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We study modular symmetry anomalies in four-dimensional low-energy effective field theory, which is
derived from six-dimensional supersymmetricUðNÞYang-Mills theory by magnetic flux compactification.
The gauge symmetry UðNÞ is broken to UðNaÞ ×UðNbÞ by magnetic fluxes. It is found that an Abelian
subgroup of the modular symmetry corresponding to discrete part of Uð1Þ can be anomalous, but other
elements independent of Uð1Þ in the modular symmetry are always anomalyfree.
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I. INTRODUCTION

The modular symmetry is a geometrical feature, which
torus compactification as well as orbifold compactification
has. Furthermore, the modular symmetry plays an impor-
tant role in four-dimensional (4D) low-energy effective
field theory derived from higher dimensional field theory
and superstring theory.
The modular symmetry in string-derived supergravity

theory was studied in Ref. [1] and also its anomaly was
studied in Ref. [2,3]. (See also for anomalies in explicit
heterotic orbifold models Ref. [4].) Recently, these studies
were extended to supergravity theory derived by magnet-
ized and intersecting D-brane models [5]. Furthermore,
their anomalies are also interesting from the phenomeno-
logical viewpoint [3,6,7].
Also it was studied how massless modes transform

under modular symmetry in heterotic orbifold models
[8–10]. Recently, modular transformation behavior of
massless modes was studied in magnetized D-brane
models as well as intersecting D-brane models [11–14].
Then, it was found that the modular symmetry transforms
massless modes each other, and that is a sort of flavor
symmetries. On the other hand, it was shown that non-
Abelian discrete flavor symmetries appear in heterotic
orbifold models [15–20] and magnetized/intersecting
D-brane models [21–26] through analysis independent
of modular symmetry. Indeed, a relation between modular
symmetry and non-Abelian discrete flavor symmetry was
also studied [13].(See also Ref. [27].)
Non-Abelian discrete flavor symmetries are interesting

from the phenomenological viewpoints [28–30]. Various

finite groups have been utilized such as S3, A4, S4, A5, etc.
for 4D field-theoretical model building. Then, many
models have been proposed in order to realize quark and
lepton masses and their mixing angles and CP phases. The
modular group includes S3, A4, S4, A5 as its finite
subgroups [31]. This aspect in addition to the above string
compactification inspired a new approach of 4D field-
theoretical model building [32], where finite subgroups
of the modular symmetry are used as non-Abelian discrete
flavor symmetries and also couplings and masses are
assumed to transform nontrivially under such finite sub-
groups. Such a new approach has been applied to models
with S3, A4, S4, A5 modular symmetries [33–41].
Thus, the modular symmetry is important from both

theoretical and phenomenological viewpoints. In general,
continuous and discrete symmetries can be anomalous.
(See for anomalies of Abelian and non-Abelian discrete
symmetries Refs. [42–45].) Anomalous symmetries can be
broken by nonperturbative effects. That is, breaking terms
are induced by nonperturbative effects. Such breaking
terms may have important implications. The purpose of
this paper is to study the anomaly structure of the modular
symmetry in 4D low-energy effective field theory derived
from magnetic flux compactification of higher dimensional
supersymmetric Yang-Mills theory, which is effective field
theory of magnetized D-brane models.
This paper is organized as follows. In Sec. II, we present

our setup and give a brief review on magnetic flux
compactification and the modular transformation of zero-
modes. In Sec. III, we study the anomaly structure of the
modular symmetry. Section IV is our conclusion.

