

ω� ¼ 1

2

n ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2ðAþ Bþ CÞ

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2ðA − Bþ CÞ

q o
: ð19Þ

To algebraically map the time-dependent frequency ωkðηÞ,
with the scale factor aðηÞ as in Eq. (17), to ΩpðηÞ for the
Sauter-type potential, we start by making the following
choice for the arbitrary constants:

A ¼
�
pz

m

�
2

; B ¼ −2
ffiffiffiffiffiffiffi
AC

p
; C ¼

�
qE0

mλ

�
2

: ð20Þ

The scale factor, after this identification, becomes
aðηÞ ¼ ðpz=mÞ − ðqE0=mÞ tanhðληÞ. (Note that in the

expression for scale factor pz now appears purely as a
parameter that describes a family of scale factors.) Given
this, one can immediately verify, following Eq. (12), that
with the identification k2 ¼ M2 þ p2⊥ the corresponding
vector potential takes the form as in Eq. (14). Once this
correspondence is established, we can use Eqs. (18) and
(20), to obtain the particle number in an expanding
universe:

nk ¼
cosh½πλ ðω̃þ − ω̃−Þ� þ cosh

h
2π
λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqE0

λ Þ2 − 1

q i
cosh½πλ ðω̃þ þ ω̃−Þ� − cosh½πλ ðω̃þ − ω̃−Þ�

: ð21Þ

This coincides exactly with the number of particles
produced in a Sauter potential given in Eq. (14), and the
frequencies ω̃� are those presented in Eq. (16). This
explicitly demonstrates how one may use the correspon-
dence expressed by Eq. (12) to obtain the particle pro-
duction rate in a given expanding background using the
information about the particle production rate in a homo-
geneous electric field and vice versa.
Before concluding this discussion, let us briefly discuss

some of the limiting cases of the particle number in
Eq. (18). First, consider the case B ¼ 0 ¼ C, in which
case the scale factor is a constant. This yields ωþ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2A

p
and ω− ¼ 0, so that the particle production

rate vanishes, as it should:

lim
B;C→0

nk ¼ 1þ cosh ðiπÞ
coshð2π ωþ

λ Þ − 1
¼ 0: ð22Þ

Second, consider the vanishing λ limit, when the scale
factor becomes aðηÞ ∼ Aþ λBηþ λ2Cη2 and hence aðηÞ
becomes constant as λ → 0. Thus, it is expected that
the particle production should also vanish in the λ → 0
limit. A key question is whether it vanishes in an
analytical fashion or nonanalytically in λ. For positive A,
B, and C, we obtain ωþ > ω−, and in the vanishing λ limit,
we have coshð2πω�=λÞ ∼ expð2πω�=λÞ, as well asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4M2C=λ2Þ−1

p
∼ð2M=λÞ ffiffiffiffi

C
p

. Thus, in the λ → 0 limit,
the particle number presented in Eq. (18) becomes

nk ∼ exp

	
−
2π

λ
ðωþ −ω−Þ



þ exp

	
−
2π

λ
ðωþ −M

ffiffiffiffi
C

p
Þ


:

ð23Þ

Since ωþ is greater than ω− as well asM
ffiffiffiffi
C

p
, it follows that

nk → 0 in the λ → 0 limit. However, due to ð1=λÞ depend-
ence in the exponential, it is nonanalytic in λ near λ ∼ 0, as
evident from Eq. (23).
Finally, let us consider the other extreme, namely,

the λ → ∞ limit. The scale factor in this limit takes the
following form,
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aðηÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ BSignðηÞ þ C

p
; ð24Þ

where the Sign function is given by SignðxÞ ¼ 1 for
x > 0 and SignðxÞ ¼ −1 for x < 0. (This scale factor
corresponds to a “sudden” expansion at a single epoch.)
Following an identical procedure, the particle number in
this limit becomes

nk ¼ ω2
−

ω2þ − ω2
−
þ ðπ2ω2þω2

− − 3M4C2Þ
3λ2ðω2þ − ω2

−Þ
þOðλ−4Þ: ð25Þ

As evident from the above expression, the particle number
nk is analytic near λ ∼∞. Thus, we conclude that the
particle production in an expanding universe for the scale
factor in Eq. (17) may be either analytic or nonanalytic in λ
depending upon the limit of λ under consideration.
The behavior of the particle production rate nk for

the last two cases, namely, λ → 0 and λ → ∞, is closely
related to two well-known limiting cases of the Sauter
potential. They are, respectively, the following two limits
of Eq. (14): (i) mλ=ðqE0Þ → 0, i.e., when the electric
field approaches a constant value (the particle pro-
duction rate in this case is nonanalytic in qE0), and
(ii)mλ=ðqE0Þ → ∞, i.e., when the electric field approaches
a sharply localized function in time, like a pulse (the
particle production rate in this case is analytic in qE0). Our
mapping allows us to obtain an expanding universe
analogue of these limits.
In general, there is no assurance that the scale factor

corresponding to an arbitrary electric field configuration is
sourced by a physically acceptable matter distribution; this
is the situation, e.g., in the case for a localized pulselike
electric field obtained from themλ=ðqE0Þ → ∞ limit of the
Sauter-type field. However, it turns out that the constant
electric field—with nonanalytic dependence—actually
maps to a radiation dominated universe. We shall briefly
discuss this situation next.

B. Radiation dominated universe is equivalent
to constant electric field

As a second example, we examine whether a Friedmann
universe with a scale factor, which can be generated by a
physically acceptable source, can be mapped to a constant
electric field. For this purpose, let us again consider the
λ → 0 limit of the scale factor in Eq. (17), but with the
following choices of the parameters B and C:

B ¼ a0
ffiffiffiffi
A

p

λ
; C ¼ a20

4λ2
: ð26Þ

Here, a0 is a constant with dimension of inverse length. In
this particular case, after substitution of the previous
expressions for B and C, the square of the scale factor
becomes

a2ðηÞ ¼ lim
λ→0

�
Aþ a0

ffiffiffiffi
A

p

λ
tanhðληÞ þ a20

4λ2
tanh2ðληÞ

�

¼
� ffiffiffiffi

A
p

þ a0η
2

�
2

: ð27Þ

Therefore, the scalar factor in the conformal time coor-
dinate has the form aðηÞ ¼ ffiffiffiffi

A
p þ ða0η=2Þ. To see what

kind of matter fluid may generate the same, let us consider
the scale factor to be sourced by an ideal fluid with the
equation of state p ¼ wρ, where p is the pressure and ρ is
the energy density; then, the scale factor evolves with the
conformal time as

aðηÞ ¼ ðb0 þ b1ηÞ
2

ð1þ3wÞ; ð28Þ

where b0 and b1 are two unknown constants of integration.
For a radiation dominated universe, we have w ¼ 1=3, so
that the scale factor becomes aðηÞ ∝ η, which immediately
connects to the scale factor given by Eq. (27). Thus, the
choices made in Eq. (26) for the constants B and C
correspond to a radiation dominated universe. In this case,
we have the following limiting behavior for the particle
number in the asymptotic limit (see the Appendix A for
details),

lim
λ→0

nk ¼ exp

�
−
2πk2

Ma0

�
; ð29Þ

where k2 ¼ jkj2. When a0M → 0, we expect the particle
production to vanish because (i) as a0 → 0 the spacetime is
flat and (ii) as M → 0, because of the conformal coupling,
the scalar field in the background of a flat Friedmann metric
is equivalent to that in Minkowski spacetime. The particle
production rate indeed drops to zero as a0 → 0 in Eq. (29),
but in a nonanalytic fashion. An identical scenario arises in
the context of constant electric field as well, where the
particle number is nonanalytic in the coupling constant.
This analogy can in fact be made more precise in light of
the correspondence given in Eq. (12), with the following
identification,

k2 ⇄ p2⊥ þm2; M
ffiffiffiffi
A

p
⇄ pz;

Ma0
2

⇄ qE0; ð30Þ

so that the particle number in Eq. (29) takes the following
familiar form:

np ¼ exp

�
−
πðp2⊥ þm2Þ

qE0

�
: ð31Þ

The particle number np, clearly, matches that in the context
of a constant electric field and is nonanalytic in qE0. It is
interesting to see that two of the important cases of pair
production, namely, the Schwinger effect and pair creation
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in a radiation dominated universe, which are seemingly
different, are related in a very simple manner [19,22,28].
Next, we will seek a time-dependent electric field con-
figuration that corresponds to a de Sitter or quasi–de Sitter
spacetime.

C. De Sitter universe is equivalent to a
singular electric field

The above analysis shows that the well-known case of
the Schwinger effect can be mapped to a radiation
dominated universe and the nonanalytic behavior of the
particle number holds true in the radiation dominated
universe as well. We will next discuss the mapping in
the reverse direction; i.e., we will start from a well-known
expanding universe, namely, de Sitter, and then study the
form of the electric field it maps to. To keep the discussion
slightly general, we will start with a generalization of the de
Sitter spacetime, described by the following scale factor:

aðηÞ ¼
�
a0 þ

1

1 −Hη

�
: ð32Þ

This metric approaches (i) the Minkowski metric, except
for some rescaling, when jHηj ≫ 1 and (ii) the de Sitter
metric as Hη ≈ 1 or as a0 → 0. From the Friedmann
equations, we can determine the density ρ and pressure
p of the ideal fluid that can act as the source for this
geometry. They are given by

ρðaÞ≡ 3

8πG
1

a4

�
da
dη

�
2

¼ 3H2

8πG
ða − a0Þ4

a4
;

pðaÞ≡ −
1

8πG

	
3
ðda=dηÞ2

a4
þ 2

a
d
dη

�ðda=dηÞ
a2

�


¼ −
3H2

8πG
ðaþ a0=3Þða − a0Þ3

a4
: ð33Þ

The density and pressure vanish as a → a0 (equivalently, as
η → −∞), as expected, since the spacetime approaches
Minkowski space in this limit. On the other hand, as
a → ∞ (equivalently, as η → H−1), the density and pres-
sure approach constant values such that ρ ¼ −p ¼
ð3H2Þ=ð8πGÞ, like in the de Sitter spacetime. Note that
the scale factor has a lower bound, namely, a0, a feature that
emerges in theories with certain modifications of general
relativity (see, for instance, Ref. [29]).
Now, from Eq. (6), we find that the Fourier modes of a

massive conformally coupled scalar field in this back-
ground satisfy the following differential equation:

Φ00
k þ

�
k2 þM2

�
a0 þ

1

1 −Hη

�
2
�
Φk ¼ 0: ð34Þ

We can simplify this differential equation by introducing
two new parameters κ and μ, as well as a new variable z,
such that

κ ¼ ia0M2

H
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a20M

2 þ k2
p ; μ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
−
M2

H2

r
;

z ¼ 2iðHt − 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a20M

2 þ k2
p
H

: ð35Þ

In terms of these variables, Eq. (34) takes the form

d2Φk

dz2
þ
�
−
1

4
þ κ

z
þ

1
4
− μ2

z2

�
Φk ¼ 0; ð36Þ

The solutions to this differential equation can be written
in terms of Whittaker functions Wκ;μðzÞ and Mκ;μðzÞ. In
particular, the “in” modes, which are the solutions to
Eq. (36) that behave as positive frequency functions
near η → −∞, are given by Wκ;μðzÞ. One can verify this
by looking at the behavior of ϕkðinÞ near the asymptotic
past:

