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We study the massive scalar field Sorkin-Johnston (SJ) Wightman function Wy, restricted to a flat 2D
causal diamond D of linear dimension L. Our approach is two-pronged. In the first, we solve the central
SJ eigenvalue problem explicitly in the small mass regime, up to order (mL)* This allows us to formally
construct Wy, up to this order. Using a combination of analytical and numerical methods, we obtain
expressions for W, both in the center and the corner of D, to leading order. We find that in the center,
Wy, is more like the massless Minkowski Wightman function Womink than the massive one Wi"¥, while
in the corner it corresponds to that of the massive mirror WIi™", In the second part, in order to explore
larger masses, we perform numerical simulations using a causal set approximated by a flat 2D causal
diamond. We find that in the center of the diamond the causal set S] Wightman function W¢,; resembles
Wiink for small masses, as in the continuum, but beyond a critical value m,. it resembles Wmink, ag
expected. Our calculations suggest that unlike Wik W, has a well-defined massless limit, which
mimics the behavior of the Pauli Jordan function underlying the SJ construction. In the corner of the
diamond, moreover, W§, agrees with Wﬁi"‘“ for all masses, and not, as might be expected, with the

Rindler vacuum.
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I. INTRODUCTION

The standard approach to quantum field theory is
inherently observer dependent, as is evident from the
Unruh effect for accelerating observers in Minkowski
spacetime. In Minkowski spacetime, due to its high degree
of symmetry, there is a preferred family of inertial observ-
ers and hence a unique Poincare invariant vacuum. This
Minkowski vacuum is considered the bedrock of quantum
field theory, and its Poincare invariance can be used to
explain many aspects of the theory.

However, in a generic curved spacetime no such
preferred family of observers exists which can be used
to single out a preferred vacuum state. This suggests
that the state plays a subsidiary role in the theory. This
is the approach taken in algebraic quantum field theory,
where a primary role is played by the algebra of
operators. The choice of state is relegated to a choice
of representation of this algebra, which need not be
coordinate invariant. A proposal for a unique vacuum
state, the SJ vacuum, for a free scalar field theory was
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developed by Sorkin and Johnston [1,2] for a bounded,
globally hyperbolic region M of a spacetime. The Pauli-
Jordan integral operator, defined as

iAo f(X)= / iAX, X)) f(X)dV y (1)

M

is self adjoint in M. Here, A(X,X’) is the covariantly
defined Pauli-Jordan function (which is the difference
in the retarded and advanced Green functions) and
dVy is the volume element. The associated SJ
Wightman function Wg; (or two point function) is then
simply the positive part of iA. Wg; can be shown to
be the unique vacuum which satisfies the following
conditions [1,3]:

WX, X') - WX, X)=iAX,X)
commutator condition

W(X,X')—W*(X',X) =0 Hermiticity
[ avsavyr w20
M
positive semidefinite

/dVX/W(X,X’)W(X”,X’):O orthogonal support.
M

(2)
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Wy, can be explicitly constructed from the spectral
decomposition of iA, where the spectrum of iA is given
by the integral eigenvalue equation,

~

iAou(X) = du(X). (3)

This is what we refer to as the “central eigenvalue
problem” in the SJ approach.

However the integral form makes it a challenging task to
find solutions even in simple cases. As a result there are
very few cases in which W; has been obtained explicitly.
These include the massless free scalar SJ vacuum in a 2D
flat causal diamond [3,4], a patch of the trousers spacetime
[5] and the ultrastatic slab spacetime [6]. In this work, we
study the SJ vacuum for a massive free scalar field in the 2D
flat causal diamond D of length 2L, both in the continuum
and on a causal set Cp obtained from sprinkling into D.

In the continuum we solve the central SJ eigenvalue
problem explicitly in the small mass approximation keep-
ing terms only up to O(m*), with m* < 1 (in dimension-
less units, with L = 1). The eigenfunctions and eigenvalues
so obtained reduce to their massless counterparts when
m = 0 [3]. This allows us to formally construct Wg; in D.

As in [3] we consider two regimes of interest: one in
the center of the diamond, and the other at the corner. In a
small central region D; of size /, we find analytically that
Wy, resembles the massless Minkowski vacuum W™k up
to a small mass-dependent constant ¢5$"", rather than the
massive Minkowski vacuum W™k In the corner, Wy,
resembles the massive mirror vacuum W™ with the
difference depending on a small mass-dependent constant
esomer rather than the expected agreement with the massive
Rindler vacuum Wrd, Both €™ and €™ are the errors
that arise in the approximation of a quantization condition
which is a mass dependent transcendental equation, and are
therefore nontrivial to calculate analytically.

In order to find 5™, €59, we evaluate Wg; numeri-
cally using a convergent truncation WY, of the mode-sum.
The calculations show that eSer, ¢Somer contribute negli-
gibly to Wy; both in the center and the corner. This
confirms that for a small mass Wy, corresponds to the
massless Minkowski vacuum. This behavior is unexpected
and suggests that at least in this small mass approximation
Wy, does not satisfy the expected massive Poincare
invariance of the vacuum but rather the massless
Poincare invariance. In the corner, again e;0™" is found
to be small, and confirms that W, resembles WX rather
than Wrind,

We then examine the behavior of this truncated WY,
in a slightly enlarged region in the center. We find that it
continues to differ from Wmi"k while agreeing with Wink
atleastup to [ ~ 0.1. In an enlarged corner region W; there
is a marked deviation from W™ but it still does not
resemble the Rindler vacuum.

In the next part of this work we obtain W¢, numerically
for a causal set Cp obtained by sprinkling into D, for a
range of masses. We find that in the small mass regime W,
agrees with our analytic calculation of Wg; in the center of
the diamond and therefore resembles W™, This means
that it differs from W™K in the small mass regime.
However, as the mass is increased, there is a crossover
point at which the massless and massive Minkowski
vacuum coincide. This occurs when the mass m, =
2A ~0.924, where A ~0.462 is the IR cutoff for the
massless vacuum calculated in [3]. For m > m,, W¢; then
tracks the massive Minkowski vacuum instead of the
massless Minkowski vacuum. In the corner of the diamond,
the causal set W¢; looks like the mirror vacuum and not the
Rindler vacuum for all masses.

Our calculations suggest that, as in the case of the de
Sitter SJ vacuum studied in [7], the massive Wg; has a
well-defined m — 0 limit, unlike WDk, A possible
reason for this is that the SJ vacuum is built from the
Green function which is a continuous function of m even
as m — 0. The behavior of Wg; for m > 0 is also curious.
For Wgink| A sets a scale and dominates in the small m
regime, while for large m, the opposite is true. At m,,
wink and Wik coincide at small distance scales, so that
Wy, tracks W™K for m < m, and W™ for m > m, in a
continuous fashion.

Whether this unexpected small mass behavior of Wg; is
the result of finiteness of D or an intrinsic feature of the 2D
SJ vacuum is unclear at the moment. Further examination
of the massive SJ vacuum in different spacetimes should
shed light on these questions. The mass dependent behavior
in the 2D causal diamond echoes that in 4D de Sitter
spacetime [7]. For de Sitter spacetime it is known that there
is no massless de Sitter invariant vacuum and that the
Mottola-Allen vacua do not have an m — 0 limit. However,
for a causal set that is approximated by de Sitter spacetime
W, seems to behave very differently and in particular, does
have a well defined m — 0 limit. Understanding how these
differences in behavior between the SJ and the standard
vacua manifest themselves in the conditions Eq. (2) should
shed some light. However this is beyond the scope of the
present work.

We begin in Sec. II with a short introduction to the SJ
approach to quantum field theory for free scalar field in a
bounded globally hyperbolic spacetime. In Sec. III we set
up the SJ eigenvalue problem for the massive scalar field in
D and find the SJ spectrum in the small mass limit to
O(m*). Section IV contains the analytic and numerical
calculations of W; in different regions of D. In Sec. V we
show the results of simulations of the causal set SJ vacuum
WS¢, for a range of masses. We then compare W, with the
analytical calculation W; in the small mass regime, as well
as with the standard vacua in the large mass regime, both in
the center and the corner of the diamond for small and large
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values of m. We end with a brief discussion of our results in
Sec. VI. Appendixes A, B and C contain the details of many
of the calculations. In Appendix D we present a trick to get
the 2D Rindler vacuum from the SJ prescription.

II. THE SJ PRESCRIPTION

For a free scalar field g@ with a Gaussian vacuum state
|0), the two point function,

W(X.X') = (0l (X)(X)|0) 4)

contains all the information about the theory. In the
standard route to quantization |0) is itself defined using
an observer dependent mode decomposition of éﬁ(x) The
absence of a preferred class of observers for a general
curved spacetime (M, g) means that this mode decom-
position does not lead to a preferred choice of |0) and
thence W(X, X").

The SJ prescription provides an observer independent
mode decomposition ¢ defined in a compact globally
hyperbolic spacetime region [1-3,5,6,8—10]. Instead of
an equal time commutation relation, it uses the covariant
Peierls bracket,

~

[$(X). (X))

where the Pauli Jordan function is given by

= iA(X, X)), (5)

iA(X,X') = i(Gg(X.X') — G4(X.X')) (6)

and Gp(X,X'),G,(X,X') are the retarded and advanced
Green functions respectively. iA(X, X') is therefore imagi-
nary and antisymmetric.

The Pauli-Jordan operator is an integral operator, Eq. (1)
on the space F(M,g) of bounded functions in (M, g)
(see [11]), whose £? inner product is

(f.9) = /M 4V (X)g(X). 7)

iA is therefore self adjoint on F (M, g). The eigenvalues of
iA are therefore real and come in positive and negative
pairs,

iAo Uup = ﬂkuk

iAou; = —Ju, (8)

where u; € Image(iA). The normalized modes u}’ =
V/Aguy are referred to as the SJ modes. Since the {u;}
are a complete orthonormal basis in Image(iﬁ), they give
the following spectral decomposition:

Zlk Mk

A(X.X) Jup(X') = i (X)ug (X)), (9)

It can be shown that [6,11,12]
Image(iA) = ker(V, V¥ —m?). (10)

Thus the SJ modes are also solutions of the Klein-Gordon
(KG) equation.