II. MODULAR TRANSFORMATION OF
MAGNETIC FLUX COMPACTIFICATION

A. Setup and wave functions

Here, we present our setup and give a brief review on
magnetic flux compactification.We start with six-dimensional

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 100, 045014 (2019)

2470-0010=2019=100(4)=045014(7) 045014-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.100.045014&domain=pdf&date_stamp=2019-08-15
https://doi.org/10.1103/PhysRevD.100.045014
https://doi.org/10.1103/PhysRevD.100.045014
https://doi.org/10.1103/PhysRevD.100.045014
https://doi.org/10.1103/PhysRevD.100.045014
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


supersymmetric UðNÞ Yang-Mills theory, which can be
derived from D-brane system. Then, we consider the two-
dimensional torus T2 compactification with magnetic flux.
Similarly, we can study higher dimensional theory such as
ten-dimensional supersymmetric Yang-Mills theory on
T2 × T2 × T2, which can also be derived from D-brane
system. Indeed, magnetic flux compactification on T2 leads
to tachyonic modes. On the other hand, tachyonic modes can
be avoided on T2 × T2 × T2 by choosing proper combina-
tions of magnetic fluxes and sizes of three T2 tori. However,
each T2 tours is important to study the anomaly structure.
Thus, here we concentrate on the T2 compactification by
assuming absence of tachyonic modes in T2 × T2 × T2.
We use the complex coordinate z ¼ x1 þ τx2 on T2,

where τ is the complex modulus parameter, and x1 and x2

are real coordinates. The metric on T2 is given by

gαβ ¼
 
gzz gzz̄
gz̄z gz̄ z̄

!
¼ ð2πRÞ2

 
0 1

2

1
2

0

!
: ð1Þ

We identify z ∼ zþ 1 and z ∼ zþ τ on T2.
We introduce the following magnetic flux along the

diagonal direction,

F ¼ i
π

Imτ
ðdz ∧ dz̄Þ

 
MaINa×Na

0

0 MbINb×Nb

!
; ð2Þ

where Na þ Nb ¼ N, INa;b×Na;b
denotes the ðNa;b × Na;bÞ

identity matrix and Ma;b must be integer. This form of
magnetic flux corresponds to the vector potential,

AðzÞ ¼ π

Imτ
Imðz̄dzÞ

 
MaINa×Na

0

0 MbINb×Nb

!
: ð3Þ

Because of this gauge background, the UðNÞ gauge
symmetry breaks to UðNaÞ ×UðNbÞ.
Now let us study the gaugino sector. The

spinor field on T2 has two components, λ�. They are
decomposed to

 
λaa� λab�
λba� λbb�

!
: ð4Þ

Here λaa and λbb correspond to the gaugino fields of
unbroken gauge groups, UðNaÞ and UðNbÞ, respectively,
while λab and λba correspond to ðNa; N̄bÞ and ðN̄a; NbÞ
under UðNaÞ ×UðNbÞ.
The zero-mode equation with the above gauge back-

ground (3),

i=Dλ� ¼ 0; ð5Þ

has chiral solutions. When M ¼ Ma −Mb is positive, λabþ
and λba− haveM degenerate zero-modes,1 whose profiles are
written by [11]

ψ j;M
T2 ðzÞ ¼ N eiπMzImz

Imτ · ϑ

� j
M

0

�
ðMz;MτÞ; ð6Þ

with j ¼ 0; 1;…; ðM − 1Þ, where ϑ denotes the Jacobi
theta function,

ϑ

�
a

b

�
ðν; τÞ ¼

X
l∈Z

eπiðaþlÞ2τe2πiðaþlÞðνþbÞ: ð7Þ

Here, N denotes the normalization factor given by

N ¼
�
2ImτM
A2

�
1=4

; ð8Þ

with A ¼ 4π2R2Imτ.
On the other hand, whenM is negative, λab− and λbaþ have

jMj degenerate zero-modes, whose profiles are the same as
ψ j;MðzÞ except M replacing by jMj. Hereafter, we set M to
be positive. That is, we consider the model that has M
degenerate zero-modes of λabþ and λba− , but no zero-modes
of λab− and λbaþ .
Because of the chiral spectrum, Uð1Þa and Uð1Þb are

anomalous in 4D low-energy effective field theory. For
example, both the mixed anomalies, Uð1Þa − SUðNbÞ2 and
Uð1Þb − SUðNaÞ2 are proportional to M. Such anomalies
can be canceled by the Green-Schwarz mechanism, if we
include the Green-Schwarz field in our theory. The Green-
Schwarz mechanism cancels anomalies by the shift of
axions χa;b,

