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We apply the recently discovered classical-quantum correspondence to study the quantum evaporation
of breathers in an extended sine-Gordon model. We present numerical results for the decay rate of the
breather as a function of the coupling strength in the model. This is a complete treatment of the
backreaction of quantum radiation on the classical dynamics of oscillons.
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I. INTRODUCTION

Oscillons are long-lived localized oscillating solutions of
nonlinear wave equations. They occur in many different
fields of physics, such as condensed matter theory [1] or
cosmology [2], and have been studied extensively. A
particularly interesting example of such a solution is the
so-called breather solution of the sine-Gordon model [3].
It is well known that this model possesses soliton and
antisoliton solutions interpolating between two consecutive
vacua, which are nonperturbative, stable and stationary.
In this context breather solutions can be interpreted as
soliton-antisoliton bound state solutions which are time
periodic and perfectly stable.
It is of course understood that breathers are purely

classical solutions but their stability properties can be
shown to extend into the quantum realm [4]. This however
ceases to hold when one introduces a coupling to a
quantum radiative field. The quantum evaporation of
breathers can be studied in the limit where the breather
itself is treated classically and provides a time-dependent
background causing the radiation field to get excited,
thereby losing energy and slowly decaying. The classical
breather thus becomes a “quantum oscillon.” This radiative
phenomenon is analogous to particle production during
gravitational collapse (Hawking radiation) [5] or pair
creation in electric fields (Schwinger pair production) [6].
This radiative phenomenon has been studied in detail by

Hertzberg in Ref. [7] but there the backreaction of the
quantum radiation on the classical breather background

was not fully taken into account. In this work we provide a
full treatment of the classical breather decay under the
effect of quantum radiation, i.e., fully incorporating back-
reaction effects. We do this by using the recently developed
classical-quantum correspondence (CQC) described at
length in Refs. [8–10]. The CQC method is identical to
the “mode functionmethod” used previously in the literature
(see e.g., [11–14]). In [11] the technique was used to study
fermion production and backreaction in classical scalar plus
gauge field backgrounds; in [12–14] particle production and
backreaction in solitonic backgrounds were treated but also
including other assumptions because of particle interactions.
Quantum backreaction on classical backgrounds is

generally calculated in the semiclassical approximation.
This is an iterative procedure and usually only the first
iteration is carried out as continuing the iterations is quite
laborious. Within the CQC, however, the quantum fields
are replaced by corresponding complexified classical
variables. The dynamics of these classical variables
together with the classical background defines a new
entirely classical dynamics problem that can be solved by
numerical or other means. The resulting solution for the
classical background is precisely the backreacted solution
we are seeking. Application of this technique to a
quantum mechanical example, where the full solution
can also be calculated, shows excellent agreement [8].
In Sec. II we start by introducing the notations pertaining

to the particular evaporating breather model we are study-
ing. The 1þ 1-dimensional model will involve a classical
sine-Gordon field ϕðt; xÞ and a quantum massless scalar
field ψðt; xÞ coupled together via a biquadratic interaction
term. In Sec. III we discretize this mixed classical-quantum
model on a lattice and map it to a fully classical system with
well-defined initial conditions that exactly mimics the full
backreacted dynamics. This mapping is achieved via the
CQC, which we briefly describe in this particular context.
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In Secs. IV and V we set up the numerical simulation of
the dynamics and describe its results. We conclude with
Sec. VI where we discuss the validity of our analysis and
compare it to previous work.

II. FIELD THEORY MODEL

We consider the sine-Gordon model plus an extra real
scalar field with biquadratic coupling,

L ¼
Z

dx

�
1

2
_ϕ2 −

1

2
ϕ02 −m2

ϕð1 − cosϕÞ

þ 1

2
_ψ2 −

1

2
ψ 02 −

λ

2
ϕ2ψ2

�
: ð1Þ

Here dotted (respectively, primed) quantities denote time
(respectively, spatial) derivatives, mϕ is the mass of the
excitations about the vacua, and we use natural units where
ℏ ¼ c ¼ 1. The classical breather solution,

