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C.P. 58190, Morelia, Michoacán, Mexico

(Received 25 March 2019; published 19 August 2019)

We unify and generalize the notions of vacuum and amplitude in linear quantum field theory in curved
spacetime. Crucially, the generalized notion admits a localization in spacetime regions and on hyper-
surfaces. The underlying concept is that of a Lagrangian subspace of the space of complexified germs of
solutions of the equations of motion on hypersurfaces. Traditional vacua and traditional amplitudes
correspond to the special cases of definite and real Lagrangian subspaces, respectively. Further, we
introduce both infinitesimal and asymptotic methods for vacuum selection that involve a localized version
of Wick rotation. We provide examples from Klein-Gordon theory in settings involving different types of
regions and hypersurfaces to showcase generalized vacua and the application of the proposed vacuum
selection methods. A recurrent theme is the occurrence of mixed vacua, where propagating solutions yield
definite Lagrangian subspaces and evanescent solutions yield real Lagrangian subspaces. The examples
cover Minkowski space, Rindler space, Euclidean space, and de Sitter space. A simple formula allows for
the calculation of expectation values for observables in the generalized vacua.
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I. INTRODUCTION

In nonrelativistic quantum theory a vacuum state can
simply be identified with a lowest-energy state. In a
relativistic context the absence of a unique notion of time
and consequently energy, makes this less straightforward.
Minkowski space has a rich isometry group (the Poincaré
group) that helps to fix a notion of vacuum by demanding
its invariance. However, generic curved spacetimes do not
admit isometries. This makes the question of how to choose
a vacuum state rather important, as well as the under-
standing of what such a choice means physically. A further
important question about the vacuum concerns its “local-
izability” properties. Usually, a vacuum is seen as encoding
global information about spacetime. This is reinforced by
the Reeh-Schlieder theorem [1]. However, one can ask to
which extent a vacuum might encode information just
about a spacetime region or (as we shall see) a hypersurface

neighborhood. This question is particularly important from
the point of view of Segal’s axiomatic approach to quantum
field theory, which posits that quantum amplitudes in
composite spacetime regions may be decomposed into
amplitudes in component regions [2–4]. More recently, this
approach has been generalized to include observables [5]
and general processes [6]. A third question we want to raise
here concerns the generalization of the notion of vacuum to
a context where no background metric is fixed from the
outset. This is relevant in particular for quantum gravity.
With the present work we aim to make some contribution to
addressing each of these questions.
To be able to make some headway we restrict in this

work purely to linear (i.e., free) field theory. We recall
(Sec. II) that a standard quantization method in curved
spacetime [7] starts with selecting a set of modes (i.e.,
solutions of the equations of motion) that satisfy certain
completeness and orthogonality properties (2) with respect
to an inner product (1) that derives from the symplectic form
on the solution space. A choice of such modes amounts to
selecting a vacuum. Equivalently, we may encode this
choice in terms of a complex structure on solution space
with certain properties.Aswe emphasize in thiswork, a third
way of encoding this information is in terms of a particular
type (that we call definite) of Lagrangian subspace of the
solution space. In Minkowski space with the standard
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vacuum, this Lagrangian subspace is precisely the space of
“positive energy solutions” and its conjugate that of “neg-
ative energy solutions.” In order tomove toward amore local
picture and away from a restriction to Minkowski space we
recall that there is a natural symplectic form on the space of
germs of solutions on any hypersurface in spacetime
(Appendix A). A vacuum can then be encoded as a definite
Lagrangian subspace on any hypersurface. If the hypersur-
face is spacelike and spacetime globally hyperbolic this can
be brought into correspondence with the more traditional
global perspective.
There is another, apparently completely distinct setting

where Lagrangian subspaces occur in (purely classical)
field theory (Sec. III A). This is the symplectic framework
of Kijowski and Tulczyjew [8], axiomatized in the linear
case in [9]. The key insight is that the solutions of a
sufficiently simple field theory in a spacetime region form a
Lagrangian subspace of the space of germs of solutions on
the boundary.1 The Lagrangian subspaces in question are
real subspaces in contrast to the definite ones for vacua
which are necessarily complex (and defined on the com-
plexified space of germs). Our core proposal (Sec. V) is
that, nevertheless, both occurrences of Lagrangian sub-
spaces are really special cases of a common unified
structure, which, for simplicity we continue to call vacuum.
To this end, we show on the classical level that the definite
Lagrangian subspaces are naturally associated to “suffi-
ciently” noncompact regions of spacetime, complementing
the real Lagrangian subspaces for compact and “mildly”
noncompact regions. Crucially, also Lagrangian subspaces
that are neither definite nor real (but are a mixture of both)
occur naturally, as we show. The unification becomes really
compelling at the quantum level, where we show that the
wave function for a standard vacuum state takes exactly the
same form as the wave function encoding the state dual to
the amplitude for a region. This is most easily seen by using
the Schrödinger representation and the Feynman path
integral. Expectation values of observables (defined as
functions on spacetime field configurations) on all the
generalized vacua can be evaluated by reducing to Weyl
observables and then applying a simple path integral
formula (37).
A second component of the present work consists of the

proposal of methods for vacuum selection (Sec. VI). These
are inspired by Euclidean methods and incorporate notions
ofWick rotation.We observe that real Lagrangian subspaces
occur naturally in association with decaying asymptotic
boundary conditions. This suggests to view the definite
Lagrangian subspaces of traditional vacua as arising through
a Wick rotation of boundary conditions. Concretely, we

propose an infinitesimal and an asymptotic method for
fixing a vacuum. While this works straightforwardly when
solutions show a decaying behavior, it requires a Wick
rotationwhen solutions showoscillatory behavior. The latter
case recovers traditional methods of vacuum selection using
timelike vector fields.
In order to motivate our proposal we showcase the

natural occurrence of generalized vacua in simple examples
and demonstrate the application of our vacuum selection
methods. This is partly in the spirit of the reverse engineer-
ing approach to quantum field theory, where we use known
tools and methods to extract underlying structure [11]. For
simplicity, all examples are based on (massive or massless)
Klein-Gordon theory. The examples involve different
regions and hypersurfaces (including timelike ones) in
Minkowski space (Secs. IV and VII A), Rindler space
(Sec. VII B), a Euclidean space (Sec. VII C), and de
Sitter space (Sec. VII D). An intriguing repeated pattern
is the occurrence of evanescent waves with a decaying
behavior and corresponding real Lagrangian subspaces
along with the oscillating waves with corresponding
definite Lagrangian subspaces. It is only the latter that
occur in the traditional approach to the vacuum.
While aspects of the example applications are novel,

their purpose is limited to providing an initial proof of
concept for the proposed generalized notion of vacuum and
selection methods. The real interest of these new concepts
and methods lies in their applicability to situations which
lie outside the scope of standard methods or where such
methods lack conceptual clarity or present technical diffi-
culty. Of particular interest are spacetimes that are not
globally hyperbolic, such as anti–de Sitter space, black hole
spacetimes, or certain cosmological spacetimes. On the
other hand, although this is not emphasized explicitly in
this work, a wide range of boundary conditions may be
understood in terms of our generalized notion of vacuum.
This might lead to a completely different class of appli-
cations such as to the Casimir effect and related problems.
We notice, in accordance with previous remarks, another
potential area of application in terms of quantum theory
(such as quantum gravity) on spacetimes without back-
groundmetric.Whilewe focus the discussion in thiswork on
standard quantum field theories and the methods of vacuum
selection proposed in Sec.VI rely to some extent on ametric,
the framework of Sec. V is in principle applicable also in the
absence of a metric. For further discussion of results and a
more detailed outlook, see Sec. VIII.
We emphasize that the present work is focused on certain

aspects of the notion of vacuum only. Other important
aspects such as whether a Hadamard condition [12] is
satisfied, relevant for obtaining a renormalized energy-
momentum tensor, are not touched upon. This does not
mean that they are not interesting, but that their relation to
the presented concepts and methods is outside of the scope
of thiswork and should be the subject of future investigation.

1“Sufficiently simple”means here for example that there are no
gauge symmetries. In the presence of gauge symmetries a refined
scheme can be applied that involves symplectic reduction, see,
e.g., [10].
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Some mathematical details on Lagrangian subspaces are
collected in Appendix B. This includes Proposition B.11,
which is instrumental in ensuring well-definedness and
uniqueness in the application of formula (37) for vacuum
expectation values. In Appendix C an axiomatization of our
notion of generalized vacuum is presented, generalizing the
axiomatic framework [9] that formalizes the mentioned
Lagrangian approach of Kijowski and Tulczyjew [8] in the
linear case.

II. QUANTIZATION, COMPLEX STRUCTURE,
LAGRANGIAN SUBSPACES

In the present section we briefly review aspects of the
conventional approach to quantization of bosonic field
theory in curved spacetime [7]. A more precise treatment of
some of the mathematical structures used in this section is
provided in Appendix B.

A. Modes and complex structure

Consider a classical field theory on a globally hyperbolic
spacetime. The phase space L is the space of solutions of
the equations of motion. It can also be identified with the
space of initial data on a spacelike hypersurface. We
suppose that L is a real vector space. That is, we deal
with linear or “free” field theory. Any interactions would be
treated perturbatively. An important ingredient of the
Lagrangian description of the field theory is the symplectic
form ω∶ L × L → R on L. This is a nondegenerate anti-
symmetric bilinear form.
We denote by LC ¼ L ⊕ iL, the complexification of L.

This is the complex vector space whose elements take the
form aþ ib for a, b ∈ L. It carries a complex structure, i.e.,
we know what it means to multiply with i. It also carries a
real structure, i.e., we know what it means to complex
conjugate an element, namely aþ ib ≔ a − ib for a, b ∈ L.
Using the symplectic form ω we may define a sesquilinear
Hermitian inner product on LC, given for ϕ, ϕ0 ∈ LC by,

ðϕ;ϕ0Þ ≔ 4iωðϕ̄;ϕ0Þ: ð1Þ

Note that this inner product is not, and cannot be positive-
definite.2

A standard way [7] to construct a quantization starts with
a complete set fukgk∈I of elements of LC, called modes,
with the following orthogonality properties,

ðuk; ulÞ ¼ δk;l; ðūk; ūlÞ ¼ −δk;l;

ðuk; ūlÞ ¼ 0; ∀ k; l ∈ I: ð2Þ

Denote by Lþ and L− the complex subspaces of LC

spanned by the modes fukgk∈I and fūkgk∈I respectively.

Lþ and L− are thus orthogonal subspaces that span all of
LC and the inner product ð·; ·Þ is positive-definite in Lþ and
negative-definite in L−. Lþ and L− are complex conjugates
of each other, Lþ ¼ L− and L− ¼ Lþ. We assume that the
spaces Lþ and L− are complete with respect to the inner
product. The state space of the quantum theory is then
constructed as a Fock space H with creation operators
fa†kgk∈I and annihilation operators fakgk∈I corresponding
to the modes fūkgk∈I and fukgk∈I respectively, with
commutation relations

½ak; al� ¼ 0; ½a†k; a†l � ¼ 0; ½ak; a†l � ¼ δk;l: ð3Þ

The vacuum state is characterized by the property that it is
annihilated by all annihilation operators. Thus, two differ-
ent sets of modes give rise to the same vacuum precisely if
the space Lþ (or equivalently L−) is the same for both sets.
An important property of the spaces Lþ and L− is that

they are Lagrangian subspaces of LC. This means (as
shown here for Lþ) that they are isotropic, i.e.,

ωðϕ; ηÞ ¼ 0; ∀ ϕ; η ∈ Lþ; ð4Þ

and coisotropic, i.e.,

ωðϕ; ηÞ ¼ 0; ∀ ϕ ∈ Lþ ⇒ η ∈ Lþ: ð5Þ

Isotropy follows from the third property in expression (2)
while coisotropy follows from the first two (which are
in fact equivalent). A choice of vacuum might be charac-
terized as follows in the present quantization scheme:
Choose a Lagrangian subspace Lþ ⊆ LC in such a way
that the inner product (1) is positive-definite on Lþ. We call
such a subspace a positive-definite Lagrangian subspace.
An orthonormal basis fukgk∈I of Lþ then yields a set of
modes with the properties (2).
Define a complex linear operator J∶ LC → LC as

follows,

Juk ¼ iuk; Jūk ¼ −iūk; ∀ k ∈ I: ð6Þ

Expressed differently, Lþ and L− are the eigenspaces of J
with eigenvalues i and −i respectively. It is then easy to
verify that,

J2¼−id; and ωðJϕ;Jϕ0Þ¼ωðϕ;ϕ0Þ; ∀ ϕ;ϕ0∈LC: ð7Þ

The orthogonal projection operators P�∶ LC → LC onto
the subspaces L� can be written in terms of the operator J,

P�ϕ ¼ 1

2
ðϕ ∓ iJϕÞ: ð8Þ

It is also easy to see that J commutes with complex
conjugation onLC. This implies that it is the complexification2Suppose that ðϕ;ϕÞ > 0 for some ϕ ∈ LC. Then, ðϕ̄; ϕ̄Þ < 0.
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of a real linear operatorL → L that we shall also denote by J.
J is a complex structureonL. That is, itmakesL (notLC) into
a complex vector space by defining the multiplication with i
to be the application of J. Combining with the symplectic
form ω, we can construct on L a sesquilinear and Hermitian
inner product with respect to this complex structure J,

fϕ;ϕ0g ≔ 2ωðϕ; Jϕ0Þ þ 2iωðϕ;ϕ0Þ: ð9Þ

Define wk ≔ uk þ ūk. Then wk is an element of L and as is
easy to verify,

fwk; wlg ¼ δk;l: ð10Þ

In particular, the complex inner product f·; ·g is positive-
definite and the set fwkgk∈I forms an orthonormal basis ofL
viewed as a complex vector space. Conversely, we can
recover the modes uk and ūk from wk as,

uk ¼ Pþwk; ūk ¼ P−wk: ð11Þ

An equivalent construction of the Fock space H starts
from the space L, viewed as a complex inner product space
with the inner product (9). Thus, the n-particle space is then
a symmetrized n-fold tensor product of copies of L. H is
the completed direct sum of all these n-particle spaces with
n ranging from 0 to infinity. In this context, equipping L
with the structure of a complex Hilbert space of 1-particle
states is also referred to as “first quantization” and the
construction of the Fock space H over L as “second
quantization.”
To summarize, we have two equivalent ways to deter-

mine a quantization, i.e., a vacuum:
(i) Choose a positive-definite Lagrangian subspace

Lþ ⊆ LC, i.e., a Lagrangian subspace that is pos-
itive-definite with respect to the inner product ð·; ·Þ
given by (1).

(ii) Choose a complex structure J∶ L → L, satisfying
conditions (7), and such that the inner product f·; ·g
given by (9) is positive-definite. We call this a
positive-definite complex structure.

We have simplified the mathematical treatment slightly
here. The precise statement of equivalence is given in terms
of Propositions B.8 and B.9 in Appendix B. Notably, this
implies a completeness property that is mostly left implicit
in the exposition of the present section.

B. Time, energy, and complex structure

Different choices of vacua might lead to different
physics. It is thus important to identify criteria for and
implications of different such choices. We recall how this
works in Minkowski space and aspects of its extension to
curved spacetime.
Suppose that we work in Minkowski space with a

fixed inertial coordinate system. Time translations lead

to induced transformations on the space L of solutions.
Infinitesimally, this gives rise to a derivative operator
∂0∶ L → L. Its exponentiation describes time evolution
in L. Thus evolution for a time Δt corresponds to the
operator eΔt∂0 on L. In the quantum theory, time evolution
is to be described through a Hamiltonian operator H on the
Fock spaceH. According to the Schrödinger equation, to a
time Δt corresponds the operator e−ΔtiH on H.
This suggests to construct first a Hamiltonian operator h

on L in the “first quantization” step, based on the classical
operator ∂0. Then, in the second quantization step, H is
taken to be the operator on the Fock space H induced by h
on its 1-particle subspace L. The simplest way to construct
h is to precisely match the quantum with the classical time
evolution on L. That is,

e−ΔtJh ¼ eΔt∂0 ; implying; h ¼ J∂0: ð12Þ

We recall that the multiplication with i in L is given by the
complex structure J. If we impose the usual requirement of
self-adjointness and non-negativity on the Hamiltonian
operator h, then the complex structure J can be determined
with condition (12).
For concreteness consider the Klein-Gordon theory with

mass m, given by the action,

SðϕÞ¼ 1

2

Z
dtd3x

�
ð∂0ϕÞð∂0ϕÞ−

X
i

ð∂iϕÞð∂iϕÞ−m2ϕ2

�
:

ð13Þ

We can expand complexified solutions, i.e., elements of LC

in terms of plane waves,

ϕðt; xÞ ¼
Z

d3k
ð2πÞ32E ðϕaðkÞe−iðEt−kxÞ þ ϕbðkÞeiðEt−kxÞÞ:

ð14Þ

Real solutions, i.e., elements of L have the property

ϕbðkÞ ¼ ϕaðkÞ. The symplectic form is given by,3

ωtðϕ1;ϕ2Þ ¼
1

2

Z
d3xðϕ1ðt; xÞð∂0ϕ2Þðt; xÞ

− ϕ2ðt; xÞð∂0ϕ1Þðt; xÞÞ ð15Þ

¼ i
2

Z
d3k

ð2πÞ32E ðϕa
1ðkÞϕb

2ðkÞ − ϕa
2ðkÞϕb

1ðkÞÞ: ð16Þ

3Note that the sign of the symplectic form depends on a choice
of orientation, see Appendix A. Here the orientation is chosen to
correspond to considering equal-time hypersurfaces as bounda-
ries of future half-spaces.
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(Note that the value of t in the first line is arbitrary.) In terms
of the momentum modes the operator ∂0 acts as,

ð∂0ϕÞaðkÞ ¼ −iEϕaðkÞ; ð∂0ϕÞbðkÞ ¼ iEϕbðkÞ: ð17Þ

In particular, ∂0 does not admit a spectral decomposition on
the solution space L, but only on its complexification LC,
with imaginary eigenvalues. In order for J∂0 to have non-
negative eigenvalues we thus need,

ðJϕÞaðkÞ ¼ iϕaðkÞ; ðJϕÞbðkÞ ¼ −iϕbðkÞ: ð18Þ

It is easily verified that J defined in this way is a compatible
complex structure satisfying conditions (7). What is more,
the associated inner product (9) is given by,

fϕ1;ϕ2g ¼ 2

Z
d3k

ð2πÞ32Eϕa
2ðkÞϕb

1ðkÞ: ð19Þ

This is easily seen to be positive-definite on L. That is, we
have a valid quantization in the standard sense. The
eigenspaces of J are,

Lþ ¼ fϕ ∈ LC∶ϕbðkÞ ¼ 0 ∀ kg; and

L− ¼ fϕ ∈ LC∶ϕaðkÞ ¼ 0 ∀ kg: ð20Þ

Lþ is called the space of positive frequency or positive
energy modes, while L− is called the space of negative
frequency or negative energy modes. While we might
perfectly well consider orthonormal bases fukgk∈I and
fūkgk∈I of these spaces with the properties (2), it is simpler
and more customary to use complex plane wave solutions.
These are eigenvectors of the operator ∂0 with continuous
momentum space labels,

ϕkðx; tÞ ¼ e−iðEt−kxÞ; and ϕkðx; tÞ ¼ eiðEt−kxÞ: ð21Þ

They are not actually elements of the space LC as they are
not normalizable. Instead they satisfy delta-function ortho-
gonality relations, which, however, are otherwise similar to
the relations (2).
The present procedure extends straightforwardly to other

bosonic field theories in Minkowski space. In particular, the
time-derivative operator ∂0 has imaginary eigenvalues and
the eigenspaces of the complex structure J correspond to
the two different signatures of these imaginary eigenvalues.