χa;b → χa;b þ αa;b; ð9Þ

underUð1Þa;b transformation, where αa;b areUð1Þa;b gauge
transformation parameters [46]. Those axions are eaten by
Uð1Þa;b gauge bosons and then Uð1Þa;b gauge bosons
become massive.
Similarly, this theory has the Uð1Þ − ðgravityÞ2 and

Uð1Þ3 anomalies. Those can also be canceled by the
Green Schwarz mechanism.
In the next section, we will study the T2=Z2 orbifold

background. For simplicity, we focus on orbifold models
without Wilson lines. The zero-mode wave functions on
T2=Z2 are obtained from the above wave functions [47].
The above wave functions have the following property:

1Note that the six-dimensional chirality is fixed. Then, λabþ and
λba− are combined with 4D left-handed and right-handed spinor
fields, and they correspond to a pair of matter and antimatter.
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ψ j;M
T2 ð−zÞ ¼ ψM−j;M

T2 ðzÞ: ð10Þ

Thus, the T2 wave function with j ¼ 0 is still the Z2-even
zero-mode on T2=Z2. Also, when M ¼ even, the T2 wave
function with j ¼ M=2 is still the Z2-even zero-mode on
T2=Z2. That is, we obtain

ψ j;M
T2=Zþ

2

ðzÞ ¼ ψ j;M
T2 ðzÞ; ð11Þ

for j ¼ 0, M=2. For the other, the Z2-even and odd zero-
modes can be written by

ψ j;M
T2=Z�

2

ðzÞ ¼ 1ffiffiffi
2

p ðψ j;M
T2 ðzÞ � ψM−j;M

T2 ðzÞÞ: ð12Þ

When M ¼ even, totally the numbers of Z2-even and
odd zero-modes are equal to ðM=2þ 1Þ and ðM=2 − 1Þ,
respectively. When M ¼ odd, the numbers of Z2-even
and odd zero-modes are equal to ððM − 1Þ=2þ 1Þ and
ððM − 1Þ=2Þ, respectively. Either Z2 even or odd modes are
projected out by the Z2 projection.
The anomalies of Uð1Þa and Uð1Þb on the T2=Z2

orbifold, e.g., for the Z2-even modes ψ j;M
T2=Zþ

2

ðzÞ, can be

studied in the same way as on the torus. Those anomalies
can also be canceled by the Green-Schwarz mechanism.

B. Modular transformation

Here, we give a brief review on modular transformation
of zero-mode wave functions [11–14]. Following [12], we
restrict ourselves to even magnetic fluxes M.
Under the modular transformation, the modulus τ trans-

forms as

τ →
aτ þ b
cτ þ d

: ð13Þ

This group includes two important generators, S and T,

S∶ τ → −
1

τ
; ð14Þ

T∶ τ → τ þ 1: ð15Þ

The generator S transforms the zero-mode wave func-
tions as

ψ j;M →
1ffiffiffiffiffi
M

p
X
k

e2πijk=Mψk;M: ð16Þ

On the other hand, the generator T transforms the zero-
mode wave functions

ψ j;M → eπij
2=Mψ j;M: ð17Þ

Generically, the T generator satisfies [12]

T2M ¼ IM×M; ð18Þ

on the zero-modes, ψ j;M. Furthermore, in Ref. [12] it is
shown that

ðSTÞ3 ¼ eπi=4IM×M; ð19Þ
on the zero-modes, ψ j;M. Hence, T and ðSTÞ3 are repre-
sented by diagonal matrices on ψ j;M, and they are Z2M and
Z8 symmetries, respectively.
The above representations of S and T on ψ j;M are

reducible. It is obvious that ψ j;M and ψM−j;M transform
in the same way under both S and T. That implies that the
orbifold basis ψ j;M

T2=Z�
2

ðzÞ corresponds to the irreducible

representation. We denote such irreducible representations
by S� and T�. Their explicit forms can be read off from
the above representations of S and T. Note that when
M ¼ even, Sþ and Tþ are ðM=2þ 1Þ × ðM=2þ 1Þ matri-
ces, and S− and T− are ðM=2 − 1Þ × ðM=2 − 1Þ matrices.