ϕkðinÞ ∼ e−iða20M2þk2Þ1=2η; η → −∞: ð37Þ

The “out” modes, on the other hand, are oscillatory and
thus well defined only when ðM2=H2Þ > 1=4, a result
which arises repeatedly in the context of de Sitter space-
time. (We will comment on this feature, in detail, later on.)
The parameter μ becomes purely imaginary in this case, so
that we can write μ ¼ ijμj and the out modes ϕkðoutÞ turn
out to be proportional to Mκ;ijμjðzÞ. From the asymptotic
expansion of the Whittaker function, it follows that, the out
modes take the following form at late times,

ϕkðoutÞ ∼ e−ijμjHt; η → H−1; ð38Þ

where t is the cosmic time and related to the conformal
time η through the well-known relation, dt ¼ aðηÞdη.
The in modes and out modes introduced above are
related through a Bogoliubov transformation of the follow-
ing form,

ϕkðoutÞ ¼ αkϕkðinÞ þ βkϕ
�
kðinÞ; ð39Þ

where αk and βk are the Bogoliubov coefficients. To find
the explicit expressions for αk and βk, we can use the
following relation involving the Whittaker functions,

Mκ;μðzÞ ¼
Γð2μþ 1Þeiπðκ−μ−1

2
Þ

Γðμþ κ þ 1
2
Þ Wκ;μðzÞ

þ Γð2μþ 1Þeiπκ
Γðμ − κ þ 1

2
Þ W−κ;μð−zÞ ð40Þ

≡AkWκ;μðzÞ þ BkW−κ;μð−zÞ; ð41Þ

where the last line defines the constants Ak and Bk,
respectively. It is then straightforward to see that the
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Bogoliubov coefficients are given in terms of the constants
Ak and Bk such that

αk ¼ Akffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jAkj2 − jBkj2

p ; βk ¼ Bkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jAkj2 − jBkj2

p : ð42Þ

Further, the number (density) of particles produced in the
asymptotic future can be expressed as

nk ¼ jβkj2 ¼ e−πðjκjþjμjÞ cosh fπðjκj − jμjÞg
sinh f2πjμjg : ð43Þ

Recall that the a0 → 0 limit of the scale factor in Eq. (32)
describes an exact de Sitter spacetime. The number of
particles produced in this limit is given by

lim
a0→0

nk ¼ 1

e2πjμj − 1
: ð44Þ

This matches with the well-known result in the literature
[30,31] (Also, see Appendix B 1, where we will explore a
closely related case in more details). In the limit H → 0,
the scale factor becomes constant, and hence we expect
zero particle production. This comes out naturally from
Eq. (43), since the rhs in the jμj → ∞ (equivalent to the
H → 0 limit) identically vanishes. We also see that this
vanishing occurs through a nonanalytic dependence in the
parameter H. On the other hand, the above formula is not
applicable for the M → 0 limit, as the mode functions at
late times will not be of oscillatory nature in this case.
(We will discuss this feature in detail later on.) One can,
of course, work out the M ¼ 0 case separately and prove
that the particle production vanishes. This is consistent,
since there cannot be any particle production for a
massless, conformally coupled scalar field in a confor-
mally flat spacetime.
We will now determine an electric field configuration

that, in accordance with Eq. (12), corresponds to the quasi–
de Sitter metric that we have introduced. The form of the
scale factor suggests that the vector potential will be of the
following form:

AzðηÞ ¼
E0

ωð1 − ωηÞ −
E0

ω
: ð45Þ

By demanding that the time-dependent frequencies ωkðηÞ
and ΩpðηÞ be algebraically the same, we arrive at the
following identification between the parameters of the two
scenarios:

pz −
qE0

ω
¼ Ma0; m2 þ p2⊥ ¼ k2; ω ¼ H;

qE0

ω
¼ M: ð46Þ

The time-dependent electric field turns out to be singular at
η ¼ ω−1, where it diverges quadratically. Its explicit form is
given by

E ¼
�
0; 0;

E0

ð1 − ωηÞ2
�
: ð47Þ

This describes a family of electric fields parametrized by E0

and ω. (It is tempting to interpret the parameter ω as the
inverse of time at which the electric field diverges. But by
virtue of a shift in the time coordinate, the point of
divergence can be shifted to any arbitrary instant in time.)
It turns out that the above electric field satisfies the
following condition:

1

4

ð∂ηjEjÞ2
jEj3 ¼ constant ¼ ω2

E0

≡ σ: ð48Þ

Let us now determine the number of particles np, associated
with a complex scalar field, produced in this electric field
background during the period −∞ < η < ω−1. First, note
that the parameters κ and μ defined in Eq. (35) are replaced
by the following expressions,

κ ¼ iqE0ðpz − qE0ω
−1Þ

ω2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpz − qE0ω

−1Þ2 þ p2⊥ þm2
p ; μ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
−
q2

σ2

s
;

ð49Þ

and the condition μ ¼ ijμj translates to σ < 2q. Having
identified the parameters that are related to each other in
either side of the correspondence, we can use Eq. (43) to
show that the particle number for the above time-dependent
electric field becomes

np ¼
cosh

h
π
�

qE0ðpz−qE0ω
−1Þ

ω2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpz−qE0ω

−1Þ2þp2⊥þm2
p −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqE0Þ2
ω4 − 1

4

q �i
sinh

h
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqE0Þ2
ω4 − 1

4

q i

× exp

"
−π

 
qE0ðpz − qE0ω

−1Þ
ω2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpz − qE0ω

−1Þ2 þ p2⊥ þm2
p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqE0Þ2
ω4

−
1

4

s !#
: ð50Þ
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The following aspects are worth noticing as regards this
result:
(a) In the ω → 0 limit, the electric field approaches a

constant, and the particle number density nk ap-
proaches the Schwinger result, which is expected.

(b) The pz → qE0=ω limit (which is the analogue of pure
de Sitter spacetime) gives

lim
pz→ðqE0=ωÞ

np ¼ 1

exp
h
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqE0Þ2
ω4 − 1

4

q i
− 1

: ð51Þ

Let us discuss the equivalent of theH → 0 limit in this
context. As the correspondence in Eq. (49) shows, this
is achieved by taking the following two limits: ω → 0
as well as qE0 → 0, keeping M ¼ ðqE0=ωÞ finite. As
evident from Eq. (51), the particle number identically
vanishes in this limit, which is what we expect in the
limit of vanishing electric field.

(c) On the other hand, the above estimation for particle
number density is not applicable for the qE0 → 0
limit, as σ diverges, rendering the above analysis
inapplicable. This is identical to the massless, con-
formally coupled, limit of de Sitter. The particle
number indeed vanishes in this limit, but this case
needs to be worked out separately.

(d) It is instructive to rewrite Eq. (50) in a gauge-invariant
manner. In order to do that, we first define the gauge-
invariant physical momentum at the asymptotic
past by Π ¼ ðpz þ qAzð−∞Þ;p⊥Þ. It is easy to see
that Πz ¼ ðpz − qE0=ωÞ and Π⊥ ¼ p⊥. This moti-
vates us to define an “energy” for each mode by
ϵp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Π2 þm2

p
, where Π2 ¼ jΠj2. The particle pro-

duction rate can then be written as

np ¼
cosh ðπqΠz

σϵp
− πjμjÞ

sinh ð2πjμjÞ exp

�
−
πqΠz

σϵp
− πjμj

�
: ð52Þ

When Π ≫ m, i.e., in the ultrarelativistic limit, the
above expression approximates to

np ≈
cosh ðπq cos θσ − πjμjÞ

sinh ð2πjμjÞ e−ð
πq cos θ

σ þπjμjÞ; Π ≫ m;

ð53Þ

where θ is the angle between electric and the physical
momentum Π. It is interesting to note that, in the
ultrarelativistic limit, the leading order particle pro-
duction depends only on the direction of physical
momentum and is independent of its magnitude.

To summarize, we have shown that the particle produc-
tion by a scalar field in an expanding Friedmann spacetime,
that smoothly extrapolates from Minkoswki space to the de
Sitter universe, can be algebraically mapped to that of a

complex scalar field in the background of a singular electric
field that diverges quadratically at a certain instant of
time. The special case of particle production in de Sitter
spacetime (i.e., a0 ¼ 0), under this map, translates to the
case of particle production by the complex scalar field with
a certain value of the component of canonical momentum
along the electric field (i.e., pz ¼ qE0ω

−1).

D. Electric field that produces Planck
spectrum of particles

The background geometries which produce a Planck
spectrum of particles (e.g., black hole spacetimes) are of
considerable importance in the study of quantum field
theory in curved spacetime. This prompts us to ask if there
is a time-dependent electric field in the flat spacetime which
produces a Planck spectrum of particles.
It is well known that, for a suitable vacuum choice, the

Milne universe does lead to a Planck spectrum of particles
at late times [28,32]. Therefore, the corresponding electric
field will lead to the same result. We briefly mention this
result here, postponing detailed discussion of this “black
hole analogue model” to a future work [21]. The scale
factor for the Milne universe is given by aðtÞ ¼ Ht, where
H has inverse dimensions of time. [The standard Hubble
parameter is ð _a=aÞ ¼ 1=t, and hence H is not the Hubble
parameter.] The passage to conformal time is straightfor-
ward, and one obtains Ht ¼ expðHηÞ, such that t ¼ 1=H
corresponds to η ¼ 0 and t ¼ 0 relates to η ¼ −∞. Thus,
the scale factor in conformal time reads aðηÞ ¼ expðHηÞ.
As we will see, it is convenient to generalize the discussion
slightly and consider the scale factor of the following form:

aðηÞ ¼ a0 þ eHη: ð54Þ

Notice that the scale factor reduces to that of the Milne
universe in the a0 → 0 limit. Moreover, the spacetime
corresponding to the above scale factor smoothly extrap-
olates from a Minkowski spacetime (when, η < 0 and
jHηj ≫ 1) to a Milne universe (when η > 0 and jHηj ≫ 1).
For a pure Milne universe (i.e., a0 ¼ 0), it can be shown
that the density of produced particles [28,32] is Planckian,

nk ¼ 1

expð2πkH Þ − 1
; ð55Þ

with the temperature given by T ¼ H=ð2πÞ.
To study the particle production in the “generalized

Milne” universe, corresponding to the scale factor in
Eq. (54), let us first consider the equation of motion of
the Fourier mode Φk in this background, which is given by

Φ00
k þ ½k2 þM2ða0 þ eHηÞ2�Φk ¼ 0: ð56Þ

It is convenient at this stage to define a new dependent
variable ξk, such that
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Φk ¼ e−
1
2
Hηξk; ð57Þ

and a new independent variable z by

z ¼ 2ieHηM
H

; ð58Þ

so that Eq. (56) reduces the standard form of Whittaker’s
differential equation:

d2ξk
dz2

þ
�
−
1

4
þ 1=4 − μ2

z2

�
ξk ¼ 0: ð59Þ

Hence, the general solution to Eq. (56) can be written in
terms of the Whittaker functions Wκ;μðzÞ and Mκ;μðzÞ. It
turns out that the out modes ϕkðoutÞ are given by