C. Quantization on hypersurfaces

Generically, curved spacetimes do not admit a time-
translation symmetry. This complicates considerably the
issue of finding a suitable positive-definite complex struc-
ture or even of quantization in general. In order to address
this, it turns out to be more fruitful to start with individual
hypersurfaces rather than spacetime as a whole when

quantizing. Thus, denote the space of germs of solutions
of the equations of motions on a hypersurface Σ by LΣ. As
before, we suppose that LΣ has the structure of a real vector
space. Also we suppose that it carries a symplectic form
ωΣ∶ LΣ × LΣ → R that is bilinear, anti-symmetric and
non-degenerate (see Appendix A).
In the remainder of this section we restrict to the case that

Σ is a spacelike hypersurface and that the equations of
motion admit a well posed initial value problem. Then we
can interpret LΣ also as the space of initial data on Σ. Also,
the restriction map IΣ∶ L → LΣ from the space L of global
solutions to LΣ is then an isomorphism. Its inverse is given
by the evolution of initial data. For fixed Σ this isomor-
phism induces a symplectic form ω on L from the
symplectic form ωΣ on LΣ. Due to a conservation law
(see Sec. III A), this induced symplectic form ω is the same
no matter what spacelike hypersurface Σwe choose. This is
how the symplectic form on L that we have mentioned
previously arises.
We may now proceed to perform a quantization exactly

as outlined in Sec. II A, except that we replace the
symplectic vector space ðL;ωÞ with ðLΣ;ωΣÞ for each
spacelike hypersurface Σ. In particular, we may formulate
this in terms of positive-definite Lagrangian subspaces
L�
Σ ⊆ LC

Σ and positive-definite complex structures JΣ. We
obtain a Fock space HΣ of quantum states for each
spacelike hypersurface Σ. Time evolution generalizes in
this setting to the evolution between different spacelike
hypersurfaces. Consider an initial spacelike hypersurface Σ
and a final spacelike hypersurface Σ0. Then, classically, the
evolution from Σ to Σ0 is described by the isomorphism
TΣ;Σ0 ≔ IΣ0 ∘ I−1Σ ∶LΣ → LΣ0 . As previously mentioned, this
preserves the symplectic form. The simplest way to
quantize this requires the complex structures to be pre-
served as well, i.e., we require JΣ0 ¼ TΣ;Σ0 ∘ JΣ ∘T−1

Σ;Σ0 .
Then, TΣ;Σ0 becomes unitary with respect to the inner
products (9) and induces a unitary map UΣ;Σ0∶ HΣ → HΣ0

between the corresponding Fock spaces.
In the absence of time-translation symmetries we may

consider more general flows on spacetime. Even if these do
not preserve solutions in spacetime, they may induce
infinitesimal actions on the spaces of germs of solutions
on hypersurfaces. That is, we might be able to construct
operators LΣ → LΣ that represent such flows infinitesi-
mally. These in turn can then be linked to complex
structures through their spectrum, similarly as we have
seen this for time translations.

D. Path integral with past and future boundaries

In this section we take a different starting point and
review the basics of the quantization of observables in
quantum field theory through the Feynman path integral.
We focus on how this links to the choice of vacuum as
discussed in the previous section. Most of the content of
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this section can be found in standard text books on quantum
field theory such as [13].
We first recall how transition amplitudes in quantum

field theory are obtained from the path integral. We work
in Minkowski space with the standard quantization of
Sec. II B, applied on equal-time hypersurfaces as in
Sec. II C. Thus, consider an initial state ψ1 ∈ Ht1 at time
t1 and a final state ψ2 ∈ Ht2 at time t2. We keep the
convention from Sec. II C to equip state spaces with labels
that indicate hypersurfaces, which in this case are para-
metrized by the time variable. When referring to objects
associated to the spacetime region ½t1; t2� × R3 we indicate
this with a subscript ½t1;t2�. The corresponding transition
amplitude is the matrix element of the time-evolution
operator U½t1;t2�∶ Ht1 → Ht2 given by,

hψ2;U½t1;t2�ψ1i¼
Z
K½t1 ;t2 �

Dϕψ1ðϕ1Þψ2ðϕ2ÞeiS½t1 ;t2 �ðϕÞ: ð22Þ

The integral is over field configurations ϕ ∈ K½t1;t2� in the
spacetime region ½t1; t2� × R3 with ϕi denoting the con-
figuration at time ti. The action S is evaluated in the same
region. We use here the Schrödinger representation, where
states on a hypersurface are wave functions on the space of
field configurations on this hypersurface.
When the field theory is interacting, i.e., the action

includes terms that are of higher order than two in the
fields, it is not known how to directly evaluate a path
integral such as (22), except for some very special cases.
Instead, one sets up perturbation theory around a free
theory described by an action S quadratic in the fields. An
important intermediate object in this construction arises by
adding to the action a source term. That is, one replaces the
action S with the action Sμ ≔ SþDμ, where,

DμðϕÞ ≔
Z

d4xμðxÞϕðxÞ: ð23Þ

For simplicity we have chosen here the notation of a real
scalar field, where the source μ is a map from spacetime to
the real numbers. (This readily generalizes to fields with
internal degrees of freedom.) As in Sec. II Awe denote by L
the real vector space of global solutions of the equations of
motion determined by the free action S. Similarly, we
denote by Aμ the space of global solutions of the equations
of motion determined by the modified action Sμ. Note that
Aμ is not a real vector space in general, but a real affine
space. Indeed, for S, the equations of motion are generally
homogeneous partial differential equations, while for Sμ
they are inhomogeneous. In the example of the Klein-
Gordon theory (compare Sec. II B) the equations of motion
are given by,

ð□þm2ÞϕðxÞ ¼ μðxÞ: ð24Þ

As before we denote by LC the complexification of L. We
also denote by AC

μ ¼ Aμ ⊕ iL the complexification of Aμ.
Elements of this space may be written as cþ id with c ∈
Aμ and d ∈ L. The addition of and element aþ ib ∈ LC

results in ðcþ aÞ þ iðdþ bÞ.
The path integral (22) with source takes a particularly

simple form in the case where both the initial and the final
state are given by the Fock vacuum ψ0. As before, we
consider the path integral between an initial time t1 and a
final time t2. Correspondingly, we suppose that the source μ
has support in the spacetime region ½t1; t2� ×R3 only. Then,

hψ0; Uμ;½t1;t2�ψ0i ¼ exp

�
i
2

Z
½t1;t2�×R3

d4xμðxÞηðxÞ
�
: ð25Þ

Here η ∈ AC
μ is a particular complexified solution of the

inhomogeneous equations of motion (i.e., with source).
More precisely, η is the unique inhomogeneous solution
with the following properties:

(i) For t ≤ t1, η is a negative energy solution,
i.e., ηjt≤t1 ¼ η− ∈ L−.

(ii) For t ≥ t2, η is a positive energy solution,
i.e., ηjt≥t2 ¼ ηþ ∈ Lþ.

See Fig. 1 for an illustration. These boundary conditions for
η are precisely tied to the choice of vacuum. At the t ¼ t2
hypersurface we restrict to positive energy solutions
according to our choice of positive-definite Lagrangian
subspace Lþ ⊆ LC determining here the standard vacuum
in Minkowski space, compare Sec. II B. At the t ¼ t1
hypersurface we choose the same (time translated) vacuum.

FIG. 1. The region M determined by the time interval ½t1; t2� in
Minkowski space. A source μ is located within the region. The
solution η of the corresponding inhomogeneous equations of
motion is a negative energy solution before t1 and a positive
energy solution after t2.
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However, since we are dealing with an initial rather than a
final hypersurface, its orientation is opposite. This means
that the symplectic form changes its sign as it is given by a
local integral over the hypersurface [compare expression
(A3) in Appendix A]. Similarly, the complex structure
changes sign as the normal derivative changes direction,
compare expression (12). Consequently, the complex inner
product (9) on L is complex conjugated. This also implies
that the positive-definite Lagrangian subspace Lþ is com-
plex conjugated and we obtain a restriction to negative
energy modes, i.e., to L− ¼ Lþ.
Crucially, if we decrease t1 or increase t2 without

changing the source μ, the solution η will not change.
This is precisely because the definite Lagrangian subspaces
Lþ ⊆ LC and L− ⊆ LC of positive and negative energy
solutions are time translation invariant, compare Sec. II B.
What is more, the integral in expression (25) does not
change either, since μ lacks support outside of ½t1; t2� ×R3.
Consequently, the quantity (25) does not depend on the
choice of initial and final time as long as the support of μ is
contained in ½t1; t2� ×R3. In particular, we may formally
send t1 to minus infinity and t2 to plus infinity. We can then
drop the restriction on the support of μ, although we must
keep in mind that integrability on the right-hand side might
not be guaranteed if μ does not have compact support. We
may view the condition on the early and late time behavior
of η as an (temporal) asymptotic boundary condition
determined by a choice of (temporal) asymptotic vacuum.
The resulting identity for the path integral may be

brought into the following suggestive form,

ZðμÞ ≔
Z
K
DϕeiðSðϕÞþDμðϕÞÞ ¼ exp

�
i
2

Z
d4xμðxÞηðxÞ

�
:

ð26Þ

Here K is now the space of field configurations in all of
spacetime and the integral on the right-hand side is also
over all of spacetime. While such a path integral is
commonly written down in quantum field theory text
books, it is clear that its notation is ambiguous since the
boundary conditions are not indicated. On the other hand,
the right-hand side can be used to define the path integral,
also in curved spacetime. Thus, in a globally hyperbolic
spacetime we may choose future and past asymptotic vacua
in the form of definite Lagrangian subspaces Lþ and L− of
the complexified global space of solutions LC making the
inner product (1) positive-definite and negative-definite
respectively. (Recall that we have a change of orientation
for the past asymptotics that flips the sign of ω, converting
negative to positive-definiteness.) We may even allow the
vacua to be different in the sense that L− does not agree
with Lþ, as long as Lþ and L− are complementary.
Complementary means that the intersection of Lþ and
L− is f0g, but together they generate LC. Then, η on the

right-hand side of Eq. (26) is determined as above. That is,
it is the unique complexified solution of the inhomo-
geneous equations of motion with source μ that satisfies
the boundary conditions of lying in Lþ in the asymptotic
future and in L− in the asymptotic past.
Instead of working with the special solution η it is often

more convenient to use the Feynman propagator GF which
is a complex symmetric distribution on two copies of
Minkowski space satisfying (for Klein-Gordon theory),

ð□x þm2ÞGFðx; yÞ ¼ δ4ðx − yÞ: ð27Þ

Moreover, with one argument held fixed, GF as a function
in the other argument is a complexified solution satisfying
the same boundary conditions as η for early and for late
times. (Early or late times are understood with respect to the
fixed argument.) This determines GF uniquely. Then,

ηðxÞ ¼
Z

d4yGFðx; yÞμðyÞ: ð28Þ

In particular, we may rewrite the right-hand side of
Eq. (26) as,

ZðμÞ ¼ exp

�
i
2

Z
d4xd4yμðxÞGFðx; yÞμðyÞ

�
: ð29Þ

An important tool in quantum field theory are the time
ordered n-point functions. In a standard text book one may
find this expressed in terms of the path integral as follows,

hψ0;Tϕðx1Þ � � �ϕðxnÞψ0i ¼
Z

Dϕϕðx1Þ � � �ϕðxnÞeiSðϕÞ

ð30Þ

Here, ψ0 symbolizes the vacuum, ϕðxiÞ on the left-hand
side are field operators labeled by spacetime points xi and
T denotes time-ordering. The expression on the left-hand
side is to be understood in the Heisenberg picture. As is
easy to see with (23), this quantity can be obtained for the
free theory under consideration here from ZðμÞ given by
(29) by applying functional derivatives. The simplest case
with n ¼ 2 recovers the Feynman propagator,

hψ0;Tϕðx1Þϕðx2Þψ0i¼
�
−i

∂
∂μðx1Þ

��
−i

∂
∂μðx2Þ

�
ZðμÞ

����
μ¼0

¼−iGFðx1;x2Þ: ð31Þ

III. QUANTIZATION IN SPACETIME

In the present section we review the more recent
generalization of quantization and the path integral to a
spacetime local formulation [4,14]. In doing so we rely
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mainly on the results of [5]. We consider classical field
theory first, and move on to quantization subsequently.

A. Classical field theory and Lagrangian subspaces

In order to describe a field theory locally we consider for
any spacetime region M (possibly restricted to some
sufficiently large class), the space LM of solutions of the
equations of motion in M. This is a real vector space since
we are dealing with free field theory. Crucially, these
solutions are defined only in M. There is no need or
assumption that they extend to global solutions. (We may
allow for contexts where a notion of global solution or even
global spacetime does not exist.) The physical content of a
field theory is not so much in the structure of these solution
spaces as such, but in the relation they have with each other.
Here, the powerful field theoretic principle of locality
comes into play. To encode this we also need to consider
hypersurfaces Σ and associated solution spaces LΣ. More
precisely, LΣ is the space of germs of solutions on Σ, i.e.,
solutions defined in an arbitrarily small neighborhood of Σ.
In Lagrangian field theory, this space comes equipped with
a symplectic form ωΣ∶ LΣ × LΣ → R (which we assume to
be nondegenerate). This symplectic form arises as the
second variation of the Lagrangian on the hypersurface
Σ [15], see Appendix A for details. Crucially, the hyper-
surface Σ carries an orientation. While the orientation
reversed hypersurface, denoted by Σ̄, carries the same space
of germs of solutions LΣ̄ ¼ LΣ, the associated symplectic
form changes sign, ωΣ̄ ¼ −ωΣ. Next, we realize that a
solution in a region M can be restricted to a solution in the
neighborhood of the boundary ∂M. This gives rise to a
linear map LM → L∂M. Crucially, (for well behaved
regions) the image of LM under this map (which we also
denote by LM when no confusion can arise) is a
Lagrangian subspace of L∂M. This is a powerful principle
of Lagrangian field theory in spacetime [8], generalizing
(as we recall below) the well known conservation of the
symplectic form between spacelike hypersurfaces. Note
that regions are also oriented and boundary hypersurfaces
inherit an orientation from the region they bound.
We may now express the notion of composition.

Consider two adjacent spacetime regions M1 and M2 that
are in contact through a common hypersurface Σ. Then, we
may express the relation between the corresponding sol-
ution spaces through the following exact sequence,

LM1∪M2
→ LM1

× LM2
⇉ LΣ: ð32Þ

The arrow on the left-hand side means: Take a solution in
the union M1 ∪ M2 and restrict it on the one hand to a
solution in M1 and on the other hand to a solution in M2.
The arrows on the right-hand side mean: Either restrict the
solution in M1 to a neighborhood of Σ or do this with the
solution in M2. The whole expression being an exact
sequence expresses the following simple fact: A pair of

solutions in M1 and M2 arises through restriction from a
solution in the union M1 ∪ M2 precisely if these restric-
tions agree near the hypersurface Σ.
The spacetime regions and hypersurfaces on the one

hand, and solution spaces with their properties on the other
hand can be organized into an axiomatic system [9,
Sec. 4.1]. This may in fact be used as a definition of
classical field theory using algebraic language instead of
the usual description in terms of differential geometric
structures and differential equations.
We recall how the time-evolution picture fits into this

spacetime framework. Consider a globally hyperbolic
spacetime and let M be a region bounded by two spacelike
hypersurfaces, Σ1 and Σ2, with the latter in the future
of the former. (Figure 1 shows an example.) We take Σ1 and
Σ2 to have the same orientation with respect to a global
choice of time direction. Then, as components of the
boundary ∂M with orientations induced from M, one
hypersurface (by convention here Σ2) appears with inverted
orientation, ∂M ¼ Σ1 ⊔ Σ̄2. Note that LM, LΣ1

and LΣ2
are

all naturally identified with the global solution space L.
Correspondingly, the symplectic forms ωΣ1

and ωΣ2
can be

viewed as forms on L. The map LM → L∂M ¼ LΣ1
× LΣ2

that restricts solutions to the boundary can be written as,
ϕ ↦ ðϕ;ϕÞ. The isotropy property (4) implies for ϕ,
ϕ0 ∈ L,

0 ¼ ω∂Mððϕ;ϕÞ; ðϕ0;ϕ0ÞÞ ¼ ωΣ1
ðϕ;ϕ0Þ þ ωΣ̄2

ðϕ;ϕ0Þ
¼ ωΣ1

ðϕ;ϕ0Þ − ωΣ2
ðϕ;ϕ0Þ: ð33Þ

This is just the usual conservation property of the sym-
plectic form between spacelike hypersurfaces. On the other
hand, the coisotropy property (5) implies the nondegener-
acy of ωΣ1

and ωΣ2
.

B. Quantization in regions and boundary conditions

In the present section we review quantization in general
spacetime regions following [5]. We recall from Sec. II C
that the quantization prescription of Sec. II A can be carried
out for individual hypersurfaces Σ. Thus, we choose a
positive-definite Lagrangian subspace Lþ

Σ ⊆LC
Σ or positive-

definite complex structure JΣ. This works just as well if
Σ is not a spacelike hypersurface in a globally hyperbolic
spacetime. Of course, in that case LΣ will not in general be
isomorphic to the space L of global solutions (if it exists).
Correspondingly, the Fock spaceHΣ is not to be interpreted
as a “global” state space of the quantum theory, but as the
space of states on the hypersurface Σ. This generalizes the
notion of state at a time t.
The most convenient way to describe the dynamics of the

quantum theory in general spacetime regions is not via an
evolution equation, but via amplitudes. Given a spacetime
region M with boundary hypersurface ∂M, the amplitude
map ρM assigns to a state in H∂M its amplitude, a complex
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number. It can be conveniently constructed via the
Feynman path integral as,

ρMðψÞ ¼
Z
KM

Dϕψðϕj∂MÞeiSMðϕÞ: ð34Þ

Here ψ ∈ H∂M is a state written as a wave function in the
Schrödinger representation. The integral is over the space
KM of field configurations in M and SM is the action
evaluated in M.
The transition amplitude (22) arises as a special case

when M is taken to be ½t1; t2� ×R3. We are then in the
situation considered at the end of Sec. III A where the
boundary ∂M ofM decomposes into an initial hypersurface
at t1 and a final one at t2 as ∂M ¼ Σt1 ⊔ Σ̄t2 . (Recall also
Fig. 1.) The boundary solution space L∂M decomposes as a
Cartesian product or direct sum L∂M ¼ Lt1 ⊕ Lt2 . Upon
quantization, the Fock space then decomposes into a tensor
product H∂M ¼ Ht1 ⊗ H�

t2 , i.e., ψ ¼ ψ1 ⊗ ψ�
2. The dual-

ization, indicated by * is due to orientation reversal. In the
Schrödinger representation the tensor product manifests as
a factorization of wave functions. With ϕj∂M ¼ ðϕ1;ϕ2Þwe
have ψðϕ1;ϕ2Þ ¼ ψ1ðϕ1Þψ2ðϕ2Þ. This recovers the path
integral (22) from (34), where the notation for the ampli-
tude map and transition amplitude are related as,

ρ½t1;t2�ðψ1 ⊗ ψ�
2Þ ¼ hψ2; U½t1;t2�ψ1i: ð35Þ

The quantization of observables in spacetime regions is
also easily accomplished through the Feynman path inte-
gral. Given a complex observable F∶ KM → C we use for
its quantization the notation ρFM∶ H∂M → C and call this
the corresponding observable map,

ρFMðψÞ ¼
Z
KM

Dϕψðϕj∂MÞFðϕÞeiSMðϕÞ: ð36Þ

If the observable F arises from a linear observable
D∶ KM → C via F ¼ expðiDÞ, then we call it a Weyl
observable. Adding a source term to the action as in Sec. II
D is just a special case of such a Weyl observable with D
given by expression (23). We are particularly interested in
the special case where ψ is the vacuum state ψ0. The
evaluation of the path integral then yields the simple
formula,4

ρFMðψ0Þ ¼ exp

�
i
2
DðηÞ

�
; ð37Þ

generalizing formula (25). Again, η is here a special
complexified solution of the “inhomogeneous” equations

of motion in M. “Inhomogeneous” now refers to the
equations of motion generated by the modified action
SM þD. We denote the corresponding affine space of
solutions in M by AD

M. Its complexification is AD
M ⊕ iLM,

where LM is the space of solutions of the unmodified
equations of motion inM. By restriction to a neighborhood
of the boundary ∂M, η gives rise to an element in LC∂M. By
slight abuse of notation we also denote this element by η.
The boundary condition that η has to satisfy is now given
by the requirement that this restriction of η be an element
of the positive-definite Lagrangian subspace Lþ

∂M ⊆ LC∂M
that determines our quantization on ∂M in the sense of
Sec. II A.5 There is a unique solution η that satisfies this
requirement. It is easy to see how the boundary conditions
for η in formula (25) arise from this perspective. The
boundary condition on M can be split into two, corre-
sponding to the two components of the boundary of M,
initial and final. Correspondingly, the Lagrangian subspace
Lþ
∂M ⊆ LC∂M and the complex structure J∂M split into two.

