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Moving detectors in relativistic quantum field theories reveal the fundamental entangled structure of the
vacuum, which manifests, for instance, through its thermal character when probed by a uniformly
accelerated detector. In this paper, we propose a general formalism inspired from both signal processing
and correlation functions of quantum optics to analyze the response of pointlike detectors following a
generic, nonstationary trajectory. In this context, the Wigner representation of the first-order correlation of
the quantum field is a natural time-frequency tool to understand single-detection events. This framework
offers a synthetic perspective on the problem of detection in relativistic theory and allows us to analyze
various nonstationary situations (adiabatic, periodic) and how excitations and superpositions are deformed
by motion. It opens up an interesting perspective on the issue of the definition of particles.
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I. INTRODUCTION

One of the fundamental differences between relativistic
quantum field theories and quantum mechanics is the
deeply entangled structure of quantum fields. While this
can be understood in a general formal setting [1,2], one of
the clearest phenomena illustrating this is the entangled
structure of the vacuum state, which is revealed by its
thermal character in curved spacetime [3] or by a uniformly
accelerated observer [4], known as the Hawking and Unruh
effects, respectively.
The correlated nature of the vacuum is nicely probed by

considering a moving detector in spacetime coupled to the
quantum field. Such models are known as Unruh-Dewitt
detectors. The thermal nature of the vacuum is then seen
through its photodetection response. Many questions can
then be addressed, such as the role of causality [5], the
behavior under different motions [6–8], or the effect of the
switching function of the detector [9,10]. A similar photo-
detection approach has been used in quantum optics since
the work of Glauber on coherence functions [11,12] and
has been extended to condensed matter situations [13].
However, the interpretation of these responses in the

context of relativistic quantum field theory in flat or in
curved spacetime is subtler than in quantum optics, since
no general notion of particles can be defined in the standard
way. The qualitative reason comes from the nonexistence
of a global definition of time. Two directions can then be
taken. The first direction is to have an operational per-
spective: particles are defined through the response signal
of the detector itself [4]. The second direction follows a

more pragmatic interpretation of the detector’s response:
the detector is simply seen as a “fluctuometer,” as a system
that responds to the fluctuations of the quantum field. The
signal should not a priori be interpreted as coming from a
particle content [6,14,15].
Following this latter point of view is similar to adopting a

signal processing perspective, which we will adopt here. In
a nonstationary context, physically meaningful information
can be extracted from the signal by performing a time-
frequency analysis, giving us access to the evolution in time
of the frequency content of the response. Time-frequency
(or timescale) analysis is now a major tool in signal
processing, especially the Wigner function distribution
[16]. Historically, the Wigner function has been introduced
in quantum mechanics as a phase-space representation of
the quantum state [17]. This distribution is now widely used
in quantum optics [18] and has been recently adapted to
analyze coherence properties of electrons in the quantum
Hall regime [19,20].
In this paper, we present a unified view on the response

of a moving detector probing a relativistic quantum field
using a time-frequency approach to the correlation func-
tions of the field based on the Wigner distribution. The
main goal is to introduce good framework to analyze
the response of a detector in general situations where the
state of the field can contain excitations, for an arbitrary
trajectory. This is achieved by using both the correlation
function formalism and a time-frequency analysis.
Physically realistic situations can then be analyzed quanti-
tatively through analytical and numerical computations.
Having a time-frequency analysis and a quantum optics
perspective on the problem of relativistic detector response
provides a synthetic approach to the problem of moving
detectors. Besides, this time-frequency perspective sheds
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new light on the interpretation of the measured signal and
the problem of defining a notion of particles. Indeed,
having two natural ways of defining particles, the standard
many-body one and the operational one, demands that we
relate them and understand their interplay. Time-frequency
analysis offers a way to define relative stationary timescales
from which notions of particles can be defined locally in
spacetime and frequency domains.
This paper is structured as follows: In Sec. II, we set up

the general framework of correlation functions and their
time-frequency representation through the Wigner func-
tion. In Sec. III, we analyze the response of a detector
probing the vacuum for different nonstationary motions of
the detector. We give a detailed analysis of the adiabatic
regime, its corrections, and its breakdown. Section IV is
dedicated to the study of the detector’s response in the
presence of excitations in the uniformly accelerated and
realistic motions. In particular, it addresses how coherences
in a superposition transform can be analyzed straightfor-
wardly. We conclude this paper in Sec. V by discussing
how different notions of particles can be defined from the
signal from a time-frequency analysis.

II. FIRST-ORDER CORRELATION

A. Context and photodetection

Systems in quantum optics, condensed matter, and high-
energy physics are well described using the framework
of quantum field theories. In this context, the experimen-
tally relevant quantities are not the fields themselves but
correlation functions constructed from them. Some of them
are known in quantum optics as coherence or Glauber
functions. They naturally come up when analyzing the
photodetection response.
We are also interested in the photodetection response of a

systemmoving arbitrarily in flat spacetime. It is designed to
detect a single excitation of a relativistic quantum field. We
suppose that this device is moving in Minkowski spacetime
with a given trajectory xðτÞ and is coupled linearly to a
massless scalar field ϕðxÞ. In the inertial laboratory
reference frame, the Hamiltonian is given in the interaction
picture by

HIðτÞ ¼ dðτÞ · ϕðIÞðtðτÞ;xðτÞÞ: ð1Þ

If we model the detector as a two-level system of energy ωeg,
then dðτÞ ¼ −gσxðτÞ, with g being the coupling constant.
We are now interested in the probability to measure the

excited state after a time τ. Since the coupling is weak, we
can use time-dependent perturbation theory, expand the
evolution operator at the first order, and obtain the desired
probability pωeg

ðτÞ:

pωeg
ðτÞ ¼

�
g
ℏ

�
2
Z

τ

0

eiωegðτ1−τ2ÞGðτ1; τ2Þdτ1dτ2: ð2Þ

The function Gðτ1; τ2Þ depends only on the state of the
scalar field and is defined as a first-order correlation
function:

Gρðτ2; τ1Þ ¼ trðϕðIÞðtðτ1Þ;xðτ1ÞÞϕðIÞðtðτ2Þ;xðτ2ÞÞρÞ: ð3Þ

This correlation function contains all of the contribution of
the field to first order in the photodetecting signal. There is,
however, a major difference between this signal and the
standard one found by Glauber in quantum optics. Indeed,
for photons, we have Gph

ρ ðτ2; τ1Þ ¼ trðE−ðτ1ÞEþðτ2ÞρÞ,
where E� are the positive- and negative-frequency parts
of the electric field operator. In the relativistic regime, the
correlation function does not depend on only the product
ϕ−ϕþ but on the full field, as in Eq. (3) [21]. One reason
behind this difference is fundamental and comes from the
fact that the definition of positive and negative frequencies
depends on the time coordinate. For a detector in a general
trajectory or in the presence of a gravitational field, there is
no global definition of the time coordinate, and so there is
no general decomposition of the field in momentum space.
The notions of excitation and of vacuum become relative
concepts.
Equation (2) can be generalized by introducing a generic

linear response function χðτ2; τ1Þ of the detector, and the
resulting photodetection signal is then obtained by

pðτÞ ¼
Z
R
χτðτ2; τ1ÞGðτ1; τ2Þdτ1dτ2: ð4Þ

The function χτðτ2; τ1Þ characterizes the response of the
detector, and its form depends on the type of detector we
use. The photodetection probability is then just the scalar
product between this response function and the first-order
correlation function. For a broadband device, the response
will be local in time with χðτ2; τ1Þ ¼ fðτÞδðτ2 − τ1Þ and
fðτÞ being the switching function. On the contrary, for a
narrow-band device like the two-level system, we measure
the Fourier transform of the correlation function.