ϕbðt; xÞ ¼ 4tan−1
�
η sinðωtÞ
coshðηωxÞ

�
; ψ ¼ 0; ð2Þ

with η ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ϕ − ω2
q

=ω, is an exact classical solution to
the equations of motion that is time dependent, periodic
and nondissipative, i.e., it has an infinite lifetime.
However at the quantum level, the ψ field gets excited
and this quantum radiation backreacts on the breather and
causes it to evaporate.
In general, it is difficult to couple the quantum excita-

tions of the field ψ to the purely classical breather solution.
Indeed, calculating such backreaction effects requires in
principle working in the fully quantized theory and since
the breather is a nonperturbative solution of the sine-
Gordon model, results can only be obtained via computa-
tionally intensive lattice field theory simulations. Another
avenue generally used is the semiclassical approximation,
whereby the dynamics of the quantum field ψ are first
determined in the presence of the fixed classical back-
ground ϕ, then the classical equations of motion for the
field ϕ are solved by substituting ψ2 for its vacuum
expectation value hψ2i, and finally the procedure is
reiterated in order to get better and better approximations
to the backreaction.
In the following, we choose a somewhat different path

and study the evaporation of the breather using the CQC
developed in Refs. [8–10]. Notice that the CQC only
applies to the case of free quantum fields. To generalize
the method to scenarios where the field ψ has self-
interactions requires approximation methods [12].

III. LATTICE VERSION

We first discretize the theory by putting it on a spatial
lattice as in Ref. [9]. More precisely, we introduce an IR
regulator L for the spatial domain (physical size of the

lattice) and divide the interval ½−L=2; L=2� into N þ 1
intervals of size a ¼ L=ðN þ 1Þ. For any integer i running
from 0 to N þ 1 we then define

ϕðt; ði − ðN þ 1Þ=2ÞaÞ ¼ ϕiðtÞ; ð3Þ
ψðt; ði − ðN þ 1Þ=2ÞaÞ ¼ ψ iðtÞ; ð4Þ

and impose Dirichlet boundary conditions ϕ0 ¼ ϕNþ1 ¼
ψ0 ¼ ψNþ1 ¼ 0 at “spatial infinity”. With these definitions
(1) is well approximated by

LðNÞ ¼
XN
i¼1

a
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Introducing the matrix Ω2 defined by

Ω2
ij ¼

�þ2=a2 þ λϕ2
i ; if i ¼ j

−1=a2; if i ¼ j� 1;
ð6Þ

we can recast the ψ-dependent part of (5) in more compact
form as

LðNÞ
ψ ¼

XN
i;j¼1

�
a
2
_ψ iδij _ψ j −

a
2
ψ iΩ2

ijψ j

�
: ð7Þ

As we have discussed in the previous section, the breather
solution (2) is classically nondisssipative, but not quan-
tumly. In order to study its quantum evaporation, we make
use of the techniques developed in Ref. [9]. In the spirit of
the CQC, we assume that the ϕis are classical degrees of
freedomwhile the ψ is are quantum. At time t ¼ 0 the initial
conditions for ϕi are such that if λ were to be set to 0,
one would recover the nondissipative breather solution.
The quantum harmonic oscillators ψ i on the other hand
are taken to be in their ground state initially. (Since
ϕðt ¼ 0; xÞ ¼ 0 this corresponds to the quantum field ψ
being in its noninteracting (λ ¼ 0) vacuum.) Because of the
explicit time-dependence induced by the presence of the
λϕ2

i term in Ω2, their quantum state subsequently evolves
and their average energy increases. Within the CQC, this
situation can be accurately and quantitatively described by
promoting the quantum degree of freedom ψ i to a classical
complex N × N matrix coefficient Zij=a. This results in the
following substitution at the level of the discretized
Lagrangian:

LðNÞ
ψ → LðNÞ

Z ¼
XN
i;j;k¼1

�
1

2a
_Z�
ijδik _Zkj −

1

2a
Z�
ijΩ2

ikZkj

�
: ð8Þ
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In addition to the above substitution, the CQC paradigm
also requires that we choose very specific initial conditions
for the classical variables Zij. These are most easily written
in matrix notation,