ϕkðoutÞ ∝ e−
1
2
HηWκ;μðzÞ: ð60Þ

One can verify this by noting that the late time behavior of
ϕkðoutÞ turns out to be

ϕkðoutÞ ∝ e−
1
2
Hηe−i

M
He

Hηþi
a0M
H η; η → ∞: ð61Þ

Clearly, this mode behaves as a positive frequency solution
at late times and hence qualifies as the out modes. On the
other hand, in the early times, ϕkðoutÞ has the following
limiting behavior,

ϕkðoutÞ ∝ α̃ke
−i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þM2a2

0

p
η þ β̃ke

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þM2a2

0

p
η; η → −∞;

ð62Þ
where

α̃k ¼ e
πjμj
2

Γð2μÞ
Γðμ − κ þ 1

2
Þ ; β̃k ¼ e−

πjμj
2

Γð−2μÞ
Γð−μ − κ þ 1

2
Þ :

ð63Þ
The asymptotic value of particle production rate can then be
evaluated to get

nk ¼ jβ̃kj2
jα̃kj2 − jβ̃kj2

¼ e
2π
Hða0Mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þM2a2

0

p
Þ þ 1

e
4π
H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þM2a2

0

p
− 1

: ð64Þ

From Eq. (62), we can see that the in mode labeled by k has
the energy ϵk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2a20

p
. Hence, in the ultrarelativ-

istic limit, given by ϵk ≫ Ma0, the particle spectrum in
Eq. (64) approximates to

nk ≈
1

e
2π
Hϵk − 1

: ð65Þ

This corresponds to a Planckian distribution with the
temperature T ¼ H=ð2πÞ. Note that, in the special case
of a0 ¼ 0, which corresponds to the pure Milne universe,
the spectrum is exactly Planckian.

The correspondence of scale factor in Eq. (54) with an
electric field can be easily achieved, by virtue of Eq. (12),
which gives

k2 ¼ m2 þ p2⊥; qAzðηÞ þ pz ¼ Mða0 þ eHηÞ: ð66Þ

Hence, the associated electric field becomes

EzðηÞ ¼ E1 expðHηÞ; E1 ¼
MH
q

: ð67Þ

Thus, at η → −∞, we obtain EðηÞ ¼ 0, while for η ¼ 0, we
have EðηÞ ¼ E1. Therefore, using Eqs. (64) and (66), the
number density of the quanta of a complex scalar field,
produced due to the coupling with this time-dependent
electric field, is given by

np ¼ e
2π
HðΠzþϵpÞ þ 1

e
4π
Hϵp − 1

; ð68Þ

where we have defined the gauge-invariant physical
momentum Π and the energy ϵp for each modes, respec-

tively, by Π ≡ ðpz þ qAzð−∞Þ;p⊥Þ and ϵp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Π2 þm2

p
.

For small values of longitudinal physical momentum, i.e.,
for Πz ≪ ϵp, the particle spectrum approximates to

np ≈
1

e
2π
Hϵp − 1

; ð69Þ

which corresponds to a Planckian distribution with tem-
perature T ¼ H=ð2πÞ. The expression for T is reminiscent
of that of a fictitious de Sitter spacetime with Hubble
parameter H. [We also note that T is the Davies-Unruh
temperature corresponding to the asymptotic acceleration
g ¼ ðqE1=MÞ. However, M is not the mass of the complex
scalar field under consideration but that of the scalar field in
the generalized Milne universe; so, this interpretation of T
as a Davies-Unruh temperature is incorrect.] The fact that a
thermal spectrum can be generated from a homogeneous
but time-dependent electric field is an interesting result by
itself and definitely needs further study [21].
In the H → 0 limit, the electric field in Eq. (67)

approaches a constant. Therefore, we expect that the par-
ticle rate in the H → 0 limit approaches the Schwinger
result. In order to see that this is indeed the case, we choose
the vector potential to be of the following form:

AzðηÞ ¼ −
E1

H
ðeHη − 1Þ: ð70Þ

Clearly, the H → 0 limit of this potential is given by −E1η,
as is desired. The explicit expression for the longitudinal
physical momentum of a mode labeled by p, in this gauge,
becomes Πz ¼ pz þ qE1=H. The particle number density,
given by Eq. (68), can then be rewritten as

GENERALIZED SCHWINGER EFFECT AND PARTICLE … PHYS. REV. D 100, 045019 (2019)

045019-9



np ¼
exp

n
2π
H

h
ðpz þ qE1=HÞ2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2⊥ þ ðpz þ qE1=HÞ2

p io
þ 1

exp
h
4π
H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2⊥ þ ðpz þ qE1=HÞ2

p i
− 1

: ð71Þ

In the small H limit, the above expression, to the leading
order, reduces to np ¼ exp ½−πðm2 þ p2⊥Þ=ðqE1Þ�, which
matches exactly with the Schwinger result.
We will conclude this section with a brief comment

regarding the correspondence between the electric field and
more general expansion factors of the universe, for the sake
of completeness. Consider a universe sourced by matter
with the equation of state p ¼ wρ, with constant w (≠−1).
Then, the scale factor behaves as aðtÞ ¼ ðt=t0Þ

2
3ð1þwÞ. The

conformal time is

η ¼ 3ð1þ wÞ
1þ 3w

t
2

3ð1þwÞ
0 t

1þ3w
3ð1þwÞ ð72Þ

so that t=t0 ¼ ðη=η0Þ3ð1þwÞ=ð1þ3wÞ. The scale factor, in terms
of the conformal time, is then aðηÞ ¼ ðη=η0Þ2=ð1þ3wÞ. The
mode functions then satisfy the following differential
equation:

Φ00
k þ

	
k2 þM2

�
η

η0

� 4
ð1þ3wÞ



Φk ¼ 0: ð73Þ

The corresponding vector potential for the equivalent
electric field is easy to find using Eq. (12). We get

k2 ¼ m2 þ p2⊥; M

�
η

η0

� 2
ð1þ3wÞ ¼ qAzðηÞ þ pz ð74Þ

so that the electric field becomes

Ez ¼ −
2M

ð1þ 3wÞq
1

η0

�
η

η0

�1−3w
1þ3w

: ð75Þ

Thus, most of our discussion can be generalized to this
case as well, when the mode functions are known.
Unfortunately, the closed form solution to Eq. (73) is
known only in a few special cases. Thus, we will not pursue
this analogy any further. We will next take up more general
features suggested by the mapping between the time-
dependent electric field and the expanding universe.

III. PERTURBATIVE VS NONPERTURBATIVE
LIMITS OF PARTICLE PRODUCTION

In an earlier work [22], we studied pair production in a
homogeneous electric field background with the emphasis
on analytic vs nonanalytic dependence of the asymptotic
particle number on the coupling constant q. In that case,
we could obtain two distinct general classes of electric
field configurations that exhibit, respectively, analytic and

nonanalytic behavior in the coupling constant. In this
section, we will explore the implications of these results
for particle production in an expanding universe using the
correspondence discussed in Sec. II.
Recall that the time-dependent harmonic oscillator

equation satisfied by Φk is given by

∂2
ηΦk þ k2

�
1þ a2ðηÞ

γ2

�
Φk ¼ 0; γ ¼ k

M
: ð76Þ

Let us now study the solutions of this equation in two
regimes: (i) when a2=γ2 is “small” and can be considered as
a perturbation and (ii) when a2=γ2 cannot be treated as a
perturbation. The precise meaning of these conditions will
become clear as we proceed.

A. Perturbative limit

Let us consider a regime of expansion in which the scale
factor is bounded from above by some value, such that

aðηÞ ≤ amax ≪ γ: ð77Þ

In this case, the time-dependent term in Eq. (76) can be
treated as a perturbation. For a Friedman universe expand-
ing monotonically from a singularity (a ¼ 0), there always
exists an epoch in which this condition holds. The particle
number obtained may then be interpreted as the instanta-
neous particle number at the end of this epoch. We can then
expand Φk as

ΦkðηÞ ¼ Φkð0Þ þ
1

γ
Φkð1Þ þ

1

γ2
Φkð2Þ þ � � � ð78Þ

We seek a solution ϕk to Eq. (76) that behaves as e−ikη as
η → −∞. Using standard perturbative analysis techniques,
we find that

ΦkðηÞ ¼ e−ikη −
k
γ2

Z
η

−∞
dη0 sin ½kðη − η0Þ�a2ðη0Þe−ikη0

þOðγ−4Þ: ð79Þ

The asymptotic behavior of this solution to leading order in
γ−1 is then given by

ϕkðηÞ ¼
	
e−ikη; η → −∞
Ae−ikη þ Beikη; η → ∞;

ð80Þ

where A ¼ 1þOðγ−2Þ and B ¼ ðiπk=γ2Þχð2kÞ with
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χðμÞ ¼
Z

∞

−∞

dη
2π

a2ðηÞe−iμη ð81Þ

being the Fourier transform of the conformal factor. The
number of particles nk produced at the asymptotic future, to
leading order in γ−1, can then be calculated as

nk ¼ jBj2 ¼
�
πM2

k

�
2

jχð2kÞj2 þOðγ−4Þ: ð82Þ

For an example, let us apply this result to the large λ limit
of Eq. (17), in which case the scale factor is given by
Eq. (24). In this case, the Fourier transform in Eq. (81) can
be easily evaluated to get χð2kÞ ¼ iB=ð2kπÞ. Hence, the
leading order particle number, from Eq. (82), takes the form

nk ¼
�
BM2

2k2

�
2

þOðγ−4Þ: ð83Þ

One can easily verify that this is consistent with leading
order behavior of nk given in Eq. (25).