B. Definitions

1. First-order and excess correlations

The photodetection problem shows that the quantity
encoding the response of pointlike detector at first order
is given by a first-order correlation function of the field
defined as

Gρðτ2; τ1Þ ¼ trðϕðτ1Þϕðτ2ÞρÞ ¼ hϕðτ1Þϕðτ2Þiρ; ð5Þ

with the notation ϕðτÞ ¼ ϕðIÞðtðτÞ;xðτÞÞ for a given
trajectory xðτÞ. Depending on the context, this function
and all the higher-order ones that could be defined are
called correlation functions or Wightman’s functions. In
quantum optics, the term coherence functions is used but
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involves correlation functions of the positive- and negative-
frequency parts of the field. We will stick to the general
quantum field theory denomination of correlation func-
tions. From now on, we use a unit system in which ℏ ¼
c ¼ 1 and the Minkowski metric signature ð−;þ;þ;þÞ.
The most important situation occurs when the vacuum

state of the field is prepared. The correlation function can
be computed exactly and is given by

Gj0iðτ2;τ1Þ¼
1

4π2
1

−ðtðτ1Þ− tðτ2Þþ iϵÞ2þðxðτ1Þ−xðτ2ÞÞ2
;

ð6Þ

where, for the moment, we use the standard regularization
of iϵ. The question of regularization will be discussed in
more detail in the next section.
Let us now add an extra excitation in a normalized wave

packet Φ:

ϕ½Φ�j0i ¼
Z
R3

Φðt;xÞϕ†ðt;xÞj0id3x: ð7Þ

By Wick’s theorem, and using the notation Φ�ðxðτÞ;
tðτÞÞ ¼ ΦðτÞ, the first-order correlation now reads

Gϕ½Φ�j0iðτ2; τ1Þ ¼ Gj0iðτ2; τ1Þ þΦ�ðτ1ÞΦðτ2Þ
þΦðτ1ÞΦðτ2Þ þ H:c: ð8Þ

This suggests that we decompose the correlation function
into two parts by the equation

Gρðτ2; τ1Þ ¼ Gj0iðτ2; τ1Þ þ ΔGρðτ2; τ1Þ: ð9Þ

The interpretation is intuitively clear in the pure-state
case described by Eq. (8), since we can clearly think of
excitations over the vacuum. For a general density matrix,
the decomposition in Eq. (9) comes from the fact that a
measurement must be understood as a comparison between
the state of the field and a reference state, which in this case
is the vacuum. This choice is also justified by the fact that a
reasonable physical state will have the same behavior as the
vacuum at high energy, for both absorption and emission
processes. This turns out to be important for the regulari-
zation aspects, as we will see. However, such a decom-
position might be more subtle when taking into account
general relativity and backreaction effects.
In the following, Sec. III will focus on the vacuum

contribution, while Sec. IV will be dedicated to the study of
different kinds of excitation.

2. On regularization

In quantum field theory, the correlation functions are
actually not proper functions but Lorentz-invariant distri-
butions on spacetime [22]. The distribution character

comes from the necessary divergences of the correlation
functions, which need to be properly regularized.
The standard −iϵ regularization procedure, that was used

for instance in Eq. (6), corresponds to an ultraviolet cutoff
for the detector. However, in a general reference frame, the
frequency content is redistributed, and some care must be
taken to ensure the proper regularization. A natural choice
is to perform a high-energy cutoff regularization similar to
the −iϵ regularization of the modes in the proper reference
frame of the detector [23].
This turns out to be equivalent to spatial regularizations,

with spatially extended detectors [5,9,24,25] that were
introduced to solve the issues encountered with causality,
leading to the impossibility to recover the Unruh effect with
a causal detector [5], under the standard regularization
scheme.
All of these regularization procedures are equivalent and

lead to well-defined Lorentz-invariant and causal correlation
functions. They amount to subtracting the vacuum contribu-
tion found by an inertial detector [24]. In the end, this strategy
matches the one used in quantum optics and condensed
matter. The rationale behind it is physically intuitive, because
the correlator itself is not probed directly, but is always
compared to that of a reference state, as defined in Eq. (9).

C. Representations of the first-order correlation

1. Time and frequency representations

The time representation Gρðτ2; τ1Þ is the natural repre-
sentation to use to look for dynamical information.
The diagonal Gρðτ; τÞ corresponds to an energy density
per unit time, while the off-diagonal elements, which are
complex numbers, give the coherences in time. However,
this representation is not well suited to understanding the
kind of processes happening in the detection events, since
they are encoded in the τ1-τ2 dependence of the phase
of Gρðτ2; τ1Þ.
This is solved by going to the frequency domain. By

computing a double Fourier transform, we can then define

Gρðω2;ω1Þ ¼
Z
R2

Gρðτ2; τ1Þeiðω1τ1−ω2τ2Þdτ1dτ2

¼ hϕ†ðω1Þϕðω2Þiρ; ð10Þ

where the field ϕðωÞ is defined with respect to an inertial
mode decomposition as

ϕðωÞ ¼
Z
R3

ðakf�kðωÞ þ a†kfkð−ωÞÞ
d3k

2ωkð2πÞ3
; ð11Þ

with

f�kðωÞ ¼
Z
R
eik·xðτÞeiωτdτ: ð12Þ
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The Fourier plane ðω1;ω2Þ is traditionally divided into four
quadrants, as shown in Fig. 1. The positive-frequency
quadrant, defined by ω1 > 0 and ω2 > 0, corresponds to
the absorption processes, while the negative-frequency
quadrant corresponds to the emission processes. Finally,
the two quadrants defined by ω1ω2 < 0 correspond to the
coherences between emission and absorption processes.
This interpretation follows the operational definition of
particles and matches the many-body one for inertial
detectors. This equivalence does not hold for a general
moving detector, since nothing guaranties that the same
notion of particles exists in all frames. Still, we can expect
that the different notions of particles that could be defined
should match at sufficiently high frequency (compared to
acceleration or local curvature). This is corroborated for a

uniformly accelerated detector: the inertial modes uðiÞω and

the accelerated modes uðaÞω are related by a Bogoliubov

transformation uðaÞω ¼ ðuðiÞk − e−πω=aūðiÞk Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2πω=a

p
,

from which we clearly see that for ω ≫ a, uðaÞω ≈ uðiÞk .
This remark suggests that instead of trying to define a
global notion of particles, we should maybe seek to define
local notions of particles relative to the different scales of
the problem: this hints toward a time-frequency definition
of particles, an idea that will be discussed in more detail
in Sec. V.
The diagonal Gρðω;ωÞ corresponds to the excitation

occupation number per frequency. A convenient represen-
tation of the Fourier plane, also shown in Fig. 1, is given by
the variables δω ¼ ω1 − ω2 and ω ¼ ðω1 þ ω2Þ=2, con-
jugated to τ1 − τ2 and ðτ1 þ τ2Þ=2, respectively, which, as
we will see, are the natural variables for the time-frequency
Wigner representation.

The frequency domain representation has complemen-
tary advantages compared to the time representation.
When analyzing the response of a detector in a stationary
trajectory, choosing one representation over the other is a
matter of convenience. However, most physically realizable
motions are not stationary, and a time-frequency represen-
tation is called for. Such representations exist and have
been analyzed in depth in signal processing research [16].
The common one used in physics is the Wigner represen-
tation, which we will discuss in the context of relativistic
field theory.

