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Using the correspondence between solutions of gravitational and gauge theories (the so-called classical
double copy conjecture) some electromagnetic fields with vortices are constructed, for which the Lorentz
force equations are analytically solvable. The starting point is a certain class of plane gravitational waves
exhibiting the conformal symmetry. The notion of the Niederer transformation, crucial for the solvability, is
analyzed in the case of the Lorentz force equation on the curved spacetimes as well as its derivation by
means of integrals of motion (associated with conformal generators preserving these vortices) is presented.
Furthermore, some models discussed recently in the context of the intense laser beams are constructed from
their gravitational counterparts, with the special emphasis put on the focusing property, and new solvable
examples are presented.

DOI: 10.1103/PhysRevD.100.045006

I. INTRODUCTION

Gravitational waves have been intensively studied since
the invention of general relativity. Recently they have
gained a new interest, both due to their direct observations
[1,2] and because of new theoretical ideas such as the
memory effect and soft graviton theorems ([3–10] and
references therein). The circularly polarized ones seem to
be particularly interesting as they may arise as the effect of
coalescing black holes and neutron star merger or can be
observed from the astrometric data [2,11]. The linearly
polarized waves are, in turn, distinguished by their relative
simplicity. Far from the source in the neighborhood of
the detector one can approximate gravitational waves by
the exact plane ones (assuming that the backreaction of the
detector is negligible). Finally, the so-called impulsive
gravitational waves seem to be of some importance [12–17].
On the other hand, it turns out that in the case of the

exact gravitational waves mentioned above there are three
special classes; they are defined by the maximal (in the
nonflat case), seven-dimensional, conformal symmetry
[18–20], and they are the only ones exhibiting the
maximal conformal symmetry among all nontrivial vac-
uum solutions to the Einstein equations. One of these

classes consists of a metric family describing linearly or
circularly polarized gravitational pulses. This exceptional
family admits the proper conformal transformations;
moreover, it can be used to model impulsive gravitational
waves with the Dirac delta profile. However, the most
interesting property of this family is that the geodesic
equations can be explicitly solved. In consequence, some
gravitational phenomena (such as singularities, focusing,
classical cross section, and the velocity memory effect)
can be analyzed analytically, also in the Dirac delta limit
[17,21]. Such a situation is strictly related to the existence
of the so-called Niederer transformation [21–23] (see also
Sec. II for some details).
In this work, based on the above-mentioned polarized

gravitational pulses, we study the interaction of the
electromagnetic field with a charged particle. The bridge
between the gravitational waves and electromagnetic fields
is provided by the idea of the classical double copy (a part
of the color-kinematic duality; see [24–32] and references
therein). At the quantum level (analyzed as the tree and few
loops levels) this conjecture concerns the problem of how
scattering amplitudes in gravity can be obtained from those
in the gauge theory by replacing the color structure with
the kinematical one. At the classical level, it consists of the
mapping of the solutions of the Einstein equations into the
solutions of the Yang-Mills equations; for example a Kerr-
Schild–type relation of the double copy [24] where the
linear structure of the Einstein equations for the Kerr-Schild
metrics corresponds to Abelian gauge fields. One of the
main examples of such a correspondence is provided by the
plane gravitational waves; they correspond to the electro-
magnetic potentials which yield certain, nonplane and
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vacuum, electromagnetic fields. As we indicated above
there is an exceptional family of the plane gravitational
waves for which the geodesic equations can be analytically
analyzed. In view of the double copy conjecture the
following question arises: does the same situation hold
for the motion of a charged particle in the electromagnetic
fields corresponding to this class? The positive answer to
this question is obtained in Sec. III. In consequence, by
using the idea of double copy we obtain electromagnetic
fields for which (as for its gravitational counterparts) the
dynamics is explicitly integrable. Moreover, the fields
obtained exhibit vortices and generalize the ones described
in Ref. [33] (which seem to be of some importance for
singular optics and trapping problems, i.e., the confinement
mechanism of particles by electromagnetic or gravitational
fields; see [34,35] for the electromagnetic case and [36–38]
for its gravitational counterpart). It is also worthwhile to
notice that for the electromagnetic fields under consider-
ation the Dirac delta limit of the profile can easily be
performed.
Since the solvability discussed above is strictly related to

