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We analyze the spins of a Schwinger particle pair in a spatially uniform but time dependent electric field.
The particle pair’s spins are in the maximally entangled Bell state only if the particles’momenta are parallel
to the electric field. However if transverse momentum is present, the spins are not in the maximally
entangled Bell state. The reason is that the pair is created by the external field, which also carries angular
momentum, and the particle pair can take away some of this external angular momentum.
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I. INTRODUCTION

The action of an electron in a constant electric field had
been formulated by Sauter, Heisenberg and Euler [1,2].
Schwinger used this action in a gauge invariant form in a
constant electromagnetic field, and found the effect of
charged particle pair production if the electric field is higher
than the critical value Ecri ¼ m2

ec3

qeℏ
[3,4]. Recently, in

experiments with high power lasers, this critical value
was achieved, so experimental study of the Schwinger
effect might be realized in the foreseeable future. Apart
from a constant electric field background, additional efforts
have been focused on spatially dependent strong fields
[5,6], time dependent fields [7], thermal backgrounds [8],
multipair creation states [6,9], strong electric and magnetic
fields [10], and particle creation in pulsars [11].
A Schwinger pair is a pair of virtual particles separated

by an external field to become a real pair. Since even a
virtual particle should conserve quantum numbers, they are
assumed to be highly correlated or entangled. Especially,
the pair’s spin state is generally expected to be one of the
maximally entangled Bell states [12–14],

1ffiffiffi
2

p ðj↑↓i � j↓↑iÞ: ð1Þ

Here ↑ and ↓ represent the particles’ spin directions. We
can consider the first particle to be an electron and the
second one a positron. If the particles’ states are represented
by Eq. (1), then if one of the particles’ states is known, the
other particle’s state is also known. This correlation is one

of the reasons why the Bell state is called a maximally
entangled state. Even though it is intuitive to assume that a
Schwinger pair’s spin state is in one of the Bell states, the
pair production is derived in a basis different from the spin
basis [12,13]. We will see that the Schwinger pair is not in
a Bell state after transforming it to the correct spin basis.
Apart from a strong electromagnetic field, a strong

gravitational field can also be a source of particle pairs,
in a process similar to the Schwinger effect. Davies et al.
calculated the energy momentum tensor near a black hole
[15]. They found that there is negative energy flux into the
black hole, and positive energy flux to infinity, which is
Hawking radiation. This is an explicit evidence that
Hawking radiation is created by gravitational particle pair
production, which is just a variant of the Schwinger effect.
If a particle pair is separated by gravity, one member of the
pair may fall into the horizon and the other may run away
from the horizon. The runaway particle eventually becomes
part of Hawking radiation at infinity. Since a Schwinger
particle pair is assumed to be highly entangled, the pair
produced in the Hawking effect is also assumed to be
highly entangled. This assumption, combined with an
assumption that gravity is a local theory, led to the so-
called information loss paradox [14]. In addition, one of the
assumptions of the Firewall paradox in black hole physics
is tightly connected to particle entanglement [16].
However, it has been noted that the entanglement is
observer dependent [17–19], and the pair can be disen-
tangled after propagating some distance [20].
Although it is natural to assume that a virtual particle pair

is highly entangled, one cannot avoid interaction with an
external field which makes them real. This external field
can carry momentum, angular momentum and other quan-
tum numbers. Therefore one cannot consider only an
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isolated virtual particles pair. The particle pair can carry
also its own angular momentum, apart from the individual
spins of particles. The actual spin state of the pair can be
different from the expected virtual pair state in Eq. (1), and
can actually be