2. Time-frequency representation

The time and frequency representations have comple-
mentary properties: while one clearly represents the time
evolution, the other clearly shows the type of processes
taking place. While this is not a major issue for stationary
signals, it becomes one for nonstationary signals like those
obtained by a detector moving in a general trajectory.
Fortunately, it is possible to have the best of both worlds in
one clear time-frequency representation. We propose to
analyze the Wigner representation of the correlation func-
tion defined as

Wρðτ;ωÞ ¼
Z
R
Gρðτ þ υ=2; τ − υ=2Þeiωυdυ: ð13Þ

In the same way as Eq. (9), we can define an excess Wigner
function ΔWρ with respect to the vacuum:

Wρðτ;ωÞ ¼ Wj0iðτ;ωÞ þ ΔWρðτ;ωÞ: ð14Þ

This vacuum Wigner function must be regularized. As
argued in Sec. II B 2, this is done by properly analyzing the
response in the vacuum of an inertial detector and sub-
tracting it. The Wigner function Wj0i is again decomposed
into two contributions:

Wj0iðτ;ωÞ ¼ Win
j0iðτ;ωÞ þ ΔinWj0iðτ;ωÞ: ð15Þ

The first one, Win
j0i, is the divergent inertial contribution

which can be evaluated easily as Win
j0i ¼ jωj

2π Θð−ωÞ. The
second, ΔinWj0i, is the regular part that encodes the
noninertial contributions. It is a Fourier transform of
Eq. (6) (without the iϵ regularization) defined by

ΔinWj0iðτ;ωÞ¼
1

4π2

Z
R

�
1

ðΔxðτ;υÞÞ2−
1

−τ2

�
eiωυdυ; ð16Þ

with Δxðτ; υÞ ¼ xðτ þ υ=2Þ − xðτ − υ=2Þ.
The simplest situation is, of course, to consider

an inertial detector in the vacuum. The response of the
detector will then be given by Wðτ;ωÞ ¼ jωj

2π Θð−ωÞ. This
Wigner function is independent of τ, which is a natural

FIG. 1. Decomposition of the Fourier plane into four quadrants:
the upper quadrant corresponds to absorption processes, the
lower quadrant to emission processes, and the side quadrants to
the coherences between emission and absorption processes.
While this particle-like interpretation makes sense for inertial
observers, it does not necessarily hold as such for any trajectory.
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consequence of the stationary character of the trajectory. Its
form could have been anticipated by remembering Fermi’s
golden rule, which states that the transition rate is given to
first order by 2πdðωÞfðωÞ, with dðωÞ being the density of
states and fðωÞ their distribution, both in energy space.
For our relativistic setup, the relativistic density of state is
given by d3k=2k0ð2πÞ3 ¼ ωdω=4π2, since in the massless
case ω ¼ jkj.
Nontrivial physics is unraveled for a detector in a

uniformly accelerated motion. Indeed, consider the trajec-
tory to be xðτÞ ¼ ða−1 sinhðaτÞ; a−1ðcoshðaτÞ − 1ÞÞ. Then
the now well-known thermal response is obtained:

ΔinWj0iðτ;ωÞ ¼
ω

2π

1

e2πω=a − 1
: ð17Þ

While still stationary as expected, the Wigner function does
not vanish for positive omega. This comes from the mixing
of positive and negative frequencies between the inertial
and uniformly accelerated modes. The response of the
detector is the same as a thermal state with a temperature
given by (again using the SI units)

T ¼ ℏ
ckB

a
2π

: ð18Þ

The Wigner function possesses a nice set of properties.
First, for a stationary signal like the previous examples,
the Wigner function is time independent and positive.
Moreover, the Wigner function possesses a frequency
symmetry Wðτ;ωÞ ¼ Wðτ;−ωÞ coming from the
Hermitian property of the field. Second, its marginals give
access to the probability distribution of the conjugated
variable. For instance, averaging over time gives the
spectral energy density distribution

fðωÞ ¼ Wðt;ωÞt: ð19Þ

In the T-periodic case, this average is taken over a time
period, implying fðωÞ ¼ 1

T

R T=2
−T=2Wðτ;ωÞdτ. Similarly, the

integration over frequency gives the power PðτÞ, which is
finite only for the regularized Wigner function:

PðτÞ ¼
Z

ΔinWρðτ;ωÞ
dω
2π

¼ ΔinGρðτ; τÞ: ð20Þ

This quantity has an interesting relation to the trajectory of
the detector in the one-dimensional case, as we will see
later, and it was proposed to use it as a general definition
of temperature in curved spacetime [26,27]. Finally, the
average over time and positive frequency gives back the
average energy measured by the detector:

hEiρ ¼
Z
R×½0;þ∞½

ΔinWρðτ;ωÞdτ
dω
2π

; ð21Þ

an important property to keep in mind to normalize the
states we will consider.

3. On causality

Many different kinds of time-frequency representations
exist and have been analyzed in the signal processing
literature [16]. They can be classified according to a set of
natural properties we could demand for a good representa-
tion of physical processes: unitarity (a measurement result
translates as a scalar product for representations), marginals
corresponding to spectral density and power spectrum,
positivity (negativity prevents probabilistic interpretations),
linearity (a linear filter translates as a linear filter for the
representations), causality, and time-reversal symmetry.
However, it happens that it is not possible to construct a
function satisfying all those requirements. Table I
shows the properties of two important time-frequency
distributions.
Up to now, in the context of pointlike detectors probing a

relativistic quantum field, only the Page distribution, which
is a causal time-frequency distribution, has been studied
[5,9,24]. Indeed, the main motivation was to understand if
the thermal behavior would appear in a causal response,
which is not how the standard Unruh effect is derived.
While this is more natural, the Page distribution is not

convincingly more physical than a noncausal one, since we
still integrate over the whole past history of the motion.
Indeed, a true physical response is causal and happens
during a finite duration. This is properly modeled by
considering a causal switching function χτðτ2; τ1Þ with
finite support. By putting causality considerations in the
switching function, focusing on the Page distribution is not
mandatory anymore. It is even more interesting to consider
the Wigner distribution, containing the same information as
the Page one, since it has a clearer interpretation. First,
time-reversal symmetry in the physical processes will be
properly represented by the Wigner distribution. Moreover,
the Wigner function possesses the linearity property, which
means that the Wigner transform of a linearly filtered signal
is simply the scalar product between the Wigner functions
of the filter and the original signal. This is a clear advantage
over the other distribution for both signal processing tasks
and interferometric experiments.

TABLE I. Comparison of the properties of the Page andWigner
distributions.

Properties Wigner Page

Unitarity ✓ ✓
Positivity ✗ ✗
Marginals ✓ ✓
Linearity ✓ ✗
Causality ✗ ✓
Time reversal ✓ ✗
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III. A DETECTOR IN THE VACUUM

Let us now discuss the response of a detector probing the
inertial vacuum. The main purpose here is to understand the
structure of theWigner function of the vacuum for a generic
trajectory. After setting up the framework, we will first
analyze the slow deviations from the uniformly accelerated
case corresponding to the adiabatic approximation. We
will then discuss its breakdown by analyzing oscillatory
motions in the vacuum to finish with more physically
realizable motions.

A. General ð1 + 1ÞD motion

To simplify the theoretical analysis, we will consider here
a ð1þ 1ÞD generic motion. The solution of the special
relativistic equations of motion for a detector can be para-
metrized in a transparent way. Starting from the normaliza-
tion condition on the four-velocity −u2t þ u2x ¼ −1, we have
the natural parametrization:

uðτÞ ¼
�
coshAðτÞ
sinhAðτÞ

�
: ð22Þ

By denoting aðτÞ the oriented norm of the four-acceleration
aμðτÞ (positive if the acceleration goes towards x > 0,
negative otherwise) and reinjecting into the equation for
the four-acceleration, we find that a2 ¼ ð∂τAÞ2 and, in the
locally inertial frame at τ ¼ 0, we have

xðτÞ ¼
 R

τ
0 coshAðτ0Þdτ0R
τ
0 sinhAðτ0Þdτ0

!
; ð23Þ

where AðτÞ ¼ R τ0 aðτ0Þdτ0. From this, we can go one step
further and expressΔx2ðτ þ υ=2; τ − υ=2Þ in a suitable form
for analytical and numerical analysis. For that, we introduce
the quantity

AτðυÞ ¼
Z

τþυ

τ
aðτ0Þdτ0 ¼ Aðτ þ υÞ − AðτÞ: ð24Þ

We then have

Δx2ðτ þ υ=2; τ − υ=2Þ

¼ −
Z

τ=2

−τ=2
coshðAτðτ1Þ − Aτðτ2ÞÞdτ1dτ2: ð25Þ

Using the cosh definition, we can see that this double
integral can be reexpressed as a product of two simple ones:

Δx2ðτ þ υ=2; τ − υ=2Þ ¼ −fþðτ; υÞf−ðτ; υÞ; ð26Þ

where f�ðτ; υÞ ¼
R υ=2
−υ=2 expð�Aτðυ0ÞÞdυ0. We can also reex-

press the trajectory in terms of f�. A description in the
locally inertial frame at time τ would simply be

ΔxτðυÞ ¼
1

2

�
fþðτ; υÞ þ f−ðτ; υÞ
fþðτ; υÞ − f−ðτ; υÞ

�
: ð27Þ

This expression in terms of f� possesses a few advantages. It
is centered around τ, which allows us to perform expansion
for small values of υ. Conversely, it allows precise numerical
evaluation around small υ values, which is of prime
importance in the regularization scheme we have chosen.
The Wigner function can then be computed using

Eq. (16). An interesting property can already be obtained
for the power PðτÞ. Indeed, by computing the two sides of
Eq. (20), we have

PðτÞ ¼ 1

4π2
a2τ
12

: ð28Þ

The rationale behind defining local temperature in a general
spacetime [26,27] comes from this relation and the fact
that the acceleration for a uniformly accelerated detector is
proportional to the temperature [Eq. (18)], a property that
remains true for an adiabatic motion, as we will now see.