B. Nonperturbative limit

We will next consider the more interesting case of the
nonperturbative limit. The idea is to translate the procedure
adopted in Ref. [22], for a time-dependent electric field, to
the expanding universe case. This arises when the scale
factor is such that aðηÞ ≫ γ and jηj > ηc. (That is, at some
critical value of time η ¼ ηc, the perturbative analysis,
discussed in Sec. III A, fails.) We will further assume that

the scale factor is changing adiabatically in the asymptotic
past and future, i.e.,���� a0

Ma2

����≪ 1; jηj > ηa > ηc; ð84Þ

where ηa is another critical time. This condition enables us
to perform Wentzel-Kramers-Brillouin (WKB) analysis for
finding the asymptotic solution of Eq. (76). The time-
dependent frequency of the oscillator Φk from Eq. (76) can
now be expanded as

ωkðηÞ ¼
ak
γ
þ γk
2a

þOðγ2Þ: ð85Þ

Motivated by the correspondence—between electric field
and expanding universe backgrounds—that we discussed
above and the nonperturbative analysis of the electric field
case in Ref. [22], we will assume the following asymptotic
behavior for the scale factor for jηj ≫ ηc,

ðiÞ aðηÞ ∼
XN
n¼0

CnjHηj2n−1 ð86Þ

ðiiÞ 1

aðηÞ ∼
X∞

n¼−ðN−1Þ
C̃njHηj2n−1; ð87Þ

for some positive integer N. (These correspond to the
conditions (35) and (36) in Ref. [22].) The positive
frequency modes of the asymptotic past (ϕkðinÞ) and future
(ϕkðoutÞ), in the WKB approximation, can then be written as

ϕkðinÞ ∼
�

γ

ak

�
1=2

exp

�
i
Z

η

−η0
dη0
�
aðη0Þk

γ

�
þ i
Z

η

−η0
dη0
�

γk
2aðη0Þ

��
; η → −∞ ð88Þ

ϕkðoutÞ ∼
�

γ

ak

�
1=2

exp

�
−i
Z

η

−η0
dη0
�
aðη0Þk

γ

�
− i
Z

η

−η0
dη0
�

γk
2aðη0Þ

��
; η → ∞; ð89Þ

where we have assumed that aðηÞ > 0 for η ≫ ηc. Let us use Eqs. (86) and (87) to simplify the argument of exponential
factors in ϕkðinÞ and ϕkðoutÞ, yieldingZ

η

−η0
dη0
�
aðη0Þk

γ

�
∼
k logðHηÞ

Hγ
þ
�

k
Hγ

�X
n≠0

CnðHηÞ2n
2n

; η > 0 ð90Þ

Z
η

−η0
dη0
�

γk
2aðη0Þ

�
∼
γk logðHηÞ

2H
þ
�
γk
2H

�X
n≠0

C̃nðHηÞ2n
2n

; η > 0: ð91Þ

Subsequently we can use these expressions to rewrite ϕkðinÞ and ϕkðoutÞ as

ϕkðinÞ ∼
�

γ

jaðηÞjk
�

1=2
exp

�
i

�	
kC0
Hγ

þ γkC̃0
2H



logð−HηÞ þ

X
n≠0

	
kCn
Hγ

þ γC̃nk
2H


 ðHηÞ2n
2n

��
; η → −∞ ð92Þ

ϕkðoutÞ ∼
�

γ

aðηÞk
�

1=2
exp

�
−i
�	

kC0
Hγ

þ γkC̃0
2H



logðHηÞ þ

X
n≠0

	
kCn
Hγ

þ γC̃nk
2H


 ðHηÞ2n
2n

��
; η → ∞: ð93Þ
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Since both fϕkðinÞ;ϕ�
kðinÞg and fϕkðoutÞ;ϕ�

kðoutÞg are a set of
linearly independent solutions of Eq. (76), we can expand
ϕkðinÞ in terms of fϕkðoutÞ;ϕ�

kðoutÞg,

ϕkðinÞ ¼ AkϕkðoutÞ þ Bkϕ
�
kðoutÞ; ð94Þ

where Ak and Bk are the Bogoliubov coefficients.
To determine the particle production rate, we need to
evaluate Bk.
We will now find an approximate expression for Bk

using the asymptotic expressions for the in and out modes.
This can be done by a procedure, originally due to Landau,
which we will call the Landau procedure. (This was used
earlier in Ref. [22] in the case of a time-dependent electric
field, wherein more details can be found. We will not repeat
the technical details here.) To use the Landau procedure,
we will interpret η as a complex variable in Eq. (92).
In essence, the procedure amounts to rotating η in the
complex plane from arg½η� ¼ 0 to arg½η� ¼ π. We can see
that under this transformation the asymptotic expression for
ϕkðinÞ near η → −∞ transforms to that of ϕ�

kðoutÞ near

η → ∞, except for a constant factor. In view of Eq. (94), we
can immediately interpret this factor as the Bogoliubov
coefficient Bk, which reads

Bk ≈ eiπ exp

�
−π
�
kC0
Hγ

þ γkC̃0
2H

��
: ð95Þ

The number of particles produced can then be computed in
a straightforward manner as

nk ¼ jB2
kj ¼ exp

�
−2π

�
kC0
Hγ

þ γkC̃0
2H

��
: ð96Þ

Thus, to the leading order, the nonanalytic dependence of
particle production rate is controlled by the two constants:
C0 and C̃0. We will now illustrate this result with two
examples discussed earlier.
Example 1.—For a first example of this procedure,

consider the physically important case of a locally de
Sitter metric, with the scale factor, in some appropriate
interval being given by

aðjηjÞ ¼ 1

1þHjηj
1

aðηÞ ¼ 1þHjηj ð97Þ

so that the relevant constants appearing in the expression
for particle number, taking a cue from Eqs. (86) and (87),
yield C0 ¼ 1, C̃0 ¼ 0, and H → H. Thus, the number of
particles produced, according to Eq. (96), is given by

nk ≈ exp

�
−
2πM
H

�
; ð98Þ

which, as we will see in the next section, is consistent with
the large mass limit of the exact value of nk. If we treat M
as the energy, this is just the Boltzmann limit of a Planck
spectrum at temperature T ¼ H=2π.
Example 2.—For a second example, consider the scale

factor given by Eq. (27). The asymptotic expansion now
reads aðηÞ ≈ ðja0ηj=2Þ, and hence the inverse scale factor
reads ð1=aðηÞÞ≈ð2=ja0ηjÞ. With the identification a0→H,
the coefficients C0 and C̃0 in this case are given by 0 and 2,
respectively. The particle number then becomes

nk ≈ exp

�
−
2πk2

Ma0

�
; ð99Þ

which matches exactly with Eq. (29). This explicitly
demonstrates the usefulness of this approach.
This concludes the first part of this work, related to the

correspondence between a time-dependent electric field
and the expanding universe. We next want to study the case
of a time-dependent electric field in an expanding de Sitter
background wherein both of these effects will be present.
(For completeness, in Appendix B, we briefly discuss the
case of particle definition and production in the de Sitter
universe, in order to clarify/highlight several conceptual
and technical features.)

IV. CONSTANT ELECTRIC FIELD IN DE SITTER

In the following sections, we are going to explore pair
production when there is both an expanding scale factor as
well as a time-dependent electric field. However, for the
sake of simplicity, we will be mainly concerned with a scale
factor that corresponds to the de Sitter universe.
The particle number in the context of de Sitter spacetime

is fairly well studied (see Appendix B for a brief review).
There has been some interest in the literature [30,31,33,34]
to study the particle number when a constant electric field is
present in de Sitter spacetime. Our main aim is to determine
the particle number in the context of a time-dependent
electric field in de Sitter; however, it is useful to discuss
the case of a constant electric field first. We will work
exclusively in the spatially flat Friedmann universe,
expressed in terms of the conformal time η, in which case
the scale factor aðηÞ is given by Eq. (B1). The constant
electric field must be defined in a covariant way, and the
most natural choice is FμνFμν ¼ constant≡ −2E2

0. We will
assume that the field is along the z direction and is des-
cribed by the (spatial) vector potential, A ¼ f0; 0; AzðηÞg.
This implies, given the above definition of constant electric
field, that AzðηÞ must satisfy the following differential
equation: ∂ηAz ¼ −a2E0. This equation can be immedi-
ately integrated, yielding the following expression for the
vector potential:
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Az ¼ −
Z

E0dη
ð1 −HηÞ2 ¼ −

E0

H
1

ð1 −HηÞ þ constant: ð100Þ

The constant of integration must be chosen carefully such
that in the η → 0 limit AzðηÞ turns out to be finite. This fixes
the constant to be (E0=H). With this choice for the constant,
the vector potential turns out to be

Az ¼ −
E0

H
Hη

1 −Hη
: ð101Þ

Note that when H ¼ 0 spacetime becomes flat and this
expression reduces to the one in standard flat spacetime
Schwinger effect. (If this is not ensured, the final result may
not have the correct H → 0 limit, which has happened in
some of the previous discussions in the literature.)
As an aside, we will comment on the source for the

electromagnetic field which is usually not stressed in the
literature. In general, a time-dependent electric field
gives rise to a magnetic field. If that is the case, we need
to take into account the effect of the magnetic field in
the computation of particle production. However, in the
present context, the vector potential (assumed to be along
the z direction) depends on time alone. Therefore, the only
nontrivial component of Fμν corresponds to F0z¼ _Az¼−Ez

(say, in flat spacetime), and there are no magnetic fields. But
for consistency of Maxwell’s equations, we must have a
nonzero current, which is given by Jν ¼ ð1=4πÞ∇νFμν. If we
consider time-dependent electric field in a flat spacetime,
then it follows that Jz is the only nonzero component, such
that Jz ¼ ð1=4πÞ _Ez. In the cosmological spacetime as well,
we have Jz as the only nonzero component, but its explicit
form becomes Jz ¼ ð1=4πÞa−4ðηÞ∂ηEz. Hence, in all the
cases considered here, there are no magnetic fields, but a
nontrivial current must exist to ensure that we have a purely
electric field situation. (The role of the current is not usually
discussed in the literature—and we will also ignore it—
though it may be worth investigating for a more complete
picture.)
We now consider a complex scalar field in this back-

ground. Its Fourier modes will satisfy the equation of a
time-dependent harmonic oscillator, with unit mass and
time-dependent frequency. This is essentially a generali-
zation of Eq. (7), which, for this background, yields the
time-dependent frequency as

ω2
k ¼ k2⊥ þ M2

ð1 −HηÞ2 þ
�
kz þ

qE0

1 −Hη

�
2

: ð102Þ

It can be easily verified that in the H → 0 limit the
frequency becomes M2 þ k2⊥ þ ðkz þ qE0ηÞ2, which is
consistent with that of the Schwinger effect discussed
in Ref. [22]. On the other hand, in the qE0 → 0 limit,
it immediately follows that the frequency becomes
k2 þM2ð1 −HηÞ−2, coinciding with the frequency of

Φk in the de Sitter spacetime. In what follows, we will
study the particle production in this background by three
different methods, namely, (i) the Landau procedure, (ii) the
Hamilton-Jacobi method, and (iii) using mode functions.