Z0 ¼ −i
ffiffiffi
a
2

r ffiffiffiffiffiffi
Ω0

p −1 and _Z0 ¼
ffiffiffi
a
2

r ffiffiffiffiffiffi
Ω0

p
: ð9Þ

Here the zero subscript denotes initial values while the
square root of a symmetric positive definite matrix S ¼
O:Diagðλ1; λ2;…; λNÞ:OT is defined to be

ffiffiffi
S

p ¼ O:Diag
ð ffiffiffiffiffi

λ1
p

;
ffiffiffiffiffi
λ2

p
;…;

ffiffiffiffiffi
λN

p Þ:OT .
Finally the CQC Lagrangian reads

LðNÞ
CQC ¼

XN
i¼1
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Note that the interaction term is present in the very last term
because the definition of Ω2 contains ϕ as in (6).
In the next section we set the problem up for numerical

simulation.

IV. NUMERICAL SETUP

To understand how the quantum evaporation of the
classical breather proceeds in time we solve the discretized
equations of motion stemming from (10). The evolution of
ϕ is described by the ordinary differential equations

ϕ̈i −
1

a2
ðϕiþ1 − 2ϕi þ ϕi−1Þ þm2

ϕ sinðϕiÞ

þ λ

�
1

a2
XN
j¼1

Z�
ijZij

�
ϕi ¼ 0; ð11Þ

with initial conditions that would yield the nondissipative
breather solution in the λ ¼ 0 limit, i.e.,

ϕiðt ¼ 0Þ ¼ 0; ð12Þ

_ϕiðt ¼ 0Þ ¼ 4ηω

cosh ðηωaði − Nþ1
2
ÞÞ : ð13Þ

The Zijs evolve according to

Z̈ij þ Ω2
ikZkj ¼ 0; ð14Þ

with initial conditions prescribed by the CQC. More
precisely, since ϕiðt ¼ 0Þ ¼ 0, it is easy to diagonalize
the tridiagonal matrix Ω2

0 and obtain explicit expressions

for the initial conditions for Zij. Indeed we find that Ω2
0 ¼

ODOT , where

Dij ¼
4

a2
sin2

�
πi

2ðN þ 1Þ
�
δij; ð15Þ

and O is an orthogonal matrix with components

Oij ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2

N þ 1

r
sin

�
πij

N þ 1

�
: ð16Þ

Therefore using (9) we can explicitly write

Zijðt ¼ 0Þ ¼ −ia
N þ 1

XN
k¼1

sinð πik
Nþ1

Þ sinð πkj
Nþ1

Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinð πk

2ðNþ1ÞÞ
q ; ð17Þ

_Zijðt ¼ 0Þ ¼ 2
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XN
k¼1

sin
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πik
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�
sin

�
πkj
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�

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin

�
πk

2ðN þ 1Þ
�s
: ð18Þ

The numerical solution to the coupled system of ordinary
differential equations (11) and (14) with respective initial
conditions (12), (13), (17) and (18) thus yields the
dynamics of the quantum evaporation of the classical
breather. In the following we take mϕ ¼ 1, ω ¼ 0.25 and
L ¼ 100 (the latter choice thus completely fixing our
units). Note that because of the Dirichlet boundary
conditions that we used to implement our discretized
model, we are only able to trust our results for maximum
integration times T of the order of the size of the lattice L
(light crossing time) beyond which spurious reflections
are expected to spoil the predictivity of the numerical
analysis.
Notice also that because of the matrix nature of the Z

variable, the computational complexity of this numerical
problem increases as N2 ∝ 1=a2 or in other words as the
inverse square of the spatial resolution.
Before going on to discuss our numerical results, we

need to address the dependence of our results on the lattice
spacing a. Backreaction of the quantum radiation on the
classical breather is encoded in the Z�Z factor in paren-
theses appearing in Eq. (11). The factor diverges logarith-
mically as a → 0 (for fixed L ¼ Na) since at the initial time
we find