A0j↑↓i þ A1j↓↑i þ A2j↑↑i þ A3j↓↓i: ð2Þ
We again consider the first particle to be an electron and the
second one a positron. If this description is true, one cannot
know the spin of one particle based on the knowledge of the
spin of the other particle without an actual direct detection.
We note that an apparent difference between the total

initial and final spin in some process is very common. For
example, consider a head-on electron-photon collision
(Fig. 1). A right-handed photon and a right-handed electron
collide and turn almost completely backward. The reflected
photon and electron are both right handed. The total spin
appears not to be conserved because there is angular
momentum involved in the process.
The Swinger pair’s spin creation rate can be studied by

using the Dirac-Heisenberg-Wigner (DHW) function
[7,21–23]. However, since we want to know a single pair’s
spin correlation, Bogoliubov transform can give us a better
description than the DHW method. The “in” vacuum is
based on the equation of motion in a constant electric field
background. The “out” vacuum is based on the particle’s
spin-up and -down states. We will now show that if the
particles’ momenta are parallel to the electric field, the
pair’s spin is in a Bell-like state, and one can know the exact
complete particle state just by knowing the quantum state
of one particle. However, if the particle pair has transverse
momentum (with respect to the external field), then the
pair’s spins are not in a Bell-like state. One cannot know
one particle state solely based on the information from
the other particle. This implies the external field does affect
the Schwinger pair’s quantum state. This also implies
that Hawking radiation should not be treated as a local

phenomenon [see also discussion around Eq. (4) in [24]].
In the foreseeable future, the high intensity lasers may
produce electric fields above the Schwinger pair production
threshold.Recent studiesmainly focus on the pair production
numbers [7]. However, the laser’s photons carry spins,
therefore the electron and positron pair’s spins will also
depend on the annihilated photon states. This is the effect
that we want to examine here. In principle, we expect that
the particle pair’s spin state depends on the scattering angle.
In the following we review the quantization procedure and
“out” vacuum. We then calculate the amplitude of different
particle pairs’ spin states and helicities.

II. QUANTIZATION

Schwinger particle pairs are created by the strong electric
field. Both charged fermions and bosons can be created in
the process. Since we want to study whether the particles’
spins are highly entangled, we focus on fermion pairs.
In particular, we study electron-positron pairs.
Here we follow the study by Klunger et al. in [25].

The Lagrangian density for electrodynamics is

L ¼ ψ̄iγμð∂μ þ ieAμÞψ −mψ̄ψ −
1

4
FμνFμν; ð3Þ

where the metric convention is taken to be ðþ;−;−;−Þ. ψ
is a charged Dirac field, while Aμ is the background
electromagnetic field. The γ matrices are

γ0 ¼
�
I 0

0 −I
�
; γi ¼

�
0 σi

−σi 0

�
; ð4Þ

where i ¼ 1, 2, 3. I is a 2 by 2 unit matrix. σi are the Pauli
matrices. The equation of motion for ψ is

ðiγμ∂μ − eγμAμ −mÞψ ¼ 0: ð5Þ
ψ can be expressed through a new field ϕ as

ψ ¼ ðiγμ∂μ − eγμAμ þmÞϕ: ð6Þ

Equation (5) becomes a quadratic Dirac equation,
�
ði∂μ − eAμÞ2 −

e
2
σμνFμν −m2

�
ϕ ¼ 0: ð7Þ

In general, Aμ is space and time dependent. However,
to simplify the discussion, we consider the spatially uni-
form electric field which points to the z direction. The
nonzero Aμ component is A3 ¼ aðtÞ. Before the electric
field is applied, the electric field is 0, and að−∞Þ ¼ 0.
After the electric field is turned off, Aμ becomes constant,
so limt→∞aðtÞ ¼ constant. Then the equation can be
simplified to

½∂μ∂μ þ e2a2 þ 2ia∂3 − ie∂0aγ0γ3 þm2�ϕ ¼ 0: ð8Þ

FIG. 1. Compton scattering in the center of mass frame. A right-
handed photon collides with a right-handed electron. They turn
almost completely backward. Their helicities are still both right
handed. The total spin is not conserved, because the reflectedwaves
are the p-waves, which take away angular momentum.
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Spatial homogeneity implies that the solutions can be
written in the form of

ϕk;j ¼ eik·xfk;jχj; ð9Þ

where the eigenvector χj is

χ1 ¼
�
η1

η1

�
; χ2 ¼

�
η2

−η2

�
; η1 ¼

�
1

0

�
;