The SJ proposal is to obtain Wg; from iA, without
reference to preferred observers. Using the properties of
Wy, given in Eq. (2), it follows that

—_—

WSJ = POS(IA) < WSJ = *(A + vV _AZ) =4 WSJ(X, X/)

=2 huanlX
The SJ mode expansion of ¢(X) is then

= 37 Vi (a0 + i (x). (12

\S)

Y (X7). (11)

with the vacuum |0)g; defined by @;|0)g, = 0.

In the discussion above, there is an implicit assumption
that iA is self-adjoint. This is guaranteed when (M, g) is
bounded, but not so when this condition is lifted. To
rigorously show that |0)¢; reduces to the various known
vacua, including the Minkowski vacuum, it is important to
take this into account. In [8] a mode comparison argument
was used to show that the SJ vacuum in Minkowski
spacetime is the Minkowski vacuum. However, as argued
in [7] a mode comparison may not indicate the equivalence
of vacua.

A more careful approach was adopted in [3] where the
massless SJ vacuum was calculated explicitly in a 2D
causal diamond D of a length 2L. Evaluating Wg; in
the center of the diamond, i.e., with |Xx —X'| < L and
|X], [¥'| < L it was shown that |0)g, ~ |0) - Thus, away
from the boundaries, the massless SJ vacuum is indeed the
Minkowski vacuum. The goal of this work is to perform a
similar calculation for the massive case in the finite
diamond, in which the SJ construction is well defined.

Important to this calculation is not only the boundedness
of iA which ensures self-adjointness, but also its Hilbert-
Schmidt property using which the completeness of its
eigenfunctions can be checked. In higher even dimensions,
the massless retarded Green’s function has ¢ functions.
While /A is self-adjoint for bounded spacetime region, it is
not Hilbert Schmidt.

III. THE SPECTRUM OF THE PAULI JORDAN
FUNCTION: THE SMALL MASS LIMIT

As we have stated earlier, the SJ modes Eq. (8) are
also solutions of the KG equation. A natural starting point
for constructing these modes is therefore to start with a
complete set of solutions {s;} in the space S = ker(Ckg)
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where [gg = U — m2, and to find the action of iA on this
set. In light cone coordinates the 2D Klein Gordon equation
in Minkowski spacetime takes the simple form,

Ok (u, v)gp(u, v) =

(20,0, + m*)p(u,v) =0, (13)

where

1 1
u:7§(t+x), vzﬁ(t—x). (14)

Thus, for m = 0 any differentiable function w (u) or &(v) is
in ker(Ogg(u, v)).

One can generate a larger class of solutions starting from
a given differentiable function y(u). The infinite sum,

=3 S [T 09

n=

with ["w(u)= [du [du... [ duy(u), can be seen to
belong to ker(Cgg). Similarly one can generate solutions
starting with a differentiable function &(v). Different
choices of y(u), &(v) gives different ¢(u, v).

From the Weierstrass theorem, we know that any
continuous function w(u) in a bounded interval in u can
be written as w(u) =) ,a,u" for some a,s. Hence a

natural class of solutions is generated by w(u) = u/,

m*"! +
Z n
1, v) Z”n' (n+10)!
21/211 2
— <f) Ji(mv2uv), (16)
m v

for / a whole number. Thus the SJ modes, can in general
be written as a sum over Z;(u,v) and Z;(v,u) for an
appropriate set of [ values. Since plane waves are an
important class of solutions, we note that starting from a
function y(u) = e for some constant a the plane wave
solutions,

eau—’g—jv’ (17)

(=1)"
(u ) Z nnva et =

and similarly, U, (v, u), can be obtained.

Before we proceed with the construction of the SJ
modes, it will be useful to look at its following property.

Claim 1: In D the SJ modes can be arranged into a
complete set of eigenfunctions, each of which is either
symmetric or antisymmetric under the interchange of u
and v coordinates.

Proof—Let u, be an eigenfunction of iA with eigen-
value 4; # 0 i.e.,

l.AOMk :ﬂkuk. (18)
Define an operator A" with an integral kernel
A(u,v;u',v") = A(v,u;v',u') and let v, such that
vi(u,v) = up(v,u). Interchanging u and v since
u,v € [-L, L], Eq. (18) can be rewritten as

iA/OUk :/lk’l)k. (19)

Since A(u, v;u',v') is symmetric under {u, u'} < {v,v'},
this implies that

l-AOUk = l.AIOUk :ﬂk’ljk. (20)

Therefore v, is also an eigenfunction of iA with the same
eigenvalue 4;. This means that the symmetric combination
w} (u,v) = uy(u, v) + uy(v, u) and the antisymmetric com-
bination uf (u, v) = uy(u, v) — uy (v, u) are also eigenfunc-
tions of iA with eigenvalue 4;. [

In M? for m = 0 the natural choice of solutions is the set
of plane wave modes {e**, e’*"}. However, in the finite
causal diamond, the constant function is also a solution.
The explicit form of the corresponding SJ modes are
given in Johnston’s thesis [4]. There are two sets of
eigenfunctions. The first set found by Johnston are the
fi = e — ¢ modes with k = nz/L and are antisym-
metric with respect to u <> v. The second set ¢, =
ekt 4 ek — 2 cos(kL), were found by Sorkin and satisfy
the more complicated quantization condition tan(kL) =
2kL. These are symmetric with respect to u <> v. The
eigenvalues for each set are +L/k.

We now proceed to set up the calculation for the central
SJ eigenvalue problem. We will find it useful to work with
the dimensionless quantities,

mL—>m, kL-—k, %—»u,

The massive Pauli Jordan function in M? is
iA(u, v u',0)

= Lo (mVIBWED)(0(Aw) + 0(80) ~ 1), (22)

where Au = u — u', Av = v — v’ and 6(x) is the Heaviside
function. The SJ modes are thus given by [Eq. (8)]

i Ll dv' o (mv/2BuAD) (0(Au) + O(Av) — 1)
-1
x up (', v") = Aeuy(u, v). (23)
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We will find it useful to make the change of variables Au =
p, Av = ¢ so that the above expression becomes

iL?
> (/ dpdq — / dpdq)fo(m 2pq)u(u—p,v—q)
- +

= Ay (u, v), (24)

where we have used the short-hand [ dpdg=

wldp [t='dq and [, dpdg= [{""dp [{*' dg. Our
strategy is to begin with the action of /A on the symmetric
and antisymmetric combinations of the Z;(u,v) and
U,(u,v) solutions defined above,

Ul (u,v) = U,(u,v) — Uy(v,u),

Ua(u.v) = Ug(u, v) + Uy(v.u),

ZMu,v) =Z)(u,v) = Z)(v, u),

Z5(u,v) = Zy(u, v) + Z(v, u), (25)
so that the general form for the two sets u*/S of SJ modes is
given by
u’s’/is(u, v) = Zaﬁ/s Q/S(u, v) + Zﬁ?/SZ?/S(u, V).

a€a lel

(26)

Here @, [ denote set of values for a and ! which satisfy

quantization conditions. Of course each U, (u, v) is itself an

infinite sum over Z;(u, v), but we nevertheless consider it

separately, taking our cue from the massless calculation.
The expressions,

A iL?
iAoU,(u,) = dpdqg — | dpdq
- +

x Jo(m\/2pq)Us(p, q)U,4(u, v),

A iL?
iAoZ(u,v) = dpdq — | dpdq
- +

x Jo(m\/2pq)Z;(u—p,v —q) (27)

are in general not easy to evaluate and subsequently
manipulate in order to obtain the SJ modes. We instead
begin by looking for solutions order by order in m? assuming
that for some n, m* < 1." We use the series form of
Z;(u,v) in Eq. (16) and U,(u, v) in Eq. (17) as well as

"The series expansion of Ugc/ S in the ST modes for small m can
be truncated to a finite order of m? if and only if k is of the order
of unity or higher. However, this is the case for small m, since
small k corresponds to wavelengths much larger than the size of
the diamond.

o (_1)nm2n
Jo(m\/2pq) = —. 3 P"q". 28

As we will show, for n = 4, we find that to O(m*) the two
families of eigenfunctions, antisymmetric and symmetric are
Antisymmetric:

u (u, v) = {Uf‘k(u, v) = cos(k) ((% - %>
4

x Z8(u,v) — %zg(u, U))] +Om®), (29

with eigenvalue —LTZ with k € IC, satisfying the quantiza-
tion condition

m*  m*

sin(k) = (7 -1 (1 - %)) cos(k) + O(m®).  (30)

Solving for k, order by order in m? up to O(m*), as shown
in Sec. III B, gives k = k4 (n), where

ka(n) = +m—2+ 1 (R +0(m®), (31)
Al = " \12nz " ans "

nrw

where n € Z and n # 0.
Symmetric:

up (u, v) = {Ufk(u, v) = cos(k) <<1 N m72

4

-1 2= 90) ) Z5(w.v)
3im2 im4
( Tyl 31’9))2?(% v)
mt
_W(4—k2)zg(u, v))] +O(md), (32)

with eigenvalue —L’ where k € ICs satisfies

m*

12k3
x cos(k) + O(m"). (33)

2
sin(k) = (Zk - ”% (1-2k%) + = (3—29K2 + 28k4))

Solving for k, order by order in m? up to O(m*), as shown
in Sec. Il B, gives k = kg(kq), where

1 = 2ky?
ko(1 — 4ky?)
o (3 = 4ko?) (=5 + 35ky> — 40ky* + 16k,°)
12ko> (1 — 4ky?)?
+ O(m"), (34)

kg(ko) = ko + m?

where k( are the solutions of sin(k) = 2k cos(k).
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FIG. 1.

We plot these eigenvalues in Fig. 1 for m = 0, 0.2, and
0.4. In the expressions for the eigenfunctions, Egs. (29)
and (32), it is to be noted that we have kept U?k/ S and Z?/ S
as they are, rather than use their expansion to O(m*). The
reason for this is to remind ourselves that they are solutions
of the Klein Gordon equation. Note that in Egs. (29) and
(32), we keep terms only up to O(m*) within the square
bracket. In Sec. III B we show that these form a complete
set of orthonormal modes.

Here we have moved away from the f; and g; notation
of [3,4] to u{ and u; for the antisymmetric and symmetric
SJ modes respectively.