A. Landau procedure

In Sec. III B, we discussed a procedure to calculate the
WKB limit of particle production. We will now apply the
same techniques—the Landau procedure—to compute
particle production for our current case. It turns out that
we do not have to redo the whole calculation in Sec. III B to
find the generalization of Eq. (96) to the present problem.
Instead, we can proceed as follows. Let us first look at the
expansion of ωk for large jηj, which takes the form

ωk ≈
M
Hη

þ Hη

2M
fk2⊥ þ ðkz − qE0=HÞ2g: ð103Þ

Comparing this with Eqs. (86) and (87), we see the
following identification of parameters exists:

M
H

⇄

�
C0k
Hγ

þ γkC̃
2H

�
: ð104Þ

Hence, using Eq. (96), the particle number can be immedi-
ately written down as

nk ¼ exp

�
−
2πM
H

�
: ð105Þ

This is, however, only the leading order term, as can be seen
from the fact that this expression is independent of the
electric field. Thus, the Landau procedure, to the leading
order, only captures a factor independent of qE0.
To get the dependence on the electric field and H, then

we need to retain more terms in the asymptotic expansion.
That is, when η → ∞, one must keep Hη → finite ≪ 1.
Then, the expansion in Eq. (103) should be replaced by

ωk ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2E2

0 þ 3M2H2

q
ηþ M2Hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2E2
0 þ 3M2H2

p
þ 1

2

�
k2⊥ þM2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2E2
0 þ 3M2H2

p −
M4H2

ðq2E2
0 þ 3M2H2Þ3=2

�
1

η
:

ð106Þ

Further, the identification in Eq. (104) should be
replaced by

1

2

�
k2⊥ þM2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2E2
0 þ 3M2H2

p −
M4H2

ðq2E2
0 þ 3M2H2Þ3=2

�

≡ ΘðH;M; qE0Þ ⇄
�
C0k
Hγ

þ γkC̃
2H

�
: ð107Þ
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Thus, the particle number density evaluates to

nk ¼ e−2πΘ: ð108Þ

This expression has correct limits. In particular, it can
easily be verified that, in the H → 0 limit, this expression
reduces to

nk ¼ exp

�
−
πðk2⊥ þM2Þ

qE0

�
; ð109Þ

which is the standard result in the Schwinger effect.

B. Euclidean action approach

Another elegant method of computing the semiclassical
limit of the particle number is by using the Euclidean
action. The idea is to first evaluate the action AE for an
appropriate classical solution of the Euclidean equation of
motion for a hypothetical particle. It can be shown that, for
the cases which are of interest to us, the particle number,
when AE ≫ 1, is given by

n ≈ exp ð−AEÞ: ð110Þ

The Euclidean action is most easily computed by solving
the Hamilton-Jacobi equation. For our case, let us denote
by A the action for a charged particle in the Friedmann
spacetime with the scale factor aðηÞ and constant electric
field. The Hamilton-Jacobi equation in this context is
given by

1

a2
½−∂ηAþ j∂x⊥Aj2 þ ð∂zA − qAzÞ2� ¼ −M2a2: ð111Þ

The symmetry of the problem suggests the ansatz, Az ¼
kzzþ k⊥:x⊥ þ FðηÞ, where FðηÞ satisfies

−ð∂ηFÞ2 þ k2⊥ þ ðkz − qAzÞ2 ¼ −M2a2: ð112Þ

This can be integrated to give

A ¼
Z

dη
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2a2 þ k2⊥ þ ðkz − qAzÞ2

q
þ kzzþ k⊥:x⊥:

ð113Þ

In particular, for the de Sitter spacetime, the classical action
evaluates to

A ¼
Z

dη
1 −Hη

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ k2⊥ð1 −HηÞ2 þ fqE0ηþ kzð1 −HηÞg2

q
þ kzzþ k⊥:x⊥: ð114Þ

We are interested in closed classical trajectories (in the
Euclidean sector), for which the last two terms in Eq. (114)
vanish. Then, a straightforward computation shows that
there are two complex turning points, defined by the
vanishing of the square root terms in the integrand in
Eq. (114). These turning points are given by

Hη� ¼ k2⊥ þ kzðkz − qE0H−1Þ � iM
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þ ðkz − qE0H−1Þ2 þ ðqE0Þ2M−2H−2

p
k2⊥ þ ðkz − qE0H−1Þ2 : ð115Þ

The expression for number of particles given in Eq. (110) is
good approximation only for a sufficiently large value of
the Euclidean action AE. This, in turn, holds for large values
ofM. Hence, let us look at the turning points in the leading
order in M−1, which are located at

Hη� ≈
k2⊥ þ kzðkz − qE0H−1Þ
k2⊥ þ ðkz − qE0H−1Þ2

� i
Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2⊥ þ ðkz − qE0H−1Þ2
p : ð116Þ

The number of particles is related to the imaginary action
evaluated for the closed classical trajectory that starts at η−
and comes back to that point through ηþ. The following
parametrization turns out to be a convenient choice for
describing this trajectory:

HηðθÞ ¼ k2⊥ þ kzðkz − qE0H−1Þ
k2⊥ þ ðkz − qE0H−1Þ2

þ iMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þ ðkz − qE0H−1Þ2

p sin θ;

θ ∈
�
−
π

2
;
3π

2

�
: ð117Þ

Substituting in Eq. (114), we can evaluate the action to get

A ¼ M2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þ ðkz − qE0H−1Þ2

p Z
3π=2

−π=2

cos2θdθ
−iAþ B sin θ

;

ð118Þ

where
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A ¼ qE0ðkz − qE0H−1Þ
k2⊥ þ ðkz − qE0H−1Þ2

B ¼ MHffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þ ðkz − qE0H−1Þ2

p : ð119Þ

Then, the Euclidean action can be evaluated to get

AE ¼ −iA ¼ M2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þ ðkz − qE0H−1Þ2

p
×

�
2πð−Aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
Þ

B2

�

¼ 2π
M
H

− 2π
qE0

H2

ðkz − qE0H−1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þ ðkz − qE0H−1Þ2

p þOðM−1Þ:

ð120Þ

The number of particles is then given by

nk ≈ exp

�
−2π

	
M
H

−
qE0

H2

ðkz − qE0H−1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þ ðkz − qE0H−1Þ2

p 
�
:

ð121Þ

The qE0 → 0 limit of the above expression can be easily
verified to be consistent our discussions so far on particle
production in pure de Sitter, for instance, Eq. (B34).

C. Using mode functions

Finally, we will use the appropriate mode functions
to calculate the exact expression for the particle number
from the Bogoliubov coefficients. We have deliberately
discussed approximate methods first to emphasize the
elegance and applicability of these approaches to cases
when explicit calculations are impossible. Towards the end
of this section, we explicitly verify that the exact expres-
sion, in fact, reduces to the results derived in Secs. IVA and
IV B in the appropriate limits.
The differential equation satisfied by the Fourier trans-

form Φk, in an expanding universe, in the presence of an
electric field, is given by

d
dη

�
a2

dΦk

dη

�
þ fðk − qAÞ2 þm2a2gΦk: ð122Þ

For a constant electric field in de Sitter, we obtain

d2Φk

dη2
þ 2H
1 −Hη

dΦk

dη

þ
	
k2⊥ þ m2

ð1 −HηÞ2 þ
�
kz þ

qE0η

1 −Hη

�
2


Φk ¼ 0:

ð123Þ

Let Φk ¼ ð1 −HηÞψk so that ψk satisfies

ψ 00
k þ

�
k2 þ 2qE0kzη

1 −Hη
þm2 − 2H2 þ q2E2

0η
2

ð1 −HηÞ2
�
ψk ¼ 0:

ð124Þ

We can easily verify that this equation has the correct
limits. When H → 0, we obtain

ψ 00
k þ ½k2 þ 2qE0kzηþm2 þ q2E2

0η
2�ψk ¼ 0; ðH → 0Þ;

ð125Þ

which matches with the time-dependent frequency of the
Fourier mode of a complex scalar field in a constant electric
field in flat spacetime, in the time-dependent gauge. On the
other hand, for qE0 → 0, we have

ψ 00
k þ

�
k2 þ m2 − 2H2

ð1 −HηÞ2
�
ψk ¼ 0; ðqE0 → 0Þ; ð126Þ

which is perfectly consistent with Eq. (B4). Let us
introduce a new variable z ¼ 2ikη so that Eq. (124)
simplifies to

d2ψk

dz2
þ
�
−
1

4
þ ξ

z
þ

1
4
− ν2

z2

�
ψk ¼ 0; ð127Þ

where

ξ ¼ i
ðkz − qE0=HÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2⊥ þ ðkz − qE0=HÞ2
p �

qE0

H2

�
;

ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

4
−
m2

H2
−
q2E2

0

H4

r
: ð128Þ

The general solution to this equation can be written in terms
of the Whittaker functions as

ψk ¼ C1Wξ;ν

"
2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þ

�
kz −

qE0

H

�
2

s �
η −

1

H

�#

þ C2Mξ;ν

"
2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þ

�
kz −

qE0

H

�
2

s �
η −

1

H

�#
:

ð129Þ

From the asymptotic expansion of the Whittaker functions,
we get

Wξ;ν

�
2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þ ðkz − qE0=HÞ2

q �
η−

1

H

��

≈ ðHηÞξ exp
�
−i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þ ðkz − qE0=HÞ2

q
η
�
; for η→ −∞

ð130Þ
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Mξ;ν

�
2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þ ðkz − qE0=HÞ2

q �
η −

1

H

��

≈
�
2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þ ðkz − qE0=HÞ2

q �
η −

1

H

��
νþ1=2

;

for η ≈H−1 ∝ e−νHt; ð131Þ

where the last relation is true for the case when ν is purely
imaginary, i.e., when ν ¼ ijνj. This is similar to the
situation in pure de Sitter discussed earlier. Hence, for
ν ¼ ijνj, we have Mξ;ν defining the late time vacuum (in
terms of cosmic time t) andWξ;ν defining the in vacuum (in
terms of the conformal time η).
Some comments regarding the nature of the in-vacuum

state are appropriate at this stage. In the η → −∞ limit,
which is the appropriate initial Cauchy slice for the de Sitter
spacetime, the modes used to define the in-vacuum state
behave as ηξ expð−ik0ηÞ, where ξ has been defined in
Eq. (128). So, this state is similar to the Bunch-Davies
vacuum, with two crucial differences:

(i) First, the wave number appearing in the exponential
is not the same as that of the Fourier mode Φk, as in
the de Sitter spacetime, and rather is modified
to k0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þ ðkz − qE0Þ2

p
. This modification is

due to the appearance of canonical momenta ki,
through the combination ki − qAi. Since at the
asymptotic past (when η → −∞) the vector potential
becomes qAz ¼ qE0=H, it is the combination
k2⊥ þ ðkz − qE0=HÞ2 that appears in the solution
of the associated mode function.

(ii) Second, the prefactor depends on η through a term
approximately ηξ, where ξ is proportional to the
electric field. The presence of this prefactor ηξ can
be understood using the WKB limit. In this limit, the
mode function (in the η → −∞ limit) takes the form
expði R dz ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1=4Þ − ðξ=zÞp Þ. Since z is very large,
one can expand it to the leading order, which upon
integration yields a term expð−ξ ln zÞ. This leads to
the ηξ term in the mode function. Defining the in
vacuum in terms of the exponential part of the mode
functions, one immediately observes that these modes
indeed carry positive energy like the Bunch-Davies
vacuum state, but with a modified wave number k0.

