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We study the Casimir effect in axion electrodynamics. A finite θ-term affects the energy dispersion
relation of photon if θ is time and/or space dependent. We focus on a special case with linearly
inhomogeneous θ along the z-axis. Then we demonstrate that the Casimir force between two parallel plates
perpendicular to the z-axis can be either attractive or repulsive, dependent on the gradient of θ. We call this
repulsive component in the Casimir force induced by inhomogeneous θ the anomalous Casimir effect.
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I. INTRODUCTION

The Casimir effect [1] refers to a physical force resulting
from the quantum fluctuations in the vacuum restricted by
boundaries. One can alternatively interpret it as a relativistic
extension of thevan derWaals forcemediated by thevacuum
polarization [2]. In the original study of the Casimir effect,
an attractive force between two parallel plates of perfect
conductors emerges from the vacuum of Maxwell electro-
dynamics. The presence of boundaries discretizes the
momenta, causing a finite difference in the vacuum energy,
which is mathematically represented by the Abel-Plana
formula in the simple case with parallel plates. The calcu-
lation machinery is quite analogous to the imaginary-time
formalism of finite-temperature field theory (see Ref. [3] for
discussions on temperature inversion symmetry in the
Casimir effect). A pioneering experimental test for the
Casimir force in the original scenario started out more than
a half century ago [4], while the more accurate measurement
is established after decades of development [5–8].
Theoretical generalizations of the original study include
the dynamical Casimir effect [9–13] and the fermionic
Casimir effect [14–17]. In a more interdisciplinary sense,
in view of modern nuclear and high-energy physics, the
Casimir effect shows great significance in the chiral bag
model of hadrons [18–20], serves as a hypothetical candi-
date for the dark energy origin from QCD [21–23], and also

has important relevance to the researches of strings, branes,
and gravity [24–26]. Remarkably, the latest numerical
simulations study the Casimir effect in Yang-Mills theory
and relate it to nonperturbative mass generation [27]. Apart
from such theoretical interests, moreover, the Casimir effect
has considerable applications in the manufacture of micro-
electromechanical systems in nanotechnology [28–32].
Among various aspects of the study on the Casimir

effect, one intriguing issue is the sign of the Casimir force.
In fact, it has been demonstrated that the Casimir force can
be flipped from attractive to repulsive via nontrivial
geometry of the boundaries [33–35]. The sign flip of the
Casimir effect may also be caused by special arrangements
of objects and media with different permittivity or per-
meability [36–40]. Interestingly, gathering substantial
related efforts have given rise to a famous “no-go” theorem:
the Casimir force between two bodies with reflection
symmetry is always attractive [41].
However, this no-go theorem can be circumvented in

consideration that the “vacuum” in quantum field theory is
not always trivial, but can have rich structures. For such
theories, even if boundaries maintain reflection symmetry,
nontrivial vacuum properties may produce a repulsion.
Indeed, it has been argued that the sign flip of the Casimir
force exists in the vacuum of the chiral Gross-Neveu model
[42] or its scalar cousin, i.e., the CPN−1 model [43]. It is
worth mentioning that these consequences have been
numerically validated by first-principle simulations of
lattice field theory in Ref. [44]. Lately, in a simpler setup
even without interaction effects, a tunable Casimir force
that can oscillate between attractive and repulsive has been
derived by Ref. [45]. In their scenario, the key point lies in
that the chiral media, i.e., optically active or gyrotropic
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media, endow the vacuum with an intrinsic breaking of
spatial parity P and/or time reversal T symmetries. In this
way, without breaking the reflection symmetry geometri-
cally, a repulsive Casimir force is allowed, which indicates
a specific mechanism to bypass the no-go theorem.
Actually, materials exhibiting such intrinsic P and/or T
symmetries breaking are familiar in condensed matter
physics, and e.g., Refs. [46–49] have reported the repulsive
Casimir force between two topological insulators, Hall
materials, and Weyl semimetals, respectively.
Along these lines, we are pursuing a kindred mechanism