As explained previously, due to the relatively opposite
orientation of past and future boundary, symplectic form
and complex structure change sign, leading to a relative
complex conjugation of the Lagrangian subspace determin-
ing the past boundary condition. More precisely, we have,

J∂M ¼ Jt̄1 þ Jt2 ¼ −Jt1 þ Jt2 ; and thus;

Lþ
∂M ¼ Lþ

t̄1
⊕ Lþ

t2 ¼ Lþ
t1 ⊕ Lþ

t2 ¼ L−
t1 ⊕ Lþ

t2 : ð38Þ

Here, Jt1 and Jt2 are naturally identified with a global J on
L. Similarly, L�

t1 and L�
t2 are naturally identified with the

global L� ⊆ LC.
The key assumption underlying the existence and

uniqueness of η is the Lagrangian subspace property LM ⊆
L∂M (compare Sec. III A). In particular, the Lagrangian
subspaces LC

M and Lþ
∂M of LC∂M are necessarily comple-

mentary, i.e., LC∂M ¼ LC
M ⊕ Lþ

∂M. Indeed, a (complete)

positive-definite and a complexified real Lagrangian sub-
space are always complementary, see Proposition B.11 in
Appendix B. We can thus decompose any ϕ ∈ LC∂M as ϕ ¼
ϕint þ ϕext with ϕint ∈ LC

M and ϕext ∈ Lþ
∂M. Say ξ ∈ AD

M ⊕
iLM is some arbitrary complexified solution of the modified
equations of motion in M. It is then easy to see
that η ¼ ξext.
Restrict now to the situation where the Weyl observable

encodes a source μ with support in M. That is, Fμ ¼
expðiDμÞ with Dμ given by (23). As in Sec. II D we can
then rewrite the right-hand side of Eq. (37) in terms of

4This formula appears in [5] in a slightly different
form as formula (85). It can be derived using formula (A9) of
Appendix A.

5Note that the orientation of the boundary ∂M implicit in
Sec. II A and relevant for the choice of the Lagrangian subspaces
is opposite to that induced from the region M. We write ∂M to
reflect this. This also affects the complex structure.
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the Feynman propagator as the right-hand side of Eq. (29).
This Feynman propagator is here a symmetric distribution
GF∶ M ×M → C that satisfies the usual equation (27). In
addition, it satisfies the following boundary condition:
When one argument, say y, is held fixed in the interior
of M, then GFðx; yÞ as a function of x reduces in a
neighborhood of the boundary ∂M to an element in the
positive-definite Lagrangian subspace Lþ

∂M.
In the present section we have so far not needed to make

any reference to spacetime outside a given region M.
However, usually M will be part of a fixed global
spacetime. Then, the choice of vacuum, i.e., positive-
definite Lagrangian subspace on ∂M may arise as the
imprint of an asymptotic boundary condition as discussed
in Sec. II D. Correspondingly, we might consider η and GF
as globally defined objects in this setting. However, note
that the present perspective on the meaning of “asymptotic”
is potentially more general than in Sec. II D, referring to the
“far away” behavior of solutions, not necessarily in a
temporal (far past and far future) sense.
We have also not needed to restrict in this section to

spacelike hypersurfaces. Indeed, we have not needed to
mention or even imply a metric on spacetime at all. The
present considerations may well be applied to field theories
that do not require a background spacetime metric. In fact,
what we have reviewed in the present section is but a
fraction of a beautifully coherent and manifestly local
framework for quantizing field theory, including the free
theory, quantization of observables and elementary pertur-
bation theory, laid out in the work [5]. Unfortunately, this
framework is seriously limited in its applicability to
realistic quantum field theories as we shall see in Sec. IV.

C. Amplitudes and vacuum in the Schrödinger
representation

It turns out to be instructive to explore the notion of
vacuum in the context of the duality relation between
amplitudes and states. Thus, given a spacetime region M
we wish to consider a “state” ρ̂M so that for any ψ ∈ H∂M,

ρMðψÞ ¼ hρ̂M;ψi∂M: ð39Þ

Of course, with H∂M infinite-dimensional, ρM is
unbounded and ρ̂M will not be normalizable. But this does
not stop us from writing down a Schrödinger wave function
for it. Indeed, in the Schrödinger representation the inner
product in (39) is written as,

ρMðψÞ ¼
Z
K∂M

DφψðφÞρ̂MðφÞ; ð40Þ

where the integral is over the field configuration space K∂M
on the boundary ∂M ofM. A formal expression for ρ̂M thus
follows from comparison with the path integral (34),

ρ̂MðφÞ ¼ ZMðφÞ ¼
Z
KM;ϕj∂M¼φ

DϕeiSMðϕÞ: ð41Þ

Here the integral is over those field configurations ϕ in the
interior that match the boundary field configuration φ. ZM
is called the field propagator inM. Since the action SM is a
quadratic form, the integral can be solved explicitly. In
particular, let ϕcl be the classical solution of the equations
of motion in M that takes the boundary value φ. (We
assume this to exist and be unique here, see the discussion
below.) Then, from the variational principle of the action
and formal translation invariance of the path integral we
get,

ZMðφÞ ¼ exp ðiSMðϕclÞÞ; ð42Þ

where we have dropped a numerical factor depending only
on M.
In order to get a better understanding of the field

propagator we take a closer look at the Schrödinger
representation from the perspective on classical field theory
as reviewed in Sec. III A [16]. To this end we note that
Lagrangian field theory comes equipped with a symplectic
potential on any hypersurfaces Σ, see Appendix A for
details. In the present case of linear field theory this is a
bilinear form ½·; ·�Σ∶ LΣ × LΣ → R. For example, for
Klein-Gordon theory on an equal-time hyperplane in
Minkowski space (oriented as in Sec. II B as the past
boundary of a region), this is,

½ϕ;ϕ0�t ¼ −
Z

d3xϕ0ðt; xÞð∂0ϕÞðt; xÞ: ð43Þ

The symplectic form is its antisymmetric part, see Eq. (A7).
We will make use of the fact that the action can be
expressed in terms of the symplectic potential,
see Eq. (A8).
For a hypersurface Σ, define subspaces of LΣ as follows,

PΣ ≔ fτ ∈ LΣ∶½ξ; τ� ¼ 0 ∀ ξ ∈ LΣg
QΣ ≔ fτ ∈ LΣ∶½τ; ξ� ¼ 0 ∀ ξ ∈ LΣg: ð44Þ

We assume that PΣ and QΣ together generate LΣ. This is
enough to conclude that they are complementary
Lagrangian subspaces, i.e., LΣ ¼ PΣ ⊕ QΣ. It turns out
that the solutions in PΣ are characterized by having
vanishing field value on Σ, while those in QΣ have
vanishing normal derivative. Also define, KΣ ¼ LΣ=PΣ.
This is the same field configuration space on Σ that we have
previously introduced. We denote the quotient map by
qΣ∶ LΣ → KΣ. We also note that in view of the definition of
PΣ we may consider the symplectic potential as a map
½·; ·�Σ∶ LΣ × KΣ → R. Essentially, its first argument
depends only on Neumann data (normal derivatives) and
the second argument only on Dirichlet data (field values).
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Let M be a spacetime region. We assume that LM as a
subspace of L∂M is transverse both to P∂M and Q∂M which
implies L∂M ¼ LM ⊕ P∂M and L∂M ¼ LM ⊕ Q∂M. (This
is generically satisfied.) Then, there is a unique linear map
polM∶ K∂M → L∂M with the properties polMðK∂MÞ ¼ LM
and q∂M ∘ polM ¼ id. That is, polM yields for given
Dirichlet boundary data the solution in M that matches
the data. We may use this and expression (A8) from
Appendix A to rewrite the field propagator (42) as,

ZMðφÞ ¼ exp

�
i
2
½polMðφÞ;φ�∂M

�
: ð45Þ

Consider now the Schrödinger wave function of the
vacuum state ψ0 on a spacelike hypersurface Σ in the
context of the standard quantization of Sec. II. In the specific
case of Klein-Gordon theory in Minkowski space on an
equal-time hypersurface (as in Sec. II B), the vacuum wave
function is given by [17],

ψ0ðφÞ ¼ exp

�
−
1

2

Z
d3xφðxÞðEφÞðxÞ

�
: ð46Þ

Herewe use a compact notation whereE is to be understood
as an operator on the field configuration φ. It is defined as
taking the eigenvalueEon a planewavemodewith energyE.
In general, the vacuum is determined by a positive-

definite Lagrangian subspace Lþ
Σ ⊆ LC

Σ . Now, L
þ
Σ is nec-

essarily transverse to both PC
Σ and QC

Σ as they are both
complexifications of real Lagrangian subspaces (recall
Proposition B.11). There is thus a unique map polþΣ ∶ KΣ →
LC
Σ such that polþΣ ðKΣÞ ¼ Lþ

Σ and qΣ ∘ polþΣ ¼ id. In other
words, polþΣ selects that element in the Lagrangian sub-
space Lþ

Σ which has the prescribed Dirichlet data on Σ. It
turns out that the Schrödinger wave function of the vacuum
state in general is,

ψ0ðφÞ ¼ exp

�
i
2
½polþΣ ðφÞ;φ�Σ

�
; ð47Þ

where the orientation of Σ in the expression for the
symplectic potential is that as the boundary of the region
to the future of Σ. Indeed, in the case of Klein-Gordon
theory in Minkowski space, polþΣ maps configurations to
positive energy solutions. On these, ∂0 yields eigenvalues
−iE. Combining this with the expression (43) for the
symplectic potential and changing sign for orientation
reversal of Σ recovers the vacuum wave function (46).
In general, the vacuum wave function (47) looks exactly

the same as that of a state that represents the amplitude for a
spacetime region. The only difference is that the
Lagrangian subspace involved in the wave function of
the vacuum is a definite one while the one involved in the
wave function representing the amplitude is a (complexi-
fied) real one. Note also that Σ is the boundary of a

spacetime region, namely the region to the future (or past)
of Σ.

IV. A CASE STUDY: THE TIMELIKE
HYPERCYLINDER

In the present section we consider a first example of
boundary conditions determining a choice of vacuum on a
timelike hypersurface. Recall from Sec. II D that a choice of
temporal asymptotic vacuum (when available) is imprinted
on a global Feynman propagator GF. Since we can look at
the same propagator in spacetime regions with different
shapes, this gives us a means of comparing boundary
conditions on different types of hypersurfaces.
Concretely, we consider the standard vacuum of Klein-

Gordon theory on Minkowski space. Using the notation of
Sec. II B its Feynman propagator can be written in the
familiar form,

GFððt;xÞ;ðt0;x0ÞÞ ¼ i
Z

d3k
ð2πÞ32Eðθðt− t0Þe−iðEt−kxÞeiðEt0−kx0Þ

þθðt0− tÞeiðEt−kxÞe−iðEt0−kx0ÞÞ: ð48Þ

This makes transparent the future and past boundary
conditions that the propagator satisfies. As discussed in
Sec. II D we can impose these boundary conditions at the
past and future boundary of a time-interval region
M ¼ ½t1; t2� ×R3.

A. Massless theory

Let us consider now a region with timelike boundaries.
We choose the timelike hypercylinder that consists of a
3-ball B3

R of radius R, centered at the origin in space, and
extended over all of time, i.e., M ¼ R × B3

R. See Fig. 2.
The boundary of this region is the 2-sphere S2R of radius R,
centered at the origin in space, and extended over all of
time, ∂M ¼ R × S2R. This is a timelike and connected
hypersurface. Suppose for the moment that the theory is
massless, i.e., m ¼ 0. Then the space of complexified
solutions LC∂M in a neighborhood of the boundary ∂M
may be parametrized in terms of modes as follows,

ϕðt; r;ΩÞ ¼
Z

∞

−∞
dE

p
4π

X
l;m

ðϕa
l;mðEÞhlðprÞe−iEtYm

l ðΩÞ

þ ϕb
l;mðEÞhlðprÞeiEtY−m

l ðΩÞÞ: ð49Þ

Here Ω denotes angular coordinates on the sphere, r is the
radial distance from the origin, p ¼ jEj. The functions Ym

l

are the usual spherical harmonics. hl and hl are the
spherical Bessel functions of the third kind, also known
as Hankel functions. The sum runs over the usual angular
momentum quantum numbers, i.e., l ¼ 0; 1;…, and
m ¼ −l;−lþ 1;…;l − 1;l. The integral runs over R.
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Real solutions are those with ϕa
l;mðEÞ ¼ ϕb

l;mðEÞ. The
symplectic potential (A2) is the bilinear form LC∂M ×
LC∂M → C given by,

½ϕ; ξ�∂M ¼ −R2

Z
dtdΩξðt; R;ΩÞð∂rϕÞðt; R;ΩÞ: ð50Þ

The symplectic form (A7) on LC∂M is its antisymmetrization,

ω∂Mðϕ; ξÞ ¼
R2

2

Z
dtdΩðϕðt; R;ΩÞð∂rξÞðt; R;ΩÞ

− ξðt; R;ΩÞð∂rϕÞðt; R;ΩÞÞ ð51Þ

¼
Z

∞

−∞
dE

ip
8π

X
l;m

ðξal;mðEÞϕb
l;mðEÞ − ξbl;mðEÞϕa

l;mðEÞÞ:

ð52Þ

Note that the global (complexified) solution space can be
identified not with LC∂M, but with LC

M, the space of solutions
in the interior of the hypercylinder. Viewed as a subspace of
LC∂M, this consists of the solutions with the property
ϕa
l;mðEÞ ¼ ϕb

l;−mð−EÞ. To see this note that the Bessel

functions hl and hl are singular at the origin in space, i.e.,
at r ¼ 0. Only in the linear combination jl ¼ ðhl þ hlÞ=2
do the singularities cancel. jl is the spherical Bessel
function of the first kind. It is also easy to verify using
expression (52) that the subspace LM ⊆ L∂M (or
LC
M ⊆ LC∂M) is a Lagrangian subspace, as required.

Using the modes of the expansion (49) we may rewrite
the Feynman propagator (48) equivalently as follows [18],

GFððt;r;ΩÞ;ðt0;r0;Ω0ÞÞ

¼
Z

∞

−∞
dE

ip
2π

X
l;m

Ym
l ðΩÞY−m

l ðΩ0Þe−iEteiEt0

× ðθðr− r0ÞhlðprÞjlðpr0Þþθðr0− rÞhlðpr0ÞjlðprÞÞ:
ð53Þ

From this expression it is easy to read off that the boundary
condition on the hypercylinder is given by the restriction to
the hl modes, i.e., the solutions that satisfy ϕb

l;mðEÞ ¼ 0.
We denote this subspace by Lþ

∂M. It is easy to verify with the
symplectic form (52) that this is indeed a Lagrangian
subspace. The inner product (1) takes the form,

ðϕ; ξÞ∂M ¼
Z

∞

−∞
dE

p
2π

X
l;m

ðϕa
l;mðEÞξal;mðEÞ

− ϕb
l;mðEÞξbl;mðEÞÞ: ð54Þ

[Note the opposite orientation of ∂M and thus opposite sign
compared to (51).] This is easily seen to be positive-definite
on Lþ

∂M. The corresponding complex structure J∂M multi-

plies the hl modes with i and the hl modes by −i. Thus, we
nicely recover a notion of vacuum in the sense of Sec. III B
as a boundary condition on the timelike hypercylinder.
Moreover, this is the standard vacuum of Klein-Gordon
theory in Minkowski space.
The definite Lagrangian subspace Lþ

∂M ⊆ LC∂M exhibits

the properties of a conventional vacuum in another impor-
tant sense, namely that of behavior with respect to
infinitesimal normal evolution, compare Sec. II B.
Consider the radial derivative ∂r as acting on the space
of (complexified) germs of solutions LC∂M. Since only the
spherical Bessel functions in the expansion (49) depend on
the radius r it is sufficient to focus on these exclusively.
A convenient presentation is the following [19, 10.49(i)],

hlðprÞ ¼ eipr
Xl
k¼0

ik−l−1ðlþ kÞ!
2kk!ðl − kÞ!ðprÞkþ1

;

hlðprÞ ¼ e−ipr
Xl
k¼0

ð−iÞk−l−1ðlþ kÞ!
2kk!ðl − kÞ!ðprÞkþ1

: ð55Þ

From this it is clear that applying ∂r to a mode containing
hl, yields modes containing hl (for different values of l).
Similarly this happens for the modes containing hl. That is,

the Lagrangian subspace Lþ
∂M and its complement L−

∂M ¼
Lþ
∂M are both invariant subspaces of the operator ∂r. What is

more, for large radius r the functions r ↦ hlðprÞ and

FIG. 2. The regionM is bounded by the hypercylinder of radius
R. The interior solutions of Klein-Gordon theory are given in
terms of spherical Bessel functions jl, the vacuum on the exterior
in terms of propagating hl. For the massive case in the interior
there are additionally the functions al and in the exterior the
evanescent kl.
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r ↦ hlðprÞ become approximate eigenfunctions of the
derivative operator ∂r with imaginary eigenvalues ip and
−ip respectively. Correspondingly, the operator −J∂M∂r
acquires the momentum p as its approximate eigenvalue on
all modes. Conversely, this criterion uniquely determines
the complex structure J∂M. This is in precise analogy to the
role the time-evolution operator ∂0 plays in the selection of
the vacuum in traditional quantization, compare Sec. II B
and particularly expression (12). (There is a difference in
overall sign, due to the different sign for spacelike and
timelike directions in the Lorentzian metric.)