The problem of particle production is mathematically
identical to our discussion in Sec. II C. In particular, an
argument similar to the one used to derive Eq. (50) can
employed here to arrive at the following expression for the
number of particles:

nk ¼
cosh

�
πjνj − πqE0

H2

ðkz−qE0=HÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥þðkz−qE0=HÞ2

p
�

e2πjνj cosh
�
πjνj þ πqE0

H2

ðkz−qE0=HÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥þðkz−qE0=HÞ2

p
�
− cosh

�
πjνj − πqE0

H2

ðkz−qE0=HÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥þðkz−qE0=HÞ2

p
� : ð132Þ

It can be easily verified that we get the correct limiting
forms. For, qE0 → 0, we have

nk ¼ 1

e2πjνj − 1
; ð133Þ

which matches with, say, Eq. (B10). On the other hand, if
we demand that M ≫ H, then, Eq. (132) to the leading
order is given by

nk ≈ e
−2π
h
M
H−

qE0
H2

ðkz−qE0H−1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥þðkz−qEH−1Þ2

p
i
:

ð134Þ

This is also in perfect agreement with Eq. (121). Finally,
the H → 0 limit reduces to

nk ¼ exp

�
−
πðm2 þ k2⊥Þ

qE0

�
; ð135Þ

which is the correct result for the Schwinger effect.
It is worth mentioning that in most of the previous

literature the scale factor as well as the vector potential
have been chosen in such a form that they diverge in the

H → 0 limit [30,31,33]. This makes the interpretation of
the particle number in the limit of the vanishing Hubble
constant problematic. This is primarily due to the fact
that the scale factor and gauge choice for the vector
potential did not have the appropriate limiting behavior.
Keeping this in mind, in this paper, we have worked with
expressions for the scale factor and vector potential
which have appropriate limiting behavior. Then, the
particle number as well, naturally, leads to the desired
expressions for the pure de Sitter and pure Schwinger
effect, in the qE0 → 0 and H → 0 limits, respectively.
(For a different view of arriving at the appropriate limits,
see Ref. [35]).
As remarked in the beginning of this subsection, we

cannot analytically solve for the mode functions for the
most general, time-dependent, homogeneous electric field
configuration in de Sitter spacetime. In such cases, one
plausible strategy is to employ numerical techniques.
However, the approximate methods discussed in
Secs. IVA and IV B give us an elegant analytic handle.
In the following section, we will be using one of these
approaches, namely, the Landau procedure, to study the
generalized Schwinger effect in a de Sitter background.
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V. EXAMPLE OF TIME-DEPENDENT
ELECTRIC FIELD IN DE SITTER

In the previous section, we determined the particle
production of a complex scalar field in a de Sitter back-
ground in the presence of a constant electric field. However,
in practical situations, the electric field is often not a
constant but depends on time. Keeping this in mind, we
would like to understand particle production due to a time-
dependent electric field in de Sitter, which may also provide
us some insight into the nonanalytic vs analytic behavior of
the same.
We start by considering a homogeneous electric field-

electric field in the de Sitter background, satisfying the
following condition,

FμνFμν ¼ E2ðω0ηÞ; ð136Þ

where the raising and lowering of indices has been
performed using the conformally flat form of the metric
ansatz, given by Eq. (B1). Assuming, without any loss of
generality, that the electric field is in the z-direction, the
above equation provides us with F0z ¼ Eðω0ηÞaðηÞ2 as
the only nonvanishing component. Given the field tensor,
the differential equation governing the vector potential can
then be expressed as

dAz

dη
¼ −

Eðω0ηÞ
ð1 −HηÞ2 : ð137Þ

Determination of the vector potential from the above
differential equation requires an integration, and that
requires an explicit expression for the time dependence
of the electric field. It also requires an additional condition;
namely, the vector potential should be finite in the H → 0
limit. To see what this second condition means, let us
consider a power law electric field, such that Eðω0ηÞ∼
E0ðω0ηÞ−s; then, the vector potential becomes

Az ¼ −
E0

ωs
0

Z
dη

ηsð1 −HηÞ2 ¼ −
E0

ωs
0

1

ηs

�
1þ 1

Hη − 1

�
s

×
2F1ðs; 1þ s; 2þ s; 1

1−HηÞ
ð1þ sÞHð−1þHηÞ þ constant ð138Þ

so that we obtain

lim
H→0

Az ¼ −
E0

ωs
0

1

ηs
ðHηÞs 2F1ðs; 1þ s; 2þ s; 1Þ

ð1þ sÞH þ constant

∼ −
E0

ωs
0

Hs−1 þ constant ð139Þ

Thus, for s ≥ 1, the vector potential is always finite in the
H → 0 limit, and we can choose the constant to be
vanishing, while for s ≤ 0, one must take the constant to
be ðE0=ω0ÞHs−1 to make the vector potential finite in the
H → 0 limit.
In what follows, we will concentrate on the electric field

of the form Eðω0ηÞ ¼ E0f1þ fðω0ηÞg, where fðω0ηÞ is
some arbitrary function which decays for large η. That is,
the electric field becomes a constant at late times. The
corresponding vector potential, having a finiteH → 0 limit,
can be written as

Az ¼ −
E0η

1 −Hη
−
E0

ω0

Fðω0η;HÞ; ð140Þ

where the function Fðω0η;HÞ satisfies the following
differential equation:

dFðsÞ
ds

¼ fðsÞ
ð1 − H

ω0
sÞ2 ð141Þ

It is, of course, convenient to work with F rather than f,
which is what we will do.
A complex massive scalar field, in the background of

the time-dependent electric field in the de Sitter uni-
verse, will have Fourier modes which again satisfy the
equation for a time-dependent harmonic oscillator. In
this case, the oscillator associated with the kth wave
mode will have unit mass and a time-dependent fre-
quency given by

ω2
kðηÞ ¼ k2⊥ þ m2

ð1 −HηÞ2

þ
�
kz −

qE0η

1 −Hη
−
qE0

ω0

Fðω0η;HÞ
�

2

: ð142Þ

Here, k2⊥ ¼ k2 − k2z is the wave vector component trans-
verse to the direction of the electric field. One cannot,
of course, solve for the mode functions for arbitrary F.
To illustrate the use of the Landau procedure, we shall
confine ourselves to a specific choice, viz., fðω0ηÞ ¼
2f2ðω0ηÞ−3f1 − 2Hηgf1 −Hηg−1, where f2 is a con-
stant. With this kind of electric field, the contribution to
the vector potential becomes −f2ðω0ηÞ−2ð1 −HηÞ−2.
Thus, the time-dependent frequency in the large η limit,
but with small Hη, can be expanded as
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ω2
kðηÞ ≈ k2⊥ þm2ð1þ 2Hηþ 3H2η2Þ þ

�
qE0ηð1þHηþH2η2Þ þ qE0f2

ω3
0η

2
ð1þ 2Hηþ 3H2η2Þ

�
2

≈ ðq2E2
0 þ 3m2H2Þη2 þ

�
2m2H þ 2qE0

3H2f2qE0

ω3
0

�
ηþ ðk2⊥ þm2Þ þ

�
3H2f2qE0

ω3
0

�
2

≡ Aη2 þ Bηþ C: ð143Þ

Here, the last relation defines the constants A, B, and C in
terms of the parameters appearing in this model, e.g., the
electric field strength E0, Hubble constant H, inverse time
scale ω0, etc. The corresponding expansion for ωk is

ωk ¼
ffiffiffiffi
A

p
η

�
1þ B

Aη
þ C
Aη2

�
1=2

¼
ffiffiffiffi
A

p
η

�
1þ B

2Aη
þ C
2Aη2

−
1

8

B2

A2η2

�

¼
ffiffiffiffi
A

p
ηþ B

2
ffiffiffiffi
A

p þ C

2
ffiffiffiffi
A

p
η
−
1

8

B2

A3=2η
: ð144Þ

Having derived this expression, one can invoke the Landau
procedure to extract the nonanalytic part of the particle
number. This requires one to analytically continue the
range of η from f−∞; ð1=HÞg to f−∞;∞g. Further, using
the WKB method, one can determine the in states and out
states associated with the Fourier modes at η ¼ ∓∞,
respectively. The Bogoliubov coefficient connecting them
can be obtained by treating η as a complex variable and
rotating it in the complex plane from Arg½η� ¼ 0 to
Arg½η� ¼ π. This provides the nonanalytic part of the
particle number to be dependent on the coefficient of
ð1=ηÞ in the expression for ωk, which reads

nk ¼ exp

�
−2π

�
C

2
ffiffiffiffi
A

p −
1

8

B2

A3=2

��

¼ exp

"
−2π

 ðk2⊥ þm2Þ þ
�
3H2f2qE0

ω2
0

�
2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq2E2

0 þ 3m2H2Þ
p −

1

8

�
2m2H þ 2qE0

3H2f2qE0

ω2
0

�
2

ðq2E2
0 þ 3m2H2Þ3=2

!#
: ð145Þ

Note that in the H → 0 limit the particle number becomes
exp½−ðk2⊥ þm2Þ=qE0� irrespective of the presence of f2.
This is what we expect, as the Landau procedure picks up
the nonanalytic part which is given by the coefficient of the
constant term irrespective of other terms in the expansion.
This assures that Landau procedure works in de Sitter
spacetime as well and yields the nonanalytic part of the
particle number for time-dependent electric fields in de
Sitter, while remaining compatible with the flat spacetime
limit.
However, the particle number presented above does not

yield the de Sitter particle production as the electric field
vanishes. This is due to the fact that for the Landau
procedure to work we have analytically extended the de
Sitter spacetime to cover the full range of η, namely, η ∈
ð−∞;∞Þ and hence the background spacetime is not
exactly the de Sitter background we want to work with.
Besides, this feature is also present in the context of
constant electric field, as evident from Eq. (106). This
suggests that, even though the Landau procedure is a useful
method to understand nonanalytic behavior of the particle
production in the time-dependent electric field, it has its
limitations when applied in the context of an expanding
universe.

VI. SUMMARY

The previous sections discussed several aspects of
particle production in an expanding universe and its
possible correspondence with the generalized Schwinger
effect. Given the fact that both these phenomena have been
investigated extensively in the literature, it is useful to
highlight the new—conceptual and technical—results in
this paper:

(i) The correspondence between the time-dependent
electric field and an expanding universe has been
noticed earlier, one of the earliest works being
Ref. [19] and a more recent one being Ref. [20].
However, this correspondence was noticed at a
formal level and was not adequately exploited. In
this work, we have taken this further and applied this
formalism to connect some well-known cosmologi-
cal spacetimes to specific time-dependent electric
fields and vice versa.

For example, we studied the cosmological ana-
logue of a Sauter-type electric field and showed that
the particle number possess nonanalytic behavior as
the scale factor approaches that of the radiation
dominated universe. Further, through this correspon-
dence, we could provide estimation of the particle
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number for a nontrivial electric field configuration
using our knowledge of the results for the expanding
universe. Starting from the de Sitter (or quasi–de
Sitter) spacetime, we determined the corresponding
electric field and hence the corresponding particle
production. We also discovered a time-dependent
electric field in flat spacetime, which can lead, in a
specific limit, to a Planck spectrum of particles at
late times. (This analogue black hole model deserves
further exploration especially with regard to back-
reaction. To our knowledge, such electric fields have
not been explored earlier.) It will also be interesting
to take this correspondence further, to the level of
two-point functions, and analyze the analogue of
inflationary power spectrum in the context of the
generalized Schwinger effect.