III. MODULAR SYMMETRY ANOMALY

Here, we study the modular symmetry anomaly.
Anomalies of non-Abelian discrete symmetries were stud-
ied in Ref. [45]. Each element of a non-Abelian discrete
group, g, generates Abelian discrete symmetry, ZK i.e.,
gK ¼ 1. Thus, basically anomalies of non-Abelian discrete
group are studied by analyzing Abelian discrete anomalies
of each element, g. However, states correspond to amultiplet
under a non-Abelian discrete symmetry. That is, g is
represented by a matrix. Suppose that zero-modes corre-
spond to the (anti-)fundamental representation of SUðNbÞ.
Then, if det g ¼ 1, the mixed ZK − SUðNbÞ2 anomaly
vanishes. Otherwise, the ZK symmetry generated by g
can be anomalous. Furthermore, suppose that zero-modes
correspond to the bifundamental representation ðNa; N̄bÞ
under SUðNaÞ × SUðNbÞ. Then, if det gNa ¼ 1, the mixed
ZK − SUðNbÞ2 anomaly vanishes. Otherwise, the ZK sym-
metry generated by g is anomalous. Hence, the quantity det g
is important to examine anomalies. If det g ≠ 1, such
discrete symmetry can be anomalous. Also, we can study
ZK − ðgravityÞ2 anomalies. If det g ¼ 1, such elements do
not contribute to gravitational mixed anomalies.

A. T2=Z2 orbifold

As mentioned above, the orbifold basis is more funda-
mental. Thus, we first study anomalies due to the Z2-even
modes on the T2=Z2 orbifold. Here, we study anomalies by
examining det g for smaller M concretely.

1. M = 2

Here, we study the modular symmetry for M ¼ 2. Note
that the zero-modes on T2 are the same as the Z2-even zero-
modes on T2=Z2. First, we study diagonal elements, T and
ðSTÞ3. Their explicit forms are written as

MODULAR SYMMETRY ANOMALY IN MAGNETIC FLUX … PHYS. REV. D 100, 045014 (2019)

045014-3



Tð2Þ ¼
�
1

i

�
; ðSð2ÞTð2ÞÞ3 ¼ eπi=4I2×2; ð20Þ

where we have omitted vanishing off-diagonal entries. That
is the Z4 × Z8 symmetry, and they satisfy detTð2Þ ≠ 1 and
detðSð2ÞTð2ÞÞ3 ≠ 1. Thus, both symmetries can be anoma-
lous. However, their combination,

T 0
ð2Þ ¼ Tð2ÞðSð2ÞTð2ÞÞ−3 ¼

�
e−πi=4

eπi=4

�
; ð21Þ

has detT 0
ð2Þ ¼ 1 and is always anomalyfree. This is the Z8

symmetry. Hence, the Z4 × Z8 symmetry can be broken to
Z8 by anomalies. The generator Að2Þ ¼ ðSð2ÞTð2ÞÞ3 can be
anomalous. Note that ðAð2ÞÞ4 ¼ ðT 0