B. Massive theory

We continue to consider the Klein-Gordon theory in
Minkowski space, but drop the restriction for the field to be
massless, i.e., we allow m ≠ 0. In that case the integrals
over the energy E have to be restricted to E2 ≥ m2 in
expressions (49), (52), (53), and (54). What is more, in
these same expressions, as well as in those to follow, p
becomes p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jE2 −m2j

p
. Correspondingly, the modes in

the expansion (49) do no longer describe the space of
solutions near radius R completely, but only a subspace
Lp;C
∂M ⊆ LC∂M. This is the subspace of propagating solutions

that show oscillatory behavior in space at large radius. We
henceforth denote all corresponding solutions spaces from
the previous section with a superscript p to indicate this.
There are in addition evanescent solutions that show
exponential behavior in space. We denote the subspace
of these by Le;C

∂M ⊆ LC∂M. To parametrize them we use
modified spherical Bessel functions given by, klðzÞ ¼
−ilπhlðizÞ=2 and k̃lðzÞ ¼ klð−zÞ. For real arguments
these are real functions. The kl modes decay exponentially
with radius, while the k̃l modes grow exponentially.
Complexified evanescent solutions near ∂M (in fact any-
where away from r ¼ 0) may be parametrized as,

ϕðt; r;ΩÞ ¼
Z

m

−m
dE

p
4π

e−iEt
X
l;m

Ym
l ðΩÞðϕx

l;mðEÞklðprÞ

þ ϕi
l;mðEÞk̃lðprÞÞ: ð56Þ

The real subspace Le∂M ⊆ Le;C
∂M is given by the conditions

ϕx
l;mðEÞ ¼ ϕx

l;−mð−EÞ and ϕi
l;mðEÞ ¼ ϕi

l;−mð−EÞ. The

symplectic form (51) on Le;C
∂M is,

ωe∂Mðϕ; ξÞ ¼
Z

m

−m
dE

πp
32

X
l;m

ðξxl;mðEÞϕi
l;−mð−EÞ

− ξil;mðEÞϕx
l;−mð−EÞÞ: ð57Þ

The symplectic form vanishes between propagating and
evanescent solutions. Thus, the total symplectic form
on LC∂M ¼ Lp;C

∂M ⊕ Le;C
∂M is simply the sum of (52) and

(57). The solutions kl and k̃l are both singular at the
origin, but the linear combination alðzÞ ≔ i−lþ2πjlðizÞ ¼
k̃lðzÞ þ ð−1ÞlklðzÞ is well behaved there. Thus, the sub-
space Le;C

M ⊆ Le;C
∂M of solutions in the interior of the hyper-

cylinder is determined by the condition ϕi
l;mðEÞ ¼

ð−1Þlϕx
l;mðEÞ. As is easy to see with (57), Le

M ⊆ Le∂M is
a Lagrangian subspace. Correspondingly, LM ¼ Lp

M ⊕ Le
M

is a Lagrangian subspace ofL∂M, as required. Note that there
are no evanescent modes that are well defined and bounded
in all of Minkowski space. So, in contradistinction to the
propagating modes they do not appear in the global space of
solutions.
In the massive case the Feynman propagator in terms of

hypercylinder modes also receives a contribution from the
evanescent solutions. Thus, in addition to the right-hand
side of expression (53), the evanescent contribution is given
by [18],

Ge
Fððt;r;ΩÞ;ðt0;r0;Ω0ÞÞ

¼−
Z

m

−m
dE

p
π3

X
l;m

Ym
l ðΩÞY−m

l ðΩ0Þe−iEteiEt0

× ðθðr− r0ÞklðprÞalðpr0Þþθðr0− rÞklðpr0ÞalðprÞÞ:
ð58Þ

From this expression we can read off immediately that the
boundary condition on the hypercylinder for the evanescent
solutions is given by the restriction to the kl modes, i.e., the
solutions that satisfy ϕi

l;mðEÞ ¼ 0. We denote this subspace

by Le;þ
∂M ⊆ Le;C

∂M. It is easy to verify with (57) that this is

indeed a Lagrangian subspace. The same is thus true
for the corresponding subspace comprising both propagat-
ing and evanescent solutions, Lþ

∂M ¼ Lp;þ
∂M ⊕ Le;þ

∂M ⊆ LC∂M.
However, the inner product (1) takes on the evanescent
solutions the form,

ðϕ;ξÞe∂M ¼
Z

m

−m
dE

iπp
8

X
l;m

ðϕx
l;mðEÞξil;mðEÞ

−ϕi
l;mðEÞξxl;mðEÞÞ: ð59Þ

This is clearly not positive-definite on Le;þ
∂M. In fact, L

e;þ
∂M is a

neutral subspace for this inner product, i.e., the inner
product vanishes on any two elements from this subspace.
In contrast to Lp;þ

∂M ⊆ Lp;C
∂M, L

e;þ
∂M is the complexification of a

real Lagrangian subspace of Le∂M, recall that the kl modes
are real modes. By inspection of the inner product (1) it is
clear that in this case the isotropy property (4) implies the
neutrality property.
It is also instructive to consider the action of the radial

derivative operator ∂r on the space Le∂M of evanescent
germs. (On the space Lp

∂M of propagating germs the
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previous discussion of the massless case fully applies.) To
this end we consider the following presentation of the
relevant spherical Bessel functions of the third kind [19,
10.49(ii)],

klðprÞ ¼ e−pr
Xl
k¼0

πðlþ kÞ!
2kþ1k!ðl − kÞ!ðprÞkþ1

;

k̃lðprÞ ¼ epr
Xl
k¼0

πð−1Þkþ1ðlþ kÞ!
2kþ1k!ðl − kÞ!ðprÞkþ1

: ð60Þ

From this it is easy to see that the Lagrangian subspace Le;þ
∂M

build out of Bessel functions kl, as well as the comple-
mentary Lagrangian subspace Le;−

∂M build out of Bessel

functions k̃l are both invariant under ∂r. What is more, for
large radius r the functions r ↦ klðprÞ and r ↦ k̃lðprÞ
become approximate eigenfunctions of the derivative oper-
ator ∂r with real eigenvalues −p and p respectively. (Note
that p is positive by definition.) This reflects the fact that
the elements of Le;þ

∂M (which contain kl-modes) are

decaying solutions for large radius r, while those of Le;−
∂M

(which contain k̃l-modes) are growing solutions for large
radius r. We note that the standard vacuum corresponds to
selecting the asymptotically decaying solutions rather than
the growing ones.
We conclude that the boundary condition on the hyper-

cylinder in the massless Klein-Gordon theory inMinkowski
space induced by the standard Feynman propagator can be
interpreted following Sec. III B precisely as a choice of
vacuum. In particular, we can construct a corresponding
Hilbert space of states associated to the hypercylinder
following the prescription of Sec. II A. This is not so in
themassive theory. Therewe encounter instead aLagrangian
subspace that is not definite. In particular, there is no
corresponding Hilbert space in the sense of Sec. II A and
the framework [5] referred to in Sec. III B does not apply.
(For the incomplete subset of modes that are propagating,
there is of course a definite Lagrangian subspace and
corresponding Hilbert space, as in the massless theory.)

V. THE VACUUM AS A LANGRANGIAN
SUBSPACE

We hope to have presented sufficient evidence in
previous sections to convince the reader of the picture
alluded to in the title of this work. We lay out this picture in
the present section. It turns out to be fruitful to start with
classical field theory.

A. Classical field theory

Recall fromSec. III A that given a spacetime regionM the
space LM of solutions in the interior should give rise to a
Lagrangian subspace of the spaceL∂M of germs of solutions
on the boundary. Thisworks generallywell ifM is a compact
spacetime region. This works also well for certain non-
compact regions. The principal example we have discussed
is a time-interval region in a globally hyperbolic spacetime,
see Fig. 3(a). We have also seen in Sec. IV that this works
well for Klein-Gordon theory on the hypercylinder in
Minkowski space. On the other hand, suppose we consider
the exterior of a time-interval region in a globally hyperbolic
spacetime. For simplicity just restrict to the future part, i.e.,
the region to the future of a given spacelike hypersurface.
Generically, the solutions show an oscillating behavior and
there seems to be no natural way to single out a subspace that
is Lagrangian when restricted to germs on the hypersurface.
Indeed, as we have previously emphasized, all germs on the
hypersurface, which are nothing but initial data, correspond
to valid global solutions. On the other hand, as recalled in
Sec. II we do attach a Lagrangian subspace to the hyper-
surface, encoding a vacuum for the quantum theory.What is
more, the asymptotic perspective reviewed in Sec. II D
suggests that we may think of this Lagrangian subspace as
associated to the region that is all of the future of the
hypersurface, see Figure 3(b). (Figure 3(c) shows the
corresponding “past vacuum.”) However, the Lagrangian
subspace in question is a definiteLagrangian subspace of the
complexification of the space of germs on the hypersurface.
The intuitive picture that the reader should have in mind

is the following. We consider a compact (or maybe just
temporally compact) region M and its complement X, see

(a) (b) (c)

FIG. 3. (a) Solutions in a time-interval region M yield a real Lagrangian subspace LM ⊆ L∂M. (b) The future vacuum state ψ0 on a
spacelike hypersurface Σ is encoded through a definite Lagrangian subspace L̃X ⊆ LC∂X ¼ LC

Σ . (c) The corresponding past vacuum.
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Fig. 4. The physics in M is encoded in its amplitude map
ρM, corresponding to a real Lagrangian subspace
LM ⊆ L∂M. The physics in X on the other hand gives rise
to a vacuum state ψ0 on ∂M, corresponding to a definite
Lagrangian subspace L̃X ⊆ LC∂X ¼ LC∂M. We claim that both
types of Lagrangian subspaces and correspondingly the two
apparently very different notions of “interior” solution
space and “exterior” vacuum should be seen as instances
of the same general structure. Using the observation that a
Lagrangian subspace of a real symplectic vector space
canonically complexifies to give rise to Lagrangian
subspace of the complexified symplectic vector spaces,
we arrive at the following picture, generalizing that of
Sec. III A. Thus, to each hypersurface Σ we associate a
complex symplectic vector space ðLC

Σ ;ωΣÞ that arises as the
complexification of the real symplectic vector space
ðLΣ;ωΣÞ of germs of solutions previously considered.
(We do not distinguish notationally between the symplectic
form ωΣ and its complexification.) To each region M we
associate a complex vector space L̃M with a map L̃M →
LC∂M such that the image is a complex Lagrangian subspace.
All further ingredients of the classical field theory picture
of Sec. III A are generalized accordingly. Notably, the
composition rule encoded in the exact sequence (32) is
required to hold. The full generalization of the correspond-
ing axiomatic system for classical field theory [9, Sec. 4.1]
is provided in Appendix C.
It remains to specify how the spaces L̃M arise. Clearly,

for the regions where the picture of Sec. III A works, we
want to maintain it. That is, if the space LM is defined and
gives rise to a Lagrangian subspace of L∂M, we take L̃M to
be its complexification LC

M. This should hold for all
compact regions as well as for certain noncompact ones
(such as the examples of the time interval and the hyper-
cylinder). The example of the massive Klein-Gordon theory
in Sec. IV B suggests how this generalizes to another
important class of noncompact regions. Namely those
regions where it makes sense to impose a condition of
asymptotic decay on the field. Indeed, we have seen that
those evanescent waves that decay with large radius in the

region exterior to the hypercylinder form a real Lagrangian
subspace. Moreover, this Lagrangian subspace precisely
encodes the (evanescent part of) the standard vacuum
of Klein-Gordon theory in Minkowski space. On the
other hand, L̃M should clearly give rise to a corresponding
definite Lagrangian subspace when the region is one
occurring in the context of conventional quantization.
The prime example here is a region occurring as the future
or past of a spacelike hypersurface in a globally hyperbolic
spacetime. We return to a more dedicated discussion of the
spaces L̃M in Sec. VI.

B. Quantum field theory

The picture of unifying the real Lagrangian subspaces of
solutions and the definite Lagrangian subspaces coming
from quantization in a common framework is intriguing in
the classical theory. It becomes compelling in the quantum
theory.
The quantum analog of a real Lagrangian subspace LM

of solutions in a regionM is the amplitude map ρM for that
region. Transferring the picture outlined above to the
quantum theory, if for a region M the space L̃M is not a
real, but a definite Lagrangian subspace, its quantum
analog is still a (generalized) amplitude map for that
region. Except in this case it is one traditionally called a
vacuum. As recalled in Sec. III C we may conveniently
encode the amplitude in terms of a Schrödinger wave
function ρ̂M. There is a single formula that describes this
wave function in all cases,

ρ̂MðφÞ ¼ ZMðφÞ ¼ exp

�
i
2
½fpolMðφÞ;φ�∂M

�
: ð61Þ

Here, fpolM∶ KC∂M → LC∂M is the unique linear map such

that fpolMðKC∂MÞ ¼ L̃M and q∂M ∘ fpolM ¼ id. (We use the
notation with the tilde to emphasize that we necessarily
work with the complexified spaces now.) This reduces to
the real case (45) of a traditional amplitude map if L̃M is a
complexified real Lagrangian subspace. It reduces to the
wave function of a traditional vacuum (47) if L̃M is a
definite Lagrangian subspace.
Note that the Schrödinger representation is chosen here

for convenience and brevity of presentation. There is
nothing special about it with respect to the unification of
the concepts of amplitude and vacuum. This unification
becomes equally manifest in other representations such as
the holomorphic one. In the latter case this may be seen
using the machinery developed in [5,9,20]. However,
presenting the details of this is not essential to our argument
and thus outside the scope of the present article.
The key formula for evaluating the amplitude for a

spacetime region M (which might be all of spacetime) in
the vacuum state and with a Weyl observable inserted inM
remains (37). The applicability of the formula is expanded,

FIG. 4. Generic setting with a compact region M and non-
compact exterior X. In M we have an amplitude map while in X
we have a vacuum.

THE VACUUM AS A LAGRANGIAN SUBSPACE PHYS. REV. D 100, 045018 (2019)

045018-15



however. Consider the typical situation that M is a
spacetime region with LM ⊆ L∂M real Lagrangian and
denote by X its exterior, i.e., the complementary spacetime
region which we take to be noncompact, see again Fig. 4.
Let D∶ KM → C be a linear observable and F ¼ expðiDÞ
the corresponding Weyl observable. Denote as before
(compare Sec. III B) by AD

M the solution space of the
inhomogeneous equations of motion for the action SM þD
and AD

M ⊕ iLM its complexification. Now, the vacuum L̃X

is a (definite or not) Lagrangian subspace of LC∂X ¼ LC∂M.
Then, the vacuum expectation value of the observable F is
given by formula (37), where η ∈ AD

M ⊕ iLM ∩ L̃X is
unique. This gives the right result whether L̃X is a real
or a definite Lagrangian subspace of LC∂M as we have seen
in the hypercylinder example of Sec. IV.
The formula can further be extended to the boundaryless

case thatM is all of spacetime if the ingredients are suitably
interpreted. Then, η ∈ AD

M ⊕ iLM ∩ L̃∂M, where AD
M and

LM are now interpreted as global inhomogeneous and
respectively homogeneous solutions. On the other hand we
take LC∂M to be the complexified space of asymptotic
solutions, i.e., the space of solutions that are defined only
near the “boundary” ∂M of spacetime “at infinity”. L̃M ⊆
LC∂M is the Lagrangian subspace implementing the choice
of vacuum. We are deliberately vague here about what we
mean by this “boundary”. One might think of boundaries of
conformal compactifications for example. We leave this to
be made precise in future work.

VI. THE CHOICE OF VACUUM

In this section we turn to the question of how a space L̃M
of (complexified) solutions is associated to a spacetime
region M. As already discussed in Secs. III A and VA, for
compact spacetime regions and for certain noncompact
ones the space LM of solutions in M is naturally a
Lagrangian subspace of the space L∂M of germs on the
boundary ∂M. L̃M is then just its complexification LC

M. As
also indicated in Sec. VA this generalizes to noncompact
regions where it makes sense to impose a condition of
asymptotic decay on the field. For other noncompact
regions a decay condition does not make sense. The prime
example is the future or past half of a globally hyperbolic
spacetime bounded by a spacelike hypersurface. Indeed, as
this is the home for the conventional notion of vacuum we
do not expect to obtain a real Lagrangian subspace, but
rather a definite Lagrangian subspace. In Sec. II B we have
reviewed how the choice of this Lagrangian subspace can
be addressed via an infinitesimal approach tied to a notion
of time evolution. In the present section we integrate this
into a more general infinitesimal approach for the selection
of (generalized) vacua (Sec. VI A). Subsequently we seek
to formalize an approach based on generalized asymptotic
decay conditions (Sec. VI B).

A. Infinitesimal approach

Suppose we have a noncompact spacetime region X
where imposing an asymptotic decay condition on the field
yields a real Lagrangian subspace LX ⊆ L∂X. Then, we
might try to determine if a given germ in L∂X, when
extended into X decays or not by looking at its behavior in a
neighborhood of the hypersurface ∂X. More concretely, we
suppose we have a normal derivative operator ∂n, pointing
to the interior of X, acting on L∂X. Then, spectrally
decomposing ∂n, we should expect it to exhibit positive
or negative eigenvalues for solutions depending on whether
they grow or decay under continuation into X. Thus, LX
should correspond to the subspace of L∂X that is spanned
by the eigenspaces for negative eigenvalues of ∂n.
The evanescent solutions of the massive Klein-Gordon

field provide an example for precisely this situation. Recall
Sec. IV B. The region in question is the exterior X of the
solid hypercylinder M and the normal derivative is the
radial one, which we denoted ∂r. The Lagrangian subspace
Le
X ( e indicates restriction to evanescent solutions) is called

Le;þ
∂M ¼ Le;þ

∂X there. As we have seen there, it is the subspace

of L∂X ¼ L∂M where ∂r has negative asymptotic eigen-
values, namely −p, where p is the total momentum.
In general, a normal derivative operator ∂n on the space

LΣ of germs on a hypersurface (boundary or not) does not
need to be spectrally decomposable. Recall in particular the
situation corresponding to a conventional vacuum, see
Sec. II B and II C. More specifically, consider Klein-
Gordon theory on an equal-time hypersurface Σ in
Minkowski space. Then the square ∂2

0 of the time-derivative
operator ∂0 has negative eigenvalues. Thus, to decompose
∂0 we need to complexify LΣ to LC

Σ and the eigenvalues are
imaginary. The solutions are oscillatory. So, how does this
fit together with the idea of decaying solutions? On the face
of it does not, but we can “make” some solutions decaying
by Wick rotation. That is, we rotate ∂0 by 90° in the
complex plane by multiplying it with −i (or iÞ. We then
declare those solutions “decaying” that correspond to
negative eigenvalues of −i∂0 (or i∂0). Recall from
Sec. II B that choosing −i makes the corresponding
Hamiltonian positive. Multiplying instead by i makes it
negative. The right choice depends in general on con-
ventions and coherence. The Lagrangian subspace of the
selected solutions is what we declare L̃M to be if Σ is the
boundary of M. This subspace is by construction not
the complexification of a real subspace, but rather a
complex subspace that is complementary to its complex
conjugate.What is more, looking at the explicit structure of
the symplectic form (15) this should even be a definite
subspace with respect to the inner product (1).
This approach should work in somewhat more

generality, e.g., for spacelike hypersurfaces in globally
hyperbolic spacetime (bounding a half of spacetime). It
also works in the example of the Klein-Gordon theory on

DANIELE COLOSI and ROBERT OECKL PHYS. REV. D 100, 045018 (2019)

045018-16



the hypercylinder for propagating solutions, recall Sec. IV
A. There, the asymptotic eigenvalues of the radial
derivative operator ∂r are ip and −ip, with p the total
momentum. Indeed, the vacuum Lagrangian subspace L̃X

in the exterior region X, called there Lþ
∂M ¼ Lþ

∂X, corre-
sponds precisely to selecting the negative asymptotic
eigenspaces of i∂r. (The choice of i∂r rather than −i∂r
ensures consistency with the standard vacuum and is
related to the opposite signature between spacelike and
timelike directions in the metric.)
Summarizing, the infinitesimal approach starts with a

normal derivative operator ∂n on the space LΣ of germs
on the hypersurface Σ in question. If the operator has real
eigenvalues, the eigenspaces with negative eigenvalues
are chosen to form a real Lagrangian subspace. If the
operator has imaginary eigenvalues, the space LΣ is
complexified to LC

Σ , the derivative operator is Wick
rotated to i∂n (or −i∂n) and the eigenspaces with
negative eigenvalues of the rotated operator are taken
to form a Lagrangian subspace. Of course, the derivative
operator might not have eigenvalues that are restricted to
being either only real or only imaginary. One might
imagine that in some cases one can define sensible
generalizations of the Wick rotation procedure. On the
other hand, it is clear that the presented method has
important limitations. We also have not elaborated on
how exactly one would choose a normal derivative
operator in general. There might not even be a good
choice for such an operator.