(ii) In our earlier work [22], we used an asymptotic
expansion of the electric field and identified the
terms responsible for nonanalytic behavior of the
particle number. Through the correspondence be-
tween the generalized Schwinger effect and particle
production in an expanding universe, we have
determined the corresponding factors responsible
for the nonanalytic behavior of the particle number
in an expanding background. In particular, we have
shown that the coefficients of η−1 in the expansion of
aðηÞ as well as a−1ðηÞ control the nonanalytic
behavior of the particle number.

(iii) In the last part, we discussed the case of a constant
electric field in de Sitter spacetime, using three
different approaches, and compared the results.
First, we described how the Landau procedure can
be used to infer the nonanalytic part of the particle
number, and we showed that it reproduces the
correct result. Second, we used the Euclidean action
approach to obtain the asymptotic limit of the same
result. Finally, we studied this case using the
conventional approach based on mode functions.
In all the cases, we worked in a gauge which allows
taking appropriate limits, and we explicitly verified
these limits. (This has been an issue in some of the
previous works in the literature.)

(iv) Taking a cue from this discussion and our earlier
results in Ref. [22], we described how one may go
about studying particle production due to a time-
dependent electric field in de Sitter. Using the
technique due to Landau, we were able to obtain
the nonanalytic part of the particle production in the
context of a specific time-dependent field in de
Sitter. Even though we could retrieve the desired
Schwinger result in the appropriate limit, the general
structure of the particle number is more complicated
and deserves further attention. We hope to study this
in a future work.
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APPENDIX A: DERIVATION FOR RADIATION
DOMINATED UNIVERSE

Let us begin by looking at the λ → 0 limits of ω̃�.
We haveffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þM2ðAþ Bþ CÞ
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

�
Aþ a0

ffiffiffiffi
A

p

λ
þ a20
4λ2

�s

≃
Ma0
2λ

	
1þ 4

ffiffiffiffi
A

p

a0
λþ 4

k2 þM2A
M2a20

λ2

1=2

≃
Ma0
2λ

þM
ffiffiffiffi
A

p
þ λ

k2

Ma0
þOðλ2Þ ðA1Þ

as well as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2ðA−BþCÞ

q
¼Ma0

2λ
−M2

ffiffiffiffi
A

p
þ λ

k2

Ma0
þOðλ2Þ:

ðA2Þ
Therefore, the following limits of the characteristic
frequencies ω� are obtained:

ωþ ¼ Ma0
2λ

þ λ
k2

Ma0
þOðλ2Þ; ω− ¼ M

ffiffiffiffi
A

p
þOðλ2Þ:

ðA3Þ
Thus, the λ → 0 limit of Eq. (18), with the parameters B
and C as given in Eq. (26), becomes

lim
λ→0

nk ¼
coshð2πM

ffiffiffi
A

p
λ Þþ coshð2πMa0

2λ2
Þ

coshð2πMa0
2λ2

þ 2πk2
Ma0

Þ− coshð2πM
ffiffiffi
A

p
λ Þ

¼ exp

�
−2πk2

Ma20

�
:

ðA4Þ

APPENDIX B: PARTICLE PRODUCTION IN DE
SITTER SPACETIME: REVISITED

The purpose of this section is to revisit certain aspects of
particle production in a de Sitter universe [36]. We will first
recall the standard results using the mode functions to
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compute the exact Bogoliubov coefficients. Next, we will
discuss the instantaneous diagonalization method and
compare it with a new technique, explored recently in
Ref. [37] (also see Refs. [38,39]), that maps any time-
dependent oscillator to an oscillator with constant fre-
quency. This comparison gives us a handle on several
conceptual issues, related to the definition of particles
which is inherently ambiguous in curved spacetime.
Before we begin, we would like to make the following

cautionary comments to avoid any misunderstanding. It
should be stressed that there is no unambiguous way to
define particles corresponding to a field that is evolving in
an arbitrary time-dependent background (see, e.g.,
Ref. [40]). The best one can do is to just explore different
approaches, each of which comes with its own merits and
demerits. For an example, consider three standard
approaches used in the literature:

(i) The instantaneous diagonalization method, for in-
stance, has the advantage of being simple and
generally makes sense when the time evolution is
adiabatic. But it runs into serious problems in its
physical interpretation in a general context.

(ii) The particle detector approach is another alternative,
which has the advantage of being operationally
defined. But the detector approach can give mis-
leading results in certain contexts because the
spectrum of fluctuations (measured by the detector)
does not match the particle content defined by
Bogoliubov transformation. For instance, even
though a uniformly rotating observer identifies
his/her vacuum state with the Minkowski vacuum,
an Unruh-Davies detector in circular motion in the
Minkowski vacuum has a nonzero excitation rate
[41]. There are other issues which arise in a time-
dependent context when the detector is not moving
along a Killing trajectory.

(iii) The imaginary part of the effective Lagrangian
allows us to determine particle production in some
other situations, but this requires the existence of
well-defined asymptotic vacuum states, something
which does not exist in a generic situation (like, e.g.,
in a FRW universe).

In short, no single method for defining the particle works in
all contexts.
In Appendix B 2, we will concentrate on the instanta-

neous diagonalization method. The purpose of this choice
is not to advocate this particular method as unambiguous or
better than the rest; as we said above, each method has its
own merits and drawbacks. Our purpose is strictly limited
to comparing this method and rephrasing it in the context of
some recent work [37] (also see Refs. [38,39]). We believe
this connection is interesting even though it does not
eliminate the basic issues related to the instantaneous
diagonalization method.

1. Particle production using the
Bogoliubov coefficients

We start by writing down the de Sitter metric in the
conformal flat slicing, which takes the following form:

ds2 ¼ 1

ð1 −HηÞ2 ð−dη
2 þ jdxj2Þ; −∞ < η < H−1:

ðB1Þ

We will consider particle production due to a massive
quantum field living in this background spacetime, the
action of which is given by

A ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
gab∂aΦ∂bΦ −

1

2
M2Φ2

�
; ðB2Þ

where gab corresponds to the metric given in Eq. (B1).
[Note that the above action is different from that in Eq. (3),
in that the nonminimal coupling term, RΦ2 is absent. This
is because we are now considering the minimally coupled
scalar field, which—since R is a constant for de Sitter
spacetime—can be generalized in a straightforward manner
to arrive at the results of a scalar field with conformal
coupling as well.] Let us introduce the Fourier modes Φk
by standard means, in terms of which the action simplifies
to that of a bunch of time-dependent harmonic oscillators,
each labeled by k, the time-dependent frequency and mass
or which are given by

ω2
kðηÞ ¼ k2 þ a2M2; mkðηÞ ¼ a2ðηÞ: ðB3Þ

Hence, the equation of motion satisfied by the Fourier
mode functions can then be written as

d2Φk

dη2
þ 2H
1 −Hη

dΦk

dη
þ
�
k2 þ M2

ð1 −HηÞ2
�
Φk ¼ 0: ðB4Þ

The solution ϕk to this equation that corresponds
to a positive frequency solution in the asymptotic past is
given by

ϕkðinÞðηÞ ¼
�

π

4Ha3=2ðηÞ
�

1=2
Hð1Þ

ν

�
k
Ha

�
; ðB5Þ

where

ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

4
−
M2

H2

r
: ðB6Þ

This expression for ν tells us that the situation can be quite
different depending on whether (M=H) is greater than or
less than (3=2), and we will see that this is indeed the case.
One can verify that ϕkðinÞ is indeed the positive frequency
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solution in the early time by noting that as a → 0 (or
η → −∞)

ϕkðηÞ ≈
e−ikηffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ka2ðηÞ

p ≈
e−i
R

dηωkðηÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mkðηÞωkðηÞ

p : ðB7Þ

On the other hand, in the late time limit, i.e., as
η → −ð1=HÞ, ϕk takes the form

ϕkðηÞ ≈ −
i
ffiffiffiffi
H

p
2ν−1ffiffiffi
π

p ΓðνÞaν−3
2

�
k
H

�
−ν

þ
ffiffiffi
π

p ffiffiffiffi
H

p
2−ν−1

Γðνþ 1Þ f1þ i cotðπνÞga−ν−3
2

�
k
H

�
ν

¼ Aka−ν−3=2 þ Bkaν−3=2: ðB8Þ

To determine the particle content at late times, we have to
somehow interpret these two terms as positive and negative
frequency oscillations, which, of course, is possible only if
they are oscillatory. This, in turn happens when ν is purely
imaginary, so we can write ν ¼ ijνj. This corresponds to the
situation with M2=H2 > 9=4, when we can interpret
Eq. (B8) as a linear combination of positive and negative
frequency modes in the asymptotic future. (The oscillations
are with respect to ln a ∝ t, the cosmic time, in the
asymptotic future, while the oscillations are with respect
to conformal time η in the asymptotic past.) In this case, one
can read off the Bogoliubov coefficients to be

αk ¼ Akffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jAkj2 − jBkj2

p ; βk ¼ Bkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jAkj2 − jBkj2

p : ðB9Þ

The number of particles can then be computed as

nk ¼ jβkj2 ¼
1

e2πjνj − 1
; ðB10Þ

which is a constant, independent of k. The form of
Eq. (B10) is very misleading; it is not a thermal spectrum
in the energy of the particle, except when M ≫ H. Only in
this limit, for k ≪ M, one can interpret Eq. (B10) as a
thermal spectrum of particles with a temperature H=2π.
The situation gets worse for M2=H2 < 9=4. In this case,

there are no solutions to Eq. (B4) that behave as positive/
negative frequency oscillatory modes near η ≈ −1=H. This
can be seen from the asymptotic behavior of Eq. (B4) in
this limit, which takes the following form:

d2Φk

dη2
þ 2H
1 −Hη

dΦk

dη
þ
�

M2

ð1 −HηÞ2
�
Φk ≈ 0: ðB11Þ

The two linearly independent sets of solutions of Eq. (B11),
with no restriction on the rage of parameters, are given by

Φ�
k ðηÞ ¼ ð1 −HηÞ�νþ3

2 ¼ e−iE�t; ðB12Þ

where

E� ¼ −
3iH
2

�H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

H2
−
9

4

r
ðB13Þ

and we have once again introduced the cosmic time t
defined by ð1 −HηÞ ¼ e−Ht. Once again, we see that the
notion of positive and negative frequency oscillatory modes
makes sense only when M2=H2 > 9=4. This implies that,
for an arbitrary value of mass M outside this range, we
cannot define positive and negative frequency modes in a
natural fashion and compute the number of particles
produced asymptotically. In the next section, we circum-
vent this situation by resorting to a different prescription for
defining particles.