B. Adiabatic regime and its breakdown

1. Adiabatic regime

When acceleration changes slowly, we expect the
Wigner function to be close to the uniformly accelerated
case: this is called the adiabatic regime [7,25,28,29]. More
precisely, we expect the main contribution to the Wigner
function to be similar to a thermal response with a time-
dependent temperature TðτÞ proportional to the instanta-
neous acceleration aðτÞ.
For the purpose of this discussion, we write explicitly the

functional dependence on the acceleration of the Wigner
function as W½aðτÞ�ðτ;ωÞ. Given a time τ, we denote the
uniformly accelerated trajectory having the acceleration aðτÞ
by aτ. Doing an expansion around this trajectory, we obtain

W½aðτÞ� ¼ W½aτ� þ
Z
R

δW
δaðυÞ ½aτ�δaðυÞdυ

þ 1

2

Z
R2

δ2W
δaðυ1Þδaðυ2Þ

½aτ�δaðυ1Þδaðυ2Þdυ1dυ2:

ð29Þ

The first term corresponds to the adiabatic response of the
detector: the Wigner function is the thermal distribution with
a time-dependent temperature proportional to the instanta-
neous acceleration aτ. The other terms are corrections to this
dominant term.
This development is meaningful when the variations of

the acceleration δaτðυÞ around a given time τ are small
compared to the acceleration aτ over a timescale τs ≫ a−1τ :

δaτðυÞ ≪ aτ with υ ≤ τs: ð30Þ
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The timescale τs, that we could call adiabatic or stationary
time, is of prime importance, since it gives us the interval of
time around τ over which we can consider the motion
uniformly accelerated. Moreover, the variation δaτðυÞ can
itself be seen as a function of the derivative ( _a; ä;…). In
good regimes, it is legitimate to perform an expansion in
these derivatives and obtain the reduced and more familiar
criterion _a=a2 ≪ 1.
Thus, both the amplitude and the frequency of the

perturbation play a role in defining the adiabatic regime
and deviations from it. To properly understand the different
regimes of the response, we consider an oscillatory accel-
eration of the form aðτÞ ¼ a0 þ a1 sinð2πfτÞ with a0 a
constant acceleration, with ða1; fÞ being the amplitude
and frequency of the oscillatory drive [8]. The functional
expansion of Eq. (29) can then qualitatively be seen as an
expansion in a1=a0, while the derivative expansion of δa is
an expansion in ð2πfÞ=a0. The different regimes can then
be classified as follows:
(1) The adiabatic regime is valid when the perturbation

is small, such that a1 ≪ a0 and 2πf ≪ a0. The
thermal response follows the acceleration as in
W½aτ� and is corrected by small terms in the
derivatives of the acceleration.

(2) The adiabatic regime per se breaks down when one
of the two conditions above is not fulfilled and
will be analyzed in the next section. In the regime
a1 ≪ a0 and f ≳ a0, the functional expansion still
works, but the terms rearrange themselves such that
a thermal response is still present at the average
acceleration ā ¼ a0 plus corrections of order 1=f.

(3) Finally, in the regime a1 ≳ a0, all the expansions
break down and the structure of the Wigner function
has to be analyzed differently.

We concentrate first on the pure adiabatic regime where
we have a1 ≪ a0 and f ≪ a0. In this regime, the intuition
of a thermal response following the evolution of the
acceleration works. Furthermore, the overall order of
magnitude of a correction to W½aτ� coming from the
functional and derivative expansions is given by powers
of the form ð2πf=a0Þp · ða1=a0Þq. Table II sums this up
from the first few corrections.
Thanks to the symmetry of the Wigner function, the first

correction in Eq. (29) only has even derivatives in a in the
derivative expansion. This means in particular that there is

no _a correction to the thermal behavior. The first two
corrections to the Wigner function have the following form:

W½aðτÞ� ¼ W½aτ� þ
ä
a2

P12½g�ð2πω=aτÞ

þ _a2

a3
P22½g�ð2πω=aτÞ; ð31Þ

where gðxÞ ¼ x=ðex − 1Þ is the thermal distribution,
and Pij ∈ R½Y; X� are polynomials of two variables such
that the action on f is a derivative operation Pij½g�≡
Pijðx; ∂xÞ½gðxÞ�. Technical details about this derivation are
given in Appendix B of the Supplemental Material [30].
Figure 2 represents the two functions P12½g�ðxÞ and
P22½g�ðxÞ, which are universal in the sense that they do
not depend on the trajectory of the detector, while Fig. 3
compares each correction to the exact expression evaluated
numerically at a given order. This shows that the correc-
tions to the adiabatic thermal response are orders of
magnitude less than W½aτ�, thus justifying that the regime
a1 ≪ a0 and f ≪ a0 corresponds indeed to an adiabatic
regime where the thermal response follows the evolution of
the acceleration.

2. Breakdown of the adiabatic regime

When the perturbation is too important, meaning that the
conditions a1 ≪ a0 and f ≪ a0 are not both fulfilled, the
adiabatic response is not valid anymore. The simplest
deviation we can first consider is f ≳ a0. Intuitively, we
expect that, since the frequency is too high, the thermal
response cannot build up fast enough and follow the
variations of the acceleration. Only an average thermal
response at the acceleration ā should build up, while traces
of the oscillations should appear at higher frequencies in
the time-frequency plane. This intuition can be explicitly
checked by computing exactly the full first correction in
Eq. (29) for the trajectory aðτÞ ¼ a0 þ a1 sinð2πfτÞ
denoted Δ0W. It actually contains all the derivative

TABLE II. Orders of magnitude (in units of a0) of the
corrections in the functional and derivative expansion.

OðδaÞ Oðδa2Þ Oðδa3Þ
ð2πfÞ2a1 ½ä� ð2πfÞ2a21 ½ _a2� ∅

∅ ð2πfÞ3a21 ½ _a ä� ð2πfÞ3a31 ½ _a3�
ð2πfÞ4a1 ½að4Þ� ð2πfÞ4a21 ½ä2� ð2πfÞ4a31 ½ _a2ä�

FIG. 2. Representation of the universal functions of the thermal
distribution coming as corrections to the pure thermal response
W½aτ� in the derivative expansion. Their form is independent of
the trajectory.
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corrections aðnÞ of order n (first column of Table II). Its
explicit form is given by

W1 ¼
a1 sinð2πfτÞ

4π2

�
1

1þ ð2πf=aτÞ2
gþ þ g−

2

−
ω=2πf

1þ ð2πf=aτÞ2
ðgþ − g−Þ þ

2π

aτ
ω_g0 − g0

�
; ð32Þ

where we reuse gðxÞ, the thermal distribution, and its values
g� ¼ gð2π=aðω� πfÞÞ and g0 ¼ gð2πω=aÞ. It can be
explicitly checked that in the limit f ≪ a0, we recover
the ä correction to the adiabatic behavior.
From Eq. (32), we can now understand the high-

frequency regime f ≫ a. In the region ω≲ a0, we have

W1 ≈
a1 sinð2πfτÞ

4π2

�
2π

aτ
ω_g0 − g0

�
: ð33Þ

This expression has a nice interpretation: by considering
a uniformly accelerated trajectory a0 perturbed by a
constant small term a1, we have W½a0 þ a1� ¼
W½a0� − ½2πaτ ω_g0 − g0�=4π2. Thus, we conclude that in the
region ω≲ a0 in the high-frequency regime, the full
Wigner function has the simple expression