A. Details of the calculations of SJ modes

We now show the calculation in broad strokes below,
leaving some of the details to the Appendix A. We begin by
reviewing the massless case. Here Z;(u, v) reduces to u’
and U,(u,v) to e".

Operating iA on u!

or v! we find that

i 2
iAm:OO ul = 2(13— 1) ((1 + (_I)ZH)
— 1}(1 — (_1)l+1) — 2ul+1),
i 2
iAm:()ovl — ﬁ((l + (=1)H1

—u(l - (1) =20 (35)
while on the plane wave modes,

2

A . L .
iA,—go e = s (e* — cos(k) + ivsin(k)),

2

A . L .
iA,_goe = - (e*" — cos(k) + iusin(k)). (36)

Here, k takes on all values including k£ = 0, which is the
constant solution. From the antisymmetric combination,

(a): A log-log plot of the SJ eigenvalues 4, vs n for m = 0,
eigenvalues for m = 0.2 and 0.4 are barely distinguishable from m

An
0.8
0.6} * m=0
m=0.2
0.4' + m=0.4
0.2¢
* n
2 4 6 8 10

(b)

0.2 and 0.4, (b): a plot of 4, vs n for small n. As one can see, the
= 0, except for the very smallest n values.

L2

iﬁmzo o (et — gikv) = - (et — ek — isin(k)(u — v)),
(37)
we find the first set of massless eigenfunctions,
u}?(o)(u, V) = el — gikv (38)
with k € KC; satisfying the quantization condition,
sin(fk) =0 or k= nn, (39)

with eigenvalues — ’“72 The symmetric combination on the
other hand gives

2

A : . L . .
iAm:O o (etku + etkv) — _7 (ezku + ezkv _ 2COS(k>)
.L2
- ’TSm(k)(u + ). (40)

Since the symmetric eigenfunction can include a constant
piece and noting that

~

A,_goc=—icL*(u+ ), (41)
we find the second set of eigenfunctions,

1" (u, v) = e 4 & — 2 cos(k) (42)
with the eigenvalue —LTZ, where k € K, satisfies
sin(k) = 2k cos(k). (43)

{u;:(O) } and {uf(o)} together form a complete set of
eigenfunctions of iA as can be shown by [4].

This sets the stage for the calculation of the massive SJ
modes. We begin by again looking the action of iA on the
solutions Z;(u, v) and U,(u,v),
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iL? & ( 1)j+sm2(j+s)ly
iAoz QL 44
1A o ](u 7]) 2 fe= 2l+s( )S'(S—Fl) Js ( )
. iL? ®, (=1)m2U+s)
iAoU,(u,v) =—U,(u, ——— A4
iBoUy(u.0) == ngkmmwa< v).
(45)
where

Qi (u,v) = (/_ dpdq—/+dpdq) Plgi(u—p)+(v—q),

AY (u,0) = ( / dpdq — / dpdq)ﬁ@“@‘“”- (46)
- +

It is useful to reexpress Eq. (45) as

2 o0
iR o Uy(u,0) = Z-Uy(u,0) Y w2 A g, (,0),  (47)
n=0

where

- (=1
Aanlit0) =3 sy Ay (0 (48)
jZOZ"(]!)z(n — Na=9) j(n=1j)
This gives
N L2 'LZ s
iAan(u,v):_l_U ( )_l_ m2n]:'a’n(u 1))
a
n=0
(49)
where

Fon(u,v)=F,,(u,v)sinh(a) + G, ,(u,v)cosh(a), (50)

with

Fo )= ns VIS (u+ 1) (o + 1) + (u = 1) (v = 1))
an gy o+l nj+1< S)]'( )(]—l)( ) ’
_ nos j n s+j yn— ‘((u _ l)j—l(v _ 1)s+1 _ (u + l)j‘l(v 4 1)s+1)
Ganlu,v) = 242 IZ 2 =it (n = s)1j1(s = j)1(j = 1)!(s + 1) o

Our first guess, inspired by the massless calculation, is
that in order to find the SJ modes, we will need the
antisymmetrized and symmetrized versions of Eqs. (44)
and (47), which we denote by A/S. As noted above, and is
evident from Eq. (49), in order to obtain the SJ modes,

?/ S(u, v) must be supplemented by a function HZV S(u, v)
made from the Z;(u, v).

Taking our cue from the massless case, let us assume that
such a function exists, i.e.,

iAo (UXS(u, v) + HAS (u, v))
iL* | a/s A/S
== (Ua"(u.0) + Ha""(u,v)). (52)

where k satisfies an appropriate quantization condition
ICA/S. Then, from Eq. (49) Hﬂ/s(u, v) must satisfy

A iAJS iL*  as
iAo Hy'” (u,v) + — Hy'” (u, v)
a
iL? &

a n=0

m2 FalS (u, v) = 0. (53)

Up to now the discussion has been general. If the
expressions above could be calculated in closed form, then
one would be able to solve the SJ mode problem for any

mass m. It is unclear how to proceed to do this, except order
by order in m?.
We now demonstrate this explicitly up to O(m

begin by taking a = ik and writing Eq. (49) as

4). We

N L?
iAo A/S(u V) & 7 ’?k/s(u,v)

- (zsm k)Zmz”ka/f (u, )

> omGlin). (s

where the expressions for Fj;,(u, v) and Gy ,(u,v) for
different n have been calculated in Appendix A. The

+ cos

function Hf/ S(u, v) must therefore satisfy
N L?
iRoHYS (u,0)+— . ( HY/5 (u,v) —isin(k) Zmz”ka/f

ZmZnGﬁ(/j

From the result for the massless case, we expect the
quantization condition for k to be of the general form,

—COS

) 0. (55)
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sin(k) = cos(k

ZmZnQA/S (56)

with Q4(k) =0 and Q35(k) = 2k. Inserting this into
Eq. (55) gives

N L?
iAo H‘;‘k/s(u, v) + ?H?k/s(u, )
——cos (Z m* P/ (u, v ) =0, (57)

where

Py (u,0) = GoP (u,v) + izn: 0 (k) FA(u, v).  (58)

n—j
J=0

The challenge is therefore to obtain the explicit form for
these expressions. Finding a general expression in this
manner is very challenging, but we will now show that it
can be found to O(m*).

Since the H2S(u,v) must be constructed from the
Z,(u,v), we are interested in the action of iA on
Z,(u,v) up to O(m*) i.e.,

. iL? (=) om2)
iRoZ)(uv)=="2 2055 ()2 (s 1)

Js.j+s<2

QL +0(m).
(59)

We calculate this expression for [ = 0, 1, 2, up to O(m4) in
the Appendix A. Using the expression of P4 (u, v) given in
Appendix A, we find that up to O(m*) the antisymmetric
version of Eq. (57) reduces to

. L? im?>  im*(6 + k?)
<IA + 7) o (H’;‘k(u, 7)) + COS(k) ((E — W)
A m’* A
x Zt(u,v) — WZ (u, v))) ~ 0. (60)
Therefore,

im?>  im*(6 + k%)
u (u,v) = U4 (u, v) — cos(k) <<E - W)
4

—%zg(u,m) +OmS),  (61)

x Z4(u, v)

with eigenvalue — LTZ with k € I, satisfying the quantiza-
tion condition,

2 4

sin(k) = (’% + 1% (1 - %)) cos(k) + O(mS).  (62)

Similarly using the expression of P3(u,v) given in
Appendix A and after more painstaking algebra, we find
that Eq. (§7) can be written as

~  L?
<iA + 7) ° <ka(u, v)

+ cos(k) ((1 + m; g}; 2- 9k2)) Z8(u, v)

3im*>  im*
= ——— (6 =31k%) | Z3(u,
< %24 )> i(.0)
—@(4 K*)Z5 (u, v)>> ~0. (63)
Therefore, the symmetric eigenfunction is
uf(u.v) = USi(u.v)
2 4
— cos(k) ((1 +’"7 —%(2 - 9k2)>zg(u, v)
3im?>  im* : <
< TR yTE (6—31k ))Z1 (u, v)
4
— W (4 kZ)ZS(M ’U)) + O(m6), (64)

with the eigenvalue —L—Z where k € Ky satisfies

4
?
x cos(k) + O(m®). (65)
Unfortunately, the structure of neither the coefficients in
u k/ % nor the quantization condition are enough to suggest a
generalization to all orders. One could of course proceed to
the next order O(m®) but the calculation gets prohibitively
more complex.

sin(k) = (2/( - (1- 2k2) + (3 - 20k2 + 28/(4))

B. Completeness of the eigenfunctions

We now show that the eigenfunctions {u{ |k € K,} and
{uf|k € Kg} form a complete set of eigenfunctions of iA.
If this is the case, then we can decompose iA as

L2
iANu,v;u',v') = Z —7uk(u v)ult* (u', v')

ke,
+Z——ukuvu;f*( V') + O(m"),
kel
(66)

which implies that

/ dudvdu' dv'|A(u, v;u', v")|?

R e @

kelly kelly
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To O(m*) the Ths of Eq. (67) reduces to For the symmetric contribution Eq. (33) up to O(m*)

we have
L* [1
T dudv(/ dpdq+/dpdq>]%(m 2pq)
-1 - +

2

LY m>K, (k3. k3, k3) + O(m®) = 0, 73

dudv(/dpdq+/dpdq> ; (kS k7. k5) + O(m®) (73)
4 —1 _ + B
3
X <1 m*pq + 8m4P2q2> +O(m°) where
ot (1= 4 Lt 1 opme) (68)
9 6 ' K (k3. k§,k3) = sin(kg) — 2kg cos(k3),
$2 _ 7.8

For the rhs k € ICA/S, we make use of the expansion Kg(kg,k‘f,k‘g) - (W)
KAS kTS + m2kS 4 m*ky'S. For the antisymmetric E 0 N
quantization condition Eq. (30) since kj = nrx this gives, x cos(ky) — 2kyky sin(kg),
up to O(m*), 3 —29k§? + 28kt + 12k7ky

K (kS K5, S) — (
m2 4 m? 5 kit m* m* 6 12kg?
K+ m*ky = <1—m —>—— ——+O(m°).