the notion of the Niederer transformation we discuss in
Sec. IV, a geometric extension of the Niederer map to the
case of the plane gravitational spacetimes endowed with
some, crossed, electromagnetic fields. As a consequence
we obtain some examples of Lorentz force equations in
suitable gravitational backgrounds which are solvable in
the transverse directions.
In Sec. V we slightly modify the Kerr-Schild ansatz to

produce non-null electromagnetic fields. Such electromag-
netic fields have been discussed in Refs. [39,40]; they
capture some essential features of the transverse magnetic
beam of laser light near the beam axis. Next, we apply this
procedure to the linearly polarized gravitational metrics and
obtain an explicitly solvable model described in Ref. [39].
Moreover, relying on a member of the family of circularly
polarized gravitational pulses we construct a transversally
solvable electromagnetic background. However, in contrast
to the previous one it has zeros; this fact essentially
modifies the focusing conditions important for intense or
ultrashort laser pulses (when the paraxial approximation
may no longer be valid; see e.g., [41,42]). In the general
case, we give some criteria that were applied to the cases
under consideration.
Moreover, in Sec. VI the role and meaning of integrals of

motion are discussed with the special emphasis on new
ones associated with conformal generators preserving
vortices under discussion; it is shown that these integrals
lead to the Ermakov-Lewis invariants [43–45] and con-
sequently to the Niederer transformation. The results out-
lined above suggest a deeper connection (related to the
conformal symmetry and integrability) between gravita-
tional and gauge theories rooted in the double copy
approach. Finally, in Sec. VII we give a summary with
an outlook for further studies.

II. PLANE GRAVITATIONAL WAVES
AND CONFORMAL SYMMETRY

In this section we recall some facts crucial for our further
studies. They concern the role of the conformal symmetry
in the problem of analytical solutions of the geodesic
equations. Namely, let us consider a subclass of the pp-
waves, the so-called generalized plane gravitational waves,
of the following form1:

g ¼ x ·HðuÞxdu2 þ 2dudvþ dx · dx; ð2:1Þ

where H is assumed, without loss of generality, to be a
symmetric matrix. In general, they are solutions to
Einstein’s field equations in which the only source of
gravity is some kind of radiation; i.e., the source is a null
fluid. The weak energy condition implies trðHÞ ≤ 0 and
the scalar curvature vanishes. If trðHÞ ¼ 0, then g satisfies
the vacuum Einstein equations and, consequently, describes
a plane gravitational wave (exact gravitational wave). The
geodesic equations for the metric (2.1) reduce to the
following ones:

ẍ ¼ Hx; ð2:2Þ

v̈ ¼ −
1

2
x · _Hx − 2x ·H _x; ð2:3Þ

where the dot refers to the derivative with respect to u.
Furthermore, Eq. (2.3) can be directly integrated yielding

vðuÞ ¼ −
1

2
x · _xþ C1uþ C2; ð2:4Þ

where x is a solution to (2.2). Thus for the (generalized)
plane gravitational waves the solution to geodesic equa-
tions is obtained by solving the set of Eqs. (2.2). Moreover,
the latter are particularly interesting in the case of the exact
gravitational waves since they coincide with the deviation
equations and enter the transformation rules to the so-called
Baldwin-Jeffery-Rosen coordinates [5,6]. Although this
set of equations cannot, in general, be explicitly solved,
there are some special cases when the solution is accessible
(see e.g., the classical paper [46]). Another, more geometric
approach to this problem is related to the symmetry of the
metric; the most interesting cases are the ones exhibiting
the maximal symmetry. Let us start with the isometry
groups. It is well known that the generic dimension of
the isometry group of plane gravitational waves is five.
There exist two exceptional families admitting the six-
dimensional isometry groups. The first one is defined by
the matrix H of the form

1We use the following conventions: signature ð−;þ;þ;þÞ and
u≡ ðx3 − x0Þ= ffiffiffi

2
p

; bold indices refer to two-dimensional vectors,
and the Einstein convention is assumed.
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Hð0ÞðuÞ ¼
�
cosðκuÞ sinðκuÞ
sinðκuÞ − cosðκuÞ