ð2ÞÞ4. It is obvious that
Að2Þ is commutable with any element. Therefore, at least
the elements ðAð2ÞÞkg (k ¼ 1; 2; 3) with det g ¼ 1 has
detððAð2ÞÞkgÞ ≠ 1 and can be anomalous among all of
the elements, which are generated by Sð2Þ and Tð2Þ.
Indeed, explicit calculation shows that the order of the
full group generated by Sð2Þ and Tð2Þ is equal to 192, and
among them the number of elements with det g ¼ 1 is equal
to 48. Thus, all of the elements with det h ≠ 1 can be
written by h ¼ ðAð2ÞÞkg (k ¼ 1; 2; 3) with det g ¼ 1. That
is, only the element Að2Þ is important for anomalies.
The element Að2Þ can be anomalous. For example, it can

lead to the mixing anomalies with SUðNaÞ and SUðNbÞ.
However, it is remarkable that the element Að2Þ corresponds
to a subgroup of Uð1Þa as well as Uð1Þb. Thus, when we
include the Green-Schwarz field in our theory in order to
cancel Uð1Þ anomalies, the discrete anomalies correspond-
ing to Að2Þ can also be canceled by the same Green-Schwarz
mechanism as one for Uð1Þa and Uð1Þb. The other discrete
parts, which are independent of Að2Þ, are always
anomalyfree.
Similarly, we can study the ZK − ðgravityÞ2. Only the

element Að2Þ can lead to such gravitational mixed anoma-
lies, because the others have det g ¼ 1. Such anomalies can
be canceled by the same Green-Schwarz mechanism as one
for Uð1Þa and Uð1Þb.
The ðZKÞ3 anomaly has a clear meaning only if ZK

originates from Uð1Þ group [42–45].2 Thus, the relation
between ðZKÞ3 andUð1Þ3 anomalies as well as their Green-
Schwarz cancellation mechanisms is rather clear when ZK

is the subgroup of Uð1Þ. For the other part, we do not
discuss the ðZKÞ3 anomaly.
As mentioned in the previous section, in the Green-

Schwarz mechanism the axion χ shifts under the Uð1Þ
transformation to cancel anomalies. Such an axion is the
pure imaginary part of a complex field U in the super-
symmetric theory, where axionic shift (9) leads to U →
U þ iα under the Uð1Þ gauge transformation with the
transformation parameter α. It implies that e−cU transforms
linearly and it behaves as if it has the Uð1Þ “charge” −c.
Nonperturbative effects such as D-brane instanton effects
induce new terms e−cUϕ1ϕ2 � � � in 4D low-energy effective
field theory. Such terms are invariant under the anomalous
Uð1Þ and discrete symmetry with taking into account the
transformation of e−cU. However, when we replaceU by its
vacuum expectation value, such terms correspond to break-
ing terms. Thus, breaking terms for anomalous symmetries
appear. Similar breaking terms would also appear by field-
theoretical instanton effects even if we do not take string
nonperturbative effects into account.

2. M = 4

Similarly, we study the orbifold model with M ¼ 4, in
particular the Z2-even modes. First, we study diagonal
elements, T and ðSTÞ3. Their explicit forms are written as

Tð4Þþ¼

0
BB@
1

eπi=4

−1

1
CCA; ðSð4ÞþTð4ÞþÞ3¼eπi=4I3×3: ð22Þ

They correspond to the Z8 × Z8 symmetry. We find that
detTð4Þþ ≠ 1 and detðSð4ÞþTð4ÞþÞ3 ≠ 1. They can be
anomalous. However, their combination,

T 0
ð4Þþ ¼ Tð4ÞþðSð4ÞþTð4ÞþÞ3 ¼

0
BB@

eπi=4

e2πi=4

e5πi=4

1
CCA;

ð23Þ

has detT 0
ð4Þþ ¼ 1, and is always anomalyfree. This is the Z8

symmetry. The Z8 × Z8 symmetry can be broken to Z8 by
anomalies. The generator Að4Þ ¼ ðSð4ÞþTð4ÞþÞ3 ¼ eπi=4I3×3
can be anomalous again, and this is commutable with any
element. At least the elements ðAð4ÞþÞkg (k ¼ 1;…; 7) with
det g ¼ 1 has detððAð4ÞþÞkgÞ ≠ 1 and can be anomalous
among all of the elements, which are generated by Sð4Þþ and
Tð4Þþ. Indeed, explicit calculation shows that the order of the
full group generated by Sð4Þþ and Tð4Þþ is equal to 768, and
among them the number of elements with det g ¼ 1 is equal
to 96. Thus, all of the elements with det h ≠ 1 can be written
by h ¼ ðAð4ÞþÞkg (k ¼ 1;…; 7) with det g ¼ 1.