+
K ky) Aky? 12k +2KS 4 S — kf2k§) cos(kS)

(69)
k3 —2k3ks —2k33 3
+ ( 192 ~ 0 ——kf2> sin(k§).
Solving the above equation for different orders of m?, ko 2
we get (74)
a1
ki =—, (70) . .,
nrw Equating the above order by order in m~, we get
1 5
= —— 71 .
2 12nx 4nind (71) sin(k3) = 2k5 cos(kg), (75)
so that
1 ] 1 ¢ 12k
L= =204y = (1-2m*—— ki = s 55 (76)
2 e L (1-2 R4k
1 11
-t <6n2n'2 B 2n47r4>> +00m?)
s (3—4k§?) (=5 4 35ky? — 40k5* 4 16k5°)
ot (L2 Y L o) a1 12k53(1 - 4k2) (77)
B 6 45 252 ‘
|
1 2 8
DA —2L4Z< zm( _)
52 54 T 52 52
ix, K? Sex, k; k; kg~  4ky—1
11 127 280 32 32 1120
- O(m®). 78
o ( k36 * 6k3* i 3kg? * (4k5* = 1)° * (4k§? = 1)*  3(4k3* - 1))) +0O(m) (78)

We evaluate the above series by using the method developed in [13] and used in [3,4], details of which can be found in
Appendix B. This leads to

1 5 1 49 1 377
2wt 2w M D me ()
k§ek, k 6 kSek, ko 20 kSek, ko 945
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and

1 1
Z41<S2—1:Z’

ke, 0
Y
S k-1 4

(1+

This simplifies Eq. (78) to

(é _19 4_1m4) +O(m). (81)

1
2L — =2L*
Z K? 6 45 252

kels

Adding the contributions from the antisymmetric and
symmetric eigenfunctions the rhs of Eq. (67) reduces to

4 1
Zﬂz = 2L4<1 —§m2 +6m4) +O(m%), (82)

which is same as its lhs. Thus, to O(m*) the uf/ § are a
complete set of eigenfunctions of iA.

IV. THE WIGHTMAN FUNCTION:
THE SMALL MASS LIMIT

We can now write down the formal expression for the SJ
Wightman function to O(m*) using the SJ modes obtained
above, as

L, 0 ()

Wey(u,v,u',0') = Z

Al2
kekq k<0 k ||ueg |
L2 (u, v)ud* (u', v')
+ Tk S112
kelCs k<0 (Al
+ O(mb), (83)

where K /g denote the positive SJ eigenvalues. In particular
k = —ky(n) with n € Z* [Eq. (31)] and k = —kg(ko) with
ko satisfying tan(kg) =2k, [Eq. (34)]. Here ||ul’/®|]
denotes the £? norm of the modes u/,:/ s

’

1 1
||u§:/s\|2 = L2/l du/] dvuf/s(u,v)uf/s*(u, v). (84)

For k = —ky(n),

(cos(1/2) —25in(1/2)>
cos(1/2) —sin(1/2) )’

19cos(1/2) —35sin(1/2) (80)
cos(1/2) —sin(1/2)
[
m? m* (1 11

il =822 (14 s (=) ) +O).
(85)
In the symmetric case, k = —kg(ky) the quantization
condition is complicated. Following [3], we make the

approximation,

1

kg(n) ~ <n - 5) 7, neZz". (86)

As shown in Fig. 2, we see that except for the first few
modes this is a good approximation, and in fact improves
with increasing mass.” This approximation in the quanti-
zation condition makes cos(kg) =0, thus simplifying
w (u,v) to

”Eks (u,v) = Uiiks

(u,v) = [|u} || = 8L>.  (87)

We examine the antisymmetric and symmetric contri-
butions to Wy; separately

Ws, = W?J + W§J' (88)
For the antisymmetric contribution, using the quantiza-

tion condition k = —k,(n) and the simplification Eq. (85)
for the norm,
2.2

= 1
W (v, 0, v') =y — (1=
sy, v, V) ;8117:( n°m

m* 7 1 i
+ o (m - E)) ufd (u, v)up* (u', v')

+ O(m°).

2m?

2 . . .
Of course, at the same time, our approximation of the SJ
modes becomes worse with increasing mass.
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40
m=04

m=02

301

20 —

0 Ly

2 4 6 8 10 12 14 kS

FIG. 2. Plot of the quantization condition, Eq. (33) for the
symmetric SJ modes for m =0, 0.2 and 0.4, where kg > 0.

To leading order u{ can be reexpressed as

—inzu
e F—

u (u,v) = e LW (n,u, v) + O(m"),

3 ”f myu,v) g;(myu,v)e”
J ] b ki
(n,u,v) E < + "

J=1

inmu

_&ﬁﬁﬂﬁkiﬁv’ (90)
n.]
where
im? im*
. =" (4 _ _ 1
frlm;u,v) = ——(u = v) = 57— (u=v)(1 + 3uv),
m*(2u +v)  im*u
gi(msu,v) = - o7 12z
4
Falmiuv) = =25 (12 = 0?),
) _ m*Qu+v)?
gz(m’ u’ /L)) - 8”2 9
3im*
f3(myu,v) = —4—”3(“ - ),
im*(15u + 6v
gs3(m;u, v) E#. (91)
127

We further split

W, = Aj+ Ay + Ay + Ay + O(m®), (92)

where

=1 2m*  m* (T 1
A=S"—(1- -
! Z 8nx < P <n2ﬂ2 6>>

X (e—mﬂu —mm/) emzru _ mm)’),
=1 2m? 4
AH = % <1 — 2ﬂ2> (e—mlru _ e—znm*)q]z(n’ I/l/, U/),
n=1
— ol 2m? inzu' inmv/
AIH:Z% 1_n2ﬂ2 Wa(n, u, v)(e"™ — "),
n=1
=1
AIV = Zl%TA (n, u, U)Tz(n, l/l/, U’). (93)
n=

These terms can be further simplified to O(m*) as we have
shown in Appendix C.
For the symmetric contribution W5, we use the sim-

plification Egs. (86) and (87) to express

o0 1 i
W31 =3 atam =y Vo (e DU )
+ e (u, v, u', V") + O(m"). (94)

Here ¢,,(u,v;u’,v") is the correction term coming
from the approximation of the quantization condition
Eq. (86). This is analytically difficult to obtain, and in
Sec. IV C, we will evaluate it numerically for different
values of m.
Using the O(m*
write U, ~as

) expansion of U_;; from Eq. (17), we

— (e—i(n—%)nu + e—i(n—%)ﬂv)

+W(n,u, v) + O(mb),
2

Uiiks(n) (u’ U)

W0 ,1) = ~ e (e e
n—1)x
4
—mi 2 ,—i(n—1)zu
4@n—1y”(”6
+ ulemin=m), (95)

Again for the symmetric part, we can write

W3, = Si+ Su+ S+ Sy + €, (u, v, 0/, 0) + O(m),
(96)

where
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=
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o
1
|
I\\)l/
8
<
N—

1 & 1 . )
=__ —i(n=Y)mu —i(n=Yzv\\p* 1o
SH—4ﬂ_;2n_1(€ I 4 e VYW (n, ', 0'),

1

1 - 1 - 1 ! P !
=_ 7] i(n-YHmu i(n—3)mv
St i ”E_ m—1 s(n,u,v) ("2 + e ),

N .
Sy = E;%a — I‘I‘S(n, u, v)¥5(n,u',v'). (97)

i(n—Y)mx 1

> n= Ty ~ M — g Lie). (98)

St, S, Sy and Sy can further be simplified up to O(m*) as
we have shown in Appendix C. In particular, S; can be
written as

in(u—u')

1
SI = E <tanh_1(e_ 2

in(v=2')

™)

+ tanh™! (e‘M) + tanh™! (e‘w)). (99)

) + tanh~! (e~

FIG. 3. The center and corner regions in the causal diamond D.

Despite these simplifications in Wy, it is difficult to find
a general closed form expression for Wg;. Instead, as was
done in [3], we focus on two subregions of D, as shown in
Fig. 3. In the center, far away from the boundary, one
expects to obtain the Minkowski vacuum, while in the
corner, one expects the Rindler vacuum. In the massless
case studied by [3] the former expectation was shown to be
the case. However, in the corner, instead of the Rindler
vacuum, they found that W; looks like the massless mirror
vacuum. One of the main motivations to look at the massive
case, is to compare with these results.

We now write down the expressions for the various vacua
that we wish to compare with,

Wik (y vy u' ') = —4—1n (A2 |2Aulv|) —isgn(Au + Av)0(Aulv), (100)
n

. 1
W, 030 1') = 5 Ko (m\/—2AuAv Fi(Au+ Av)e>, (101)

n

. 1 ]
WP, €) =~ In (N[ A ~ A2~ san(An)o(ar - AR), (102)
n
Wrind(,,l 5 ’,]/ 5/) — Wmink(u v Lt/ 1}/) _L/OO dy K (mj/ ) (103)
m ’ 9 9 m ’ 9 ’ 2” oo 7[2 + y2 0 1 b

wmirer (y oy ! v') = WK (y, vyl 0') = WK (u, 050", ), (104)
wmiror (y g, u' o) = WK (y ;0 0") — WK (4 050 ). (105)

In the expression Eq. (100) for the massless Minkowski vacuum, y is the Euler-Mascheroni constant and A = 0.462
(obtained in [3] by comparing W; with Wg““k). In the expression Eq. (101) for the massive Minkowski vacuum [14], K is
the modified Bessel function of the second kind, with € a constant such that 0 < ¢ < 1. In the expressions Eq. (102) and
Eq. (103) (see [15]) for the Rindler vacua, a is the acceleration parameter, with

1 1
n = —tanh~! (u i U), &= —In(=2a%uv),
a u—v 200

Ap=n-n'. Af=¢(-8. = \/52 + &2 + 28 cosh(y —n +1'). (106)
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A. The center

We now consider a small diamond D; at the center of D
with [ < 1 where one expects Wy, to resemble W™k, For
small Au, Av, Wink can be written as

Wmink (s u’, ")

1 2,2y
z—Eln (mze |AuAv|)

- % sgn(Au + Av)0(Aulv)Jy(mv2Aulv). (107)

To leading logarithmic order this is similar in form to Wink
[Eq. (100)], with m replaced by 2A. We plot these functions
in Fig. 4. For m < A the real part of W™ is larger than
Witk and for m > A it is smaller. When m, = 2A, the two
coincide in this approximation.