�
; ð2:5Þ

it admits the explicit solutions to the geodesic equations
(cf. [16,47] and references therein). The second family
describes geodesically incomplete manifolds defined by
H ∼ u−2; it is intensively used in the context of the Penrose
limit [48,49].
The situation becomes more interesting if we take into

account the conformal symmetry. Let us recall that the
maximal dimension of the conformal group of the non-
conformally flat metric is seven [50]. Note that the metric
(2.1) admits a homothetic vector field. Therefore, the two
above-mentioned families exhibit the seven-dimensional
conformal symmetry (six isometries and homothety). It
appears that there exists only one subclass of the plane
gravitational waves with the seven-dimensional conformal
group consisting of five-dimensional isometry, homothety,
and nonhomothetic conformal transformations (cf. [18–20]
and [51–53]). This special subclass consists of two families
describing linearly and circularly polarized plane gravita-
tional waves. In the following, we concentrate on them
(actually, on the geodesically complete cases as the most
interesting ones). The first family, linearly polarized, is
defined by the metric gð1Þ with the profile

Hð1ÞðuÞ ¼ a
ðu2 þ ϵ2Þ2

�
1 0

0 −1

�
; ð2:6Þ

where ϵ > 0 and a is an arbitrary number (excluding the
trivial Minkowski case and changing x1 and x2 one can
assume a > 0). Moreover, let us note that taking a ∼ ϵ3 one
obtains the impulsive gravitational wave with the Dirac
delta profile (as ϵ tends to zero).
The second family gð2Þ is an example of the circularly

polarized plane gravitational waves. It is defined by the
following profile:

Hð2ÞðuÞ ¼ a
ðu2 þ ϵ2Þ2

�
cosðϕðuÞÞ sinðϕðuÞÞ
sinðϕðuÞÞ − cosðϕðuÞÞ

�
; ð2:7Þ

where

ϕðuÞ ¼ 2γ

ϵ
tan−1ðu=ϵÞ; ð2:8Þ

ϵ; γ > 0 and a can be chosen as above [for γ ¼ 0, Eq. (2.7)
reduces to the previous case; however, for physical and
mathematical reasons we shall consider linear and circular
polarizations separately].
Some properties of the gravitational waves gð1;2Þ were

discussed in [17,21]. Among others it was noticed that the
geodesic equations can be explicitly solved; furthermore, it
was shown that this fact can be simply explained in terms of

the so-called Niederer transformation (see also Sec. IV). In
the case of gð1Þ the transversal part of the geodesics reads

xiðuÞ ¼ Ci
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ ϵ2

p
sinðΛitan−1ðu=ϵÞ þ Ci

2Þ; ð2:9Þ

where

Λi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð−1Þi a

ϵ2

r
; i ¼ 1; 2: ð2:10Þ

Moreover, the initial conditions

_xð−∞Þ ¼ 0; xð−∞Þ ¼ xin ð2:11Þ

lead to the observation that only the second component
x2ðuÞ exhibits focusing. In the case of gð2Þ, the solutions are
of the form

xðuÞ ¼ ϵRðũÞyðũÞ
cosðũÞ ; ũ ¼ tan−1ðu=ϵÞ; ð2:12Þ

where

RðũÞ ¼
�
cosðωũÞ − sinðωũÞ
sinðωũÞ cosðωũÞ

�
; ω ¼ γ

ϵ
; ð2:13Þ

and y’s are solutions to the following set of differential
equations with constant coefficients:

ðy2Þ00 þ 2ωðy1Þ0 þ Ω−y2 ¼ 0;

ðy1Þ00 − 2ωðy2Þ0 þ Ωþy1 ¼ 0; ð2:14Þ

with

Ω� ¼ 1 − ω2 ∓ Ω; Ω ¼ a
ϵ2
; ð2:15Þ

here primes refer to the derivatives with respect to ũ.
Although the general solution of Eqs. (2.14) is well known,
in our case it is a linear combination of trigonometric
functions only or both hyperbolic (or linear) and trigono-
metric ones depending on the values of parameters appear-
ing in (2.14), the form of the coefficients can be quite
complicated (for γ ¼ ϵ they are presented in [21]). In the
general case the transformation to the normal coordinates
seems more useful (see also [54,55]). The above results
form a setup for our further considerations.