η2 ¼
�
0

1

�
: ð10Þ

These spinors are the eigenvectors of γ0γ3 in the
representation of γ matrices. They are not exactly the same
as the spin-up and spin-down eigenvectors. Since two
eiegnvectors with positive eigenvalues are enough to cover
the full space, we neglect the eigenvectors with negative
eigenvalues [25]. χss satisfy the relation

X4
α¼1

ðχ†rÞαðχsÞα ¼ 2δrs: ð11Þ

The mode function fk;j satisfies

d2fk;j
dt2

þ
�
ω2
k − ie

da
dt

�
fk;j ¼ 0: ð12Þ

Here, ω2
k¼p2

3þk2−þm2, k2−¼k21þk22 and pi ¼ ki − eAi.
Equation (12) is a second order differential equation, so
each j has two independent solutions, fþk;j and f−k;j. Since
the Dirac equation has only four independent solutions,
both j ¼ 1, 2 sets can span a linearly independent set of
Dirac solutions. From Eq. (6) we have

ψ�
k;j ¼ ðiγ0∂0 þ γiki − eγ3A3 þmÞϕ�

k;j ð13Þ

here, ϕ�
k;j ¼ eik·xf�k;jχj. After normalization, ψ�

k;j satisfies
the relation [25]

ψ�†
r ψ�

s ¼ δrs;ψ
�†
r ψ∓

s ¼ 0: ð14Þ

The four ψ�
r s are orthogonal to each other. The ψ field is

then quantized and written in the form

ψ ¼
Z X

j¼1;2

½bjðkÞψþ
k;j þ d†jð−kÞψ−

k;j�
dk

ð2πÞ3 ; ð15Þ

where bj and d†j are the electron annihilation and positron
creation operator respectively. The operators satisfy the
usual anticommutation relation:

fbrðkÞ; b†sðqÞg ¼ fdrðkÞ; d†sðqÞg ¼ ð2πÞ3δ3ðk − qÞδrs:
ð16Þ

Then the ψ field also satisfies the anticommutation
relation,

fψαðt; xÞ;ψ†
βðt; yÞg ¼ δ3ðx − yÞδαβ: ð17Þ

III. “IN” VACUUM AND “OUT” VACUUM

The former section was about the second quantization
of the ψ field. However, this representation cannot give the
spin of the particle pairs directly. We have to change the
representation to up and down spinor bases,

ψ ¼
X
r¼1;2

Z
½bð0Þr ðk; tÞur;ke−i

R
ωkdt

þ dð0Þ†r ð−k; tÞvr;−kei
R

ωkdt�eik·x dk
ð2πÞ3 : ð18Þ

Here, ur;k and vr;−k are defined as

ur;k ¼

2
64

ffiffiffiffiffiffiffiffiffi
ωkþm
2ωk

q
ηr

σ⃗·p⃗ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωkðωkþmÞ

p ηr

3
75; vr;−k ¼

2
64

−σ⃗·p⃗ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωkðωkþmÞ

p ηr

ffiffiffiffiffiffiffiffiffi
ωkþm
2ωk

q
ηr

3
75;

ð19Þ

where u1;k and u2;k are spin-up and spin-down electron
spinor respectively (along the z-direction). p⃗ ¼ ðk1 − eA1;
k2 − eA2; k3 − eA3Þ. Since we discuss only electric field in
the z direction, A1 ¼ A2 ¼ 0. v1;−k and v2;−k are spin-down
and spin-up positron spinors respectively. ur;k and vr;k
satisfy

u†r;kur0;k ¼ δr;r0 ; v†r;kvr0;k ¼ δr;r0 ; u†r;kvr0;−k ¼ 0:

ð20Þ

One can relate Eqs. (15) and (18) with the Bogoliubov
transformation,

bð0Þr ðk; tÞ ¼
X
s¼1;2

αsk;rðtÞbsðkÞ þ βsk;rðtÞdsð−kÞ† ð21Þ

dð0Þr ð−k; tÞ† ¼
X
s¼1;2

− β�sk;rðtÞbsðkÞ þ α�sk;rðtÞdsð−kÞ†: ð22Þ

From the canonical anticommunication relation, one
finds

X
r¼1;2

ðjαsk;rj2 þ jβsk;rj2Þ ¼ 1: ð23Þ
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Once Bogoliubov transformation is substituted in Eq. (18),
ψþ
k;s and ψ−

k;s are found by comparing this equation with
Eq. (15),

ψþ
k;s ¼

X
r¼1;2

αsk;rur;ke
−i
R

ωkdt − β�sk;rvr;−ke
i
R

ωkdt ð24Þ

ψ−
k;s ¼

X
r¼1;2

βsk;rur;ke
−i
R

ωkdt þ α�sk;rvr;−ke
i
R

ωkdt: ð25Þ

As usual, the number of particles produced per unit
phase space volume at a given momentum is given by

nðk; tÞ ¼
X
r¼1;2

h0; injbð0Þ†r ðk; tÞbð0Þr ðk; tÞj0; ini

¼
X

s¼1;2;r¼1;2

jβsk;rðtÞj2: ð26Þ

From Eq. (24), αsk;r and β
s
k;r can be found in terms of ψþ

k;s:

−β�sk;re
i
R

ωkdt ¼ v†r;−kψ
þ
k;s ð27Þ

αsk;re
−i
R

ωkdt ¼ u†r;kψ
þ
k;s: ð28Þ

One can substitute Eqs. (13) and (19) to obtain αsk;r
and βsk;r,

β�1k;1 ¼ −e−i
R

ωkdt
ðωk þmþ p3Þðωkf

þ
k;1 − i _fþk;1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωkðωk þmÞp ð29Þ

β�1k;2 ¼ −e−i
R

ωkdt
ðp1 þ ip2Þðωkf

þ
k;1 − i _fþk;1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωkðωk þmÞp ð30Þ

α1k;1 ¼ ei
R

ωkdt
ðωk þm − p3Þðωkf

þ
k;1 þ i _fþk;1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωkðωk þmÞp ð31Þ

α1k;2 ¼ ei
R

ωkdt
−ðp1 þ ip2Þðωkf

þ
k;1 þ i _fþk;1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωkðωk þmÞp ð32Þ

β�2k;1 ¼ −e−i
R

ωkdt
ðp1 − ip2Þðωkf

þ
k;2 − i _fþk;2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωkðωk þmÞp ð33Þ

β�2k;2 ¼ e−i
R

ωkdt
ðωk þmþ p3Þðωkf

þ
k;2 − i _fþk;2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωkðωk þmÞp ð34Þ

α2k;1 ¼ ei
R

ωkdt
ðp1 − ip2Þðωkf

þ
k;2 þ i _fþk;2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωkðωk þmÞp ð35Þ

α2k;2 ¼ ei
R

ωkdt
ðωk þm − p3Þðωkf

þ
k;2 þ i _fþk;2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωkðωk þmÞp : ð36Þ

As t → −∞, fþk;s ∝ e−iωkt and ωkf
þ
k;r − i _fþk;r ¼ 0.

All βk;s are 0. According to Eq. (26), n ¼ 0 and there is
no particle creation. Since αjk;is in general are not both 0,
the “out” vacuum’s spinors are not the same as the “in”
vacuum’s spinors. Under the Bogoliubov transform the
“in” vacuum, jini, is annihilated by bsðkÞ and dsð−kÞ,

bsðkÞj0; ini ¼ dsð−kÞj0; ini ¼ 0; ð37Þ

while the “out” vacuum, j0; outi, is annihilated by bð0Þr ðk; tÞ
and dð0Þr ð−k; tÞ,