Let us begin with Wg‘ 7> Egs. (92) and (93). As shown in
Appendix C, the expressions for Ay, Ay, Ay and Ay can be
written in terms of polylogarithms Li,(x). For small x, i.e.,
near the center of D they simplify for the s = 1, 3 and 5 to

2.2

Lij (¢i™) = — In(—izx) — ? + % L O, (108)

8

m

where  C, =sgn(u—u') +sgn(v—v') —sgn(u —v') —
sgn(v — ') and A collectively denotes either u — u’, v — v/,
v —u or v —u/. For sufficiently small x, the logarithmic
term dominates significantly over other terms, and hence
in Dl

1
== g (1= o= 1)

—In(|u—'||v —u]) - C, ’5”) +O(m,AY), (112)

where we have hidden all the mass dependence in the
correction.

Next, Ay, A and Apy also involve another set of
polylogarithms of the type Li,(—e™™) for s > 2 as well
as Lig(e™™) for s =2, 3, 4, which are multiplied to the
functions g;(m; u, v) and f;(m; u, v) given in Eq. (91). The
g;j(m;u,v) and f;(m;u,v) themselves go to zero either
linearly or quadratically with u, ». This second set of
polylogarithms, unlike the first in Eq. (110), are strictly

Re( Wmink)

0.8}
0.7F
0.6}
0.5F
0.4t
0.3F

0.05 0.10 0.15 0.20

FIG. 4. Plot of Re(Wink) and Re(W™mink) vs the proper time (7).

Li3(eiﬂx) _ C(3) + iﬂ6x
32 ? . 2 3
" <_T+71n(—mx)>x +O0(x%), (109)

inox B ¢ (3)x?

Lis(e"™) = {(5) + 90 >

+0(x%), (110)

where { are the Riemann Zeta function and x denotes u
or v. In the expression for A;, the constant and linear terms
in x cancel out, so that

1 ] 3m? 471 7¢3
A= —— (ln(u—u’||v— V|) = In(ju = v'||v — ) = C, f) - (9%*%%17 <Z‘ f[(z )>>(u—v)(u’— V)

2 m
~ e <1 +E> [(u—u)In(=iz(u—u'))+ (v—2")?In(=iz(v —7"))

—(u=2)In(=iz(u—1")) = (v —u')?In(=iz(v —u'))] + O(A?),

(111)

convergent as x — 0. Hence the Ay, A and Ay are
strongly subdominant with respect to Ay so that

1
Wg‘,(u, v,u',v) = ~ % <ln(|u —u'||lv=1))

—In(|u— /|| - u']) - C, %)

+ O(m?, A?). (113)
Here we note that while the mass correction is significant in
the antisymmetric SJ modes, it becomes insignificant in W4,
in the center of the diamond, compared to the dominating
logarithmic term. Thus we see that in the center of D, W4, is
identical to the massless case found in [3].

We now turn to the symmetric part W%,, Egs. (96)
and (97). The expressions for Sy, Sy, Spr and Sty can again
be written in terms of polylogarithms Li(x) as shown in
Appendix C. For S| however, the form given in Eq. (99) is
easier to analyze. Noting that for small x
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. 1 (=i 252
tanh~! (e/™/2) = —§1n< th> - —”92 + O(x?), (114)
near the center of D we see that
| .
Si=-4 [In(|u— W|lv = o)) +In(|ju — v']|v — '] +41n<%> - czg]
- ﬁ (=2 + (=02 + (v = )2+ (v = ')?) + O(A3), (115)
where C, = sgn(u — u') + sgn(v — v') + sgn(u — v') + sgn(v — u’). Since the logarithmic term dominates,
1 ! ’ ’ ! z in 2
Si= ~ % In(|lu—u||v—='|) + In(|u —V'||v —u'|]) + 41n 1)~ sz + O(A%). (116)
n

Next, we see that Sy, Sy and Spy involve a set of polylogarithms of the type Liy(e'™), for s = 2, 3, multiplied by linear and
quadratic functions of u, v, 4’ and v'. This set of polylogarithms are in fact strictly convergent as x — 0. Hence the Sy, Sy
and Spy are strongly subdominant, with respect to Sy, so that

1 /2 in
WS, (u, 0,4/, ') = ~%n {ln(|u —u||v—=2']) +In(ju = '||v — '] +4ln<Z> - CZE] +eenter 1 O(m?, A%),  (117)

where €SM" jg the correction in the center coming from
the approximation to the quantization condition Eq. (86).
We will determine this numerically in Sec. IV C. Up to
this mass correction Wg, resembles the massless case
found in [3].

Putting these pieces together we find that

1
W (u, v, ', v') & —Eln |AuAv|

- isgn(Au + Av)0(AulAv)
1 /1

- InlZ center
27 n<4) em

A direct comparison with W™k gives

(118)

Wgc}nter(u’ v, l/t/, ’U/) _ Womink(u’ v, u/’ U’)

1 1
~ —ﬂln (%) + e 4+ Eln (2A%e),  (119)

where A = 0.462 is fixed by comparing the massless Wg;
with Witk as in [3].

B. The corner

We now consider either of the two spatial corners of the
diamond, D. C D as shown in Fig. 3. We use the small
Au, Av form of Wik to express

1

| Aulv
—1In
4

Wmirror ~—
" (=) =)

- isgn(Au + Av)(0(AuAv)

—0((u—=2")(v—u))). (120)
As in [3] we make the coordinate transformation,
{u v, 0"} > {ue, up, v, v}
={u-1,u-1v+1,0+1}, (121)

which brings the origin (0,0) to the left corner of the
diamond.

For W’S‘ ; [Egs. (92) and (93)], we note that A is invariant
under this coordinate transformation and hence given by
Eq. (112) near the origin of D,. In Ay, Ay and Ay the
constant terms cancel out and, similar to the center
calculation, they goes to zero linearly with u, v and hence
are strongly subdominant with respect to A;. Therefore, in
the corner, W4, simplifies to

1
W, (u, v, v') = ~ % <ln(|u —u||v = ')

~In(lu—v'|jv—u|) - Cy %)

+O(m?, A), (122)

and the subdominant part is now linear in A.
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For Wg ; [Eq. (96) and Eq. (97)], under the coordinate
transformation,

in(u—u) in(v=v')

] T
Sy =— (tanh‘l(e‘T) +tanh~! (e 2 )

47
— tanh~! (™5 — tanh™! (e—M)) . (123)
In the corner D,. C D this simplifies to
1
Si= o [—1n<|u —||v = o/]) + In(Ju = ] o - 1)
87
+CHZ]—;;«u—WV+(U—MP
—(u=2)=(v=u)?) + O(A%). (124)

For sufficiently small A, the logarithmic term dominates the
other terms so that

1
St = g5 |l =wlo = o)+ Il = o )
87
in
+ C ?] + O(A?). (125)
As in the center, Sy and Sy go to zero while
7¢(3)m*
Sy = Cé )gm L OA) ~0.034m*.  (126)
e

Therefore in the corner we see that

1
ngzg [—ln(|u—u/||v— V') + In(ju — v'||v — ')

+ lﬂ +0.034m* 4 esomer; (127)

1.e., there is a mass correction to the massless W§ e €T S,
as in the center calculation, a small but finite term coming
from the approximation to the quantization condition
Eq. (86), which we will evaluate numerically in Sec. IV C.

Putting these pieces together we find that in the corner
Wy, takes the form,

1

I Aulv
—1In
dr

. (u=2")(v—u)
—isgn(Au + Av)(0(AulAv)

= 0((u =) (v —u")))
+0.034m* 4 egmer.

W (u, v, u',vV') = —

(128)

A direct comparison with Wi Eq. (120) gives

Wg(}mer(u, v, I/t/, ’Ul) _ W%irror(u’ v, l/t/, 1)/)

~0.034m* 4 eomer, (129)

C. Numerical simulations for determining ¢,

The formal expansion of Wg; in terms of the SJ modes
Eq. (83) can be truncated and evaluated numerically in D.
Here we do not need to use the approximation of the
quantization condition Eq. (86). This allows us to evaluate
the ensuing corrections €5™", 59" numerically and thus
quantify the comparisons of W, obtained in the center and
corner of D with the standard vacua.

We begin with the N truncation W, of the series form
of Wg; Eq. (83) in the full diamond D for N = 100,
200, ...1000. Figure 5 shows an explicit convergence of
W, for these values of N. For the plot we considered the
pairs (u,v) = (x,x) and («/,v") = (—=x, —x) for timelike
separated points, and (u,v) = (x,—x) and (u',0') =
(—x,x) for spacelike separated points. From this point
onwards, we will consider W, for N = 1000.

Next, we consider the difference W, — WP where
the latter uses the approximation Eq. (86), both in the center
and the corner of D in order to obtain eSeher, ¢Somer g

suffices to look at their symmetric parts Wg} since only
these contribute [see Egs. (117), (127)]. €5™" and €59™°" are
not strictly constants. However, as we will see, they are
approximately so. As in [3], they are evaluated by taking a
set of randomly selected points in a small diamond in
the center as well as in the corner. Here we take ten points
and consider all 55 pairs between them to calculate
esenter geomer What we find in Fig. 6 is that they are very
nearly equal, and hence we can consider their average.
The explicit averages for these masses are tabulated in
Table I for future reference.

This allows us to now compare Wg; calculated in
the center Eq. (118) with Wink wmink The difference
with Wink oiven in Eq. (119) is indeed very small.
For m =0.2, e.g.,

) 1
Wgnnk _ Wge]nter ~ _Elog(z X 04622) _ %

1 T
— =1 ) _ center
(~3ee(5) - )

Similarly, in the corner, the difference with WXir" is again
very small. For example for m = 0.2 it gives

(130)

Wmiror — yeomer ~ 0,034 x (0.2)* + eS0mer ~ 4 x 107°.
(131)
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FIG.5. We show the convergence of the truncation of the series WY, with N for m = 0.2, 0.4 for timelike separated points (left) and

spacelike separated points (right).
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0.0000F
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€SMer and e<oMer evaluated in a small diamond of / = 107> in the center and the corner of D, for m = 0,0.1,0.2,0.3 and 0.4.

The standard deviation is very small, and hence we can take €™ and €5°™" to be approximately constant.