W½aðτÞ� ¼ W½ā�: ð34Þ

This matches the intuitive idea that the frequency of the
perturbation is too high for a thermal behavior following
the drive to build up. In fact, by a proper expansion of
Eq. (32) in 2πf (done in Appendix B of the Supplemental
Material [30]), we can see that there are corrections of order
1=2πf to the average thermal response in the frequency
band ω ∈ ½0; πf½.
Finally, the expansion (29) breaks down completely

when the criterion (30) is not satisfied. In the oscillatory
example aðτÞ¼a0þa1 sinð2πfτÞ, this qualitatively means
that a1 ∼ a0. In fact, this characterization is too brutal and
global compared to the more local one from Eq. (30): this
means that globally, the functional expansion cannot be
performed, but it can remain meaningful in some time
intervals.
Figure 4 represents theWigner function of the oscillatory

acceleration for different parameters ða0=2πf; a1=2πfÞ.
The global or local validity of the adiabatic expansion is
witnessed by the appearance of inner oscillations in the
Wigner function. In the regimes ð4; 1=4Þ and (4,1), for
instance, the adiabatic expansion is globally valid. This is
no longer the case for the other regimes, where a1 ∼ a0 and
where the signal basically goes (close) to zero at some
moments in time. Still, the expansion remains locally
meaningful half a period later. This can be made more
quantitative by explicitly analyzing the criterion (30). As an
example, consider the situation where a1 ¼ a0. The cri-
terion is then equivalent to cosð2πfτ þ πfυÞ sinðπfυÞ ≪
cos2ðπ=4 − πftÞ. Clearly, when fτ ¼ −1=4, the criterion
cannot be satisfied and the adiabatic expansion breaks
down, while it is valid around fτ ¼ 1=4 (see Fig. 4). How
this can be interpreted will be discussed in more detail
in Sec. V.

3. A more physical trajectory

The previous analyses, while important in their own
regard to understanding how the response changes in
nonstationary situations, are still based on nonphysical
trajectories, since they require an infinite amount of energy
to be sustained. The question then remains one of under-
standing the form of the Wigner function for physical
trajectories [25,31,32].
Figure 5 represents the Wigner function (left panel) of a

trajectory uniformly accelerated for a finite duration
aτ ¼ 4. To make contact with the literature, it also shows
the Page distribution for the same trajectory (right panel).
We can see that a thermal response is building up over a
timescale of a few a. It is to be noted that the Page
distribution, like theWigner function, is not always positive
in the time-frequency plane.
Concerning the Wigner function, its general features can

be well understood. First, we see that a thermal response at
temperature a=2π appears over a timescale of the order
of a. Second, the high-frequency structure around the
beginning of the accelerated phase depends solely on the

FIG. 3. Comparison between a correction to W½aτ� at a given
order Wij and the exact one at the same order ΔijW ¼
W −

P
ðk;lÞ<ði;jÞWkl. In the adiabatic regime, at low frequency

f, the derivative expansion is meaningful, each correction being
an order of magnitude lower than the previous one.

BENJAMIN ROUSSEL and ALEXANDRE FELLER PHYS. REV. D 100, 045016 (2019)

045016-8



discontinuity in the acceleration. In our case of interest, we
expect the second and higher derivatives of the first-order
correlation to be discontinuous. To analyze their effects on
the Wigner representation, it is useful to use the following
decomposition: Gðτþυ=2;τ−υ=2Þ¼fτðυÞþgτðυÞ, where
f contains the lower-order discontinuity contribution and g
the higher-order ones. The detailed forms of these functions
are irrelevant for the high-frequency behavior and can be
chosen for computational convenience: the only constraints
are that they should capture the form of the discontinuities

(see Appendix A of the Supplemental Material [30] for
details on this strategy). In the end, we obtain the high-
frequency behavior of the Wigner function around the times
τd of brutal discontinuous changes of the acceleration:

ΔWðτ ≥ τd;ωÞ ≃ −
1

4π2
a

8sinh2aðτ − τdÞ
sin 2ωðτ − τdÞ

ðω=aÞ3 ;

ð35aÞ

ΔWðτ ≤ τd;ωÞ ≃ −
1

4π2
a

16a3ðτ − τdÞ3
cos 2ωðτ − τdÞ

ðω=aÞ4 :

ð35bÞ

IV. EXCESS CORRELATION FOR DIFFERENT
TRAJECTORIES

Up to now, we have only been interested in the first-order
correlation of the vacuum. We now move to the subject
of the excitations above the vacuum and how they are
perceived by a moving detector [33]. From Eq. (8), the
excess correlation coming from a one-particle excitation in
a wave function Φðt;xÞ is given by

ΔGρðτ2; τ1Þ ¼ Φ�ðτ1ÞΦðτ2Þ þΦðτ1ÞΦðτ2Þ þ H:c: ð36Þ

The nice feature of this correlation function is that its form
is independent of the trajectory of the detector, which is a

FIG. 4. Wigner function representation of an oscillatory acceleration aðτÞ ¼ a0 þ a1 sinð2πfτÞ in different regimes controlled by the
expansion parameters ða0=2πfÞ and ða1=a0Þ. In the regime of small frequency f and amplitude a1 compared to a0, the adiabatic
response works globally. Outside this regime, the adiabatic expansion breaks down, which is witnessed by the appearance of inner
oscillations, but can still be meaningful locally.

FIG. 5. Wigner (left) and Page (right) distributions of the
vacuum for a finite-duration uniform acceleration between two
inertial phases. After a transition time of the order of a−1, the
thermal behavior at temperature a=2π settles down. The decreas-
ing oscillating high-frequency parts are solely controlled by the
discontinuity of the acceleration.
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direct consequence of the covariance properties of the
quantum field correlation functions.
The states mostly considered in a quantum optics setting

are Fock states and coherent states. The main difference
between the two in the first-order correlation is the absence
(presence) of the interference terms Φðτ1ÞΦðτ2Þ þ H:c: for
Fock states (coherent states).
Finally, those states can be prepared in different wave

packets like a monochromatic one or a Gaussian one. In
what follows, we will mainly focus on Gaussian wave
packets of coherent and Fock states, which are, in the end,
the most intuitive ones. We leave the mathematical analysis
of the monochromatic case for Appendix C of the
Supplemental Material [30].

A. Gaussian wave packet

Let us consider, for now in ð3þ 1ÞD, that the inertial
observer prepares the field in a Gaussian coherent state. It is
defined in the following way:

jαi ¼ ⊗
p
jαpi ¼ e

R
R3

ðαpa†p−α�papÞd3pj0i: ð37Þ

The exponential operator is called the displacement oper-
ator DðαÞ. This state is normalized and satisfies the
fundamental relations of coherent states1:

Dð−αÞapDðαÞ ¼ ap þ ð2πÞ32ωpαp; ð38aÞ

apjαi ¼ ð2πÞ32ωpαpjαi: ð38bÞ

We can also think of this state in a spatial way by looking
at its action on a field operator. Indeed,

Dð−αÞϕþðx; tÞDðαÞ ¼ ϕþðx; tÞ þΦαðx; tÞ; ð39Þ

where ϕþ is the negative-frequency part of the field. Thus,
we see that the state (37) is a coherent state in position with
a parameter given by

Φαðx; tÞ ¼
Z
R3

αpe−iðwpt−p:xÞd3p: ð40Þ

We see that at t ¼ 0, this is just the Fourier transform of
the coherent-state parameter in momentum space. From
the factorized nature of this state, the first-order corre-
lation function can be decomposed into clear different
contributions:

ΔGjαiðτ2; τ1Þ ¼ Φαðτ1ÞΦαðτ2Þ þΦαðτ1ÞΦ�
αðτ2Þ þ H:c:

ð41Þ

We now specify the function αp and choose it so that the
problem reduces effectively to a ð1þ 1ÞD problem for
computational simplicity. We then consider a Gaussian
centered at a given momentum p0, with a width given by
σp. We then have

αp ¼
ffiffiffiffiffiffi
p0

2π

r
1

ð2πσ2pÞ1=4
e
−ðp−p0Þ2

4σ2p e−ip:x0 : ð42Þ

In position, it is a Gaussian centered at the position x0. We
also make the assumption that p0 ≫ σp so that we can
consider ωp ¼ jpj ¼ p in our computations. This leads to

ΦαðτÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p0

ð2πσ2xÞ1=2
r

e−½ðtτ−xτÞþx0�2=4σ2xe−ip0½ðtτ−xτÞþx0�: ð43Þ

The introduction of the normalization
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p0=2π

p
comes from

dimensional considerations, since we require the average
energy to equal the average value of the Wigner function
over time and frequency [see Eq. (21)]. We also introduce
the position width σx satisfying the relation σxσp ¼ 1=2.
As an example, consider an inertial trajectory with a

velocity v; the worldline is parametrized as ðγτ; γvτÞ. Its
Wigner function is

WðvÞðτ;ωÞ ¼ 2p0

�
e
−ðω−Dvp0Þ2

2ðDvσpÞ2 þ e
−ðωþDvp0Þ2

2ðDvσpÞ2

þ 2 cos ð2p0ðDvτ þ x0ÞÞe
− ω2

2ðDvσpÞ2
�
e
−ðDvτþx0Þ2

2σ2x :

ð44Þ

The computation is straightforward, and the Wigner func-
tion is composed of two symmetric Gaussian spots centered
around the Doppler-shifted frequency Dvp0 with their
interference pattern.
Gaussian spots are in fact the basic “atoms” of the

Wigner function and allow us to understand the geometry
behind this representation [16]. The basic interpretative
element that we need and that we see in Eq. (44) is that
the interference term of two Gaussian atoms is also a
Gaussian spot located at the midpoint joining the center of
the two atoms (here ω ¼ 0) and that the interference pattern
oscillates in the orthogonal direction.
This discussion would be completely similar if, instead

of Gaussian coherent states, we considered a Gaussian
superposition of a Fock state of n photons. The excess
correlation is even simpler, since the interference terms
vanish: ΔGjnαi ¼ nΦ�

nαΦnα þ H:c:
While those Wigner functions could have been guessed

intuitively for an inertial response, it is a nontrivial task to
analyze the response to a Gaussian excitation from a
moving detector for different accelerated trajectories.

1This is obtained from the BCH formula and the covariant
commutation relations ½ap; a†p0 � ¼ ð2πÞ32ωpδðp − p0Þ.
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B. Accelerated Wigner function

1. Uniformly accelerated case

Suppose now that the Gaussian coherent state, prepared
by the inertial observer, is probed by a uniformly accel-
erated detector following the worldline ða−1 sinh aτ;
a−1ðcosh aτ − 1ÞÞ in ð1þ 1ÞD. Figure 6 shows the
Wigner functions of both Fock and coherent Gaussian
states evaluated numerically. Each snapshot represents the
Wigner function for a pulse emitted at a different position
x0. As intuition would suggest, the closer the emission is to
the horizon, the more redshifted and deformed the wave
packet is.
A closed analytical form cannot be obtained in this case,

but the structure of the Wigner function can be completely
understood using Gaussian and stationary phase approxi-
mation schemes and its first correction. A detailed treat-
ment is given in Appendix D of the Supplemental Material
[30]. For clarity, let us focus on the Φαðt; xÞΦ�

αðt0; x0Þ
contribution of the Wigner obtained from Eq. (43) evalu-
ated on the uniformly accelerated trajectory.
The first approximation scheme that we can employ is to

approximate the received wave packet by a Gaussian
function around its maximum reached at time τr.
Physically, this is the time of reception for the moving
detector. It is obtained by solving tτ − xτ þ x0 ¼ 0, which
gives the special relativistic result

τr ¼ −a−1 ln ð1þ ax0Þ: ð45Þ

Computing the Wigner function is then straightforward and
gives

WΦαΦ�
α
ðτ;ωÞ ¼ 2p0

Dr
exp

�
−
D2

r

2σ2x
ðτ − τrÞ2

�

exp

�
−
1

2

4σ2x
D2

r
ðω − ωrð1 − aðτ − τrÞÞÞ2

�
;

ð46Þ

with Dr ¼ e−aτr being the “gravitational” redshift and ωr
the shifted frequency measured by the moving detector,

ωr ¼ p0e−aτr ¼ p0ð1þ ax0Þ: ð47Þ

This is the uniformly accelerated analogue of the Einstein
effect. Thus, we recover directly at this level of approxi-
mation the standard results of light perceived by a
uniformly accelerated observer in a special relativistic
setting.
While this rough Gaussian approximation allows us to

pinpoint the dominant part of the Wigner function in the
time-frequency plane, it is not well suited to understanding
the inner interference pattern. However, the stationary
phase approximation scheme can. Writing the Wigner
function as WΦαΦ�

α
ðτ;ωÞ ¼ RR Aðυ; τÞeiΦðυ;τ;ωÞdυ, the sta-

tionary phase is meaningful when the velocity of phase
oscillations is larger than the variations of the modulus.
This is indeed the case here, since the phase blows up
exponentially compared to the Gaussian decay of the

FIG. 6. Evolution of the Wigner function of the Gaussian Fock state (top row) and coherent state (bottom row) emitted at different
positions x0, with a frequency p0=a ¼ 4 and a width aσx ¼ 1=2 in the inertial frame. The signal is centered around a spot at ðτr;ωrÞ
given by Eqs. (45) and (47), which are the special relativistic reception time and frequency, respectively, and follow the instantaneous
frequency curve for different x0. As the emission gets closer to the horizon, the spot flattens and gets strongly redshifted.
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modulus. Now, we have to find the stationary points and
compute the derivatives at those points. The stationary
points τs are solutions of

∂Φ
∂υ ðτs; τ;ωÞ ¼ 0 ⇒

� ω
p0
eaτ ¼ coshaτs=2;

ω
p0
eaτ ≥ 1

∅ otherwise
:

ð48Þ

We have two symmetric solutions, τs and −τs. The
condition of existence shows that the stationary phase
approximation is defined in the convex hull of the instanta-
neous frequency curve ωðτÞ ¼ p0e−aτ. The second deriva-
tive evaluated at τs gives the validity domain of the
stationary phase approximation. On the positive solution τs,

∂2Φ
∂υ2 ðτs; τ;ωÞ ¼ −

a
2
ωðτÞ sinh

�
arcosh

�
ω

ωðτÞ
��

⇒
τs>0

∂2Φ
∂υ2 ðτs; τ;ωÞ ¼ −

a
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − ω2ðτÞ

q
≤ 0:

ð49Þ

Away from the instantaneous curve and inside its convex
hull, the Wigner function is well approximated by the
stationary phase approximation. Its explicit derivation is
given in Appendix D of the Supplemental Material [30],
and we have

WΦαΦ�
α
ðτ;ωÞ ¼

ffiffiffiffiffiffiffiffi
8p2

0

aσ2x

s
exp ð− ðω−ωrÞ2þ½ω−ωðtÞ�½ωþωðtÞ�

2ðap0σxÞ2 Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − ω2ðtÞ

p
× cos

�
2

�
1 − ln 2

a
− τ

�
ωþ π

4

�
: ð50Þ

This form can be interpreted as follows: First, oscillations
are present in the Wigner function, given by the cosine
term, covering the whole time-frequency plane. Second,
the dominant contribution is at the intersection of a strip
centered around the frequency ωr and a tube following
the instantaneous frequency ωðtÞ. This allows us to
understand pictorially why interferences appear as we
get closer to the horizon: the intersection region gets
wider as we get closer, allowing the interferences to be
visible.
To be rigorous, the approximation fails on the instanta-

neous curve ωðτÞ. We should then go to the next order of
approximation: this is the Airy approximation. Fortunately,
since ∂3Φ

∂τ3 ðτs; τ;ωðτÞÞ ≠ 0, we do not need to go to a higher
order. The behavior of the Airy function is controlled by the
curvature ϵðτÞ of the instantaneous frequency:

ϵðτÞ ¼ 1

4π

�
d2ωðτÞ
dt2

�
1=3

¼ ða2ωðτÞÞ1=3
4π

: ð51Þ

Nonetheless, the stationary phase approximation (and its
corrections) of the Wigner function gives already the
general qualitative structure of the oscillations that we
can see in Fig. 6.