B. Asymptotic field propagator approach

We proceed to describe a method for selecting a vacuum
that relies on a particular formalization of the notion of
asymptotic boundary conditions. To this end we suppose
that the spacetime region X in question is foliated into a
collection of hypersurfaces Σs, indexed by a real parameter
s ∈ ½0;∞Þ, such that Σ0 coincides with the boundary
∂X. Denote by Xs the subregion of X enclosed between
the hypersurfaces Σ0 and Σs. That is, the boundary ∂Xs

decomposes into the disjoint union Σ0 ⊔ Σs. Note that
we orient Σ0 and Σs both as boundaries of a region
spanned by the larger values of s. Thus, as a boundary
component of Xs, Σs has opposite orientation.
Correspondingly, the space of germs on the boundary
decomposes as L∂Xs

¼ LΣ0
× LΣs

. We consider the
Schrödinger field propagator (41), which we write as a
function of two arguments, separating K∂Xs

¼ KΣ0
× KΣs

,

ZXs
ðφ;φ0Þ ¼

Z
KXs ;ϕj0¼φ;ϕjs¼φ0

DϕeiSXs ðϕÞ: ð62Þ

The basic idea of the asymptotic method for obtaining
the field propagator for the region X is rather simple. We
want to impose that the field vanish at “infinity”, that is for
s → ∞. To this end we cut the region off to obtain Xs, make
the field vanish on Σs, then send s to infinity. That is, we
define ZX as,

ZXðφÞ ≔ lim
s→∞

ZXs
ðφ; 0Þ: ð63Þ

Using further ingredients of the Schrödinger representation
(compare Sec. III C) we can make this more precise. We
assume the Lagrangian subspace property LXs

⊆ L∂Xs
for

the region Xs. This (together with genericity) implies then
that we have a linear map polXs

∶ K∂Xs
→ L∂Xs

satisfying
polXs

ðK∂Xs
Þ ¼ LXs

and q∂Xs
∘ polXs

¼ id. We rewrite
polXs

in terms of components as, pol0½0;s�∶ KΣ0
× KΣs

→

LΣ0
and pols½0;s�∶ KΣ0

× KΣs
→ LΣs

. We can then reexpress

the field propagator with (45) as,

ZXs
ðφ;φ0Þ

¼ exp

�
i
2
ð½pol0½0;s�ðφ;φ0Þ;φ�0− ½pols½0;s�ðφ;φ0Þ;φ0�sÞ

�
:

ð64Þ

Then, the limit (63) works out to,

ZXðφÞ ¼ lim
s→∞

exp

�
i
2
½pol0½0;s�ðφ; 0Þ;φ�0

�
: ð65Þ

On the other hand, a Lagrangian subspace LX ⊆ L∂X yields
a corresponding linear map polX∶ K∂X → L∂X satisfying
polXðK∂XÞ ¼ LX and q∂X ∘ polX ¼ id. (Note ∂X ¼ Σ0.)
Conversely, polX uniquely determines LX. Thus, compar-
ing the field propagator (45) determined by LX with the
limit (65) given above we get,

polXðφÞ ¼ lim
s→∞

pol0½0;s�ðφ; 0Þ: ð66Þ

In particular, the limit on the right-hand side determines
thus the Lagrangian subspace LX.
We consider again the example of the evanescent waves

for massive Klein-Gordon theory on the hypercylinder in
Minkowski space (Sec. IV B). Thus, fix a radius R and let X
be the region exterior to the hypercylinder of radius R. We
foliate this region by radius so that the leaf indexed by a
parameter value s ∈ ½0;∞Þ is the hypercylinder of radius
Rþ s. One can then show that the relevant expression in
the exponential of the right-hand side of (65) is [18],
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½pol0½0;s�ðφ; 0Þ;φ�0 ¼ R2

Z
dtdΩφðt;ΩÞ

�
pðklðpðRþ sÞÞk̃l0 ðpRÞ − k̃lðpðRþ sÞÞkl0 ðpRÞÞ
klðpðRþ sÞÞk̃lðpRÞ − k̃lðpðRþ sÞÞklðpRÞ

φ

�
ðt;ΩÞ: ð67Þ

We use here a rather compact notation where the expression
forming the fraction is understood as acting as an operator
on the field configuration φ on the right-hand side. More
precisely, the expression represents the eigenvalue of the
operator when φ is decomposed into spherical harmonics
(indexed by l and m) in space and into Fourier modes in
time (indexed by the energy E with p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − E2

p
).

Noting that kl decays exponentially in radius we have

lim
s→∞

klðpðRþ sÞÞ ¼ 0: ð68Þ

Thus, for the limit of (67) we get,

½polXðφÞ;φ�0¼ lim
s→∞

½pol0½0;s�ðφ;0Þ;φ�0

¼R2

Z
dtdΩφðt;ΩÞ

�
pkl0ðpRÞ
klðpRÞ

φ

�
ðt;ΩÞ:

ð69Þ

Comparing this with expression (50) for the symplectic
potential it is easy to see that the fraction is precisely
the radial derivative if polX∶ K∂X → L∂X maps onto the
kl-modes. Thus, the Lagrangian subspace LX ⊆ L∂X is
precisely that of the decaying kl-modes, called Le;þ

∂M ¼ Le;þ
∂X

in Sec. IV B, recovering the standard vacuum. As expected,
this is also in agreement with the infinitesimal approach.
We proceed to the situation where imposing a vanishing

boundary condition at s → ∞ does not make sense,
because solutions show an oscillating behavior in the
s-direction. The prime example is of course that of a
globally hyperbolic spacetime with s representing a time
parameter, i.e., the setting of the conventional notion of
vacuum. As we have seen in Sec. VI A, we can deal with
this in the infinitesimal setting through a Wick rotation. We
proceed to describe an asymptotic version of the notion of
Wick rotation. Here, rather than to the corresponding
derivative operator we apply the Wick rotation to the
evolution parameter s. Thus, we consider the same limit
(63) for the field propagator, but only after rotating s to −is
(or is). As is easy to see, choosing −is (or is) here
corresponds precisely to choosing −i∂s (or i∂s) in the
infinitesimal approach. That is, −is corresponds to a
positive (generalized) Hamiltonian. Repeating the same
steps as above, we arrive for the field propagator at the
expression,

ZXðφÞ ¼ lim
s→∞

exp

�
i
2
½pol0½0;−is�ðφ; 0Þ;φ�0

�
: ð70Þ

The analogue of equation (66) is now,

fpolXðφÞ ¼ lim
s→∞

pol0½0;−is�ðφ; 0Þ: ð71Þ

We have used here the notation fpolX∶ KC∂X → LC∂X with a
tilde to emphasize that we necessarily work with the
complexified spaces now. This determines the complex
Lagrangian subspace L̃X through the properties of fpolX.
These are, fpolXðK∂XÞ ¼ L̃X and q∂X ∘ fpolX ¼ id.
The recovery of the standard vacuum from a time

foliation of Minkowski space for Klein-Gordon theory is
the prime example for the Wick rotated setting. Thus, let X
be the region to the future of the spacelike hypersurface at
t ¼ 0 and set s ¼ t. With the conventions of Sec. II B we
then have [21],

½pol0½0;s�ðφ; 0Þ;φ�0 ¼
Z

d3xφðxÞ
�
E cosðEsÞ
sinðEsÞ φ

�
ðxÞ: ð72Þ

Again, we understand the fractional expression as an
operator specified through its eigenvalues on plane wave
modes labeled by E. Performing the Wick rotation, with s
replaced by −is we get,

½pol0½0;−is�ðφ; 0Þ;φ�0 ¼
Z

d3xφðxÞ
�
iE coshðEsÞ
sinhðEsÞ φ

�
ðxÞ:

ð73Þ
Taking the limit s → ∞, we obtain,

½fpolXðφÞ;φ�0 ¼ lim
s→∞

½pol0½0;−is�ðφ; 0Þ;φ�0

¼
Z

d3xφðxÞðiEφÞðxÞ: ð74Þ

Comparing this with expression (43) for the symplectic
potential we recognize −iE as the eigenvalues of the time-
derivative operator ∂0 for the positive energy modes. Thus,
we recover precisely the definite Lagrangian subspaceLþ ⊆
LC∂X as the image of fpolX corresponding to the standard
vacuum of Klein-Gordon theory in Minkowski space. In
particular, the Schrödinger wave function for the vacuum
is (46).
As a second example, already discussed in the infini-

tesimal approach, we consider the propagating waves of
Klein-Gordon theory on the hypercylinder in Minkowski
space (Sec. IVA). Geometrically the setting is the same as
that for the evanescent waves. That is, the region X is the
exterior of the hypercylinder and we foliate it by radius.
Thus, Xs is bounded by hypercylinders of radius R and
Rþ s. Then [22],
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½pol0½0;s�ðφ; 0Þ;φ�0 ¼ R2

Z
dtdΩφðt;ΩÞ

�
pðhlðpðRþ sÞÞhl0ðpRÞ − hlðpðRþ sÞÞhl0ðpRÞÞ
hlðpðRþ sÞÞhlðpRÞ − hlðpðRþ sÞÞhlðpRÞ

φ

�
ðt;ΩÞ: ð75Þ

We Wick rotate s. In accordance with the infinitesimal
approach we replace s by is (rather than by −is). As can be
read off from expression (55) we then have,

lim
s→∞

hlðpðRþ isÞÞ ¼ 0: ð76Þ

This yields,

½fpolXðφÞ;φ�0¼ lim
s→∞

½pol0½0;is�ðφ;0Þ;φ�0

¼R2

Z
dtdΩφðt;ΩÞ

�
phl0 ðpRÞ
hlðpRÞ

φ

�
ðt;ΩÞ:

ð77Þ

Comparison with (50), taking into account the opposite
sign due to opposite orientation lets us conclude that fpolX
maps onto the hl-modes. That is, the Lagrangian subspace
L̃X is the space called Lþ

∂M ¼ Lþ
∂X in Sec. IVA, spanned by

the hl-modes. As expected, this is in agreement with the
infinitesimal approach and recovers the standard vacuum.
As for the infinitesimal method we remark that the

asymptotic method will have a limited range of applicabil-
ity. In some cases a suitable modification might be
apparent. We consider an example of such a modification
in Sec. VII B 2.

VII. FURTHER EXAMPLES

In the present section we showcase the applicability of
our framework for defining and encoding vacua (Sec. V) to
different types of regions and on different types of hyper-
surfaces, complementing the hypercylinder example of
Sec. IV. At the same time, we demonstrate the methods
for vacuum selection of Sec. VI. All the presented examples
concern Klein-Gordon theory in simple and well under-
stood settings, including among other elements timelike
hypersurfaces, Euclidean space and curved spacetime.

A. Minkowski space: vacuum on timelike hyperplanes

In preceding sections the standard Minkowski vacuum
was reviewed on spacelike hyperplanes (Sec. II) and
constructed on the hypercylinder (Sec. IV). In this section
we consider the vacuum on a timelike hyperplane. This
type of hypersurface in Klein-Gordon theory was first
considered in [21], where only propagating modes where
taken into account. As before, we consider coordinates
ðt; x1; x2; x3Þ where t is time and xi are spatial coordinates.
Consider the hyperplane Σ given by x1 ¼ 0. We are
interested in the vacuum “to the right,” i.e., corresponding
to the region with x1 ≥ 0. The space of (complexified)
solutions around Σ contains both propagating and evan-
escent solutions. The space Lp;C

Σ of complexified propa-
gating solutions may be parametrized as,

ϕðt; x1; x2; x3Þ ¼
Z

dk2dk3
ð2πÞ3=2

Z
jEj>k̃

dEeiEt−ik2x2−ik2x3ðϕaðE; k2; k3Þeikx1 þ ϕbðE; k2; k3Þe−ikx1Þ; ð78Þ

where k̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k22 þ k23 þm2

p
, k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jE2 − k̃2j

q
and the integrals in k2 and k3 are over R. These solutions are characterized by

an oscillatory behavior in the x1 direction. The space Le;C
Σ of complexified evanescent solutions,

ϕðt; x1; x2; x3Þ ¼
Z

dk2dk3
ð2πÞ3=2

Z
k̃

−k̃
dEeiEt−ik2x2−ik2x3ðϕxðE; k2; k3Þe−kx1 þ ϕiðE; k2; k3Þekx1Þ; ð79Þ

consists of real exponential modes in x1. The symplectic potential (A2) on the hypersurface Σ (as a boundary of a region
with x1 ≥ 0) is the bilinear form LΣ × LΣ → R given by

½ϕ;ϕ0� ¼
Z

dtdx2dx3ϕ0ðt; x1; x2; x3Þð∂1ϕÞðt; x1; x2; x3Þ; ð80Þ

where ∂1 denotes the partial derivative with respect to the coordinate x1, namely it is the normal derivative with respect to
the hyperplane Σ. The symplectic form (A7) on Σ is

ωðϕ; ξÞ ¼ 1

2

Z
dtdx2dx3ðξðt; x1; x2; x3Þð∂1ϕÞðt; x1; x2; x3Þ − ϕðt; x1; x2; x3Þð∂1ξÞðt; x1; x2; x3ÞÞ: ð81Þ
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It is easy to show that it vanishes between propagating and
evanescent solutions. We thus have a corresponding
orthogonal decomposition LC

Σ ¼ Lp;C
Σ ⊕ Le;C

Σ of the com-
plexified solution space, analogous to the massive theory
on the hypercylinder, compare Sec. IV B. In contrast to the
hypercylinder, however, evanescent waves occur on the
timelike hyperplane even in the massless theory.
We proceed to consider the Lagrangian subspaces

determining the vacuum on the timelike hyperplane. For
propagating modes, the symplectic form (81) reads,

ωpðϕ;ξÞ¼ i
Z

dk2dk3k
Z
jEj>k̃

dEðϕaðE;k2;k3Þξbð−E;−k2;−k3Þ

−ϕbðE;k2;k3Þξað−E;−k2;−k3ÞÞ: ð82Þ

This yields the inner product (1),

ðϕ; ξÞp ¼ 4

Z
dk2dk3k

Z
jEj>k̃

dEðϕaðE; k2; k3ÞξaðE; k2; k3Þ

− ϕbðE; k2; k3ÞξbðE; k2; k3ÞÞ: ð83Þ

This results to be positive-definite for ϕbðE; k2; k3Þ ¼ 0,
which defines a positive-definite Lagrangian subspace
Lp;þ
Σ ⊆ Lp;C

Σ which we take to define the propagating part
of the vacuum.
On the other hand, in the whole spacetime region with

x1 ≥ 0, of the evanescent modes only those decaying as
e−kx1 are well behaved. This corresponds to the condition
ϕiðE; k2; k3Þ ¼ 0. These solutions form a Lagrangian sub-
space Le;þ

Σ ⊆ Le;C
Σ as can be seen from the expression of the

symplectic form,

ωeðϕ;ξÞ¼
Z

dk2dk3k
Z

k̃

−k̃
dEðϕiðE;k2;k3Þξxð−E;−k2;−k3Þ

−ϕxðE;k2;k3Þξið−E;−k2;−k3ÞÞ: ð84Þ
As for the case of the massive hypercylinder studied in
Sec. IV B, the subspace Le;þ

Σ turns out to be a neutral
subspace since the inner product (1) vanishes when
computed on two elements of this subspace.
With the Lagrangian subspaces determinedwe can almost

immediately write down the corresponding presentation of
the Feynman propagator. Its propagating part reads,

Gp
Fððt; x1; x2; x3Þ; ðt0; x01; x02; x03ÞÞ ¼

Z
dk2dk3

i
2kð2πÞ3

Z
jEj>k̃

dEeiEte−iEt
0
e−ik2x2eik2x

0
2e−ik3x3eik3x

0
3ðθðx1 − x01Þeikx1e−ikx

0
1

þ θðx01 − x1Þeikx01e−ikx1Þ: ð85Þ

The evanescent part is,

Ge
Fððt;x1;x2;x3Þ;ðt0;x01;x02;x03ÞÞ¼

Z
dk2dk3

1

2kð2πÞ3
Z

k̃

−k̃
dEeiEte−iEt

0
e−ik2x2eik2x

0
2e−ik3x3eik3x

0
3ðθðx1−x01Þe−kx1ekx

0
1

þθðx01−x1Þe−kx01ekx1Þ: ð86Þ

The total propagator is the sum, GF ¼ Gp
F þGe

F. This is
easily verified to be the Feynman propagator of the
standard vacuum, equivalent to expression (48) as well
as the sum of (53) and (58).
Let us consider the infinitesimal approach to vacuum

selection presented in Sec. VI A. As already mentioned,
the evanescent modes e−kx1 that form the complexified
real Lagrangian subspace Le;þ

Σ satisfy an asymptotic
decay condition. They are indeed precisely the eigen-
modes of the normal derivative operator ∂1 with
negative eigenvalues. In contrast, the propagating
modes show oscillatory behavior. But, Wick rotating
the derivative operator to i∂1 yields negative eigenval-
ues precisely for the modes in the positive-definite
Lagrangian subspace Lp;þ

Σ . Thus, we obtain exactly the
expected results.
We proceed to the asymptotic field propagator approach

for vacuum selection (Sec. VI B). Let X be the region to the
right of Σ0 ¼ Σ, i.e., with x1 ≥ 0. This region can be

foliated in terms of timelike hyperplanes. In particular
we consider the subregion Xs ¼ R × ½0; s� ×R2 relative
to the coordinates ðt; x1; x2; x3Þ, namely the region
bounded by two hyperplanes defined by constant values
of the spatial coordinate x1: the hyperplane Σ0 and
the hyperplane Σs given by x1 ¼ s. The parameter s
used in Sec. VI B now represents the spatial coordinate
x1. The boundary solution space L∂Xs

decomposes as
L∂Xs

¼ LΣ0
⊕ LΣs

.
For the evanescent modes, we expect to get the

Schrödinger vacuum wave function via the limit (65) of
the field propagator. The relevant quantity is,

½pol0½0;s�ðφ; 0Þ;φ�0 ¼
Z

dtdx̃φðt; x̃Þ
�
−k coshðksÞ
sinhðksÞ φ

�
ðt; x̃Þ;

ð87Þ
where x̃ is a compact notation for the coordinates ðx2; x3Þ
and the fraction represents an operator acting on a mode
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expansion of the field configuration. Then limit (65) yields
the evanescent part of the field propagator for X,

Ze
XðφÞ ¼ exp

�
−
i
2

Z
dtdx̃φðt; x̃ÞðkφÞðt; x̃Þ

�
: ð88Þ

From this we can read off by comparison to the negative of
(80) the eigenvalues −k of the decaying modes, in
accordance with our previous results.
For propagating modes, an asymptotic vanishing con-

dition at spatial infinity can not be imposed due to the
oscillatory character of solutions. Instead, we Wick rotate
the parameter s describing spatial evolution to is, corre-
sponding to rotating ∂1 to i∂1. That is, we consider the field
propagator in X as the limit (70), except with is instead of
−is. This is,

Zp
XðφÞ ¼ lim

s→∞
exp

�
i
2
½pol0½0;is�ðφ; 0Þ;φ�0

�
; ð89Þ

¼ lim
s→∞

exp

�
i
2

Z
dtdx̃φðt; x̃Þ

�
−k cosðkisÞ
sinðkisÞ φ

�
ðt; x̃Þ

�
;

ð90Þ

¼ lim
s→∞

exp

�
i
2

Z
dtdx̃φðt; x̃Þ

�
−k coshðksÞ
i sinhðksÞ φ

�
ðt; x̃Þ

�
;

ð91Þ

¼ exp

�
−
1

2

Z
dtdx̃φðt; x̃ÞðkφÞðt; x̃Þ

�
: ð92Þ

Again, this can be seen to be in accordance with our
previous results.

B. Rindler space

We consider the massive Klein-Gordon theory in
2-dimensional Rindler space, which corresponds to the
right wedge of 2-dimensional Minkowski space. It
can be described by the metric ds2 ¼ ρ2dη2 − dρ2, where
ρ ∈ Rþ and η ∈ R are the spatial and temporal Rindler
coordinates respectively. The Klein-Gordon equation takes
the form,

ð−ρ∂ρρ∂ρ þ ∂2
η þm2ρ2Þϕðη; ρÞ ¼ 0; ð93Þ

where ∂η and ∂ρ denote partial derivatives with respect to
the coordinates η and ρ respectively. The temporal part is
solved by the modes epη with p ∈ C. Propagating modes
(in time) correspond to imaginary values of p. The solution
of the spatial part is given by the modified Bessel functions
of the first and second kind, IpðmρÞ and KpðmρÞ respec-
tively, which constitute a pair of linear independent

solutions of the modified Bessel equation.6 These functions
present the following asymptotic behavior: According to
formulas 10.30.1 and 10.30.2 of [19], for ℜp > 0 and
small values of their argument (z ≪ 1) respectively,

IpðzÞ ∼
ðz=2Þp

Γðpþ 1Þ ; KpðzÞ ∼
1

2
ΓðpÞðz=2Þ−p: ð96Þ

Their behavior for large values of the argument (z ≫ 1) is
given by formulas 10.34.1 and 10.34.2 of [19],

IpðzÞ ∼
ezffiffiffiffiffiffiffiffi
2πz

p ; KpðzÞ ∼
ffiffiffiffiffi
π

2z

r
e−z: ð97Þ

1. Region bounded by equal Rindler-time hyperplanes

In order to obtain the vacuum on a half-line of constant
Rindler time, say Σ0∶ fη ¼ 0g, we consider the region X in
the future of Σ0 and the subregion Xs bounded by Σ0 and
the half-line Σs∶ fη ¼ sg, namely the region Xs ¼ ½0; s� ×
Rþ (see Fig. 5). The region is unbounded in space and
therefore only the modified Bessel functions of the second
kind, Kp, are admissible modes for the field due to the
asymptotic decay (97); moreover, because of the behavior
(96) imaginary values of the momentum p must be
selected. So, complexified solutions contain only propa-
gating modes and can be written as,

FIG. 5. Rindler space corresponds to the right wedge of
Minkowski space; it is bounded by the half-lines η ¼ �∞. In
this spacetime we consider the region Xs ¼ ½0; s� ×Rþ.