for a repulsive Casimir force in axion electrodynamics also
known as the Maxwell-Chern-Simons theory [50–52]. The
Lagrangian density of axion electrodynamics contains an
ordinary electromagnetic part and a (3þ 1)-dimensional
topological term parametrized by the background θðxÞ
which can be interpreted as a background axion field.
We note that our work should be distinguished from those
in (2þ 1)-dimensional Chern-Simons electrodynamics
[53–56]. Given that a constant θðxÞ would not affect the
equation of motion, we consider a linearly inhomogeneous
background axion field; θðxÞ ¼ bμxμ with a constant four-
vector bμ. This specific choice is also motivated by related
works about the realization of quantum anomaly in con-
densed matter physics as discussed in Refs. [57–60] where
a similar form of θðxÞ is assumed. Axion electrodynamics
is a useful theory to account for anomaly induced phenom-
ena in chiral media, e.g., the Witten effect [61] the chiral
magnetic effect [62–64], the anomalous Hall effect
[65–68], etc. Nowadays, a Weyl semimetal, topological
insulator, and axion crystal provide us with real-world
playgrounds of axion electrodynamics, promoting cross-
disciplinary studies and experimental searches for anoma-
lous chiral phenomena [69–75]. In addition to activities
in condensed matter physics, one can see recent reviews
[76–78] for applications of chiral transport phenomena in
the high-energy nuclear experiments.
There are preceding efforts on the Casimir effect in the

framework of axion electrodynamics. In Ref. [79] the
topological Casimir effect was proposed as a possible
probe to detect the background θ angle and the QCD
axion. Thereby, a mixing coupling between electric and
magnetic fields plays an important role, which is often
referred to as the magnetoelectric effect in condensed
matter physics. More relevant to our present study is the
work of Ref. [80] where the Casimir effect with a pure
timelike bμ ¼ ðb0; 0Þ was analyzed, leading to the con-
clusion that no repulsive Casimir force is found in that case.
Our present work is a natural extension to the situation with
a pure spacelike bμ ¼ ð0; bÞ, and as we would argue later,
we discover a repulsive component of Casimir force.
For the above-mentioned purpose, we carry out an

analytical computation of the zero-point oscillation energy
and the associated Casimir force in the presence of θðxÞ.
We adopt the original straightforward method by Casimir

[1] as well as some technical implementation similar to the
case with bμ ¼ ðb0; 0Þ in Ref. [80]. In the Appendix, we
provide calculations using alternative methodology based
on scattering theory and the Lifshitz formula [81], which
looks superficially different from Casimir’s method but
yields an equivalent result.
The structure of this paper is organized as follows.

In Sec. II we present the definition of the theory we are
interested in and the physical setup to idealize the anoma-
lous Casimir effect in the presence of bμ ¼ ð0; bÞ. We
proceed to concrete calculations of the vacuum energy in
Sec. III. We figure out the energy dispersion relations and
quantify the zero-point oscillation energy there. Section IV
is devoted to our central results, i.e., the analytical
expression of the anomalous Casimir effect and the
numerical plot illustrating a repulsive region. Finally, we
conclude our discussions in Sec. V.

II. AXION ELECTRODYNAMICS

We briefly introduce the axion electrodynamics and then
expound our physical scenario for a repulsive Casimir
force. We model the effect of chiral medium on the Casimir
force using the axion electrodynamics, that is, the U(1)
electrodynamics with a topological θ term defined by the
following Lagrangian density:

Laxion ¼ −
1

4
FμνFμν þ 1

4
θFμνF̃μν: ð1Þ

In the above expression Fμν ≡ ∂μAν − ∂νAμ and F̃μν ≡
1
2
ϵμναβFαβ, where Aμ represents the U(1) gauge field. For

space-time dependent θðxÞ, the topological θ term modifies
the equations of motion. Here, for later convenience, let us
denote its derivatives as

b0ðxÞ≡ ∂tθðxÞ; bðxÞ≡ −∇θðxÞ; ð2Þ
or equivalently bμðxÞ ¼ ∂μθðxÞ in the covariant notation.
Nonzero b0 and/or b add CP-odd terms to the equations of
motion. The Euler-Lagrange equations from Eq. (1),

∂μFμν ¼ bμF̃μν; ð3Þ
and the Bianchi identity, ∂μF̃μν ¼ 0, comprise the
Maxwell-Chern-Simons equations in the absence of source.
The explicit forms read [82]