Thus, we see that in the small mass limit, W; does not differ
from the massless Minkowski vacuum in the center region
and continues to mimic the mirror vacuum in the corner.
Since our analytical calculation is restricted to a very
small Au, Av, where perhaps the effect of a small mass is
small, we can use the truncation W, for comparisons with
the standard vacuum in larger regions of D. This is shown
in the residue plots in Figs. 7. In the full diamond, we

TABLE 1. A tabulation of eSenter, gomer for different m.

Mass es:ntef esr?l'nel'

0 —0.0627 0

0.1 —-0.0629 -3.5x107°
0.2 —0.0637 —0.00005
0.3 —0.0657 —0.00027
0.4 —0.0694 —0.00086

consider the pairs (u,v) = (x,x) and (¢, ") = (—x, —x)
for timelike separated points, and (u,v) = (x,—x) and
(u/,v") = (—x, x) for spacelike separated points. We find
that for m = 0.2, [ ~0.02, WY, differs very little from the
massless Minkowski vacuum, while as the mass increases,
so does the discrepancy. On the other hand, as we see in
Figs. 8 we find that WY, clearly does not agree with the
massive Minkowski vacuum, in this small mass limit.

A similar calculation in the corner shows that WY,
looks like the massive mirror vacuum rather than the
Rindler vacuum. Here, we consider pairs of points: (u, v) =
(l+x,—l+x) and (u',v") = (I —x, -1 —x) for timelike
separation and (u,v) = (I+x,—[—x) and (u,?0') =
(I —x, =1+ x) for spacelike separation, where the origin
(0, 0) is at the left corner of the diamond D and 2/ is the
length of the corner diamond D,.. This is shown in the
residue plots in Figs. 9 and 10.
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FIG.7. Residue plot of Re(W%, — Wink) for timelike and spacelike separated points respectively, for the full diamond, as well as in a

center region of size / ~0.1.

Our calculation suggest that the O(m*) corrections are
largely irrelevant to Wy, in the center and the corner of D.
A question that occurs is whether increasing the order of the
correction makes a significant difference. In Fig. 11 we
show the sensitivity of the difference in W, with Wik, to
O(m?) and O(m*). As we can see, the O(m*) corrections
while not negligible, are relatively small for m ~ 0.2.

What we have seen from our calculations so far is that in
the small mass approximation, Wy; continues to behave in
the center like the massless Minkowski vacuum and in the
corner as the massive Mirror vacuum. This behavior is very
curious since it suggests an unexpected mass dependence in
Wy;, not seen in the standard vacuum. In order to explore
this we must examine W ; for large masses. Because we are
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Re( WtSJ) - Re( Wmmink)

FIG. 8. Residue plot of Re(W{, — Wmink) for timelike and spacelike separated points respectively, for

discrepancy is obvious.
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FIG. 9. Residue plot of Re(W, — Wmink) for timelike and spacelike separated points respectively in the corner region, [ ~ 0.01.

limited in our analytic calculations, we now proceed to a
fully numerical calculation of Wg; in a causal set for
comparison.

V. THE MASSIVE SJ WIGHTMAN FUNCTION
IN THE CAUSAL SET

This curious behavior of the SJ vacuum seems to be a
result of our small mass approximation. Since we do not
know how to evaluate it analytically for finite mass we look
for a numerical evaluation on a causal set C,, that is
approximated by D (see [16,17] for an introduction to
causal sets).

Cy¢ is obtained via a Poisson sprinkling into D at
density p. The expected total number of elements is then

(N) = pV »q, where V , is the total volume of the space-
time manifold in which the elements are sprinkled. The
partial order is then determined by the causal relation
among the elements i.e., X; < X; iff X; is in the causal
future of X,.

The causal set SJ Wightman function W¢; is constructed
using the same procedure as in the continuum, namely
starting from the causal set retarded Green function. The
massive Green function in D is [4,18]

2 -1
G, = <H+m7Go> G,

where [ is the N x N identity matrix and Gy is the massless
retarded Green function. Defining the causal matrix C on

(132)
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FIG. 10. Residue plot of Re(W%, — Wmink) for timelike and spacelike separated points respectively in the corner region, [ ~0.1.
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FIG. 11. Plotof Re(W%,) — Re(Wg;),,_o vs x for O(m?) and O(m*) corrections. The plots in the first line are all for timelike separated
points while those in the second line are for spacelike separated points.
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FIG. 12. (a): A log-log plot of the SJ eigenvalues 4 divided by density p vs n for m = 0,0.2,0.4,0.6,0.8, 1, 2 and 10, (b): aplotof 1/p
vs n for small n.
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W, for m =0, 0.2, 0.4, 0.6, 0.8, 1, 2 and 10 for timelike and spacelike separated points.
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FIG. 14.  Wg, (blue dots) vs proper time (7) in the center of the diamond. The plots on the left are for timelike separated points, and
those on the right are for spacelike separated points, for the small mass regime, m = 0.2 and 0.4. We show Wik (green), Witk (orange)
and our previous analytic calculation of Wy, (blue line). The scatter plot clearly follows the massless green curve for these masses.
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FIG. 15. The same plots as in Fig. 14 but for m = 1 and m = 2. The scatter plot follows the massive organge curve for m > m,.
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Crp oas Cj=11if X; < X; and C;; = 0 otherwise, we see
that Gy = C/2.

We sprinkle N = 10, 000 elements in D of a length 2,
i.e., of density p = 2500 for m = 0.2, 0.4, 0.6, 0.8, 1, 2 and
10. In Fig. 12 we plot the SJ eigenvalues for these various
masses. We find that the eigenvalues for small masses are
very close to the massless eigenvalues, especially for small
n. As n increases, they become indistinguishable. In Fig. 13
we show the scatter plot of W¢,. For the smaller masses,
W, tracks the massless case closely, but at larger masses
m ~ 10 it shows the characteristic behavior expected of the
massive Minkowski vacuum [2].

Next, we focus our attention to the center of the diamond
so that we can compare with our analytic results. We

Re(W*¢
~0.2- 02 04 o6 o W)
-0.2

m=0.2
Re(Wrrnnirror)

—— Re(W°s,)
0.8
Re(Wm\rror) m=0.4
m
Re(W°sy)
Re(Wmirror) m:2
m
0.8
0.6
0.4
0.2 /
DR Re(W°sy)

02 04 06 6.8

consider a central region D; with [ = 0.1. Figures 14 and 15
shows W¢; vs proper time and proper distance for timelike
and spacelike separated pairs, respectively for small and
large masses. The comparisons with the massless and
massive Minkowski vacuum show a curious behavior.
For the small m values W, agrees perfectly with our
analytic results above, namely that W, is more like Wink
than WTink. However, as m increases, WXi"k approaches
Wg‘i“k, coinciding with it at m = 2A. After this value of m,
W¢, then tracks Wik rather than W™k, This transition is
continuous, and suggests that the small m behavior of W¢,
goes continuously over to W™, unlike Wmink,

Next we compare W¢; in the corner of the diamond with
wmiror and Wind for all pair of spacetime points in the left

m=0.1
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FIG. 16. Correlation plot of W¢, vs W™ in the left corner of the diamond for a range of masses.
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FIG. 17. Correlation plot of W¢, vs Wind in the left corner of the diamond for a range of masses.

corner of the diamond for a range of masses. Instead of
plotting the actual functions, we consider the correlation
plot as was done in [3]. To generate these plots we
considered a small causal diamond in the corner of a
length [ = 0.2 which contained 118 elements. W™ and
wiind were calculated for each pair of elements and
compared with W¢, [see Figs. 16 and 17]. In [3] the IR
cutoff A was determined from Fig. 17 for m = 0 by setting
the intercept to zero. We observe that there is a much better
correlation between W, and W™ as compared to Wi

for all the masses which is in agreement with our analytic
calculations.

VI. DISCUSSION

In this work, we calculated the massive scalar field SJ
modes up to the fourth order of mass. The procedure we
have developed for solving the central eigenvalue problem
can be used in principle to find the SJ modes for higher
order mass corrections.

Our work shows that W¢; in the causal set is compatible
with our analytic results in the small mass regime. The curious
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behavior of W¢; with the mass in the center of the diamond
suggests a hidden subtlety in the finite region, ab initio
construction, that has hitherto been missed. In particular, it
shows that the massive W; in 2D has a well-defined massless
limit, unlike W™k, Such a continuous behavior with mass
was also seen in the calculation of W¢; in de Sitter spacetime
[7]. A possible source for this behavior is that Wy; is built
from the advanced/retarded Green functions, which them-
selves have a well-defined massless limit. It is surprising
however that Wg; for small mass lies in the massless
representation of the Poincare algebra rather than the expected
massive representation. What this means for the uniqueness of
the SJ vacuum is unclear, and we hope to explore this in
future work.

In the corner of the diamond, we see that as in the
massless case, Wg; resembles the massive mirror vacuum
for all masses. Thus, the expectation (see [3]) that the
massive Wg; must be the Rindler vacuum seems to be
incorrect.

We end with a broad comment on the SJ formalism. It is
possible to construct a W; using a different inner product
on F (M, g), instead of the £? inner product adopted in this
work. One way of doing this is to introduce a nontrivial
weight function in the integral. Thus, different choices of
the inner product give different SJ Wightman functions
even with the same defining conditions [Eq. (2)]. As an
almost trivial example, in Appendix D we show that the
choice of inner product can yield the Rindler vacuum in the

|

Fio(u,v) =,
i 1
Fii(u,v) = Z—k—z(vzu +2v+u),
v’ i
Fiuo(u,v) = —W—m(%‘%u +3vr=1)+
Giro(u,v) = -1,
iv 1
Gii(u,v) = _2_k+1<1}2 +2uv +1),
v? I 3 2
Giol(u,v) = W—I—m@v +3uv® —u) —

corner. In future work we hope to explore this possibility in
more detail.
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APPENDIX A: SOME EXPRESSIONS AND
DERIVATION OF RESULTS USED IN SEC. III

In this appendix we add some of the details of the
calculations of Sec. III. These details include the simplified
expression of F ,(u,v) and Gy ,(u,v) for n =0, 1, 2,
Z5(u,v) and iAoZS(u,v), for 1=0, 1, 2 and
Pﬁ‘/s(u, v) for n =0, 1, 2 up to the order in m?, which
is required in the calculation of SJ modes up to O(m*).
Some details of the calculations of u? (u, v) and u;(u, v)
can be found in Appendix A 1 and A 2 respectively.