2. General ð1+ 1ÞD trajectory

For a generic trajectory, it is, of course, not possible to
obtain a complete analytical form of the Wigner function.
Nonetheless, its general features are clearly obtained from
the Gaussian and stationary phase approximations that we
already used for the uniformly accelerated case. Indeed,
from the detailed computations presented in Appendix D of
the Supplemental Material [30], we can prove the intuitive
idea that first the Gaussian spot is shifted in the time-
frequency plane by the “gravitational” redshift. The instan-
taneous frequency curve that the spot is following is given
by (see Sec. III A for the notations)

ωðτÞ ¼ p0e−AðτÞ with AðτÞ ¼
Z

τ

0

aðuÞdu: ð52Þ

The spot is centered around the reception time τr which is a
solution of the equation

R τr
0 expð−AðuÞÞdu ¼ −x0. Since

the term in the integrand is positive, this equation possesses
either no solution or a single solution. This comes from
the fact that the observer necessarily travels slower than the
speed of light. As such, it is only possible to meet the
photon once. If this equation has no solution, it means that
the photon was emitted behind the event horizon of the
observer. We note that, at this order of approximation, the
chirp rate is what we classically expect: it is given by
the variation of the frequency shift for different times,

which is here dωðτÞ
dτ ¼ −aðτÞωðτÞ.

The inner interference pattern (inside the convex hull
defined by the instantaneous frequency curve) is once again
understood by resorting to the stationary phase approxi-
mation and its Airy correction.
Figure 7 shows the response of a moving detector

following a trajectory uniformly accelerated by parts.
Starting from inertial motion, the first phase of the
motion accelerates uniformly with acceleration a at time
aτ ¼ −2 until time aτ ¼ −1. The second phase, between
aτ ¼ −1 and aτ ¼ 1, has acceleration −a. The last phase
again has acceleration a until aτ ¼ 2 with inertial motion
onward. This is the kind of trajectory considered in
the twin paradox setup. The signal follows the instanta-
neous frequency curve, which can be computed exactly
in this case, and the wave packet is deformed, chirped,
along it.

C. Transformation of coherence

The mathematical framework developed so far is also
well suited to analyze superpositions. Let us again consider
a one-particle excitation which is now prepared in a wave
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packet ΦðxÞ composed of a linear combination of elemen-
tary ones ΦkðxÞ as

ΦðxÞ ¼
X
k

akΦkðxÞ: ð53Þ

In this case, it is straightforward to show that

ΔWðτ;ωÞ ¼
X
k;k0

a�k0akΔWkk0 ðτ;ωÞ; ð54Þ

where we have introduced the notation

ΔWkk0 ðτ;ωÞ ¼
Z
R
Φ�

k0 ðτ − υ=2ÞΦkðτ þ υ=2Þeiωυdυ: ð55Þ

When k ¼ k0, we recognize thatΔWkk0 is the excessWigner
function in the presence of the excitation Φk. Furthermore,
k ≠ k0 indicates cross terms, responsible for the so-called
outer interference terms, between the different components
Φk. These interferences were already present in Figs. 6 and
7 for the Gaussian coherent state. The total excess Wigner
function can thus be expressed as a sum containing the
main components and cross terms:

ΔWðτ;ωÞ ¼
X
k

jakj2ΔWkkðτ;ωÞ

þ
X
k≠k0

a�k0akΔWkk0 ðτ;ωÞ: ð56Þ

The important message here is that the excess terms deform
naturally. If we start with some spatial superposition, each
term will be deformed as if it were alone. At the same time,

the outer interference terms depend only on the deformed
wave packets. This means that if we emit a wave packet in a
linear superposition of two wave packets received around
times τ1 and τ2, we expect that the interference terms will
be located at the midpoint τm ¼ ðτ1 þ τ2Þ=2. Furthermore,
those interference terms will not depend on the details of
the trajectory at time τm, but on those at the times of
reception τ1 and τ2.
Figure 8 considers once again the uniformly accelerated

twinlike trajectory of Sec. IV B 2. The field is, however,
prepared in a spatial superposition of two Gaussian wave
packets (only the photon wave function is represented for
clarity):

ΦðxÞ ¼ Φ2ðxÞ þΦ1ðxÞ; ð57Þ

where the wave packet ΦiðxÞ is centered around the
position xi and is received by an inertial observer at time
tri and by the moving detector at times τri . Quite naturally,
the structure of the Wigner function depends on the spatial
separation of the components of the superposition, or
equivalently, on the detection times and the local character-
istics of the trajectory.
First, by denoting J −ðxÞ the causal past of a point x in

spacetime, the coherence properties are modified by the
motion of the detector only if at least one component has
been prepared in the spacetime region J −ðfÞnJ −ðiÞ,
where i and f are the beginning and end events of the
acceleration phase, respectively.
The second feature concerns the delay time between

the reception of the two wave packets. In Fig. 8, the
wave packets were prepared such that the inertial delay
Δtr ¼ 4a−1 sinhðaΔτr=4Þ with Δτr ¼ 3, which is the

FIG. 7. Wigner function representations of a Gaussian Fock state (top row) and Gaussian coherent state (bottom row) probed by a
detector following a uniformly accelerated twinlike trajectory: the spot is chirped by the accelerated motion with a rate −aðτÞωðτÞ but
follows the instantaneous frequency curve. The total time of the accelerating phase is aτacc ¼ 4, with transitions at τ ¼ −2, −1, 1, 2. The
frequency of the wave packet in the inertial frame is p0=a ¼ 4, and its width is aσx ¼ 1=3.
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general twin paradox delay formula for this trajectory. This
time delay is clearly seen in the Wigner function and
satisfies the special relativistic result (Fig. 2 of the
Supplemental Material [30] compares the inertial and
accelerated responses directly).
Finally, while the coherence pattern is identical to a pure

inertial response when the packets are prepared outside the
region J −ðfÞnJ −ðiÞ, the interference pattern is clearly
deformed by the motion of the detector when one compo-
nent is probed in the accelerated phase.
Figure 9 shows the more extreme case of the evolution of

coherence of a Gaussian superposition probed by a uni-
formly accelerated detector. The spacetime geometry
probed by this detector, also called Rindler spacetime or
wedge, is quite different from the previous case because of
the presence of an event horizon. Naturally, a detection
event occurs if and only if the wave function has been
prepared with a support in the wedge. The situation shown
in Fig. 9 represents a Gaussian superposition of two wave
packets, one of which propagates closer and closer to the
horizon. The coherence gets spread and redshifted as the
wave packet approaches the horizon, which is a conse-
quence of the same effects happening to the wave packet
itself.
After crossing the horizon, no detection signals can be

recovered by the detector, and the coherences are lost. This
is, of course, the same effect happening in black hole

physics which leads to the famous information paradox. We
should note that this loss of coherence cannot be properly
qualified as a decoherence process in the traditional sense,
where an environment interacts with the system and
attenuates the interference pattern. Indeed, the deformation
and loss of coherence only comes about because the wave
packets themselves are deformed by motion or lost behind a
horizon, which is not what decoherence is about.