6The linear independence of Ip and Kp is manifested by
the Wronskian between these function (see expression 10.28.2
of [19]),

I0pðzÞKpðzÞ − IpðzÞK0
pðzÞ ¼

1

z
; ð94Þ

with the prime denoting the derivative of the Bessel function with
respect to its argument. Notice that another pair of linear
independent solutions is provided by I−p and Ip, that satisfy
(formula 10.28.1 of [19]),

IpðzÞI−p0 ðzÞ − I0pðzÞI−pðzÞ ¼ −
2 sinðpπÞ

zπ
: ð95Þ
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ϕðη;ρÞ¼
Z

∞

0

dpðϕaðpÞe−ipηþϕbðpÞeipηÞKipðmρÞ: ð98Þ

The symplectic potential (A2) and symplectic form (A7) on
a half-line Σ (oriented as the boundary of a region to the
future) take the form, respectively,

½ϕ; ξ� ¼ −
Z

∞

0

dρ
ρ
ξðη; ρÞð∂ηϕÞðη; ρÞ; ð99Þ

ωðϕ; ξÞ ¼ 1

2

Z
∞

0

dρ
ρ
ðϕðη; ρÞð∂ηξÞðη; ρÞ

− ξðη; ρÞð∂ηϕÞðη; ρÞÞ; ð100Þ

¼ i
2

Z
∞

0

dp
π2

sinhðpπÞ ðϕ
aðpÞξbðpÞ − ξaðpÞϕbðpÞÞ: ð101Þ

Here, the following identity has been used,Z
∞

0

dρ
ρ
KipðρÞKip0 ðρÞ ¼ π2

2p sinhðpπÞ δðp − p0Þ: ð102Þ

Consequently, the inner product (1) is,

ðϕ; ξÞ ¼ 2i
Z

∞

0

dρ
ρ
ðϕðη; ρÞ∂ηξðη; ρÞ − ξðη; ρÞ∂ηϕðη; ρÞÞ;

ð103Þ

¼ 2

Z
∞

0

dp
π2

sinhðpπÞ ðϕ
aðpÞξaðpÞ − ϕbðpÞξbðpÞÞ: ð104Þ

As the solutions (98) show oscillatory behavior in Rindler
time, we expect a vacuum determined by a definite
Lagrangian subspace. Indeed, the inner product is positive-
definite on the subspace Lþ

Σ ¼fϕ∈LC
Σ∶ϕbðpÞ¼ 0g consist-

ing of the modes e−ipηKipðmρÞ. On these, the Wick rotated
derivative operator−i∂η has negative eigenvalues−p.We are
thus in a situation completely analogous to the standard
vacuum on an equal-time hyperplane in all of Minkowski
space, see Sec. II B. The expression of the corresponding
Feynman propagator has been obtained in [23],

GFððη;ρÞ;ðη0;ρ0ÞÞ¼ i
Z

∞

0

dp
sinhðpπÞ

π2
ðθðη−η0Þe−ipηeipη0

þθðη0−ηÞe−ipη0eipηÞKipðmρÞKipðmρ0Þ:
ð105Þ

The alternative determination of the vacuum via the
asymptotic limit of the field propagator in Xs proceeds also
in analogy to the Minkowski case, see Sec. VI B. The
relevant quantity here is,

½pol0½0;s�ðφ;0Þ;φ�0¼
Z

∞

0

dρ
ρ
φðρÞ

�
pcosðpsÞ
sinðpsÞ φ

�
ðρÞ; ð106Þ

where p is to be understood as the operator

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρ∂ρÞ2 −m2

q
. We implement the Wick rotation

s ↦ −is and obtain according to formula (70),

ZXðφÞ ¼ lim
s→∞

exp

�
i
2
½pol0½0;−is�ðφ; 0Þ;φ�0

�
; ð107Þ

¼ lim
s→∞

exp

�
−
1

2

Z
∞

0

dρ
ρ
φðρÞ

�
pcoshðpsÞ
sinhðpsÞ φ

�
ðρÞ

�
; ð108Þ

¼ exp

�
−
1

2

Z
∞

0

dρ
ρ
φðρÞðpφÞðρÞ

�
: ð109Þ

The last expression coincides, apart from a normalization
factor, with formula (35) of [23] giving the Schrödinger
vacuum wave function of the scalar field on the equal
Rindler time half-line. (Note that complex conjugation is
trivial here.)

2. Region bounded by hyperbolas

A curve described by a constant value of the Rindler
spatial coordinate corresponds to a hyperbola. Consider the
region X½ρ1;ρ2� bounded by two hyperbolas Σρ defined by
ρ ¼ ρi with i ¼ 1, 2, namely the region R × ½ρ1; ρ2� (see
Fig. 6); the evolution parameter s now represents the Rindler
spatial coordinate. With the purpose of avoiding exponen-
tially growing solutions in time, p is restricted to take
imaginary values. On the other hand, both types of Bessel
function enter in the expansion of complexified solutions7:

FIG. 6. Spacetime region bounded by two hyperbola of con-
stant Rindler spatial coordinates at ρ1 and ρ2 with ρ2 > ρ1. The
boundary of Rindler corresponds to ρ ¼ 0.

7The absolute value of p that appears in the index of the
modified Bessel function of the first kind is due to guarantee the
independence of these functions, since the modified Bessel
function of the second kind can be expressed as in expression
10.27.4 of [19],

KνðzÞ ¼
π

2

I−νðzÞ − IνðzÞ
sinðνπÞ ; ð110Þ

valid for ν ≠ 0;�1;�2;… and, for purely imaginary order,
IipðzÞ ¼ I−ip.
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ϕðη; ρÞ ¼
Z

∞

−∞
dpeipηðϕaðpÞIijpjðmρÞ þ ϕbðpÞKipðmρÞÞ:

ð111Þ

Notice that both modified Bessel functions of imaginary
order present an oscillatory behavior for small values of their
argument, according to (96) and an exponential one for large
values of their argument, as shown by expression (97).
The symplectic potential (A2) on a hyperbola Σρ (as a
boundary of a region of smaller values of ρ) is defined in
terms of the normal derivative to Σρ, namely the derivative
operator ρ∂ρ,

½ϕ; ξ�ρ ¼ −
Z

∞

−∞
dηξðη; ρÞðρ∂ρϕÞðη; ρÞ: ð112Þ

Consequently, the symplectic form (A7) on Σρ is

ωρðϕ; ξÞ ¼
1

2

Z
∞

−∞
dηðϕðη; ρÞðρ∂ρξÞðη; ρÞ

− ξðη; ρÞðρ∂ρϕÞðη; ρÞÞ; ð113Þ

¼ π

Z
∞

−∞
dpðξaðpÞϕbð−pÞ − ξbðpÞϕað−pÞÞ: ð114Þ

The inner product (1) takes the form

ðϕ;ξÞρ¼−4πi
Z

∞

−∞
dp

�
ϕaðpÞ

�
ξbðpÞ−2isinhðjpjπÞ

π
ξaðpÞ

�

−ϕbðpÞξaðpÞ
�
: ð115Þ

The difficulty to read off from this expression a positive-
definite subspace suggests to chose a different parametriza-
tion of the field. In particular, the field can be expanded in the
basis provided by the modified Bessel function Iijpj and its
complex conjugate,

ϕðη; ρÞ ¼
Z

∞

−∞
dpeipηðϕaðpÞIijpjðmρÞ þ ϕbðpÞIijpjðmρÞÞ:

ð116Þ

The symplectic form (114) and the inner product (115) in
this parametrization result to be equal respectively to,

ωρðϕ; ξÞ ¼ 2i
Z

∞

−∞
dp sinhðjpjπÞðξaðpÞϕbð−pÞ

− ξbðpÞϕað−pÞÞ; ð117Þ

ðϕ; ξÞρ ¼ 8

Z
∞

−∞
dp sinhðjpjπÞðϕbðpÞξbðpÞ − ϕaðpÞξaðpÞÞ:

ð118Þ

These relations show that the subspace Lþ
Σρ

defined by the

condition ϕaðpÞ¼0 is a positive-definite Lagrangian
subspace.
In order to obtain the expression of the symplectic

potential with Dirichlet boundary conditions in X½ρ1;ρ2� it
is convenient to express classical solutions in terms of the
boundary field configurations φ1 and φ1 at ρ1 and ρ2
respectively,

ϕðη; ρÞ ¼
�
Δðp; ρ; ρ2Þ
Δðp; ρ1; ρ2Þ

φ1

�
ðηÞ þ

�
Δðp; ρ1; ρÞ
Δðp; ρ1; ρ2Þ

φ2

�
ðηÞ;

ð119Þ

where the quotients are understood as operators acting on a
mode decomposition of the field configurations, φðηÞ ¼R
dpφðpÞeipη and

Δðp; ρ1; ρ2Þ ¼ Iijpjðmρ1ÞIijpjðmρ2Þ − Iijpjðmρ2ÞIijpjðmρ1Þ:
ð120Þ

The symplectic potentials (112) on ρ1 and ρ2 with these
boundary conditions are then,

½polρ1½ρ1;ρ2�ðφ1;φ2Þ;φ1�ρ1
¼

Z
∞

−∞
dη
�
φ1ðηÞ

�
ρ1mσðp; ρ2; ρ1Þ
Δðp; ρ1; ρ2Þ

φ1

�
ðηÞ

þ φ1ðηÞ
�
2i sinhðjpjπÞ
πΔðp; ρ1; ρ2Þ

φ2

�
ðηÞ

�
; ð121Þ

½polρ2½ρ1;ρ2�ðφ1;φ2Þ;φ2�ρ2
¼ −

Z
∞

−∞
dη

�
φ2ðηÞ

�
ρ2mσðp; ρ1; ρ2Þ
Δðp; ρ1; ρ2Þ

φ2

�
ðηÞ

þ φ2ðηÞ
�
2i sinhðjpjπÞ
πΔðp; ρ1; ρ2Þ

φ1

�
ðηÞ

�
; ð122Þ

where σðp; ρ1; ρ2Þ ¼ Iijpjðmρ1ÞI0ijpjðmρ2Þ−
Iijpj0 ðmρ2ÞIijpjðmρ1Þ.
In order to obtain the vacua on each side of the

hyperbola we apply the asymptotic propagator method
(Sec. VI B) and consider the two corresponding limits:
ρ1 → 0 and ρ2 → ∞.

(i) Limit ρ1 → 0.
According to (96), both modified Bessel functions

present an oscillatory behavior in this limit because
of the imaginary index. Notice that,

Δðp;ρ1;ρ2Þjρ1≪1∼ Iijpjðmρ2Þ
ðmρ1=2Þijpj
Γð1þ ijpjÞ

− Iijpjðmρ2Þ
ðmρ1=2Þ−ijpj
Γð1− ijpjÞ ; ð123Þ
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σðp;ρ1;ρ2Þjρ1≪1∼I0ijpjðmρ2Þ
ðmρ1=2Þijpj
Γð1þ ijpjÞ

−Iijpj0ðmρ2Þ
ðmρ1=2Þ−ijpj
Γð1− ijpjÞ : ð124Þ

A simple Wick rotation ρ1 ↦ iρ1 (or with negative
sign) clearly does not lead to a well defined limit
when ρ1 → 0. However, inspection suggests to
implement a modified Wick rotation with respect
to ln ρ1 instead of ρ1, or equivalently to rotate as
ρ1 ↦ ρ−i1 , and then to consider the limit ρ1 → 0 of
(122) with φ1 ¼ 0.
The limit of the field propagator results to be,

ZXðφ2Þ¼ lim
ρ1→0

exp

�
i
2
½polρ2½ρ−i

1
;ρ2�ð0;φ2Þ;φ2�ρ2

�
;

ð125Þ

¼ exp

�
−
i
2

Z
∞

−∞
dηφ2ðηÞ

�ρ2mI0ijpjðmρ2Þ
Iijpjðmρ2Þ

φ2

�
ðηÞ

�
;

ð126Þ

where X is the region to the left of ρ2. This coincides
with the expression of the vacuum wave function
obtained in [23], see formula (46). At the same time
it reproduces the definite Lagrangian subspace Lþ

Σρ

considered previously, that consists of the modes
IijpjðmρÞeipη only.

(ii) Limit ρ2 → ∞.
According to the asymptotic behavior (97), the

modes KipðmρÞ show exponential decay for large
values of ρ. Furthermore, as can be read off from
expression (114) for the symplectic form, they
form a real Lagrangian subspace. Correspondingly,
we consider the limit of the field propagator
without necessity for a Wick rotation. To this end
notice first,

lim
ρ2→∞

σðp; ρ2; ρ1Þ
Δðp; ρ1; ρ2Þ

¼ −
I0ijpjðmρ1Þ − Iijpj0ðmρ1Þ
Iijpjðmρ1Þ − Iijpjðmρ1Þ

¼ −
Kip

0ðmρ1Þ
Kipðmρ1Þ

: ð127Þ

Then, the limit of the field propagator is, compare
equation (65),

ZXðφ1Þ¼ lim
ρ2→∞

exp

�
−
i
2
½polρ1½ρ1;ρ2�ðφ1;0Þ;φ1�ρ1

�
;

ð128Þ

¼ exp

�
i
2

Z
∞

−∞
dηφ1ðηÞ

�
ρ1mKip

0ðmρ1Þ
Kipðmρ1Þ

φ1

�
ðηÞ

�
;

ð129Þ

where X ¼ R × ½ρ1;þ∞Þ is the region to the right of
ρ1. (Note the opposite orientation of the hypersur-
face at ρ1.) As expected, we obtain the subspace of
the modes KipðmρÞeipη.

The vacua on the two sides of the hyperbola are
completely different. On the left hand side we have a
traditional vacuum corresponding to a positive-definite
Lagrangian subspace. On the right-hand side we have a
traditional amplitude corresponding to a real Lagrangian
subspace. The presentation of the Feynman propagator that
exhibits these two vacua is given by expression (89) of [23],

GFððη; ρÞ; ðη0; ρ0ÞÞ

¼
Z

∞

−∞

dp
2π

ðθðρ − ρ0ÞKipðmρÞIijpjðmρ0Þ

þ θðρ0 − ρÞKipðmρ0ÞIijpjðmρÞÞeipðη−η0Þ: ð130Þ

This expression for the Feynman propagator is completely
equivalent to (105), see Sec. VI.C. of [23]. It also
reproduces the expression given by Boulware [24, (3.22)]
when the correct open boundary conditions for Rindler
space are chosen.

C. Euclidean space

We review the free quantum theory of a massive scalar
field in 2-dimensional Euclidean space [25]. We use
Cartesian coordinates ðτ; xÞ, where τ is taken to play the
role of time when convenient, although the theory is fully
invariant under rotations. The analog of the Klein-Gordon
equation in this context is the Helmholtz equation
ð∂2

τ þ ∂2
x þm2Þϕðτ; xÞ ¼ 0 with corresponding action,

SðϕÞ ¼ 1

2

Z
dτdxðð∂τϕÞ2 þ ð∂xϕÞ2 −m2ϕ2Þ: ð131Þ

As in [25] we consider two types of region and corre-
sponding vacua: The (Euclidean) time-interval region,
analogous to the Minkowski case, and the disk and annulus
regions bounded by one and two circles respectively.

1. Hyperplane

To determine the vacuum state on an equal-time hyper-
plane (i.e., a straight line), say Σ0 at τ ¼ 0, we consider the
region X in the future to this hypersurface and foliate it in
terms of constant-τ hypersurfaces. Then, the time-interval
region Xs ¼ ½0; s� ×R has boundary components Σ0 and
Σs (at τ ¼ s). Complexified propagating solutions in this
region can be expanded as
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ϕðτ; xÞ ¼
Z

m

−m

dν
2π

ðϕaðνÞe−iωντ þ ϕbðνÞeiωντÞeiνx; ð132Þ

where ων ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ν2

p
. Evanescent solutions, which are

the only ones in the massless case, read

ϕðτ; xÞ ¼
Z
jνj>m

dν
2π

ðϕxðνÞe−ωντ þ ϕiðνÞeωντÞeiνx; ð133Þ

where ων ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 −m2

p
. The symplectic potential (A2) on

Σ0 (oriented as a boundary component of Xs) is,

½ϕ; ξ� ¼ −
Z

dxξðτ; xÞð∂τϕÞðτ; xÞ: ð134Þ

The symplectic form (A7) is then,

ωðϕ;ξÞ¼−
1

2

Z
dxðξðτ;xÞð∂τϕÞðτ;xÞ−ϕðτ;xÞð∂τξÞðτ;xÞÞ:

ð135Þ

It is easy to verify that ω vanishes between propagating and
evanescent solutions, as for the field in Minkowski space,
and the solution space decomposes as LC

Σ0
¼ Lp;C

Σ0
⊕ Le;C

Σ0
.

On Lp;C
Σ0

the symplectic form (135) is

ωpðϕ; ξÞ ¼ i
Z

m

−m

dν
2π

ωνðϕaðνÞξbð−νÞ − ϕbðνÞξað−νÞÞ;

ð136Þ

and the inner product (1),

ðϕ; ξÞp ¼ 4

Z
m

−m

dν
2π

ωνðϕaðνÞξaðνÞ − ϕbðνÞξbðνÞÞ: ð137Þ

This shows that the solutions determined by ϕbðνÞ ¼ 0

form a positive-definite Lagrangian subspace Lp;þ
Σ0

⊆ Lp;C
Σ0

.
At the same time for this subspace the Wick rotated
derivative operator −i∂τ has negative eigenvalues.
On evanescent solutions the symplectic form (135) is,

ωeðϕ; ξÞ ¼
Z
jνj>m

dν
2π

ωνðϕxðνÞξið−νÞ − ϕiðνÞξxð−νÞÞ:

ð138Þ

A vanishing boundary condition in the asymptotic future
(i.e., in the limit τ → ∞) is satisfied by solutions such that
ϕiðνÞ ¼ 0. The subspace Le;þ

Σ0
⊆ Le;C

Σ0
of these solutions is a

Lagrangian subspace and corresponds to the negative
eigenvalues of the derivative operator ∂τ.
The Feynman propagator, given by formula (107) of

[25], receives contribution from both the propagating and
evanescent solutions,

GFððτ; xÞ; ðτ0; x0ÞÞ

¼ i
Z

m

−m

dν
2π

1

2ων
ðθðτ − τ0Þe−iωντeiωντ

0

þ θðτ0 − τÞe−iωντ
0
eiωντÞeiνðx−x0Þ

−
Z
jνj>m

dν
2π

1

2ων
ðθðτ − τ0Þe−ωντeωντ

0

þ θðτ0 − τÞe−ωντ
0
eωντÞeiνðx−x0Þ: ð139Þ

This expression shows that the boundary conditions for the
propagating and evanescent solutions are given precisely
by the subspaces Lp;þ

Σ0
and Le;þ

Σ0
.

In order to apply the asymptotic method of Sec. VI B we
note for the propagating solutions the complete analogy to
the Minkowski case. Concretely, we perform a Wick
rotation s ↦ −is,

½pol0½0;s�ðφ;0Þ;φ�0¼
Z

dxφðxÞ
�
ων cosðωνsÞ
sinðωνsÞ

φ

�
ðxÞ; ð140Þ

½fpolXðφÞ;φ�0 ¼ lim
s→∞

½pol0½0;−is�ðφ; 0Þ;φ�0

¼ i
Z

dxφðxÞðωνφÞðxÞ: ð141Þ

Compare Eqs. (72) and (74). Inserting the latter expression
into the field propagator (61) and going to momentum
space recovers precisely the propagating vacuum wave
function (31) of [25]. For the evanescent solutions on the
other hand there is no Wick rotation involved,

½pol0½0;s�ðφ; 0Þ;φ�0 ¼
Z

dxφðxÞ
�
ων coshðωνsÞ
sinhðωνsÞ

φ

�
ðxÞ;

ð142Þ

½fpolXðφÞ;φ�0 ¼ lim
s→∞

½pol0½0;s�ðφ; 0Þ;φ�0

¼
Z

dxφðxÞðωνφÞðxÞ: ð143Þ

This is (up to a sign) completely analogous to the
evanescent solutions on the timelike hyperplane in
Minkowski space, compare Sec. VII A.