2. Particle number from constant
frequency representation

It is well known that, in the study of the quantum
mechanics of a time-dependent oscillator, one can construct
an operator, called the Ermakov-Lewis invariant, that
is quadratic in the phase space coordinates and has
eigenvalues that are constant in time. An important appli-
cation of this operator is in the study of the particle
production of quantum fields in time-dependent back-
grounds (see, e.g., Refs. [42,43]). In a recent work [37]
(also see Refs. [38,39]), a rather simple and elegant
mapping was found between an arbitrary time-dependent
harmonic oscillator and a simple harmonic oscillator of unit
mass and time-independent frequency. This new formal-
isms “demystifies” the constancy of the Ermakov-Lewis
invariant and reveals a natural way of defining particles.
We shall first review this approach here for the sake of
completeness.
The classical version of this mapping can be summarized

as follows. If a dynamical variable q satisfies the time-
dependent harmonic oscillator equation with mass and
frequency given by mðηÞ and ωðηÞ, respectively, then one
can show that the variable Q ¼ q=fðηÞ satisfies the
equation of motion of a constant frequency oscillator,

dQ
dτ2

þ Ω2Q ¼ 0; ðB14Þ

where Ω is a constant and we have introduced a new time
coordinate τ through mf2dτ ¼ dη, provided the function f
is chosen to be a solution to the differential equation:

fmðηÞf0g0 þ ω2ðηÞf ¼ Ω
mðηÞf3 : ðB15Þ

The quantum mechanical version of this mapping works
in a similar way. Let the wave function ψðq; ηÞ, for the
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dynamical system q, satisfy the following time-dependent
Schrödinger equation:

i∂ηψðq; ηÞ ¼
�
−

1

2mðηÞ ∂
2
q þ

1

2
mðηÞω2ðηÞq2

�
ψðq; ηÞ:

ðB16Þ

It can then be shown that the new wave function ΨðQ; τÞ,
defined by

ψðq; ηÞ ¼ 1ffiffiffi
f

p exp

�
imðηÞ f

0

2f
q2
�
Ψ½Q ¼ q=f; τðηÞ�;

ðB17Þ

satisfies the Schrödinger equation for a particle of unit mass
in the potential of a simple harmonic oscillator of constant
frequency Ω, i.e.,

i∂τΨðQ; τÞ ¼
�
−
1

2
∂2
Q þ 1

2
Ω2Q2

�
ΨðQ; τÞ; ðB18Þ

provided that f satisfies Eq. (B15).
This mapping offers a fresh view of the quantization of a

time-dependent harmonic oscillator and definition of vac-
uum and particle states. Recall that implicit time depend-
ence of the system implies that there is, in general, no stable
vacuum state for a time-dependent harmonic oscillator.
However, there is a unique vacuum state for the Q system,
the wave function of which is given by

Ψ0ðQ; τÞ ¼
�
Ω
π

�
1=4

e−
ΩQ2

2 e−i
1
2
Ωτ: ðB19Þ

Clearly, being an eigenstate of the Hamiltonian of the Q
system, this state is stationary, and hence, once the system
is prepared in this state, it continues to be in this state
forever. On the other hand, from Eq. (B17), it follows that
this vacuum corresponds to a time-dependent state of the q
system of which the wave function is given by

ψ0ðq;ηÞ ¼
�

Ω
f2π

�
1=4

exp

�
−
�

Ω
2f2

− im
f0

2f

�
q2 −

i
2
ΩτðηÞ

�
:

ðB20Þ

We can expand this state in terms of the complete set of
eigenstates, denoted by fϕnðηÞ; n ¼ 0; 1; 2.::g, of the
instantaneous Hamiltonian of the q system at the instant
η. When the oscillator q corresponds to a time-dependent
mode function of a physical field in an external back-
ground, the average value of the “excitation” parameter n
serves as a natural definition for the average number of
particles n̄ðηÞ produced in that particular mode. A straight-
forward computation gives

n̄ðηÞ ¼ mf2ω
4Ω

��
−1þ Ω

mf2ω

�
2

þ
�
f0

fω

�
2
�
: ðB21Þ

3. Application to particle production in de Sitter

In this section, we will compute the particle number
associated with a certain Fourier mode of a scalar field in
de Sitter spacetime, using the formalism presented above.
This uses the fact that the Fourier modes of a scalar field
in de Sitter spacetime can be transformed into a time-
dependent harmonic oscillator, the frequency and mass of
which take the following form:

ω2
kðηÞ ¼ k2 þM2a2 ðB22Þ

mðηÞ ¼ a2ðηÞ: ðB23Þ

Using the redefinition of the dynamical variable through
the function fkðηÞ, one can convert the time-dependent
oscillator to a constant frequency oscillator with unit mass.
The frequency of the constant frequency oscillator has been
fixed to be ωkðiÞ associated with some initial time η ¼ ηi.
Thus, with the appropriate choice of fk, Eq. (B21) gives
particle number nk for each mode labeled by k. As evident
from Eq. (B22), it follows that in this limit ωkðiÞ ¼ k and
the function fk becomes

fk ¼
�

kπ
2Ha3ðηÞ

�
1=2
����Hð1Þ

ν

�
k

HaðηÞ
����� ∼ 1

aðηÞ ; ðB24Þ

which, in the asymptotic past, behaves as fk ∼ 1=aðηÞ. One
can verify that the in vacuum defined with this fk actually
corresponds to the standard Bunch-Davies vacuum. So, the
particle number at later times, calculated by this approach,
should also correspond to the standard situation when the
quantum field starts from the Bunch-Davies vacuum.
Finally, let us examine the validity of the adiabatic con-
dition at ηi ¼ −∞ and ηf ¼ H−1,

���� 1

2½mðηÞω2
k�

d
dη

½mðηÞωk�
���� ≈
(
jkηj−1 ; η → −∞
3H
2M ; η ≈H−1:

ðB25Þ

The adiabatic condition clearly holds well in the early
times. On the other hand, in the asymptotic late times, the
adiabatic condition holds only for M=H ≫ 3=2, and hence
the interpretation of jβkðH−1Þj2 as the number of out
particles makes sense only in this limit. This is exactly
the reason why we encountered a problem in Appendix B 1
while trying to study particles production for M=H < 3=2
using the conventional approach. In what follows, we will
study the particle production using the approach discussed
in Appendix B 2 for all values of M=H.
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a. Massless fields in de Sitter

Application of Eq. (B21) in this case leads to the
following expression for the particle number,

nk ¼ H2

4k2ð1 −HηÞ2 ¼
H2aðηÞ2
4k2

; ðB26Þ

where we have used the fact that scale factor for de Sitter
spacetime behaves as ð1 −HηÞ−1. We see that nk diverges
in the late time limit as a → ∞ [or, equivalently as
η → ð1=HÞ]. (We note that a similar divergence was also
noticed earlier in Ref. [44].) However, it is interesting to
note that the proper number density of particles with
physical momentum p ¼ k=a inside a spherical shell in
p-space of radius p and thickness dp is finite, constant, and
independent of p,

nkðpÞ
4πp2dp
ð2πÞ3 ¼

�
H2

8π2

�
dp: ðB27Þ

We shall next consider the massive field.

b. Massive field in de Sitter satisfying
ðM2=H2Þ < ð9=4Þ

Using Eq. (B21), the asymptotic particle number for this
case takes the following form:

nk ≈ a2ν
�
22ν−5ΓðνÞ2ð kHÞ−2νfH2ð3 − 2νÞ2 þ 4M2g

ðπHMÞ
�
:

ðB28Þ

Thus, in this case as well, we find that nk → ∞ as
a → ∞. However, there is a bit of subtlety in the massless

case which we will comment on. We know from the
earlier discussion [see Eq. (B26)] that, in the massless
limit, corresponding to ν → ð3=2Þ, the particle number
should vary as a2. But if we naively take the ν → ð3=2Þ
limit of Eq. (B28), the particle number seems to vary as
approximately a3 rather than as approximately a2. This
arises because the intermediate steps in the calculation
involve handling the combination M2a2 and its limiting
value depends on the order in which the limits a → ∞
and M → 0 are taken. If one takes the M → 0 limit
first—at finite a—the combination Ma reduces to zero,
but if one first takes a → ∞—with nonzero M—the
combination Ma diverges. This requires us to be careful
in defining the two limits. We can see this more clearly
by defining a function N kðν; aÞ given by

N kðν; aÞ≡ nka−2ν: ðB29Þ

Let us now consider the following two limits of this
functions: (i) ν → 3=2 followed by a → ∞ and
(ii) a → ∞ followed by ν → 3=2. We find that

ðiÞ lim
a→∞

lim
ν→3=2

N kðν; aÞ ¼ 0 ðB30Þ

ðiiÞ lim
ν→3=2

lim
a→∞

N kðν; aÞ ¼ ∞: ðB31Þ

c. Massive fields in de Sitter satisfying
ðM2=H2Þ > ð9=4Þ

Finally, application of Eq. (B21) leads to

nk ≈
−8jνj2 þ ð8jνj2 þ 9Þ cothðπjνjÞ þ 3cschðπjνjÞð3 cosð2jνj log xÞ − 4jνj sinð2jνj log xÞÞ

16jνj2 : ðB32Þ

The cosine and sine terms in this expression, as x → 0,
oscillate fast and average to zero. Thus, the above ex-
pression simplifies to

nk ≈
ð8jνj2 þ 9Þ cothðπjνjÞ − 8jνj2

16jνj2 : ðB33Þ

Recall that an adiabatic out vacuum exists only when
M=H ≫ 3=2, in which case we can also assume that
jνj ≫ 1. In this limit, Eq. (B33) further simplifies to

nk ≈
1

e2πjνj − 1
ðB34Þ

and matches with the earlier result in Eq. (B10).

4. Discontinuity in asymptotic behavior
of nk at ν = 3=2

Let us first consider the particle number as ν ¼ 3=2.
From Eq. (B26), we get

lim
ν→3=2

N kðν; aÞ ¼
H2

4k2a
: ðB35Þ

One can see that Eq. (B30) easily follows. For the second
limit, let us consider the large aðηÞ limit of nk for a fixed
value of ν. We start with the series expansion for Jν,

JνðxÞ ¼ xν
X∞
l¼0

ð−1Þl
l!Γðνþ lþ 1Þ x

2l: ðB36Þ
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The Hankel function can be written in terms of the Jν as

Hð1Þ
ν ðxÞ ¼ J−νðxÞ − e−iπνJ−νðxÞ

i sinðπνÞ ðB37Þ

¼
�

1

i sinðπνÞ
��

xν
X∞
l¼0

ð−1Þl
l!Γðνþ lþ 1Þ x

2l − e−iπνx−ν
X∞
l¼0

ð−1Þl
l!Γð−νþ lþ 1Þ x

2l

�
: ðB38Þ

Therefore, from Eq. (B24), the function fk has the following behavior at the leading order in a−1 as a ∼∞:

fk ≈
2ν−

1
2ffiffiffi
π

p aν−
3
2ΓðνÞ

�
k
H

�1
2
−ν
: ðB39Þ

The particle number can then be computed from Eq. (B21) as

nk ≈
a2ν

4f20k

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

a2

s
þ
	
ð5ν − 3Þνþ 9

4



H2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

a2

q
#
; ∀ ν > 0; ðB40Þ

where

f0 ¼ sinðπνÞΓð1 − νÞ
�

k
2H

�
2ν

: ðB41Þ

This implies that

lim
a→∞

N kðν; aÞ ¼
�
3
ffiffiffi
3

p
H4

2k4π

��
ν −

3

2

�
−1
2 þOððν − 3=2Þ1=2Þ: ðB42Þ

By taking ν → 3=2 in this equation, we arrive at Eq. (B31).
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