III. EXACTLY SOLVABLE
ELECTROMAGNETIC VORTICES

In the previous section we pointed out that for the plane
gravitational pulses exhibiting the maximal conformal sym-
metry the geodesic equations can be analytically solved.
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Here, we showed that a similar situation holds for the
electromagnetic fields constructed by means of the
double copy conjecture; i.e., the existence of explicit
solutions to the geodesic equations coincide with the
existence of the explicit solutions to the Lorentz force
equations for the corresponding electromagnetic back-
grounds. To this end let us consider, in the Minkowski
spacetime and light-cone coordinates, the following
electromagnetic one-form:

A ¼ −x · AðuÞxdu: ð3:1Þ

Such a potential yields the (crossed) electromagnetic fields

E⃗ ¼ ðf1; f2; 0Þ; B⃗ ¼ ð−f2; f1; 0Þ; ð3:2Þ

where

f ¼ ðf1; f2Þ ¼ ð
ffiffiffi
2

p
A1ixi;

ffiffiffi
2

p
A2ixiÞ: ð3:3Þ

The fields E⃗ and B⃗ satisfy Maxwell’s equations with the
following null current:

jμ ¼
ffiffiffi
2

p
trðAÞð1; 0; 0; 1Þ; jμjμ ¼ 0 ð3:4Þ

(cf. [56,57]).
Furthermore, the following conditions:

E⃗2 − B⃗2 ¼ 0; E⃗ · B⃗ ¼ 0; ð3:5Þ

hold and imply that the electromagnetic field is the pure
radiation (the energy density and the Poynting vector form
a null four-vector). When trðAÞ ≠ 0, e.g., A is proportional
to the identity, then jμ can be interpreted as a pulse of
charges of one sign moving with the speed of light along
the z-axis, especially when a suitable regularization is
performed (jμ is zero outside a transversal region); unfortu-
nately, even then the total energy of fields is infinite. The
situation changes if a dipole model of the particle is taken
under consideration; for more details see the original
paper [58].
The case trðAÞ ¼ 0 corresponds to the electromagnetic

field satisfying the vacuum Maxwell equations; however,
such fields are not, in general, electromagnetic plane
waves. Moreover, for arbitrary vacuum solutions the con-
ditions (3.5) (equivalently the vanishing of the square of
the Riemann-Silberstein vector) can be used to describe
the vortex of the electromagnetic field [59]. However, in the
null fluid case, i.e., when (3.5) vanishes identically, the
notion of the vortex can be simplified; it is then related to
the condition that all components of the electromagnetic
field vanish (see [60]). In this approach the electromagnetic
field (3.2) carries a straight vortex line along the z-axis.
This is interesting due to the fact that the electromagnetic

vortices (vortex lines) gained some attention not only in the
context of singular optics but also in the confinement
mechanisms of particles by electromagnetic fields or even
knot theory; see [33–35] and references therein.
Now let us note that for the potential (3.1) the Lorentz

force equations

m
d2xμ

dτ2
¼ eFμ

ν
dxν

dτ
ð3:6Þ

give

m
d2x
dτ2

¼ ef
d
dτ

ðx0 − x3Þ; ð3:7Þ

1ffiffiffi
2

p
�
dx0

dτ
−
dx3

dτ

�
¼ −

du
dτ

¼ −pv

m
> 0 ð3:8Þ

(pv < 0 is the light-cone momentum of the particle); and
consequently Eqs. (3.6) can be expressed in terms of the u
coordinate as follows:

ẍ ¼ 2e
−pv

Ax; ð3:9Þ

v̈ ¼ 2e
pv

x · A _x ð3:10Þ

(see also [56,57]). Thus, up to the constant 2e
−pv

, the
transverse part of the equation of motion (3.9) has the
same form (in contrast to the longitudinal direction; see
the discussion below) as for the plane gravitational waves
[cf. Eqs. (2.2)].
The above properties of the vacuum electromagnetic

field given by the potential (3.1) can be considered as a
manifestation of the idea of double copy which at the
quantum level concerns the problem of how scattering
amplitudes in gravity can be obtained from those in the
gauge theory by replacing the color structure with the
kinematical one; for more details we refer to some surveys
[29,30] because our further considerations will focus on its
classical counterparts which have been proposed (see e.g.,
[24–28]) to better understand this conjecture (for example
whether the copy is a genuinely nonperturbative property of
both theories). In this approach we look directly at solu-
tions of the classical field equations in gauge and gravity
theories and match these up according to a double copy
prescription. Such a matching has been observed for the
metrics in the so-called Kerr-Schild coordinates [24], more
precisely, for the metrics which can be written in the
following form:

gμν ¼ ḡμν þ λkμkν; ð3:11Þ
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where λ is a scalar function and kμ is a null vector with
respect to both metrics. It turns out that under assumption
kμD̄μkν ¼ 0 the Ricci tensor has the remarkable property
that it is linear in λ. This property suggests that the
corresponding gauge field should take the simplest form
(even an Abelian one). For the Minkowski background
ḡ ¼ η the following (in general non-Abelian ansatz) was
proposed:

Aa
μ ¼ caλkμ; ð3:12Þ

where ca is an arbitrary constant color vector. In this case
under some additional assumptions concerning λ and kμ
(e.g., stationary) vacuum solutions are invariant under this
correspondence. Although it is not known how to fully
extend the above case, several attempts have been made
(including AdS background, Taub-Nut, or Kundt space-
times; see [25,26,31,32]). One of the most natural exten-
sions is based on the metric of the following form:

gμν ¼ ḡμν þ λ1kμkν þ λ2lμlν; ð3:13Þ

where lμ is also a null vector and orthogonal, with respect to
g and ḡ, to kμ. For such a metric the corresponding gauge
potential (in ḡ spacetime) reads

Aa
μ ¼ caðλ1kμ þ λ2lμÞ: ð3:14Þ

One of the main examples of the correspondence outlined
above is provided by the plane gravitational waves and
nonplane electromagnetic fields. Namely, taking ḡ ¼ η and
the vector kμ ¼ ð1; 0; 0; 1Þ= ffiffiffi

2
p

, the generalized plane wave

(2.1) takes the form (3.11) with λ ¼ λðu; x⃗Þ ¼ x ·HðuÞx.
According to the classical double copy conjecture the
corresponding electromagnetic potential (3.12) coincides
with (3.1) if we identify the matrices A ¼ H (in the simplest
Abelian, case). In Sec. IV we use this correspondence
taking a plane wave spacetime (2.1) as a fixed background
ḡ; then the additional term in (3.11) can be interpreted as
the potential in curved spacetime ḡ [cf. (3.13) and see also a
more detailed discussion in Refs. [25,26] ].
The above outlined reasoning has been used in Ref. [36]

to study an electromagnetic vortex proposed in [33] which
can act as a beam guide for charged particles; moreover, it
is analytically solvable (see also [56]) as well as provides an
approximation to more realistic beams [61]. Such a vortex
corresponds to the plane gravitational wave, defined by the
profile (2.5), which is also analytically solvable. Guided by
the above idea of classical double copy in what follows, we
show that the vortex mentioned possesses solvable exten-
sions based on the gravitational waves related to the proper
conformal symmetry discussed in the previous section.
To this end let us consider the electromagnetic poten-

tials related to the plane gravitational waves Hð1;2Þ.
Then, by virtue of (2.6), (2.7), and (3.1)–(3.3), one obtains
the following electromagnetic fields in the Minkowski
spacetime:

E⃗ð1ÞðxÞ ¼
ffiffiffi
2

p
a

ðu2 þ ϵ2Þ2 ðx
1;−x2; 0Þ;

B⃗ð1ÞðxÞ ¼
ffiffiffi
2

p
a

ðu2 þ ϵ2Þ2 ðx
2; x1; 0Þ; ð3:15Þ

E⃗ð2ÞðxÞ ¼
ffiffiffi
2

p
a

ðu2 þ ϵ2Þ2 ðx
1 cosðϕðuÞÞ þ x2 sinðϕðuÞÞ; x1 sinðϕðuÞÞ − x2 cosðϕðuÞÞ; 0Þ;

B⃗ð2ÞðxÞ ¼
ffiffiffi
2

p
a

ðu2 þ ϵ2Þ2 ð−x
1 sinðϕðuÞÞ þ x2 cosðϕðuÞÞ; x1 cosðϕðuÞÞ þ x2 sinðϕðuÞÞ; 0Þ; ð3:16Þ

where ϕ is given by (2.8) and u ¼ ðx3 − x0Þ= ffiffiffi
2

p
. As it has

been indicated in Sec. II, the geodesics equations for gð1;2Þ
are analytically solvable; in consequence one immediately
[after replacing a ↦ 2e