2. Circle

In order to obtain the vacuum state on the circle it is
convenient to use polar coordinates ðr; θÞ, with τ ¼ r sin θ
and x¼rcosθ. The Helmholtz equation, ð∂2

r þ 1
r∂rþ 1

r2∂2
θþ

m2Þϕ¼ 0, is solved in terms of Bessel functions,

ϕðr; θÞ ¼
X∞
n¼−∞

ðϕa
nHnðmrÞ þ ϕb

nHnðmrÞÞeinθ; ð144Þ
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where HnðzÞ is the Hankel function, related the Bessel
functions of the first and second kind, JnðzÞ and YnðzÞ
respectively, as HnðzÞ ¼ JnðzÞ þ iYnðzÞ. The symplectic
potential (A2) on a circle of radius R (as a boundary of the
region exterior to the disk) has the form,

½ϕ; ξ�R ¼ −
Z

2π

0

dθξðr; θÞðr∂rϕÞðr; θÞ: ð145Þ

The symplectic form (A7) and inner product (1) are,

ωRðϕ; ξÞ ¼ −
1

2

Z
2π

0

dθðξðr; θÞðr∂rϕÞðr; θÞ

− ϕðr; θÞðr∂rξÞðr; θÞÞ; ð146Þ

¼ 4i
X∞
n¼−∞

ð−1Þnðξanϕb
−n − ξbnϕ

a
−nÞ; ð147Þ

ðϕ; ξÞR ¼ 16
X∞
n¼−∞

ðξbnϕb
n − ξanϕ

a
nÞ: ð148Þ

It is clear from these expressions that the subspace
Lþ
R defined by ϕa

n ¼ 0 is a positive-definite Lagrangian
subspace of the space of complexified solutions LC

R in a
neighborhood of the circle. On the other hand, the solutions
well defined in the interior of the disk DR of radius R are
given in terms of the Bessel functions of the first kind
JnðzÞ ¼ 1

2
ðHnðzÞ þHnðzÞÞ. These form a real Lagrangian

subspace LDR
⊆ LR which determines the amplitude, i.e.,

generalized vacuum, inDR. The corresponding field propa-
gator (45) can thus be written as,

ZDR
ðφÞ¼exp

�
−
i
2
½polDR

ðφ;φÞ�R
�

¼exp

�
i
2

Z
2π

0

dθφðθÞ
�
RmJ0nðmRÞ
JnðmRÞ φ

�
ðθÞ

�
: ð149Þ

In order to obtain the vacuum on the exterior of the circle
we apply the asymptotic propagator method (Sec. VI B).
To this end consider the annulus region bounded by two
circles with radii R̂ > R, i.e., X½R;R̂� ¼ ½R; R̂� × 2π, see
Fig. 7, where both Bessel functions are well defined.
Denoting with φ and φ̂ the field configurations on the
circles r ¼ R and r ¼ R̂ respectively, the solution in X½R;R̂�
can be written as,

ϕðr;θÞ¼
�
Δðn;mr;mR̂Þ
Δðn;mR;mR̂Þφ

�
ðθÞþ

�
Δðn;mR;mrÞ
Δðn;mR;mR̂Þ φ̂

�
ðθÞ;

ð150Þ

where Δðn; z; ẑÞ ¼ HnðzÞHnðẑÞ −HnðzÞHnðẑÞ. The rel-
evant field propagator is written in terms of the symplectic
potential as,

½polR½R;R̂�ðφ; φ̂Þ;φ�R ¼
Z

2π

0

dθ

�
φðθÞ

�
Rmσðn;mR̂;mRÞ
Δðn;mR;mR̂Þ φ

�
ðθÞ þ φðθÞ

�
4i

πΔðn;mR;mR̂Þ φ̂
�
ðθÞ

�
; ð151Þ

where σðn; z; ẑÞ ¼ HnðzÞH0
nðẑÞ −H0

nðẑÞHnðzÞ, the prime denoting derivative with respect to the argument.
Now the external radius R̂ plays the role of the parameter s. The asymptotic behavior of the Hankel functions, for large

values of their argument z, can be derived from expression 10.7.8 of [19],

HnðzÞ ∼
ffiffiffiffiffi
2

πz

r
eiðz−nπ=2−π=4Þ; HnðzÞ ∼

ffiffiffiffiffi
2

πz

r
e−iðz−nπ=2−π=4Þ: ð152Þ

The oscillatory behavior of these functions suggests to implement a Wick rotation in order to perform the limit. So we
consider the rotation R̂ ↦ −iR̂ and then the limit R̂ → ∞, as in expression (70). This yields,

ZXðφÞ ¼ lim
R̂→∞

exp

�
i
2
½polR½R;iR̂�ðφ; 0Þ;φ�R

�
; ð153Þ

FIG. 7. Annulus region bounded by two circles of radii R and R̂
in Euclidean space.
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¼ lim
R̂→∞

exp

�
i
2

Z
2π

0

dθφðθÞ
�
Rm

Hnð−miR̂ÞH0
nðmRÞ −H0

nðmRÞHnð−miR̂Þ
HnðmRÞHnð−miR̂Þ −HnðmRÞHnð−miR̂Þ

φ

�
ðθÞ

�
; ð154Þ

¼ exp

�
−
i
2

Z
2π

0

dθφðθÞ
�
Rm

H0
nðmRÞ

HnðmRÞ

�
φðθÞ

�
: ð155Þ

This expression coincides precisely with the vacuum wave function in the Schrödinger representation obtained in [25], see
expression (36) there. What is more, we can read off that the selected Lagrangian subspace is the positive-definite subspace
Lþ
R of the HnðmrÞeinθ modes remarked previously.
The different vacua obtained on the two sides of the circle define the expression of the Feynman propagator, computed in

[25], see expression (130), (with a minor reformulation),

GFððr; θÞ; ðr0; θ0ÞÞ ¼
i
4

X∞
n¼−∞

einðθ−θ0Þðθðr − r0ÞJnðmr0ÞHnðmrÞ þ θðr0 − rÞJnðmrÞHnðmr0ÞÞ: ð156Þ

As shown there this is equivalent to expression (139).

D. de Sitter space

1. Standard vacuum

We use the coordinate system in which de Sitter metric is
given by

ds2¼R2

t2
ðdt2−ðdx1Þ2−ðdx2Þ2−ðdx3Þ2Þ¼R2

t2
ðdt2−ðdxÞ2Þ;

ð157Þ

with t ∈ ð0;∞Þ and x ∈ R3. The coordinates chosen
describe only half of spacetime; the other half is recovered
by extending t to negative values (t ¼ 0 represents a
coordinate singularity). Complexified solutions of the
massive Klein-Gordon equation describing a minimally
coupled scalar field are

ϕðt; xÞ ¼
Z

d3k

ð2πÞ3=2 ðϕ
aðkÞt3=2HνðktÞeik·x

þ ϕbðkÞt3=2HνðktÞe−ik·xÞ; ð158Þ

where k ¼ jkj,8 and HνðzÞ is the Hankel function (intro-

duced in the previous section) with index ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9
4
− ðmRÞ2

q
.

We will assume that ν is real and consequently
ν < 3=2. Then, the modes t3=2HνðktÞ as well as their
complex conjugates vanish in the limit t → 0, due to the
asymptotic behavior of the Hankel functions, see expres-
sion 10.7.7 of [19],

HνðzÞ ∼ −HνðzÞ ∼ −
i
π
ΓðνÞ

�
z
2

�
−ν

ð159Þ

valid for positive ν. On the other hand, for large values of t
these modes oscillate according to (152).
We consider the spacetime region Xt to the future of the

hypersurface Σt of constant de Sitter time. The symplectic
potential (A2) on Σt oriented as a boundary of Xt is,

½ϕ; ξ�t ¼ −
Z

d3x
R2

t2
ξðt; xÞð∂tϕÞðt; xÞ: ð160Þ

The symplectic form (A7) and inner product (1) are,

ωtðϕ;ξÞ¼
1

2

Z
d3x

R2

t2
ðϕðt;xÞð∂tξÞðt;xÞ−ξðt;xÞð∂tϕÞðt;xÞÞ;

ð161Þ

¼ 2i
π

Z
d3kR2ðϕbðkÞξaðkÞ − ϕaðkÞξbðkÞÞ; ð162Þ

ðϕ; ξÞt ¼
8

π

Z
d3kR2ðξbðkÞϕbðkÞ − ξaðkÞϕaðkÞÞ: ð163Þ

We note that the subspace Lþ
Σt

defined by ϕaðkÞ ¼ 0 is a
positive-definite Lagrangian subspace of the space of
solution associated with Σt.
In order to apply the asymptotic method (Sec. VI B) for

vacuum selection, we foliate spacetime with equal-time
hypersurfaces and consider the region between two of the
surfaces, namely X½s;s0� ¼ ½s; s0� ×R3. It is convenient to
express solutions (158) in terms of the boundary configu-
rations φ and φ0 taken by the field at t ¼ s and t ¼ s0
respectively,

ϕðt; xÞ ¼
�
Δðt; s0Þ
Δðs; s0Þφ

�
ðxÞ þ

�
Δðs; tÞ
Δðs; s0Þφ

0
�
ðxÞ; ð164Þ

8In order for the solution to be well defined (i.e., not divergent)
in the whole spacetime the components of the 3-vector k
have to be real. Consequently the modulus k is necessarily
positive, k > 0.
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where Δðt;sÞ¼ t3=2HνðktÞs3=2HνðksÞ− t3=2HνðktÞs3=2HνðksÞ.
In the region X½s;s0� the symplectic potential that appears in the expression of the field propagator and determines the

vacuum in an appropriate limit is,

½pols½s;s0�ðφ;φ0Þ;φ�s ¼ −
Z

d3xðφðxÞ
�
R2

s2

�
3

2s
þ k

H0
νðksÞHνðks0Þ −H0

νðksÞHνðks0Þ
HνðksÞHνðks0Þ −HνðksÞHνðks0Þ

�
φ

�
ðxÞ

þ φðxÞ
�

−4iR2

πðss0Þ3=2ðHνðksÞHνðks0Þ −HνðksÞHνðks0ÞÞ
φ0
�
ðxÞÞ; ð165Þ

where a prime over the Bessel function indicates the derivative with respect to the argument.
Because of the oscillatory behavior (152) of the Hankel functions for large argument we expect to obtain the vacuum via

the limit (70), implementing the Wick rotation s0 → −is0,

ZXs
ðφÞ ¼ lim

s0→∞
exp

�
i
2
½pols½s;−is0�ðφ; 0Þ;φ�s

�
; ð166Þ

¼ lim
s0→∞

exp

�
−
i
2

Z
d3xφðxÞ

�
R2

s2

�
3

2s
þ k

H0
νðksÞHνð−iks0Þ −H0

νðksÞHνð−iks0Þ
HνðksÞHνð−iks0Þ −HνðksÞHνð−iks0Þ

�
φ

�
ðxÞ

�
; ð167Þ

¼ exp
�
−
i
2

Z
d3xφðxÞR

2

s2

�
3

2s
þ k

H0
νðksÞ

HνðksÞ

�
φðxÞ

�
: ð168Þ

This limit recovers the vacuum wave function in the Schrödinger representation (compare with expression (56) of [26] and
apply complex conjugation). At the same time it corresponds precisely to selecting the positive-definite Lagrangian
subspace Lþ

Σs
of modes of the form t3=2HνðktÞe−ik·x. These are precisely the modes that define the Bunch-Davies

vacuum [27].
As for the previous examples, the Feynman propagator incorporates the vacuum as,

GFððt; xÞ; ðt0; x0ÞÞ ¼
iπ
4R2

Z
d3k
ð2πÞ3 ðtt

0Þ3=2ðθðt − t0ÞHνðktÞHνðkt0Þ þ θðt0 − tÞHνðkt0ÞHνðktÞÞeikðx−x0Þ: ð169Þ

It has been shown in [26] that this expression is equivalent
to the one obtained in [28]. We can also read off that, as in
Minkowski space, the past vacuum is given by complex
conjugate modes of the future vacuum. Choosing a coor-
dinate system covering negative time values the derivation
would be analogous with our methods.

2. α-vacua

The vacuum state obtained in the preceding section
corresponds to the Lagrangian subspace of the space of
solutions of the equations of motion determined by the
modes ukðt; xÞ ¼ t3=2HνðktÞe−ik·x. These are a special case
of the more general solutions, parametrized by a real
number α, uαkðt; xÞ ¼ t3=2ðeαJνðktÞ − ie−αYνðktÞÞe−ik·x. In
particular ukðt; xÞ ¼ u0kðt; xÞ. The field expanded in this
new basis reads,

ϕðt;xÞ¼
Z

d3k

ð2πÞ3=2 ð
eϕaðkÞuαkðt;xÞþfϕbðkÞuαkðt;xÞÞ: ð170Þ

The symplectic form (161) and inner product (1) are then,

ωtðϕ; ξÞ ¼
2i
π

Z
d3kR2ð eϕaðkÞeξbðkÞ −fϕbðkÞeξaðkÞÞ; ð171Þ

ðϕ; ξÞt ¼
8

π

Z
d3kR2ð eϕaðkÞ eξaðkÞ −fϕbðkÞ eξbðkÞÞ: ð172Þ

In particular, the modes uαkðt; xÞ form a positive-definite

Lagrangian subspace Lþ
Σt

with fϕbðkÞ ¼ 0.
The relation between the expansions (158) and (170)

amounts to a Bogoliubov transformation of the coefficients:

ϕaðkÞ ¼ sinh αfϕað−kÞ þ coshαfϕbðkÞ; ð173Þ

ϕbðkÞ ¼ sinh αfϕbð−kÞ þ coshαfϕaðkÞ: ð174Þ

The modes uαk define a one-parameter family of vacua
known as α-vacua [29–31]. Notice that requiring that these
modes form a Lagrangian subspace implies selecting the
same value of the parameter α. Indeed,
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ωtðuαk; uα
0

k0 Þ ¼
ð2πÞ3
π

R2i sinh ðα0 − αÞδðkþ k0Þ; ð175Þ

which reduces to zero only for α ¼ α0.

VIII. DISCUSSION AND OUTLOOK

In the present section we provide some context for our
results as well as an outlook on future development. We
start with some perspective on the notion of Wick rotation
as invoked in Sec. VI.

A. Wick rotation

The termWick rotation refers originally to the rotation of
a contour of integration in the complex plane in the integral
representation of wave functions or propagators [32]. In the
guise of a rotation of the time coordinate this leads to the
notion of Euclidean propagator [33,34]. We recall this for
the case of Klein-Gordon theory in Minkowski space.
Thus, replace in the Feynman propagator (48) t by −iτ and
t0 by −iτ0,

GðEÞ
F ððτ; xÞ; ðτ0; x0ÞÞ

¼ i
Z

d3k
ð2πÞ32E ðθðτ − τ0Þe−EτþikxeEτ

0−ikx0

þ θðτ0 − τÞeEτ−ikxe−Eτ0þikx0 Þ: ð176Þ

Note that we think of the multiplication by −i as the limit of
a multiplication by e−iθ where the angle θ is moved
continuously from 0 to π=2. That is, we are really doing
an analytic continuation. (This also determines the behavior
of the θ-functions under this rotation.) The Euclidean
propagator is a solution to a Wick rotated version of the
equations of motion (in this case the Klein-Gordon equa-
tion). These in turn are natural equations of motion
associated to a Wick rotated metric, which is just the
metric of Euclidean space. In Sec. VII C we have consid-
ered precisely such a theory (in two dimensions), except for
the fact that the theory corresponds more precisely to a
Wick rotation of the spatial coordinates. Nevertheless, one
may appreciate the coincidence in the massless case of the
corresponding Feynman propagator (139) with expression
(176), up to a factor of i. Wick rotation leads to a whole
Euclidean formulation of quantum field theory that can be
brought into correspondence with Minkowski quantum
field theory in a precise way [35]. An advantage of the
Euclidean formulation is that its ingredients, including the
Euclidean path integral, are generally better behaved
mathematically. Most relevant in this respect for our present
considerations is the asymptotic behavior of the Euclidean
propagator. Indeed, fixing one point, say ðτ0; x0Þ, we can
read off an exponential decay to the (Euclidean) future e−Eτ

(where τ > τ0) and to the past eEτ (where τ < τ0).9 It is
precisely this behavior of asymptotic decay that we put at
the center of vacuum selection in Sec. VI. However, instead
of Wick rotating the actual object of the theory (propagator,
solution, etc.) we Wick rotate either the normal derivative
operator that would detect this decay (Sec. VI A) or the
variable that parametrizes the approach to the asymptotic
boundary (Sec. VI B). In the first case and when restricted
to a standard context of time evolution this recovers and
provides a new perspective on the usual recipe for quan-
tization in curved spacetime (Sec. II). Wick rotation in the
Euclidean formulation is strictly limited to Minkowski
space due to its global nature. In contrast, our notion of
Wick rotation is local (to hypersurfaces or regions). This
gives our methods (Sec. VI) a much wider applicability
(e.g., Secs. IV and VII) while retaining some of the ideas
and motivations of the Euclidean formulation.

B. Types of Lagrangian subspaces

We have proposed a unification of the traditional notions
of amplitude and vacuum. The mathematical structure at
the center of this unification is that of a Lagrangian
subspace of the complexified space of germs of solution
on the relevant spacetime hypersurface. While in the
traditional case of a vacuum on a spacelike hypersurface
this is a definite Lagrangian subspace, for an amplitude this
is a complexified real Lagrangian subspace (compare
Sec. II A or Appendix B). In the cases that we have
considered that fall outside the traditional framework
(Secs. IV and VII), notably when timelike hypersurfaces
are concerned, we have encountered exactly three types of
Lagrangian subspaces: definite, real or mixed. While
finding the second (real) type when dealing with a non-
compact region that physically should induce a vacuum is
already intriguing, the occurrence of the mixed type is even
more interesting. By mixed we refer to the following
situation. Consider a symplectic vector space L, LC its
complexification, and H ⊆ LC a Lagrangian subspace. We
say H is (properly) mixed if there is a (non-trivial)
decomposition of L into orthogonal symplectic subspaces
L ¼ L1 ⊕ L2 and H ¼ H1 ⊕ H2 such that H1 ⊆ LC

1 is a
complexified real Lagrangian subspace and H2 ⊆ LC

2 a
definite Lagrangian subspace. We have seen the proper
mixed type in various examples (Secs. IV B, VII A, VII C),
generally in accordance with a distinction between evan-
escent (L1) and propagating waves (L2). The generalized
notion of vacuum we propose (Sec. V) does not require a
limitation to these observed types of Lagrangian subspaces.
On the other hand, the methods we propose for vacuum

9Note that the Euclidean propagator shows this same decay
behavior in all Euclidean spacetime directions as it is in fact
invariant under Euclidean rotations, but this is not manifest in the
representation (176).
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selection (Sec. VI) do. It is thus a relevant question of
whether the occurrence of the mixed type (and its degen-
erate cases real and definite) is a generic phenomenon.
Analyzing the Lagrangian subspaces occurring in a variety
of field theories and in a range of geometric settings should
shed light on this question.

C. Geometric quantization

Lagrangian subspaces have played an important role in
quantization for quite some time not only implicitly
(Sec. II), but also explicitly. This is particularly the case
in geometric quantization [15]. There, an important step in
the quantization of a classical phase space is the choice of a
polarization. To this end we consider the complexified
tangent bundle of the phase space manifold. Roughly, a
choice of polarization consists in selecting a Lagrangian
subspace of the complexified tangent space at each point of
phase space. There are also integrability conditions that
have to be satisfied. In our case of linear field theory, the
phase space manifold is a real vector space, canonically
identified with all of its tangent spaces. So the choice of a
polarization reduces precisely to a choice of Lagrangian
subspace. The Hilbert space of states is then constructed as
a space of square-integrable functions on phase space that
are invariant under the flows generated by the Lagrangian
subspace. For example, if we chose the subspace of
“momenta” PC

Σ ⊆ LC
Σ , compare Definition (44) in

Sec. III C, we obtain the Schrödinger representation with
functions that depend only on configurations. If on the
other hand we choose a definite Lagrangian subspace, we
obtain a holomorphic representation with holomor-
phic functions on phase space. A priori, the choice of
Lagrangian subspace and thus representation in geometric
quantization does not need to carry any physical meaning.
In contrast, the Lagrangian subspaces considered in this
work have the physical meaning of choosing a vacuum (or a
dynamics in the case of amplitudes), but are independent of
the representation. For example, the standard vacuum state
in Klein-Gordon theory on Minkowski space is determined
by a definite Lagrangian subspace. But, it can be perfectly
well expressed in the Schrödinger representation, compare
formula (46) of Sec. III C, which is determined by a real
Lagrangian subspace. That being said, it is customary in the
literature when using the holomorphic representation to
choose the definite Lagrangian subspace that determines
the representation to be precisely the same as the one that
determines the vacuum. (The remarks at the end of Sec. II A
with respect to constructing the Fock space starting from an
inner product in the phase space amount to precisely that.)
This has conceptual advantages in exposing the choice of
vacuum in the representation as well as advantages of
simplicity. The different role of the Lagrangian subspaces
aside, the mathematical similarities suggest to take advan-
tage of parts of the well developed apparatus of geometric
quantization for the our present purposes of developing a

generalized notion of vacuum. In particular, one might
speculate that in a theory that is non-linear even asymp-
totically (i.e., beyond the perturbative S-matrix paradigm),
a polarization or similar structure might serve to encode a
vacuum.