bð0Þr ðk; tÞj0; outi ¼ dð0Þr ð−k; tÞj0; outi ¼ 0: ð38Þ

We may write the Bogoliubov transform as a unitary
transform, Uk,

bð0Þr ðk; tÞ ¼ Ukb
ð0Þ
r ðk;−∞ÞU†

k ð39Þ

dð0Þr ð−k; tÞ† ¼ Ukd
ð0Þ
r ð−k;−∞Þ†U†

k: ð40Þ

Uk can relate the “out” vacuum to the “in” vacuum as

j0; outi ¼ Ukj0; ini: ð41Þ

This is a 4 mode transform. Its complete form is
complicated [26,27], but we do not need the complete
transform. We only need to write the “out” vacuum in terms
of biðkÞ, djðkÞ operators, and the “in” vacuum. The “out”
vacuum can be written in the form

j0; outi ¼
Y
k;s

A exp

�X
ij

Bijb
†
i d

†
j

�
j0; ini: ð42Þ

A and Bij can be found from Eq. (38) and
h0; outjj0; outi ¼ 1,

Bij ¼ ð−1Þm αmk;2ðtÞβjk;1ðtÞ − αmk;1ðtÞβjk;2ðtÞ
α2k;2ðtÞα1k;1ðtÞ − α2k;1ðtÞα1k;2ðtÞ

ð43Þ

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðjB11j þ jB12j þ jB21j þ jB22jÞ2

q
: ð44Þ

Here m ¼ 1, if i ¼ 2 and m ¼ 2 if i ¼ 1. One must be
careful that Uk ≠

Q
k;sA expðPij Bijb

†
i d

†
jÞ, since some of

the Uk operators disappear while they operate on j0; ini.
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IV. OBSERVATION OF THE SPIN-UP AND
SPIN-DOWN STATES

We are looking for the creation of a two particle state
in the “out” vacuum, bð0Þr ðk; tÞ†dð−k;0Þs ðtÞ†jouti. This ampli-
tude is

Trs ¼ houtjbð0Þr ðk; tÞdð0Þs ð−k; tÞjini

¼ A
X
i¼1;2

βik;rðtÞ
�
αik;sðtÞ −

X
j¼1;2

βjk;sðtÞB�
ij

�
: ð45Þ

We can find the value of each component:

T11 ¼ −
ω2
k þmωk − p2

3

ωkðωk þmÞ EþOðβ3Þ ð46Þ

T12 ¼
p3ðp1 þ ip2Þ
ωkðωk þmÞ EþOðβ3Þ ð47Þ

T21 ¼
p3ðp1 − ip2Þ
ωkðωk þmÞ EþOðβ3Þ ð48Þ

T22 ¼
ω2
k þmωk − p2

3

ωkðωk þmÞ EþOðβ3Þ ð49Þ

E ¼ðωkf̄
þ
k;1 þ i _̄f

þ
k;1Þðωkf

þ
k;1 þ i _fþk;1Þe2i

R
ωkdtA: ð50Þ

Here β ∝ ωkf
þ�
k;1 þ i _fþ�

k;1 and f
þ
k;1 ¼ fþk;2 is applied. If the

particle creation is not very strong, then Oðβ3Þ is much
smaller than E which is proportional to β, so it can be
neglected. We do not write the precise form down because
it is complicated. If the first index is 1(2), it creates an
electron with spin-up(-down). If the second index is 1(2), it
creates a positron with spin-down(-up). If the transverse
momenta are 0 (p1 ¼ 0 and p2 ¼ 0), only T11 and T22

are nonzero, which means the electron and positron have
opposite spin orientations. It means that A2 and A3 in
Eq. (2) are both 0, and the state is a maximally entangled
Bell state [as in Eq. (1)]. However, if p1 or p2 are not 0,
then T12 and T21 are not zero, and the electron and positron
can have the same spin orientation. All Ai in Eq. (2) are not
0 and the state is not a maximally entangled Bell state.
In other words, if one knows one of the particle’s state, he
still cannot determine the state of the other particle if the
transverse momentum is not 0. This proves that members of
a Schwinger pair are not always entangled.
We can also study the same effect in the propagation

direction. The helicity eigenspinor can be written as a
combination of spin-up and spin-down spinors and the
creation and annihilation operator can be found by com-
paring the ψ field component in this two bases. The
amplitudes for each case are