V. DISCUSSIONS

So far, the point of view we adopted was a pure signal
processing one. Indeed, our interest was only focused on
doing a proper analysis of signals characterized by corre-
lation functions Gρðτ1;…; τnÞ obtained from a set of
pointlike detectors. The question remains of how to relate
those signals to quantum field theories for different
observers [6,34,35].
The fundamental question at this stage is to understand

what can be reconstructed about the quantum field from the

FIG. 8. Wigner function representation of a superposition of a
Gaussian photon wave packet probed by a detector following a
uniformly accelerated twinlike trajectory for different τr;1 and τr;2
reception times associated with the first and second components
of the superposition, respectively. The total time of the accel-
erating phase is aτacc ¼ 4 with transitions at τ ¼ −2, −1, 1, 2.
The wave packet is emitted at frequency p0=a ¼ 4 in the inertial
frame with a width aσx ¼ 1=3.

FIG. 9. Wigner function representations of a Gaussian super-
position received at different times for a uniformly accelerated
observer. The coherences are spread and eventually lost when a
member of the superposition gets close to or crosses the horizon.
The wave packet is emitted at frequency p0=a ¼ 10 in the inertial
frame with a width aσx ¼ 1=5.
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signals (of one or a set of detectors). To be more precise, we
can roughly group the questions in two categories:
(1) What can we learn about the trajectory of the

detector with respect to the laboratory frame θ?
(2) Can we reconstruct a field-theoretic picture ðHθ; fθÞ

from the signals, with Hθ being the Hilbert space of
the theory and fθ the mode on which the field is
decomposed?

Our signal processing approach opens up some interesting
perspectives on these questions.
Concerning the recovery of information about the

trajectory, we need prior information about what was sent
by the laboratory. Indeed, it is conceivable to imagine only
inertial detectors probing a state prepared in such a way as
to simulate an accelerated response. So, in order not to be
fooled by what we measure, we need, for instance, the
laboratory to communicate to the accelerated observer what
they originally prepared. Information about the trajectory
can then be recovered by properly fitting the measured
signal or, if we have enough data, reconstructing the
instantaneous frequency curve from which the acceleration
can be deduced since dωðτÞ=dτ ¼ −aðτÞωðτÞ. If no exci-
tations are present, we can still have some information
about the trajectory from the power spectrum [Eq. (28)] of
the vacuum: indeed, for a one-dimensional motion, it is
directly proportional to the square of the acceleration.
The second question was about reconstructing a field-

theoretic or many-body point of view from the signals.
While we are not going to investigate this complicated
question thoroughly, time-frequency analysis can shed
some light on one particular issue concerning the definition
of a notion of particles.
In the standard many-body approach, there is no issue

with defining a notion of particles in a stationary situation
[36] like a uniformly accelerated motion. Qualitatively, we
have a notion of time from which we can define a Fourier
transform. There is, however, no general method to defin-
ing a notion of particles in nonstationary situations. In other
words, the notion of particles is an emerging notion [37].
It is nonetheless interesting to link this emerging notion to the
notion encountered in the standard many-body approach.
One way to do this is to introduce an operational notion

of particles thanks to response signalsGðτ1; τ2Þ of detectors
[4]. The question is to then relate those two notions which,
in general, are quite different. As we already mentioned,
it is valid to interpret Gρðω;ω0Þ in terms of excitations
for inertial detectors as is usually done, for instance, in
quantum optics: the two notions coincide. This breaks
down a priori in nonstationary motions.
The time-frequency analysis of the complete signal

offers a strategy to link the two notions and reconstruct
a many-body particle interpretation. Indeed, from the full
signal, it is possible to extract stationary domains [38].
Intuitively speaking, we can extract domains where
it is meaningful to decompose the field modes like

fpðτ; rÞ ∝ e−iωpτfpðrÞ [6]. Knowing then the stationary
time scales and averaging the signal over them, notions of
particles could then be locally defined. Operationally
speaking, what can be done is to consider a detector with
a response function having support on those domains.
To illustrate this strategy, let us consider again the

situation studied in Sec. III B, where we considered an
oscillatory motion of the form aðτÞ ¼ a0 þ a1 sinð2πfτÞ
represented in Fig. 4. This situation is completely nonsta-
tionary and even not globally adiabatic when a0 ¼ a1. No
natural particle interpretation can be found. Nonetheless,
we know that we can consider the signal as approximately
stationary around a given time τ over a timescale τs
(depending itself on τ): this is the same condition control-
ling the validity of the functional expansion Eq. (29).
In a given signal, different stationary timescales exist, as

we discussed already in Sec. III B 2. Figure 10 represents
the (Gaussian) average of the Wigner function around a
time τ with a time window of typical width τs: only a
section is represented (it is sufficient, since we are
approximately stationary) and corresponds to the averaged
energy distribution fwðωÞ. To be consistent and respect the
Heisenberg time-frequency indeterminacy, a (Gaussian)
average should be performed in frequency: this frequency
window is the orange area in Fig. 10 where two extreme
cases are shown:
(1) At the maximum of acceleration (where the adia-

batic regime is valid, fτ ¼ 1=4), the distribution
fwðωÞ is a thermal distribution at a temperature
around aτ. The frequency average is such that the
overall time-frequency response of a detector with a
response function of width τs around fτ ¼ 1=4 will
be a stationary thermal distribution. We can then
reconstruct in this time-frequency domain a uni-
formly accelerated particle picture.

(2) At lower accelerations, the distribution fwðωÞ looks
thermal but has to be averaged over a very large

FIG. 10. Gaussian average of the Wigner function over a
window given by τs such that ja=δaj ≤ 1=20 for the sine case,
where a0 ¼ a1, and 2πf=a0 ¼ 1=5. To have a consistent time-
frequency representation, we need to perform another Gaussian
average of typical spread, given by the shaded area which
depends on τs. A particle picture is meaningful only above this
frequency threshold.

TIME-FREQUENCY APPROACH TO RELATIVISTIC CORRELATIONS … PHYS. REV. D 100, 045016 (2019)

045016-15



frequency domain compared to its typical width.
This is a consequence of the very low stationary
timescale there. In this case, the only meaningful
particle picture that can be constructed is at very
high frequencies and matches that of an inertial
response. This follows the intuition that high-
frequency modes are equal to inertial modes.

In the end, the main lesson from this discussion is that
particles emerge from the signal, and applying a time-
frequency analysis seems the most appropriate way to
tackle the issue of particle reconstruction and to link the
operational and many-body definitions.

VI. CONCLUSION

In this paper, we introduced a signal processing time-
frequency approach to the problem of detectors in motion
in relativistic quantum field theory. It offers a natural and
synthetic framework to analyze nonstationary trajectories.
We provided a detailed analysis of the adiabatic regime, its
corrections, and its breakdown. We then moved on to study
how excitations are probed by a moving detector, focusing
for clarity on Gaussian states. The structure of the Wigner
function can be completely understood using simple
approximation schemes. Beside recovering time-frequency
special relativistic behaviors in general frames, we were
able to analyze how wave packets and their coherence
properties are transformed by the motion of the detector.
We finally used our analysis of excitation and motion

to discuss how time-frequency analysis provides a prom-
ising approach to clarify conceptual questions behind the
problem of moving detectors, especially concerning the

definitions of a notion of particles. Indeed, time-frequency
allows us to define a notion of relative stationary timescales
over the signal, permitting us to locally link the operational
and many-body definitions of particles.
Apart from those conceptual questions, this time-fre-

quency signal processing approach opens up many inter-
esting perspectives to sharpen our understanding of
relativistic detectors. Indeed, a natural generalization is
to analyze higher-order correlation functions, which play
an important role in quantum optics. This would allow us to
understand from first principles the interplay between
entanglement [39,40], which is encoded in the second-
order correlation function, and motion in a completely
relativistic setting. Moreover, one of the main challenges is
to have experimental access to the Wigner function.
Measuring the Wigner is traditionally done through an
interferometric setup like the Hong-Ou-Mandel experi-
ment. This then demands a proper analysis of those
interferometric experiments when probed by a moving
detector. Finally, the same approach could be generalized to
curved spacetime, allowing us again to understand the
response of the detector in nonstationary spacetime sit-
uations like the formation of black holes by a collapsing
star or the effect of gravitation on the entanglement of
quantum systems.
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