1

a2
XN
j¼1

Z�
ijZij ∼

1

2π
lnN ∼

1

2π
lnðμLÞ; ð19Þ

where μ≡ 1=a is the energy scale corresponding to the
lattice cutoff. If we now rescale μ → ζμ, the Z�Z factor
shifts by lnðζÞ=ð2πÞ. In (11), a shift in the Z�Z factor is
equivalent to a shift in the mass term of ϕ. Hence to
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compare results at different lattice spacings we should
ensure that the classical potential VðϕÞ is correspondingly
adjusted to obtain the same physical mass for ϕ. In other
words, if we rescale μ → ζμ, we should also change the
potential VðϕÞ → VðϕÞ − λ lnðζÞϕ2=ð4πÞ, and then (11) is
invariant under the rescaling (except for discretization
effects in the Laplacian term).
Now that we know how VðϕÞ changes with a rescaling

of the lattice spacing a, we need a physical input that tells us
the potential for some particular value of the lattice spacing,
call it a�. Given that a plays the role of the spatial resolution,
we must require that this is enough to resolve the smallest
physical object in the simulation box, the breather, whose
size is of order 1 (in units where mϕ ¼ 1). For our purposes
it suffices to take a� ≈ 0.2 (which corresponds to a lattice
with N� ¼ 500 points) and assume that VðϕÞ is the classical
sine-Gordon potential at this resolution.
The equations of motion (11) and (14) with initial

conditions (12), (13), (17), (18) can now be solved

numerically using explicit methods in Fortran and also
in Mathematica (for smaller values of N). As noted above,
the computational costs scale as N2 and we are effectively
limited to N ≤ 1000.

V. RESULTS

As discussed in the introduction, we expect the classical
breather field ϕ to evaporate under the effect of the
coupling to the quantum radiation field ψ . This can be
explicitly seen in Figs. 1(a) and 1(b) where we plot
snapshots of the breather spatial profile with and without
quantum backreaction taken into account: indeed the
evaporating breather oscillates at a higher frequency and
with decreasing amplitude as compared to the nonevapo-
rating one. The amplitude plots of Figs. 1(c) and 1(d)
confirm these heuristic observations.
We are in particular interested in the breather’s decay rate

and in how this rate changes with the physical coupling

(a) (b)

(c) (d)

FIG. 1. Visualization of the breather dynamics with and without backreaction. HereN ¼ 500. (a) Spatial profile of the breather (ϕi as a
function of the lattice position i) in the absence of evaporation i.e., when λ ¼ 0. The snapshots are taken every one sixteenth of a period
and later times correspond to lighter shades of gray. (b) Spatial profile of the breather (ϕi as a function of the lattice position i) with
evaporation taken into account i.e., when λ ¼ 0.1. The snapshots are taken every one sixteenth of a period (of the non-evaporating
breather) and later times correspond to lighter shades of gray. (c) Breather amplitude i.e., value of the field at the center of the lattice, as a
function of time in the absence of evaporation i.e., when λ ¼ 0. (d) Breather amplitude i.e., value of the field at the center of the lattice, as
a function of time with evaporation taken into account i.e., when λ ¼ 0.1.

OLLÉ, PUJOLÀS, VACHASPATI, and ZAHARIADE PHYS. REV. D 100, 045011 (2019)

045011-4



constant λ. As mentioned previously, we also check if our
renormalization scheme leads to similar evaporation rates
when we change N.
In Fig. 2 we plot the energy of the breather,

Ebreather ¼
Z

dx

�
1

2
_ϕ2 þ 1

2
ϕ02 þm2

ϕð1 − cosϕÞ
�

≈ a
XN
i¼1

�
1

2
_ϕi
2 −

1

2a2
ϕiðϕi−1 − 2ϕi þ ϕiþ1Þ

þm2
ϕð1 − cosϕiÞ

�
; ð20Þ

as a function of time for several different values of λ,
keeping all other parameters fixed. With λ ¼ 0, the breather
does not decay, as expected. For nonvanishing λ, the
breather decays while also undergoing small oscillations.
As λ becomes larger, the breather decays faster and the
amplitude and frequency of the oscillations grow (which
can readily be seen on Figs. 3 and 4).
For a more quantitative result we could furthermore find

a power law fit of the upper and lower envelopes bounding
this oscillatory behavior to estimate the breather lifetime
and understand its dependence on λ in particular. Here we
only show a linear fit of the large time behavior of the lower
envelope in Fig. 5 for different values of λ. With the
exception of the λ ¼ 0.1 case where the fit is poorer, the
slopes increase in absolute value with increasing λ, which is
consistent with the intuitive idea that the breather lifetime
decreases as the coupling becomes stronger.
Finally we check that our renormalization prescription

is the correct one for dealing with the small a limit. To do
this we plot the breather energy for different values of N
for the same L and λ with and without mass renormaliza-
tion [Figs. 6(a) and 6(b)]. It is clear from these two plots
that the dependence on the effective description is dra-
matically mitigated through the use of our renormalization
prescription: the obvious drift in Fig. 6(a) is greatly