2When we examine anomalies by the Feynman diagram
calculations, we use currents associated with symmetries, but
we can not define currents for discrete symmetries. On the other
hand, we can examine anomalies of discrete symmetries by the
path integral approach. Then, anomalies appear as mixed
anomalies between a discrete symmetry and gauge symmetries
(gravity), whose gauge bosons (gravitons) are included in
covariant derivatives of fermions.
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The generator Að4Þþ is a subelement of Uð1Þa as well as
Uð1Þb. Thus, anomalies originated from Að4Þþ can be
canceled by the Green-Schwarz mechanism.

3. M = 6

Similarly, we study the orbifold model with M ¼ 6, in
particular the Z2-even modes. The diagonal elements,
T and ðSTÞ3, are explicitly written by

Tð6Þþ ¼

0
BBB@

1

eπi=6

e2πi=3

e3πi=2

1
CCCA;

ðSð6ÞþTð6ÞþÞ3 ¼ eπi=4I4×4; ð24Þ

where detðSð6ÞþTð6ÞþÞ3 ¼ −1. They correspond to the
Z12 × Z8 symmetry. They can be anomalous. By their
combinations, we can construct the diagonal elements with
det g ¼ 1 such as

ðSð6ÞþTð6ÞþÞ6 ¼ iI4×4;

ðTð6ÞþÞ3ðSð6ÞþTð6ÞþÞ3 ¼

0
BBB@

eπi=4

e3πi=4

eπi=4

e3πi=4

1
CCCA;

ð25Þ

etc. They include Tk
ð6Þþ only for k ¼ 3k0 with k0 ¼ integer,

but the elements g including Tk
ð6Þþ for k ¼ 3k0 þ 1 and k ¼

3k0 þ 2 have det g ≠ 1 and can be anomalous. The order of
the above group with det g ¼ 1 in the Z12 × Z8 symmetry is
equal to 16. Thus, its order reduces by the factor 1=6.
Indeed, the order of the full group generated by Sð6Þþ and
Tð6Þþ is equal to 2304, and among them the number of
elements with det g ¼ 1 is equal to 384. That is, the order
reduces by the factor 1=6. Here, it seems that the group
elements including Tk

ð6Þþ with k ¼ 1; 2 in addition

ðSð6ÞþTð6ÞþÞ3 can be anomalous. That is different from
the above cases with M ¼ 2 and 4.
However, ðSð6ÞþTð6ÞþÞ3 corresponds to the subelement

of Uð1Þa;b. Let us combine Tð6Þþ and a discrete trans-
formation of Uð1Þa;b,

T 0
ð6Þþ ¼ eiαTð6Þþ: ð26Þ

When α ¼ −1=12, we have detT 0
ð6Þþ ¼ 1, and T 0

ð6Þþ is

written explicitly as

T 0
ð6Þþ ¼

0
BBB@

e−πi=12

eπi=12

e7πi=12

e−7πi=12

1
CCCA: ð27Þ

As a result, in the comprehensive symmetry including
the modular symmetry and Uð1Þa;b, only Uð1Þa;b including
their discrete symmetries can be anomalous. In this sense,
the anomaly structure forM ¼ 6 is the same as the previous
examples for M ¼ 2 and M ¼ 4, where only discrete
symmetries of Uð1Þa;b as well as of course Uð1Þa;b
themselves can be anomalous.