−pv
a; see (2.2) and (3.9)] obtains the

solution to the transverse Lorentz force equations with
E⃗ð1;2Þ and B⃗ð1;2Þ [cf. Eqs. (2.9) and (2.12)–(2.15)]. Finally,
taking an appropriate limit (cf. [17,21]) one gets the case of
an electromagnetic field with the profile proportional to the
Dirac delta function δðuÞ.
Now, let us consider the longitudinal direction. In

contrast to the gravitational case, Eq. (3.10) can be directly
integrated only once,

_v ¼ −
1

2
_x · _xþD1: ð3:17Þ

However, in what follows we show that for the field given
by (3.15) and (3.16) it is also possible to find explicitly
the v coordinate. Indeed, integrating (3.17) by substitution
ũ ¼ tan−1ðu=ϵÞ one obtains

vðuÞ ¼ D1u þ D2 −
1

2ϵ

Z
x0ðũÞ · x0ðũÞcos2ðũÞdũ:

ð3:18Þ
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Now, for the fields E⃗ð1Þ, B⃗ð1Þ using (2.9) one gets, after some computations, the following final form of the longitudinal
coordinate:

vðuÞ ¼ −
ϵ

2

X
i

ðCi
1Þ2

�
1

2
ðb2i − 1Þũþ sin2ðbiũþ Ci

2Þ tanðũÞ þ
1þ b2i
4bi

sinð2ðbiũþ Ci
2ÞÞ

�
þD2 þD1u; ð3:19Þ

where ũ ¼ tan−1ðu=ϵÞ and bi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð−1Þi 2ea

ϵ2pv

q
.

The second case is slightly more involved. First, we express the integral in (3.18) in terms of y’s satisfying Eqs. (2.14)�
with Ω ¼ 2ea

−pvϵ
2

�
, and, subsequently, we extract a total time derivative term; in consequence we arrive at the following

equalities:

−
1

ϵ2

Z
x0ðũÞ · x0ðũÞcos2ðũÞdũ

¼
Z

½ððy1Þ0 − ωy2Þ2 þ ððy2Þ0 þ ωy1Þ2 þ 2 tanðũÞððy1Þ0y1 þ ðy2Þ0y2Þ þ tan2ðũÞððy1Þ2 þ ðy2Þ2Þ�dũ

¼ ðy2Þ0y2 þ ðy1Þ0y1 þ ððy1Þ2 þ ðy2Þ2Þ tanðũÞ þ Ω
Z

½ðy2Þ2 − ðy1Þ2Þ�dũ: ð3:20Þ

Let us note that y’s are combinations of the trigonometric or
hyperbolic functions [cf. (2.14)]; thus the last integral in
(3.20) is an elementary one and can be explicitly computed.
Finally, substituting ũ ¼ tan−1ðu=ϵÞ in (3.18) one obtains
the form of vðuÞ which gives the analytical solvability of
the Lorentz force equations in the electromagnetic back-
grounds (3.15) and (3.16) (extending in this way some
results obtained in Ref. [33] to a kind of electromagnetic
pulses exhibiting vortices).

IV. NIEDERER’S MAP AND LORENTZ’S
FORCE EQUATION

It turns out that [21] the existence of analytical solutions
to the geodesic equations for the gravitational waves gð1;2Þ
can be simply explained in terms of the so-called Niederer
transformation [22,23]. We shall show that the similar
situation holds also when the electromagnetic fields (3.15)
or (3.16) are switched on. To this end and to make the paper
more self-contained let us recall some facts concerning the
Niederer map and its geometric interpretation. The
Niederer transformation,2

u ¼ ϵ tanðũÞ;

x ¼ ϵx̃
cosðũÞ ; ð4:1Þ

relates the free motion ẍ ¼ 0 (for our purpose we consider
the two-dimensional case) on the whole real axis