∇ · E ¼ −b · B; ð4Þ

∇ × B −
∂E
∂t ¼ b0Bþ b × E; ð5Þ

∇ · B ¼ 0; ð6Þ

∇ × Eþ ∂B
∂t ¼ 0: ð7Þ
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The first equation (4) implies an extra charge −b · B, which
is commonly called the Witten effect [61]. We can regard
the right-hand side of Eq. (5) together with Maxwell’s
displacement current from the left-hand side as the current
source for the magnetic field. Then, we find an extra current
term, jCME ¼ b0B, which can be understood as the chiral
magnetic effect with the identification of b0 as the
chiral chemical potential μ5. Another extra current,
jAHE ¼ b × E, represents the anomalous Hall effect which
exists even without the magnetic field.
These anomalous charge and currents are induced by the

CP-violating modifications on the vacuum in the axion
electrodynamics. Since the vacuum properties are such
changed, we can naturally anticipate noticeable impacts on
other physical observables related to them. In this work,
specifically, we explore such possibility in terms of the
Casimir force. For such a purpose, as illustrated in Fig. 1,
we install two plates of perfect conductors parallel to each
other upright to the z-axis. The interval distance between
two plates is Lz and the size of each transverse plate is
LxLy. For simplicity, we assume constant b0 and b.
It is known that a timelike bμ may incur tachyonic

instabilities at long wavelength, which would impede
the covariant quantization of the electromagnetic fields
[83–85]. Also, we point out that the Casimir effect with
constant b0 ≠ 0 but b ¼ 0 has been addressed in Ref. [80],
where no sign flip of the Casimir force was observed. Thus,
we focus on the situation with b0 ¼ 0 and b ≠ 0 in the
present work. For transverse symmetry, we postulate
b ¼ bẑ, that is, b is directed perpendicular to the two
plates. In our setup with such b ≠ 0, the reflection
symmetry is explicitly broken, which suggests that there
may arise a repulsive component in the Casimir force.
Indeed, we will confirm this with concrete calculations.

III. VACUUM ENERGY

We impose the Dirichlet boundary condition, Aμ ¼ 0, at
z ¼ 0 and z ¼ Lz, which is consistent with the properties of
perfect conductors. Moreover, we take the limit Lx;y → ∞.

Then, we discretize the electromagnetic wave vector as
k ¼ ðkx; ky; kz ¼ nπ=LzÞ with n ∈ Z.
A canonical quantization scheme for Aμ with covariant

gauge was proposed in Refs. [86–88], in which a tiny
photon mass was introduced. Instead, here we adopt a path
integral quantization with ghost fields. The Lagrangian
density with the gauge fixing term parametrized by ξ, and
the ghost fields c and c̄, reads

L¼LphotonþLghost

¼−
1

4
FμνFμν−

1

4
bAνF̃zνþ 1

2ξ
ð∂μAμÞ2þ1

2
∂μc̄∂μc: ð8Þ

The vacuum energy density ε is obtained from the gen-
erating functionals as follows:

VTε ¼ i logZphoton þ i logZghost: ð9Þ

Here V ¼ LxLyLz is the volume of the vacuum region
between two plates and T is the time interval in the path
integral. We keep them finite in the intermediate calcu-
lations and take the limits of Lx;y → ∞ and T → ∞ in the
end. Beginning with the calculation of the photon part, we
rewrite the photon Lagrangian as a bilinear form of Aμ in
momentum space,

Lphoton ¼ −
1

2
AμG−1

μνAν; ð10Þ

where

G−1
μν ¼ gμνk2 þ iϵμναβbαkβ −

�
1 −

1

ξ

�
kμkν: ð11Þ

Then we have

i logZphoton ¼ −
i
2
logDet½G−1

μν ðkÞ�; ð12Þ

where Det represents the determinant with respect to the
momentum index k and the Lorentz indices μ, ν. We firstly
calculate the determinant over Lorentz indices as

Det½G−1
μν ðkÞ� ¼

Y
k

ξ−1ðk2Þ2½−ðk2Þ2 þ b2ðk2 þ k2zÞ�: ð13Þ

For further calculations, we employ the following notation
for the energy dispersion relations determined from the on
shell condition [89]:

ω2
1;2 ¼ k2; ð14Þ

ω2
� ¼ k2x þ k2y þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ

b2

4

r
� b

2

�2

: ð15Þ

Perfect 
Conductor

Perfect 
Conductor

Chiral Matter

FIG. 1. Schematic illustration for the physical setup. Two
perfect conductor plates at z ¼ 0 and z ¼ Lz constitute the
transverse planes coordinated by x̂ and ŷ. The space between
two plates is filled with chiral matter represented by the axion
electrodynamics.
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We note that ω1;2 are zeros of ðk2Þ2 in Eq. (13). Since ðk2Þ2
appears from the longitudinal and the scalar polarizations,
the modes with ω1;2 are unphysical and their contributions
to vacuum energy are canceled by the ghosts. The physical
modes ω� are zeros of −ðk2Þ2 þ b2ðk2 þ k2zÞ, and they
correspond to the right- and left-handed photons. With
these dispersion relations, we express the vacuum energy
contributed from the photon as

i logZphoton ¼ −
X

i¼1;2;�

X
k

i
2
log ½k20 − ω2

i ðkÞ�; ð16Þ

where we have dropped an irrelevant constant ξ−1. By a
similar computation for the ghost, we acquire

i logZghost ¼ 2
X
k

i
2
log ðk20 − k2Þ: ð17Þ

Notably Eq. (17) cancels the contribution from the unphys-
ical modes with i ¼ 1, 2 in Eq. (16). Summing the photon
and the ghost contributions up, we get

VTε ¼ −
i
2

X
�

X
k

log ½k20 − ω2
�ðkÞ�: ð18Þ

Now, we take the limits of Lx, Ly, T → ∞, which replace
the phase space sum over k ¼ ðk0; kx; ky; nπ=LzÞ as

1

VT

X
k

→
1

Lz

X∞
n¼0

Z
dk0dkxdky

ð2πÞ3 : ð19Þ

Here, let us briefly explain how to compute the k0-integral.
Differentiating the integral with respect to ω�, we find two
poles on the real k0 axis. We deform the poles by the
standard iϵ prescription and carry out the k0-integration.
After further integrating over ω�, we extract a finite ω�-
dependent piece, dropping an irrelevant divergent part,

Z
dk0
2π

log ðk20 − ω2
� þ iϵÞ ¼ iω� þ ðconstÞ: ð20Þ

Eventually, we attain the vacuum energy per unit transverse
area, E ¼ Vε=LxLy, given by

E ¼
X
�

X∞
n¼0

Z
dkxdky
ð2πÞ2

ω�ðkÞ
2

: ð21Þ

Equation (21) is nothing but the sum of the zero-point
oscillation energy, sharing the same structure as the
conventional Casimir effect except for the energy dis-
persion relations.

IV. CASIMIR FORCE

Based on the vacuum energy achieved in the last section,
we will quantify the Casimir force in this section. We bring
in a new notation to express the energy dispersion relation,

ω2
�ðkÞ ¼ k2x þ k2y þ

π2

L2
z
μ2�ðnÞ; ð22Þ

where

μ�ðnÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ b̄2

p
� b̄: ð23Þ

Here, b̄ denotes the dimensionless b defined by b̄ ¼
bLz=ð2πÞ. We rescale kx;y → k̃x;y ≡ ðLz=πμ�Þkx;y, to per-
form the transverse momentum integration as

E ¼ π3

L3
z

X
�

X∞
n¼0

μ3�ðnÞ
Z

Λ̃� dk̃xdk̃y
ð2πÞ2

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̃2x þ k̃2y þ 1

q
; ð24Þ

where we introduced an ultraviolet cutoff Λ� so that a step
function, ΘðΛ� − ω�ðkÞÞ, is convoluted in the integrand.
With the rescaled dimensionless cutoff, Λ̃� ≡ ðLz=πμ�ÞΛ�,
we further evaluate the integral in Eq. (24) as

Z
Λ̃� dk̃xdk̃y

ð2πÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̃2x þ k̃2x þ 1

q

¼ 1

2π

Z
∞

0

dkrkr

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2r þ 1

q
Θ
�
Λ̃� −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2r þ 1

q �

¼ −
1

6π
þ Λ̃3

�
6π

: ð25Þ

After inserting Eq. (25) into Eq. (24), the second term
proportional to Λ̃3

� leads to an irrelevant constant indepen-
dent ofLz.We therefore safely leave this term out and reduce
the expression of E to