FIG. 2. Breather energy as a function of time for different
values of the physical coupling constant λ. The top (flat) curve
corresponds to λ ¼ 0 while the decaying oscillatory curves
correspond, from top to bottom, to λ ¼ 0.02, 0.04, 0.06, 0.08
and 0.1. Here N ¼ 500.

FIG. 3. Average frequency of oscillation ν of the breather
energy as a function of λ. (The oscillation frequency of the
breather amplitude is half that of the energy because E is
quadratic in ϕ.) The dashed curve represents the best fit power
law model: ν ≈ −0.44þ 0.90ð0.01þ λÞ0.11. Here N ¼ 500.

FIG. 4. Amplitude of oscillation of the breather energy (around
time t ¼ 50) as a function of λ. The dashed curve represents the
best fit power law model: ΔEbreatherðt ¼ 50Þ ≈ 1.55 − 0.20=
ð0.03þ λÞ0.56. Here N ¼ 500.

FIG. 5. Local minima of the breather energy as a function of
time for λ ¼ 0.02, 0.04, 0.06, 0.08 and 0.1 (corresponding to
circle, square, diamond, upper and lower pointing triangles
respectively). Also shown are the respective linear fits for late
times with slopes of absolute values 0.011, 0.017, 0.019, 0.021,
0.018. Here N ¼ 500.
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reduced when we shift the value of the bare mass squared
by λ lnða=a�Þ=ð2πÞ in order for mϕ to correspond to the
physical mass of the sine-Gordon field. The small residual
drift can be attributed to finite N effects, i.e., contributions
to the renormalization that are subleading in N and
numerical errors due to the coarseness of the lattice.
In the N → ∞ limit both these contributions vanish.
These results, especially Figs. 2 and 5, give clear

evidence that the breather evaporates by emitting quanta
of ψ . In our setup, this comes together with oscillations in
the breather energy. In order to understand the origin of
these oscillations, note that the vacuum fluctuations of
ψ give rise to a nonzero hψ2i, which is affected by the
boundary conditions imposed on our simulation box of
finite length L as in the Casimir effect.
It is natural to ask how the initial quantum fluctuations

of ψ , as measured by hψ2it¼0, affect the breather evolu-
tion. This is very simple to answer by considering the SG
model perturbed by a constant mass term, □ϕþ sinϕþ
m2

effϕ ¼ 0, with m2
eff ¼ λhψ2it¼0. The energy stored in the

breather in this model (without including the m2
eff pertur-

bation term) exhibits very similar behavior to that
in Figs. 2 and 5, including the oscillations with a definite
λ-dependent period. More specifically, taking m2

eff ¼
λ
P

Z�Z=a2 evaluated at the center of the box (and at
t ¼ 0), the plot in Fig. 3 is reproduced with better than
10% precision. Note that the frequency is seen to approach
twice the breather frequency at λ ≪ 1, which is readily
understood because the perturbation of the SG model at
lowest order in λ is proportional to ϕ2.
This suggests that the oscillatory behavior in the breather

energy can be interpreted as originating from the quantum
vacuum fluctuations of ψ . On top of this, there is the
quantum creation of ψ particles, which leads to the decrease
of the average breather energy over time. Thus the CQC
scores a double goal, capturing the two kinds of quantum
effects at once—as it should.