Evaluating Fy; ,(u, v) and G, (u, v) defined in Eq. (51)
forn =0, 1, 2, we get

1
8 (Vu? + 03 + 60%u + 3vu* + 3v + 2u).

1
18 (2v3u + 30%u* + 30> + 6uv + u> + 1).

Next, we list Z2(u, v) and Z3(u, v) defined in Eq. (16) and Eq. (25) for [ =0, 1, 2 up to the required order of m?,

Z3(u,v) =0,

2
ZHu,v) = (u— ) —mTuv(u - ),

Z53(u, v) 2 u? — 12,

Z5(u,v) ~ u? + 2.

4

m
Z§(u,v) ~2 — m*uv + ?uzzﬁ,

2

Z3(u,v) ~ (u+ ) —mTuv(u +v),
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Next, we list iAOZ;‘(u, v) and iAOZZS(u, v) for [ =0, 1, 2 up to the required order of m?, where iAo Z,(u,v) is
described in Eq. (44),

iAoZ8(u,v) =0,

~

iAo Z5(u,v) ~ (u +0)(48 = 12m*(1 + uv) + m*(3 + 3uv + uv?))),

24

iAo 74 (u, v)~1L2< —(u? = v? —I—ﬁ(Zuv—i— )(uz—v2)>,

iAoZ5(u,v) ~il? ( —u? —? ——(6( +2u1j)+(u2+02)(1—2u1)))>,
iAo Z3 (0 0) 5 (0= 1) = (1 = 19)),

i 2
i&ozg(u,v)z%((u—i—v)—(bﬁ + ). (A2)

/5 (u, v) defined in Eq. (58) for n =0, 1, 2,

P§(u,v) =0,
Pi(u.v) = (i(ﬁ—gf(k))w—v) - =),
P5(u 1)):—M ' (u—v)(2u2+2112—|—5m)+1)—|—i(1—|—m))(u2—vz)
2 8k> 24k 24 ’
2,2
010 (g = o)+ 1)) = 04 (R) =), (A3)
P§(u,v) = =2+ 2ik(u+ v),
Pi(u,v) = _i(u2—|]; v) +£(u2+v2—|—4uv+2) - (u2+v2+%(uv+3)(u+v)> +iQ5 (k) (u +v),
P5(u,v) = ! 8—/'(— v —I—m( +0)(2u? + 20> + uv — 1) —%((ﬁw +4)(u? + v*) + 607U + 12uv + 2)
+2k<—l(u8%+2ik((2uv+3)(u2 + %) =2) +£(u+ ) (u?0? + u? + 02 +8m}+5)>
s w4+ g .
F 010 (< =+ 3)w+ ) + 1030 + ), (a49)

where Q% (k) and Qs (k) for n =1, 2 can be found in Sec. A 1 and A 2 respectively.

1. Details of the calculations for the antisymmetric SJ modes

In this section we solve Eq. (57) for H{ (u, v) by constructing each m*' P} (u, v) out of Z;(u, v) and iAo Z;(u, v) for
different /. Let us start with the first nonzero P (u, v). It can be observed that m?P{ (u,v) can be constructed out of
m>Z4 (u, v) and m?iA o Z4 (u, v) up to O(m?) as

m*P(u, v) = 2L2 <I;<( — 2kQ4 (k) Z4 (u, v) — iAo Z4 (u, v)). (AS)
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To make the term in the bracket look like (iA + %) o Z4(u,v), we fix

01k) = 1. (6)
Therefore Eq. (57) for H{(u,v) up to O(m*) can be written as
. L? N im*cos(k) _, m*L?cos(k) (3(u* —v*) i 5
<1A+7>0<Hk(u,v)+TZ1(u,v)>— k < e —E(u - %)
5i 1, -
= (u—- — — — =0. A
oy = 0)+ 4507 =) =104 (u=0)) =0 (A7)

In the remaining terms, i.e., the terms which are not yet written as Z4 (u, v) or iA o Z{* (u, v), the highest order of u and v are
13 and »3, which can be identified with iA 0 Z,(u, v). Therefore we use

_ <iA +L7> o%i(k)z/z‘(u,v) ——M(%k(u—v)—i(ﬁ—v )+$(u2_1}2)) (A8)

to write Eq. (A7) as

(iA +L72> ] (H;j(u, ») + cos(k) <%Zf(u, v) —4m—];Z§(u, v)))

m*L? cos(k)

W2 |
— k ( 82 +@(u—U)'f’&(uz_vz)—iQ‘g(k)(u—U)) =0. (A9)

The remaining terms in Eq. (A9) can be written as

o L? im* cos(k) A
(zA—f—?) o <_W(6+k )Z4 (u,v)), (A10)
by fixing
1 1
A -
2(k) = 12k 4k (All)

Finally Eq. (A9) can be written as

<m + %) ° <H/,g(u, v) + cos(k) ((% - W) Z0u,v) - 4’"—;zg(u, v))) =0, (A12)

which implies that

P2

im im* 2
ut(u,v) = U4 (u, v) — cos(k) <(§ — %) Mu,v) - mZA(u U)) + O(m®) (A13)

. . 2 .
with eigenvalue —L° where k satisfies

sin(k) = <"]’€2 +% <1 ;)) cos(k) + O(m). (Al4)
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2. Details of the calculations for the symmetric SJ modes

In this section we solve Eq. (57) for H(u, v) by constructing each m*' Py (u, v) out of Z;(u,v) and iAo Z;(u, v) for
different /. Let us start with the first nonzero P5(u, v). It can be observed that Pg(u, v) can be constructed out of Z3 (u, v)
and iAo Z§(u, v) up to O(m°) as

PS(u.v) = <iA+%2> . <—§Z(S)(u,v)>. (AL5)

Therefore Eq. (57) for H(u, v) up to O(m*) can be written as

<iA - %) o (H{(u,v) + Z§(u, v) cos(k)) — w <m2 (—% (u? + v?)

2 2 :
+i<Qf<k)—k—i)(u+v)+%) +m4<u e i )2 207+ uw— 1)

2k 8k?2 24k
i(u?+ 03 i
—%((—&w —4)(u? 4+ v*) + 6uv +5) + (—% +2—Z(u +v)(u? + v* + Suv + 2))
w4+ 0% i
+ 01 (k) (— 2—; — Z(uv +3)(u+ v)) +iQ05(k)(u+ v))) =0. (A16)

Since the extra terms in Eq. (A16) has m? as a factor, we need to look for Z; and iA o Z$ only up to O(m?). O(m?) terms in
Eq. (A16) can be written in terms of (iA + %) 0 Z3(u, v) and (iA + L) 0 Z3(u, v) for

1
Q03 =2k — e (A17)
as
. L? 5 3i L
iA +or)om cos(k) ﬂZl(u, v) +§ZO(u, v) ). (A13)
Therefore Eq. (A16) can further be written as
L2 2 ) ; 4L2 k
(iA n 7) ° <Hg(u, v) + cos(k) ((1 + %) Z8(u, v) + 312—']’:2{(”, v))) + % (8ik>
+ k(=34 — kQ5 (k) + 56Kk)(u + v) + i(30 — 37k?) (u® + v?) + 2k(4 — K*)(u® + v3)) = 0. (A19)

Remaining O(m*) terms in Eq. (A19) can be written in terms of (iA+L2)oZ5(u,v), (iA+L)o0Z5(u,v),
(iA + L) 0 Z5(u, v) for

320k + 28k

03k == (420)

as

6—31k2)

_mcos(k) ((4 )28 (1 v) + A 0) + (2= 98)Zj(u, U))- (A21)
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Hence Eq. (A19) can be written as

(iA + %) ° (Hg(u, v) + cos(k) < (1 + m; - Sm—]; (2- 9k2))zg(u, v)

3im*  im* m*
Therefore the symmetric SJ modes are
m?>  m*
wi(u,v) = U3 (u,v) — cos(k) < (1 T e (2- 9k2)>Zg(u, v)
3im*  im* m*
<7 = (6— 31k2)) Z5(u,v) — 2 (4 = k*)Z5(u, v)) + O(m*), (A23)
with eigenvalue —L2 where k satisfies
m? m*
sin(k) = <2k - (1 -2k + s (3 —29k* + 28k4)> cos(k) + O(m*). (A24)
|
APPENDIX B: SUMMATION OF SERIES WITH and similarly,
INVERSE POWERS OF ROOTS OF A
TRANSCENDENTAL EQUATION © /1N 3
In this Appendix we make use of the work of [13] to Z <x_> =3aja, — 3a; — aj. (B5)
=1 \7Mi

evaluate the series [Eq. (79) and Eq. (80)], which involves
the roots of the transcendental equation [Eq. (43)]. They are
used in Sec. (III B) to determine the completeness of the
SJ modes.

Let us start with a brief discussion on the work of [13].
Consider a transcendental equation of the form,

(B1)

with x, x,, x3... as its roots, which means the equation can
be factorized as

(-2)0-2)(0-3).

On comparing Eqs. (B1) and (B2), we find that

| 1 1
ay = g > ay = E ) as = E
P X; — X;X; xixjxk

(B2)

i<J J i<j<k
(B3)
and so on. It is straightforward to see that
= 1>2 (°° 1>2 1
) =(X) a2 (B
; <xi ;Xi ;xixj

Similarly we can get the sum of higher inverse powers of
the roots.