TRR ≈
cos θðω2

k þmωk − p2
3Þ − p3p sin2 θ

ωkðωk þmÞ E ð51Þ

TRL ≈
− sin θðω2

k þmωk − p2
3Þ − p3p sin θ cos θ

ωkðωk þmÞ E ð52Þ

TLR ≈
− sin θðω2

k þmωk − p2
3Þ − p3p sin θ cos θ

ωkðωk þmÞ E ð53Þ

TLL ≈
− cos θðω2

k þmωk − p2
3Þ þ p3p sin2 θ

ωkðωk þmÞ E: ð54Þ

Here, cos θ ¼ p3=p and p2 ¼ p2
1 þ p2

2 þ p2
3. R (L) is

the right(left)-handed helicity.
Again we neglected the terms proportional to β3.

TRL ¼ TLR ¼ 0, if p1 ¼ p2 ¼ 0. This pair is entangled.
However, if there is transverse momentum (p1 ≠ 0 or
p2 ≠ 0), then TRL and TLR are not 0. If one knows one
particle’s helicity, he still cannot know the other particle’s
helicity. This proves that helicities of a Schwinger pair are
not completely entangled.

V. CONCLUSION

We showed that a Schwinger particle pair’s spins are not
necessary in a maximally entangled Bell state. If the
particle pair’s momenta are not parallel to the electric field,
then one cannot know the particle pair’s spin states just by
measuring the properties of one particle. In addition, if the
external field is spatially nonuniform, the particle pair can
also gain linear momentum [10]. Then both linear and
angular momenta of the pair are not completely correlated.
To make a precise statement, members of a virtual particle
pair generated by vacuum fluctuations are highly corre-
lated. However, for these particles to become real, they
have to interact with an external field. This interaction ruins
the original correlation.
The Schwinger pair production is expected to occur

when the electric field is above the Schwinger limit,
Es ¼ 1.32 × 1018 V=m. This is far beyond the current
laser system’s limit (∼1013 to 1014 V=m) [28,29].
However, recent development of ultrashort and ultra-
intense laser pulse raises the possibility to approach the
threshold in the foreseeable future [30]. Especially, the
nonlinear QED effect as eþe− pair photoproduction by
hard photon [31–33] and nonlinear Compton scattering
has been observed at laser intensity I ¼ 1022 W=m2 [34].
It has been shown that multiple colliding electromagnetic
pulses can even lower the laser’s intensity threshold of
eþe− pair production to 1026 W=cm2 [35,36], which is
much lower than the Schwinger pair production threshold,
1029 W=cm2. There are several projects to achieve inten-
sity 1026 to 1028 W=cm2 [28,37,38]. eþe− pair production
by multiple laser pulses has been proposed in the new
laser systems, such as Extreme Light Infrastructure [38]
and the European High Power laser Energy Research
facility [37]. This makes observation of the Schwinger
pairs quite possible. The pair production is tightly related
to the focused laser’s geometric structure and polarization,
and not only on the energy input [39]. In our case we study
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the particle pair’s spin correlation. We will find that the
spin correlation depends on the scattering angle. This
directly implies that the pair’s state is not just one of the
Bell entangled states, which is sharply different from what
is generally expected.
Hawking radiation is made of particle pairs generated

by vacuum fluctuations. The negative energy particle falls
into the horizon, while the positive energy one leaves
the horizon and is radiated away. This particle pair is
assumed to be entangled based on the locality assumption
[14]. However, the particle pair is generated by a similar
process as a Schwinger pair production, which implies
that the Hawking radiation particle pair is not completely
correlated. This is true in general, since the process of
Hawking radiation takes away angular momentum from
a black hole, and the products of radiation do not move

in the radial direction. In addition, the wavelength of
emitted particles is about the radius of the black hole.
Thus, the external gravitational field cannot be described
by a uniform distribution. The produced particles can
gain linear momenta from external field, and according to
our study, their spins are not completely correlated. This
implies the semiclassical gravity (and perhaps full quan-
tum gravity) is not a completely local phenomenon.
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