E ¼ −
π2

12L3
z

X
�

X∞
n¼0

μ�ðnÞ3: ð26Þ

Taking the sum over �, we further simplify the above
expression into

E ¼ −
π2

12L3
z

�
S
�
−
3

2
; b̄
�
þ 3b̄2S

�
−
1

2
; b̄
��

−
b3

24π
; ð27Þ

where we defined a function,

Sðs; b̄Þ≡ X∞
n¼−∞

ðn2 þ b̄2Þ−s; ð28Þ

for which we note that the sum runs from n ¼ −∞ to ∞.
The last term in Eq. (27), coming from n ¼ 0, is independent
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of Lz and hence gives no contribution to the Casimir force.
Therefore we safely drop this term hereafter. Thus, our
problem boils down to the calculation of Sðs; b̄Þ. We rewrite
Eq. (30) by multiplying it with the integral form of ΓðsÞ and
then divide by ΓðsÞ as

Sðs; b̄Þ ¼
X∞
n¼−∞

1

ΓðsÞ
Z

∞

0

ðn2 þ b̄2Þ−sus−1e−udu: ð29Þ

We change the integration variable from u to v ¼
u=ðn2 þ b̄2Þ so that the integral becomes

Sðs; b̄Þ ¼
X∞
n¼−∞

1

ΓðsÞ
Z

∞

0

vs−1e−n
2v−b̄2vdv

¼
X∞

m¼−∞

ffiffiffi
π

p
ΓðsÞ

Z
∞

0

vs−3=2e−π
2m2=v−b̄2vdv; ð30Þ

wherewe used Poisson’s summation formula. The termwith
m ¼ 0 yields the Gamma function, while the terms with
m ≠ 0 take the form of the integral representation for the
modified Bessel function of the second kind. We, therefore,
arrive at

Sðs; b̄Þ ¼
ffiffiffi
π

p
b̄1−2s

ΓðsÞ
�
Γ
�
s −

1

2

�
þ 4

X∞
m¼1

K1
2
−sð2πmb̄Þ
ðπmb̄Þ12−s

�
:

ð31Þ

Plugging this to the Casimir energy (27), we get

E ¼ E∞ þ Ereg

¼ E∞ þ b4Lz

16π2
X∞
m¼1

�
K1ðmbLzÞ
mbLz

−
K2ðmbLzÞ
ðmbLzÞ2

�
:

Here, the energy per unit transverse area, E, includes a
divergent portion,

E∞ ¼ −
5b4Lz

512π3
Γð0Þ: ð32Þ

But the corresponding energy density E∞=Lz is independent
of Lz. Thus, we can harmlessly subtract this energy density
irrelevant to the Casimir force, by shifting a reference level
of the energy density.
Finally, the Casimir force per unit transverse area is

given by the derivative of Ereg with respect to Lz, that is,

FðbÞ ¼ −
∂Ereg

∂Lz

¼ −
b4

16π2
X∞
m¼1

�
3K2ðmbLzÞ
ðmbLzÞ2

− K0ðmbLzÞ
�
: ð33Þ

This is our central result. We note that the limiting
behaviors K2ðxÞ → 2x−2 and K0ðxÞ → log x for x → 0
result in

Fð0Þ≡ lim
b→0

FðbÞ ¼ −
3

8π2L4
z

X∞
m¼1

1

m4
¼ −

π2

240L4
z
; ð34Þ

which retrieves the well-known result within the Maxwell
electrodynamics.
The b-dependence of the Casimir force (33) is shown

in Fig. 2. One can observe that the Casimir force is
repulsive when bLz > 2.38. By tuning the distance
between two plates while keeping bLz larger than 2.38,
the strength of the repulsive Casimir force is, in principle,
arbitrarily tunable. The ratio FðbÞ=Fð0Þ takes the minimum
value −0.32 for bLz ¼ 4.26. In the physical units, this
extremal value of repulsive force is estimated as
3.95 × 10−5ðb4½μm4�Þ dyn=cm2. We note that our results
qualitatively match Ref. [45] for bLz ≪ 1. In the Appendix,
we present an alternative approach developed in Ref. [45]
to reproduce exactly the same numerical result of FðbÞ as in
Fig. 2. Such an independent calculation based on different
subtraction procedures serves as a double check for our
results and a confirmation for our scheme to subtract
infinities in Eqs. (20), (25), and (32).