4. Larger M

Similarly, we can study anomalies for larger M. The
anomaly structure for larger M is the same as one for
M ¼ 2; 4; 6. For M ≠ 6k, TðMÞþ and ðSðMÞþTðMÞþÞ3, in
general, have detTðMÞþ ≠ 1 and detðSðMÞþTðMÞþÞ3 ≠ 1,
although in specific values of M we have detTðMÞþ ¼ 1

for ðM þ 1ÞðM=2þ 1Þ ¼ 24k3 and detðSðMÞþTðMÞþÞ3 ¼ 1

for M ¼ 16k − 2. However, we can find the element
T 0
ðMÞþ ¼ TðMÞþðSðMÞþTðMÞþÞ3m satisfying detT 0

ðMÞþ ¼ 1.

Then, only the element ðSðMÞþTðMÞþÞ3 can be anomalous.
That is, only the discrete symmetry of Uð1Þa;b can be
anomalous.
For M ¼ 6k, even if we combine Tl

ðMÞþ and
ðSðMÞþTðMÞþÞ3m, there are elements with det g ≠ 1

except ðSðMÞþTðMÞþÞ3m. However, we can obtain T 0
ðMÞþ ¼

eiαTðMÞþ with detT 0
ðMÞþ ¼ 1 by combining TðMÞþ with a

proper discrete element of Uð1Þa;b.
As a result, it is found that only the Uð1Þa;b including

their discrete symmetries can be anomalous, but the
other symmetries independent of Uð1Þa;b are always
anomalyfree.
Although we have studied anomalies for the Z2 even

modes, we can study similarly anomalies for the Z2 odd
modes. One example is shown in the next subsection. Note
that either Z2 even or odd modes are projected out in T2=Z2

orbifold models, but both appear in T2 models.

B. T2

Similarly, we can discuss T2 models. The zero-modes of
T2 are combinations of Z2-even and odd modes on the
T2=Z2 orbifold. ForM ¼ 2, all of the zero-modes on T2 are
the Z2-even zero-modes. Thus, S and T are represented by
Sð2Þ and Tð2Þ.
For M ¼ 4, there is one Z2-odd mode. Then, the

diagonal elements, T and ðSTÞ3 are represented by

3M is obtained by M ¼ 16n − 2 with n satisfying
nð16n − 1Þ ¼ 3k.
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Tð4Þ ¼
�
Tð4Þþ

Tð4Þ−

�
;

ðSð4ÞTð4ÞÞ3 ¼

0
B@ ðSð4ÞþTð4ÞþÞ3

ðSð4Þ−Tð4Þ−Þ3

1
CA; ð28Þ

where Tð4Þ− ¼ eπi=4 and ðSð4Þ−Tð4Þ−Þ3 ¼ eπi=4. That is, we
have ðSð4ÞTð4ÞÞ3 ¼ eπi=4I4×4. This element corresponds to
the discrete subgroup of Uð1Þa;b and can be anomalous.
Other elements independent of Uð1Þa;b discrete subgroup
are always anomalyfree. For example, from Tð4Þ we can
construct T 0

ð4Þ ¼ eiαTð4Þ with detT 0
ð4Þ ¼ 1 by choosing a

proper value of α.

IV. CONCLUSION

We have studied the modular symmetry anomalies in
magnetic flux compactifiction. Our model is six-dimen-
sional supersymmetric UðNÞ Yang-Mills theory, where

UðNÞ gauge symmetry is broken down to UðNaÞ ×
UðNbÞ by magnetic fluxes in the compact space.
Discrete subsymmetries of Uð1Þa;b in the modular sym-
metry can be anomalous, but other discrete elements, which
are independent of Uð1Þa;b, are always anomalyfree.
Anomalies of such discrete symmetries can be canceled
by the same Green-Schwarz mechanism as the mechanism
to cancel Uð1Þa;b anomalies. As a result, breaking terms
can be induced only for continuous and discrete Uð1Þa;b
symmetries.
Here we have studied supersymmetric UðNÞ Yang-Mills

theory, which can be derived from D-brane models. Similar
representations of S and T were derived in heterotic
orbifold models [8–10]. It is interesting to carry out a
similar analysis on heterotic orbifold models.
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