D. Vacuum selection

The methods for vacuum selection discussed in Sec. VI
are inspired by the Euclidean formulation and represent
only a very particular approach to the problem. In any case,
the view of the vacuum as encoding asymptotic boundary
conditions (Sec. V) suggests to formalize a space of
asymptotic solutions. These would be the solutions of
the equations of motion that need only be defined near
the “boundary of spacetime”. More concretely, one might
imagine these as defined in “neighborhoods of the boun-
dary”, i.e., in complements of “sufficiently large” compact
regions. The vacuum is then determined by a Lagrangian
subspace of the complexification of this asymptotic sol-
ution space. If the spacetime admits symmetries it is natural
to require invariance of the vacuum, i.e., of this Lagrangian
subspace under the symmetries. In the S-matrix paradigm
for Minkowski space, the asymptotic solution space is
simply taken to be the product of two copies of global
solutions (one for early times and one for late times).
A defining feature of the standard vacuum then is of course
precisely its invariance under Poincaré transformations. (In
fact, this vacuum factorizes into a past and future vacuum
that are separately invariant.) The situation becomes more
interesting when the asymptotic solution space admits more
symmetries than the global solution space. This can be the
case with spacetime that admit asymptotic symmetries that
do not extend to global symmetries. Awell known example
is the BMS group for asymptotically flat spacetime [36,37].
To exploit such kinds of symmetries for vacuum selection
appears thus particularly promising in our formalism.

E. Gauge symmetries and fermions

We have focused in this work on linear bosonic field
theories which admit non-degenerate symplectic forms on
relevant spaces of germs of solutions. In the presence of
gauge symmetries, however, we are faced instead with a
degenerate presymplectic form. It is a natural question then
to ask for a possible generalization of our framework to this
case. In the case of Abelian gauge symmetries it seems
plausible that we can make things work by applying
symplectic reduction. More specifically, it was shown in
[10] that (a suitable generalization of) the axiomatic
framework for classical field theory outlined in Sec. III A
applies to this reduced setting. One may thus expect the
same for an adapted version of the novel framework of
Sec. VA and Appendix C. We leave the task of working
this out in detail for the future. Another important question
concerns the notion of generalized vacua in fermionic field
theories. There, instead of a symplectic form, the spaces of
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germs on hypersurfaces are equipped with a (nondegener-
ate) symmetric bilinear form [38]. In the spirit of the
considerations in [39], one should expect the Lagrangian
subspace be replaced by the notion of a hypermaximal
neutral subspace as encoding a generalized vacuum.
Again, we leave the task of concretizing this for the future.

F. State space

While the unification of the notions of amplitude and
vacuum put forward in this work appears compelling, our
proposal remains incomplete in an important sense. We
specify a formula, namely formula (37), that can be used in
principle to calculate expectation values of almost arbitrary
observables in any (generalized) vacuum. Sometimes this is
all one needs. However, we do not say anything general
about other states. The reason is of course that the standard
quantization prescription reviewed in Sec. II A only works
in the standard case that the vacuum is determined by a
definite Lagrangian subspace. The same restriction under-
lies the more general local and functorial framework for
quantizing field theory [5] partially reviewed in Sec. III B.
As we have observed at the end of Sec. IV, even the
standard vacuum of Klein-Gordon theory in Minkowski
space induces for certain hypersurfaces (here the hyper-
cylinder) Lagrangian subspaces that are not definite. The
difficulties are particularly apparent in the case of a
(complexified) real Lagrangian subspace. One may
observe that in this case the Schrödinger wave function
(47) is a pure phase, i.e., the exponential of an imaginary
quantity. In contrast to the definite case, this does not lead
to a Gaussian exponential term as required to obtain a well
defined inner product. The minimalist way around this
problem is to simply ignore the degrees of freedom
corresponding to the “nondefinite part” of the vacuum
and quantize the other ones as usual [21,22]. This is
sometimes physically correct and satisfactory [18].
However, in the interest of a complete and coherent local
description of quantum field theory, the construction of
state spaces over such non-standard vacua is a necessity.
This problem will be addressed in a subsequent work by the
authors.
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APPENDIX A: INGREDIENTS FROM
LAGRANGIAN FIELD THEORY

We recall a few basic ingredients of Lagrangian field
theory [15, Chapter 7]. We adhere mostly to the conven-
tions of [16].

Consider a first-order Lagrangian field theory specified
in terms of a Lagrangian density Λðφ; ∂φ; xÞ as an n-form
(for spacetime dimension n). Here x denotes a point in
spacetime, φ a field configuration at that point, and ∂φ the
first jet, i.e., a first field derivative. The action for a field
configuration ϕ in a spacetime regionM is the integral ofΛ,

SMðϕÞ ≔
Z
M
Λðϕð·Þ; ∂ϕð·Þ; ·Þ: ðA1Þ

Given a hypersurface Σwe denote by LΣ the space of germs
of solutions of the Euler-Lagrange equations in a neighbor-
hood of Σ. The symplectic potential is the one-form θΣ on
LΣ defined as,10

ðθΣÞϕðXÞ ≔
Z
Σ
Xa∂μ ⌟

δΛ
δ∂μφ

a

����
ϕ

: ðA2Þ

Here ϕ ∈ LΣ while X is a tangent vector to ϕ, i.e., an
element of the tangent space TϕLΣ of solutions linearized
around ϕ. ∂μ is a coordinate derivative understood as a
vector field and ⌟ denotes the contraction between vector
fields and forms. The symplectic form ωΣ is the exterior
derivative of the symplectic potential on LΣ,

ðωΣÞϕðX;YÞ¼ ðdθΣÞϕðX;YÞ

¼ 1

2

Z
Σ

�
ðXbYa−YbXaÞ∂μ ⌟

δ2Λ
δφbδ∂μφ

a

����
ϕ

þðYa∂νXb−Xa∂νYbÞ∂μ ⌟
δ2Λ

δ∂νφ
bδ∂μφ

a

����
ϕ

�
:

ðA3Þ

Given a spacetime region M and a solution ϕ of the
Euler-Lagrange equations in M the first variation of the
action SM around ϕ vanishes up to a boundary term. This
boundary term is precisely the symplectic potential θ∂M.
That is, for an infinitesimal field configuration X we have,

ðθ∂MÞϕðXÞ ¼ ðdSMÞϕðXÞ: ðA4Þ

Note that this implies,

ðω∂MÞϕðX; YÞ ¼ ðddSMÞϕðX; YÞ ¼ 0: ðA5Þ

That is, the manifold of solutions in M is isotropic with
respect to the symplectic form ω∂M when restricted to
germs on the boundary ∂M.
In the present work, we restrict to linear field theory.

Then, LΣ becomes canonically isomorphic to its tangent

10We use here the opposite sign convention compared
to [5,9,16]. This also affects expressions (A3), (A4), (A5),
(A8) and (A9).
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spaces and the symplectic potential may be viewed as a
bilinear form. We us the notation,

½ϕ; X�Σ ≔ ðθΣÞϕðXÞ: ðA6Þ

The symplectic form ωΣ on the other hand loses its
dependence on the base point. It is then simply the
antisymmetric part of the symplectic potential,

ωΣðϕ;ϕ0Þ ¼ 1

2
½ϕ;ϕ0�Σ −

1

2
½ϕ0;ϕ�Σ: ðA7Þ

The action SM is quadratic in the linear case and its value on
a solution ϕ ∈ LM in a spacetime region M may then be
expressed in terms of the symmetric part of the symplectic
potential,

SMðϕÞ ¼
1

2
½ϕ;ϕ�∂M: ðA8Þ

Note, crucially, that the right-hand side only depends on ϕ
as an element of L∂M, i.e., does not explicitly depend on ϕ
in the interior of M. If we modify the action to SM þD,
where D is linear in field configurations, a solution η ∈ AD

M
of the modified equations of motion satisfies,11

SMðηÞ ¼
1

2
½η; η�∂M −

1

2
DðηÞ: ðA9Þ

APPENDIX B: LAGRANGIAN SUBSPACES,
INNER PRODUCT,

AND COMPLEX STRUCTURE

We collect here some relevant elementary statements at
the intersection of symplectic vector spaces, indefinite
inner product spaces and compatible complex struc-
tures [15,40].
Let L be a real vector space. We call ω∶ L × L → R a

symplectic form if it is bilinear, antisymmetric and non-
degenerate. We denote by LC the complexification of L. ω
extends to a complex antisymmetric bilinear form LC ×
LC → C that we also denote by ω. A subspace V ⊆ L is
called isotropic iff for all v, w ∈ V we have ωðv; wÞ ¼ 0. V
is called coisotropic iff for any v ∈ LnV there exists w ∈ V
such that ωðv; wÞ ≠ 0. V is called Lagrangian iff it is both
isotropic and coisotropic. Consider the Hermitian sesqui-
linear form ðv; wÞ ≔ 4iωðv̄; wÞ on LC. This defines a
nondegenerate indefinite inner product on LC. Given a
subspace V ⊆ LC the set V⊥ of vectors that are orthogonal
to all elements of V is a subspace called the orthogonal
companion of V. We say that a subspace V ⊆ LC is
orthocomplemented iff LC is spanned by V together with
its orthogonal companion, i.e., LC ¼ V þ V⊥.

Lemma B.1: Let V ⊆ LC be a positive-definite sub-
space. Then V̄ is a negative-definite subspace.
Proof.—Let v ∈ V̄nf0g. Then, v̄ ∈ Vnf0g and thus

ðv̄; v̄Þ > 0. Therefore ðv; vÞ ¼ ðv; vÞ ¼ −ðv̄; v̄Þ < 0. ▪
Corollary B.2: Let V ⊆ LC be a positive-definite

subspace. Then, V ∩ V̄ ¼ f0g.
Lemma B.3: Let V ⊆ LC be a subspace. Then, V̄ ⊆

V⊥ iff V is isotropic.
Proof.—Let, v ∈ V and w ∈ V̄. Then w̄ ∈ V. Isotropy of

V means that ωðw̄; vÞ ¼ 0 for all such choices of v and w.
But this is equivalent to ðw; vÞ ¼ 0 which implies the
orthogonality of V and V̄. ▪
Lemma B.4: Let V ⊆ LC be a subspace. Then, V⊥ ⊆

V̄ iff V is coisotropic.
Proof.—w ∈ V⊥ is equivalent to ðw; vÞ ¼ 0 for all v ∈ V.

This in turn is equivalent to ωðw̄;vÞ¼ 0 for all v ∈ V.
Coisotropywould imply w̄∈V, i.e.,w ∈ V̄. That isV⊥ ⊆ V̄.
Conversely the latter property would imply coisotropy. ▪
Corollary B.5: Let V ⊆ LC be a coisotropic and

positive-definite subspace. Then, V is a maximal positive-
definite subspace.
Proof.—Suppose that V is not maximally positive-

definite. Then there exists a positive-definite subspaceW ⊆
LC such that V is a proper subspace of W. Take a nonzero
vectorw ∈ W that is orthogonal toV. Then,w ∈ V⊥ ⊆ V̄ by
LemmaB.4. So byLemmaB.1 ðw;wÞ < 0, a contradiction.▪
Lemma B.6 ([40], Corollary 11.9): Let V ⊆ LC be a

finite-dimensional nondegenerate subspace. Then, V is
orthocomplemented.
Lemma B.7: Let V ⊆ LC be an orthocomplemented

positive-definite Lagrangian subspace. Then, LC admits an
orthogonal decomposition LC ¼ V ⊕ V̄.
Proof.—Since V is orthocomplemented we have LC ¼

V þ V⊥. Since V is isotropic and coisotropic we have V̄ ¼
V⊥ by combing Lemmas B.3 and B.4. Using positive-
definiteness Corollary B.2 completes the proof. ▪
We say that a positive-definite Lagrangian subspace V ⊆

LC is complete if it is orthocomplemented and if V is
complete with respect to the inner product ð·; ·Þ. This makes
LC ¼ V ⊕ V̄ into a Krein space.
We call a linear map J∶ L → L a complex structure if it

satisfies J2 ¼ −id. We call J compatible if it is a symplecto-
morphism, i.e., if ωðJv; JwÞ ¼ ωðv; wÞ for all v, w ∈ L.
We call J positive-definite if the Hermitian sesquilinear
form fv; wg ≔ 2ωðv; JwÞ þ 2iωðv; wÞ is positive-definite
on L viewed as a complex vector space. We call J complete
if L is complete with respect to this positive-definite inner
product.
Proposition B.8: Let V ⊆ LC be a complete positive-

definite Lagrangian subspace. Let J∶ LC → LC be the
operator with eigenvalues i and−i on V and V̄, respectively.
Then, J is the complexification of a complete positive-
definite compatible complex structure on L (also denoted
by J).

11See [5, (49)], but with opposite sign convention for the
symplectic potential.
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Proof.—By Lemma B.7 we can write any element
of LC uniquely as vþ w̄ for some v; w ∈ V. Then,
Jðvþ w̄Þ ¼ iv − iw̄ ¼ −iv̄þ iw ¼ Jðvþ w̄Þ. That is, J
commutes with complex conjugation, i.e., is the complex-
ification of a real linear map L → L. Since J has eigen-
values i and −i it is also clear that it satisfies J2 ¼ −id, i.e.,
it is a complex structure. Let v, w, v0, w0 ∈ V. Then
ωðJðvþw̄Þ;Jðv0þw̄0ÞÞ¼ωðiv−iw̄;iv0−iw̄0Þ¼ωðiv;−iw̄0Þþ
ωð−iw̄;iv0Þ¼ωðv;w̄0Þþωðw̄;v0Þ¼ωðvþw̄;v0þw̄0Þ. That is,
J is compatible. It remains to check that the inner product
f·; ·g on L is positive-definite. Note that any element of L is
uniquely represented as vþ v̄ with v ∈ V. It is sufficient
to consider the real part of the inner product. Indeed,
ℜfvþ v̄;vþ v̄g¼2ωðvþ v̄;Jðvþ v̄ÞÞ¼2ωðvþ v̄;iv− iv̄Þ¼
2ωðv;−iv̄Þþ2ωðv̄;ivÞ¼4iωðv̄;vÞ¼ðv;vÞ>0 if v ≠ 0.
(This relation between the inner products also ensures that
f·; ·g is complete.) ▪
Proposition B.9: Let J be a complete positive-definite

compatible complex structure on L. Let V ⊆ LC be the
eigenspace of the complexification of J for the eigenvalue i.
Then, V ⊆ LC is a complete positive-definite Lagrangian
subspace.
Proof.—Denote by V 0 ⊆ LC the eigenspace correspond-

ing to the eigenvalue−i of J. If v ∈ V then Jv̄ ¼ Jv ¼ −iv̄.
That is, V̄ ⊆ V 0. Similarly, we get V̄ 0 ⊆ V. Then, V̄ ¼ V 0. In
particular, LC¼V⊕V̄. Let v;w∈V. Then, ωðv; wÞ ¼
ωðJv; JwÞ ¼ −ωðv; wÞ. That is, ωðv; wÞ ¼ 0, and V is
isotropic. Now let v ∈ Vnf0g. Then, ðv; vÞ ¼ 4iωðv̄; vÞ ¼
ℜfvþ v̄; vþ v̄g > 0. That is, V is positive-definite. (This
relation between the inner products also implies that ð·; ·Þ is
complete.) Since L is isotropic to show that it is also
coisotropic it suffices to find for any non-zero element w in
the complement V̄ an element v ∈ V such that ωðv; wÞ ≠ 0.
Indeed, we may choose v¼w̄ since 4iωðw̄;wÞ¼ ðw;wÞ> 0.
This completes the proof. ▪
Lemma B.10 ([9, Lemma 4.1]): Let J be a complete

positive-definite compatible complex structure on L. Let
W ⊆ L be a Lagrangian subspace. Then, L decomposes as a
direct sum L ¼ W ⊕ JW, orthogonal with respect to the
real inner product ℜf·; ·g. Moreover, LC decomposes as a
complex direct sum LC ¼ WC ⊕ JWC.
Proof.—Let v; w ∈ W. Then ℜfv; Jwg ¼ −2ωðv; wÞ ¼

0 sinceW is Lagrangian. That is,W and JW are orthogonal.
Now let w ∈ L be orthogonal to V. Thus, 0 ¼ ℜfv; wg ¼
2ωðv; JwÞ ¼ 0 for all v in W. Since W is coisotropic this
implies Jw ∈ W and thus w ∈ JW. Thus, the orthogonal
complement of W with respect to ℜf·; ·g is JW. ▪
Proposition B.11: Let V ⊆ LC be a complete positive-

definite Lagrangian subspace. Let W ⊆ L be a Lagrangian
subspace. Then, LC admits a decomposition as a direct
sum LC ¼ V ⊕ WC.
Proof.—Let J be the corresponding complete positive-

definite compatible complex structure by Proposition B.8.

By Lemma B.10 we can write any element of LC as vþ Jw
with v, w ∈ WC. But vþ Jw ¼ v − iwþ iwþ Jw, where
clearly v − iw ∈ WC while iwþ Jw ∈ V. ▪

APPENDIX C: AXIOMS FOR CLASSICAL
FIELD THEORY

We provide here an axiomatization of the classical part of
the framework for generalized vacua in terms of
Lagrangian subspaces, see Sec. VA. The axiomatic system
is essentially a generalization of the one provided in [9],
without complex structures, compare also Sec. III A.
(C1) Associated to each hypersurface Σ is a real vector

space LΣ. LΣ is equipped with a nondegenerate
symplectic form ωΣ.

(C2) Associated to each hypersurface Σ there is an
(implicit) linear involution LΣ → LΣ̄, such that
ωΣ̄ ¼ −ωΣ.

(C3) Suppose the hypersurface Σ decomposes into a
union of hypersurfaces Σ ¼ Σ1 ∪ � � � ∪ Σn. Then,
there is an (implicit) isomorphism LΣ1

⊕ � � � ⊕
LΣn

→ LΣ. The isomorphism preserves the sym-
plectic form.

(C4) Associated to each region M is a complex vector
space L̃M.

(C5) Associated to each region M there is a complex
linear map rM∶ L̃M → LC∂M. The image rMðL̃MÞ is
a Lagrangian subspace of LC∂M.

(C6) Let M1 and M2 be regions and M ¼ M1 ⊔ M2 be
their disjoint union. Then L̃M is the direct sum
L̃M ¼ L̃M1

⊕ L̃M2
. Moreover, rM ¼ rM1

þ rM2
.

(C7) LetM be a region with its boundary decomposing
as a union ∂M ¼ Σ1 ∪ Σ ∪ Σ̄0, where Σ0 is a copy
of Σ. LetM1 denote the gluing ofM to itself along
Σ; Σ̄0 and suppose that M1 is a region. Then, there
is an injective complex linear map rM;Σ;Σ̄0∶ L̃M1

↪
L̃M such that

L̃M1
↪ L̃M ⇉ LC

Σ ðC1Þ

is an exact sequence. Here the arrows on the right-
hand side are compositions of the map rM with the
complexified projections of L∂M to LΣ and LΣ̄0 ,
respectively (the latter identified with LΣ). More-
over, the following diagram commutes, where the
bottom arrow is the projection.

ðC2Þ
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