V. CONCLUSION

We demonstrated a repulsive component of the Casimir
force in axion electrodynamics by formulating its explicit
expression in an analytically closed form. We circumvented
the no-go theoremwhich tends to forbid the repulsiveCasimir
force between two objects with reflection symmetry. Our
underlying idea consists in the intrinsic parity symmetry
breaking in the chiral vacuum between the plates, which is
quite analogous to a recent proposal in Ref. [45].
Our next step is to seek for experimental realization of

our theoretical consequence. Our physical setup, in which
the θ-angle has a spatial gradient perpendicular to plates,

FIG. 2. Casimir force as a function of the dimensionless
distance scaled with b.
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would be realized through topological materials. For
instance, a Weyl semimetal with the separation between
Weyl nodes features the gradient of the θ-angle in the
electromagnetic effective action. Besides, it has been
proposed that the periodically stacked structure of trivial
and topological insulators also generates the gradient of the
θ-angle [72]. Another promising proposal to engender the
gradient of the θ-angle is to utilize an external rotating
electric field supplied by a circularly polarized laser to
irradiate Dirac semimetal [90]. These examples are
feasible candidates for realizing the repulsive Casimir force
revealed in the present paper.
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APPENDIX: SCATTERING FORMALISM
FOR THE CASIMIR FORCE

We here supply an alternative methodology to derive the
result (33), referring to the scattering theory approach
developed in Ref. [45]. The scenario in Ref. [45] considers
a situation of inserting nontrivial electromagnetic material
in between two perfect conductor plates. Concretely speak-
ing, their material features the birefringence parametrized
by a constant shift in the z-component of the wave vector,
δkz, with the dispersion relation following from classical
Maxwell electrodynamics, i.e.,

ω2
0 ¼ k2x þ k2y þ ðk̄z � δkzÞ2: ðA1Þ

As demonstrated by Eq. (21), all possible modifications on
the Casimir energy in the vacuum of axion electrodynamics
are encoded in the nontrivial dispersion relation. Then,
despite physical distinction between the chirality origins in
their and our studies, the formula derived in Ref. [45] is
directly applicable for our current setup. To this end, we
just need to replace their dispersion relation (A1) with ours
in Eq. (15).
Hence, we quote their expression for the Casimir energy,

Ereg ¼
Z

∞

0

dζ
2π

Z
∞

−∞

dkxdky
ð2πÞ2 log det ðI − R1U12R2U21Þ;

ðA2Þ

where ζ ¼ −iω is the imaginary frequency, R1 and R2 refer
to the reflection matrix of plate 1 at z ¼ 0 and plate 2 at
z ¼ Lz, respectively, and U12 and U21 stand for the trans-
lation matrix from plate 1 to 2 and from 2 to 1. We note that
above Ereg may have an Lz independent discrepancy from
Eq. (32), which would make no difference in the force. For
a chiral medium between two planes, the translation
matrices in helicity basis read

U12 ¼
�
eik

þ
z Lz 0

0 eik
−
z Lz

�
; U21 ¼

�
eik

−
z Lz 0

0 eik
þ
z Lz

�
;

ðA3Þ

in accordance with the plane wave ansatz in Euclidean
geometry. Here, the dispersion relations (15) are expressed
with k�z given in terms of ζ as

k�z ≡ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ2 þ k2⊥ � ib

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ2 þ k2⊥

qr
: ðA4Þ

Meanwhile, for two identical perfect conductor plates, the
reflection matrix can be ideally presumed as

R1 ¼ R2 ¼
�

0 −1
−1 0

�
: ðA5Þ

We insert Eqs. (A3) to (A5) into Eq. (A2) to obtain the
Casimir energy Ereg. The spatial derivative finally yields the
Casimir force,

F¼−
dEreg

dLz
¼
Z

∞

0

dζ
2π

Z
∞

−∞

d2k⊥
ð2πÞ2

×
2iðkþz e2ikþz Lz þk−z e2ik

−
z LzÞ−2iðkþz þk−z Þe2iðkþz þk−z ÞLz

1−e2ik
þ
z Lz −e2ik

−
z Lz þe2iðk

þ
z þk−z ÞLz

:

ðA6Þ

It can be proved that Eq. (A6) is equivalent to Eq. (33), and
the numerical plot matches Fig. 2 perfectly.
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