Now let us come to the equation of our interest i.e.,
Eq. (43), which on series expansion becomes

1 2 1
S(k2) = 2 4
(k)_1_<1_§>k +<_4!_§)k

_<é_%>k6“'_0' (B6)
The roots of Eq. (B6) are kg € Ky, and therefore,
Z 15
kggcyé—3ala2—3a3—a?—;%. (B7)

We are also interested in the series involving the inverse
power of 4k§? — 1, where kj € K,. We start with finding an
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equation whose solutions are given by 4k5% — 1. If k32 are the solutions of S(k*) = 0, then 4k5* — 1 are the solutions of
S(EH) =0,

s(EH1Y L Scos(1/2) = 9sin(1/2) 4 S53cos(1/2) =97sin(1/2) 5 _ B8
< 4 >= 4 " 32(cos(1/2) —sin(1/2))"  384(cos(1/2) —sin(1/2))" (B8)
Using the same method as above, we find
1 1

Z4k52 14 (B9)

kS

1 1 (cos(1/2) —2sin(1/2)
kél:c (@7 —172 " 4 < cos(1/2) —sin(1/2) > (B10)
1 19cos(1/2) — 35sin(1/2)

koezlc((élkézi—lf@<1+ cos(1/2) — sin(1/2) ) (B11)

APPENDIX C: SOME EXPRESSIONS USED IN SEC. IV
Here we list the expressions of Ay, Ay, Ay and Ay defined in Eq. (93) in terms of polylogarithms,

| 2m? mt 7 1 . . o
A = — (1= — —ingu __ ,—Inaw ingu _ ,INaw
! ; 8nrw < n?m? + n’n? <n2752 6)) (e ¢ (e e

1 s p—im(u—u' s p—im(v—0 s ( p—im(u—v s p—im(v—u
= o [Liy (7)) - Liy (¢7=) — Ly (e7=1") — Li (e~

m2 m2 : / . / . ’ . ’
_ (1 4 12> [ng (e—lﬂ(u—u )) 4 ng (e—llr(u—v )) _ ng (e—m(u—v )) _ Li3(e—lﬂ'(v—u ))]
T

473
Tm* Li< (e—iz(u=u') Li< (e—iz(v=2") Li< (e—iz(u=2") Lic (e—i7(v—1) Cl1
+F[ is(e ) + Lis(e ) — Lis(e ) — Lis(e )l (C1)

=1 2m? , S
AH = il % <1 - —n2ﬂ2> (e_m”“ - e_”“”/)‘PA (”l, I/l/, U/)
)

13 . . . ) im ) ‘ . .
87 E f;f(m; u, U’)[I i1 (_ e"’”’) -1 i (_e—zm)] o (u/ U’)[I 14(_e—uzu) _ 14(—6 lm))]
J=1 L

1 3
+§Zl gy (ms !, ') [Lijoq (7)) = Lijy g (e 0)] — g3 (m3 o/, )Ly (= "07)) — Lij (—e7#(0=))])
]:
4
im : —in(u—u' : —in(v—u/ : —in(u—2' : —in(v—1'
= g% (20 + v)[Lig(=e (u=)) = Liy(=e~ =) = (20" + ) [Lig (e~ "*=")) = Liy (e~ "=))), (C2)

m2
A= (1 e e
im*

1 i i inv! : iru' . P
= §ij(m; u, v)[Lijyy (€)= Li;  (—e™")] - e (1 — v)[Lig(—e™) — Liy(—ei™)]

1 , : inlo—s : inlumet : in(oy
+§Z gj(msu, 0)[Lijg (7)) = Lijy (=e70)] — g;(ms 0, 1) [Lijg (—e™ =) = Lij (=e707)))
j=1
l 4 . : / . : N
(a4 0)[Lis(—e070) — Liy (=00 = (20 4 1)[Li(—e" 0 ~ Lig(=e)),(C3)
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[Se]

1
Ay = Z%TA(” u, v)¥%(n,u', ")

4
157 3= ) (' = v') = (= ) (20 + ) Lis (=e"™) = (2 + v) (u = /) Lis (~e™")

(u —v) (' + 20" )Liz(=e™") + (u + 20) (4’ — v')Liz(—e™)

+ (2u + v)(2u' + v')Liz (e ™)) + (u + 20) (' + 20/)Liz (e~ (=)

— (2u+ v)(u + 20')Lis(e= =) — (u 4 20)(2u’ + v')Liz (e~ =), (C4)

Here we list the expressions of Sy, Sy, Sy and Spy defined in Eq. (97) in terms of polylogarithms,

1 & 1 o o o o
S = —Z (e—l(n—i)ﬂru =+ e_'<”_7)”y)(e’<"_7)”” + et(n—i)m;)

dnis(2n-1)
1 . i) (u—u') _l”(u d —in (v=u) _lﬂ((;—(;/)
:E[Lll( =) +Lij(e )+L11( 7 ) + Lij(e727)]
1 : —im(u—u' : —im(u—2' . —in(v—u' : —ir(v—1'
~ g, e (=) + Liy (e7#=) + Li; (e7"(=)) + Li (e=(r=1))), (Cs5)
S Eii 1 (e_i("_%)””+e—i<”—%)””)‘{1*(n u 1/)
" 4riaon—1 SV
Lmzv _ PCETO N S |
- {Lz( S0 4 Ly (e ) = Lia(ee)) = 2 Lip(eie(r)
im?u’ . (=) . - (v=t!) 1. . y 1. o i
+ A 5 |:L12<€_m 2 ) + le(e_’” 2 ) — ZL12<€_M(M_L )) - Zle(e_m(L_U))
m*v”? 1 o Lo 1
e i) 4 Lin(em ) = i) = i)
4 n o 1 1 b
Lia (e"5%) + Lip(e#*5) = 2 Lip (-ise=1) — = Lip(e7in(0=)) . (co)
T 16r 4 4 |
1 & 1

———Wo(n,u, v) (eI 4 i’y

im?v [ o 1 o1 o
— _lm v Liz(e_”’ + )+L12( —m( )_ZLI ( —m(u—u)) __Liz(e—m(v—u))

47? 4 ]
- % :Lig(e—m< ) + Liy(e7i3 ) - 3—‘L12( —in(u=/)) _ %Liz(e_i”(”_”/))}
- %}1:32 :Liz(e—m ) + Liy (e —iz" ) _ %LI (e~imlu=u)) %Liz(e—iﬂ(v—u’))]
_%7’;2 Liz(e e=im" ) | Liy (e 5" )_%Ll (e-imtu=") _%Li2(e—in(v—v’)):|’ )
Sy = 41ﬂi2n1_ 7 We(n, u, v)¥(n,u',0v')
= 43 [vv’(Lla( i) —éLl (e=m=)) 4 pud(Lig (e~ —éLi3(e‘i”(“"”/)))
+ ' (Lis (e77) = %Lia(e"’”“‘”’))) + ud (Lig (7757 - éLi3(e—m<v—v’>)) : (C8)
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APPENDIX D: MODIFYING THE INNER
PRODUCT TO GET THE 2D
RINDLER VACUUM

In this section we obtain the massless Rindler Wightman
function in the right Rindler wedge as a particular limit of
the massless SJ Wightman function in 2D causal diamond.
We achieve this by deviating from the standard £ inner
product on the function space F(M, g), by introducing a
suitable nontrivial weight function w(X),

(f.9) = A F(X)g(X)w(X)dvy.  (DI)

where dVy is the spacetime volume element. w(X) takes
real, positive and finite value for all X. The inner product
defined in Eq. (D1) is well defined in (M, g) and satisfies
the defining properties of an inner product:

i) (f,g), is linear in g.

(i) (f,9), is antilinear in f.

(i) (f,f), = 0. Equality holds iff f = 0.
Similarly, we redefine the integral operator iA to make it
consistent with this inner product,

(iBouf)(X) = [ XXMV (D2)

M
It is straightforward to check that even with this modifi-
cation, iA is Hermitian,

(f.iho,g), = (iAo, f.g),- (D3)

Next, we see that

Claim 2: Ker(Ogg) = Image,,(iA) for w(X) real,
positive and finite valued in X.

Proof—For any y € Image,,(iA), there exists a y €
F(M,g) such that y = iAo y. Since

~

iAo, (y) = iAo (wy) (D4)
this implies that y = iA o (wy) € Image(iA), since wy €
F(M.g). Thus Image,(iA) C Image(iA). Conversely,
for any y' € Image(iA), there exists a y' € F(M,g)
such that y' = iAoy’. Since w is real, positive and
finite valued in X, w/we& F(M,g) and hence
¥ = iAo, (y/w) € Image, (iA). Hence Image,(iA)=
Image(iA) = Ker(Cgg). [ |
The 2D Minkowski metric in Rindler coordinates is

ds? = 2 (—dn? + dE?), (Ds)

where
(D6)

t = a~'e“ sinh(an), x = a~'e% cosh(an),

s N
& /

& A
.
%\

(@ (b)

FIG. 18. A small causal diamond centered in a causal diamond
D in the 5-£ plane is shifted to the corner of D in the t-x plane.

and a > 0 is the acceleration parameter. Consider a causal
diamond of a length 2/ centered at (0, 0) in (1, ¢)
coordinates. The center of the diamond (u, v) = (0,0) in
the u-v plane is at (¢, x) = (0, a~!) and thus to the corner of
the diamond in the #-x plane as shown in Fig. 18. The Pauli
Jordan function is then similar to that in Minkowski
coordinates,

A vi il ) = —é O —u)+0(w—1)—1), (D7)

where we have used the new light cone coordinates u =
%(n +¢&) and v = %(;1 — &). The “w-SJ” modes u}} are
then given by

L
/iA(u,v;u’,v’)u}f(u’,v’)w(u’,v’)ez"'f’du'dv’
-L

= hul (u, v). (D8)
If we now choose w(u, v) = e~2%, Eq. (D8) is exactly the
same as the eigenfunction equation for the massless SJ
modes in D, and hence Wy, is the same as the massless SJ
function of [3]. Thus, at the center of this diamond Wg;
takes the same form as Eq. (100). The critical difference is
that in this case the u and v are light cone coordinates for a
Rindler observer instead of an inertial observer. Thus, in
(t,x) coordinates, Wy, is the Rindler vacuum [see
Eq. (102)]. The small diamond at the center of D the
n-£ plane is a small diamond near (but not at) the corner of
D in the t-x plane. Here, Wy, then resembles the Rindler
vacuum.

Of course, the question is whether Wg; will also
look like Wik near the center of the diamond in the
t-x plane, i.e., at (t,x) = (0,a”' cosh(v/2La)), which is
(0,a~"In(cosh(v/2La))) in the n-¢ plane. This is the
mirror vacuum, W™ which rather than corresponding
to Wink i a “Rindler-mirror” vacuum. This is clearly not
desirable.
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What we have presented here is a “trick” for achieving
a desired form for the vacuum in the corner. However, this
messes up the expected form at the center. The question is
whether a smooth modification of w from 1 in the center

of the #-x plane diamond to exp(—a¢) at the corners could
lead to the desired form. However, modifications of the
inner product mean that the SJ vacuum is no longer
unique.
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