VI. CONCLUSIONS

In the previous section we have studied the decay of the
breather numerically via the CQC. Backreaction was fully
taken into account. A legitimate question that might arise is
whether the predictions of the CQC actually correspond to
the full quantum solution, i.e., where both breather and
radiation field are treated quantumly. It turns out that in the
fixed background approximation the 1=a2

P
N
j¼1 Z

�
ijZij

term responsible for the backreaction is actually exactly
equal to the vacuum expectation value h0jψ2

i j0i. Therefore
the solution of the dynamical system discussed in this paper
can be seen to correspond to the limit of a semiclassical
iterative procedure where one starts with the classical
breather solution, computes the quantum radiation in this
background, uses it to calculate the first semiclassical
correction to the background and repeats this process ad
infinitum. To our knowledge this is the first time such a
numerical calculation is carried out in full. Usually, the first
iteration of this semiclassical procedure is carried out and
claimed to give accurate results. However this can lead to
relative errors of order 100% as discussed in Ref. [8] in the
context of a 0þ 1-dimensional toy model. Previous work
on the quantum decay of oscillons [7] used methods
analogous to the CQC to calculate the radiation rate on
a fixed oscillon background. However the backreaction on
the oscillon background was not computed.
The method outlined in this paper can be very powerful

in computing quantum backreaction on classical back-
grounds but it is important to be aware of its limitations in
order to successfully apply it to other field theory models.
First of all, it only yields accurate results in the limit where
the background can actually be treated classically. This is
only true in the limit where the pure sine-Gordon part of
the action evaluated for the breather solution dominates the
quantum radiation as well as the interaction parts (this can

(a) (b)

FIG. 6. Sensitivity of the breather energy on N with and without coupling constant renormalization. (a) Breather energy as a function
of time for different values ofN without mass renormalization.N varies from 200 (lightest shade of grey) to 1000 (darkest shade of grey)
in increments of 100. (b) Breather energy as a function of time for different values of N with mass renormalization. N varies from 200
(lightest shade of grey) to 1000 (darkest shade of grey) in increments of 100.
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be seen by temporarily restoring the reduced Planck
constant ℏ). We see that this requirement amounts to [4]

Ebreather ∼ 16mϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ω2

m2
ϕ

s
≫ EZ −

1

2
TrΩ0; ð21Þ

where EZ ¼ P
N
i;j;k¼1½ _Z�

ijδik _Zkj=2aþ Z�
ijΩ2

ikZkj=2a� and
the subtraction in the last term is meant to remove the
vacuum energy contribution (which diverges quadratically
with N). For our choice of parameters and since total
energy is conserved, Fig. 2 shows that this condition holds
up to times T ∼ L as long as λ ≪ 1.
Second, our method also has intrinsic numerical limi-

tations, chief among which is its quadratic computational
complexity in the size of the lattice. This renders high
resolution computations intractable and is a source of
numerical error which manifests itself in what could be
termed finite N artifacts (such as the residual N-dependent
drift in the energy of the breather even after coupling
constant renormalization, or the imperfect conservation of
total energy). Another source of inaccuracy is the perfectly
reflecting boundary conditions chosen in the discretization
of the continuous problem which set an upper bound on the
meaningful integration time.
However these limitations also suggest new avenues for

improvement. In particular parallelizing the code would
allow for larger lattices, both potentially increasing the
resolution and pushing the spatial boundaries further so as
to allow for larger integration times. One could also
implement higher order discretization schemes to increase
accuracy, or absorbing boundary conditions to reduce
spurious reflections.
Finally, it should be mentioned that this technique

should be readily applicable to more complicated field
theory scenarios such as backreaction of quantum radi-
ation on a gravitationally collapsing background or
Schwinger pair creation (recall however that the quantum
field cannot have self-interactions). However, gravita-
tional scenarios will necessarily involve more intricate

renormalization schemes in particular when dealing with
vacuum energy divergences. Another interesting question
is whether one can use the CQC to obtain the quantization
of the breather spectrum in the full quantum SG theory
[4]. By separating the SG field into a classical breather
plus quantum fluctuations and treating the latter via CQC
one may perhaps reproduce this classic result.
We have thus solved for the quantum evaporation of

classical breathers by applying the CQC. This is the first
application of the CQC to a field theory problem that has
not been solved by traditional methods. The CQC relies on
the classicality of the background variable and if the
background is quantum there will be deviations from the
CQC as seen in the quantum mechanical example in [8].
Thus it is still useful to solve the breather evaporation
problem in full quantum field theory in order to compare to
the CQC result and to understand the method’s limitations.
However, since the breather is nonperturbative, we expect
that a quantum field theory treatment will require new
techniques and/or a lattice implementation. In the context
of gravity, the CQC may be the only hope to solve
important problems such as black hole evaporation because
we do not yet have a quantum theory of gravity.
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