(−∞ < u < ∞) to the half of the period motion
(− π

2
< ũ < π

2
) of the attractive harmonic motion x̃00 ¼

−x̃, as the above dot and prime refer to the derivatives
with respect to u and ũ, respectively (this equivalence also
continues to hold at the quantum level [22]). Of course, the
above observation has a local character; however, it reflects
a similarity between both systems and brings some useful
information. Various local quantities can be directly related;
this concerns even the global ones (for instance, Feynman
propagators) if sufficient care is exercised (see e.g.,
[22,62,63]). In particular, the maximal symmetry groups
of both systems are isomorphic and one obtains the explicit
relation between symmetry generators as well as solutions
of both systems [64].
On the other hand, Eqs. (2.2) describe, in fact, a linear

oscillator (in general) with time-dependent frequencies;
however, it turns out that in some cases the Niederer
mapping can also be applied to relate them to a harmonic
(or a simpler linear) oscillator [21]. Namely, under the
Niederer transformation Eqs. (2.2) are transformed into the
following ones:

x̃00 ¼ H̃ðũÞx̃; ð4:2Þ

where

H̃ðũÞ ¼ ϵ2Hðϵ tanðũÞÞ
cos4ðũÞ − I: ð4:3Þ

In particular, if the matrix H is of the form

2For further considerations we adopt u-notation. There exists a
hyperbolic counterpart of Niederer’s transformation leading to
the repulsive case.
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HðuÞ ¼ a
ðϵ2 þ u2Þ2 GðuÞ; ð4:4Þ

where G is a symmetric matrix, then, by virtue of Eq. (4.3),
the equations of motion (4.2) read

x̃00 ¼ H̃ðũÞx̃ ¼
�
a
ϵ2

Gðϵ tanðũÞÞ − I

�
x̃: ð4:5Þ

For example, the (nonsingular) time-dependent linear oscil-
lator defined by a constant matrixG is mapped under (4.1) to
a part of motion of the harmonic oscillator. In consequence
the Niederer transformation can be useful to solve some
geodesic equations for plane gravitational waves (or other
problems where time dependent linear oscillators occur).
Moreover, such properties of the Niederer transformation
have a reflection in a geometric picture obtained bymeans of
the Eisenhart-Duval lift [23,65] (see also [66,67] and
references therein). Namely, extending the Niederer map
by adding the following transformation rule:

v ¼ ϵṽ −
ϵ tanðũÞ

2
x̃2; ð4:6Þ

one gets the identity

g≡ x ·HðuÞxdu2 þ 2dudvþ dx2

¼ ϵ2

cos2ðũÞ ðx̃ · H̃ðũÞx̃dũ2 þ 2dũdṽþ dx̃2Þ≡ ϵ2

cos2ðũÞ g̃;

ð4:7Þ

whereH and H̃ are connected by Eq. (4.3). For the particular
case H ¼ 0, Eq. (4.7) reduces to the well-known relation
between the Bargmann spacetimes corresponding to the free
ðu;x; vÞ and the half-oscillatory period ðũ; x̃; ṽÞ motions in
the Eisenhart-Duval lift language [23] (see also [68,69]).
In view of Eq. (4.7), by means of the Niederer trans-

formation one can associate with the metric g the new one
g̃, conformally related to g, belonging to the same class
(generalized plane gravitational waves). Of course, at most
only one of the metrics g and g̃ describes the vacuum
solution; moreover, the geodesic equations for g and g̃ are
not equivalent (except those for null geodesics). However,
from the reasoning underlying the Niederer transformation
it follows that the transversal geodesic equations (2.2) for g
are mapped into the transversal geodesic equations (4.2) for
the metric g̃, which may be more tractable than those for g.
The nonequivalence of the geodesic equations for g and g̃ is
reduced to the nonequivalence of equations determining v
and ṽ [however, the latter can be easily solved; cf. Eq. (2.4)].
Such a situation holds, for instance, for the conformally
distinguished metric families: gð1;2Þ and the one defined by
G ∼ I (see [17,21]).

Now, we extend the geometric picture of the Niederer
transformation outlined above to the case of both gravita-
tional and electromagnetic backgrounds; as a consequence
we obtain some examples of the Lorentz force equations in
suitable gravitational backgrounds which are solvable in
the transverse directions. Namely, let us analyze the action
of Niederer’s transformation on the spacetime described by
the metric (2.1) (in particular, for H ¼ 0–the Minkowski
one) endowed with the electromagnetic field given by the
potential (3.1). First let us note that the condition trðAÞ ¼ 0
implies that, as in the Minkowski case, the electromagnetic
field under consideration satisfies the vacuum Maxwell
equations on the spacetime defined by a plane gravitational
wave (this fact is valid even in the case of an arbitrary pp-
wave spacetime). Furthermore, in this case the equations of
motion of a charged test particle

d2xα

dτ2
þ Γα

νμ
dxν

dτ
dxμ

dτ
¼ q

m
gανFνμ

dxμ

dτ
ð4:8Þ

reduce to the following ones:

ẍ ¼
�
H −

2e
pv

A

�
x; ð4:9Þ

v̈ ¼ −
1

2
x · _Hx − 2x ·

�
H −

e
pv

A
�
_x ð4:10Þ

[for the Minkowski spacetime they coincide with Eqs. (3.9)
and (3.10)].
From the above we see that the transversal part of the

Lorentz force equation is still decoupled and can be con-
sidered separately. Thus we can try to extend the geometric
interpretation and applications of Niederer’s transformation
to electromagnetic fields in curved spacetimes. To this end let
us note that under the Niederer transformation the transverse
set of Eqs. (4.9) is mapped to the following ones:

x̃00 ¼
�
H̃ðũÞ þ 2e

pv
ÃðũÞ

�
x̃; ð4:11Þ

where H̃ is given by (4.3) while

ÃðũÞ ¼ ϵ2

cos4ðũÞAðϵ tanðũÞÞ: ð4:12Þ

The solutions to Eqs. (4.11) corresponding to the purely
gravitational case, i.e., A ¼ 0 and g ¼ gð1;2Þ, have been
discussed in [17,21] (see Sec. II), while for the
Minkowski spacetime they have been endowed with the
electromagnetic field given by (3.15) and (3.16) in Sec. III.
However, by considering these gravitational and electro-
magnetic backgrounds altogether (i.e., E⃗ðiÞ, B⃗ðiÞ on the
spacetime gðiÞ, for i ¼ 1, 2, respectively) one finds that in

FROM POLARIZED GRAVITATIONAL WAVES TO … PHYS. REV. D 100, 045006 (2019)

045006-7



these cases the transverse Lorentz force equations, given by
(4.11), are also analytically solvable.
Next, by virtue of (4.7) the Niederer map transforms the

metric g conformally into the metric g̃ of the same type; i.e.,
we do not leave out the class of the generalized plane
gravitational waves. For the electromagnetic potential (3.1)
one obtains

A ¼ −x · AðuÞxdu ¼ ϵx̃ · ÃðũÞx̃dũ; ð4:13Þ

where Ã is defined by (4.12). Thus the potential Ã, in the
new coordinates, is also of the same type as A and,
consequently, yields also a crossed electromagnetic field.
Moreover, the pair ðg̃; ÃÞ is the one for which the transverse
part of the Lorentz force equations is given by Eq. (4.11)
(let us note that since g̃ is conformally related to g, the
electromagnetic field arising from the potential Ã is a
vacuum solution to the Maxwell equation with respect to g̃,
in contrast to the metric case where the vacuum solution g is
mapped to the nonvacuum null-fluid solution g̃). In this
way we extend the notion of the Niederer transformation,
originally established for the nonrelativistic dynamical
systems, to the one including electromagnetic fields on
curved spacetimes; namely with the pair ðg; AÞwe associate
the new one ðg̃; ÃÞ such that the transverse part of the
Lorentz force equations for ðg; AÞ transform, by means of
the Niederer map, into the one for ðg̃; ÃÞ (moreover g; g̃ and
A; Ã belong to the same classes: the generalized plane
gravitational waves and vacuum crossed electromagnetic
fields, respectively).

V. LIGHT-MATTER INTERACTION

In this section we touch upon some problems of the
interaction between optical beams (such as lasers) and
charged particles. To this end let us recall that in the
standard approach the optical beams (including laser beams
or pulses) are described by the plane electromagnetic
waves. Thus the dynamics of a charged particle in the
presence of laser pulses reduces, at the classical level, to the
solution of the Lorentz force equations and, at the quantum
level, to the Dirac (Klein-Gordon) equation or, in general,
QED process, in these fields. However, the real laser
beam is localized (a finite beamwidth), and it has a high
amplitude near the propagating direction and is less far
away (transverse spatial variations); moreover, the beam-
width increases along the optical axis, and thus the wave
fronts show a spherical nature. In consequence, a nonplane
wave description of such beams is necessary. The most
popular solutions of this problem are based on the
paraxial approximation of the wave equation (small angle
between the wave vector and the optical axis). Under this
assumption various solutions (such as the Gauss beam,
Hermite-Gaussian, Laguerre-Gaussian modes and others)
were extensively studied. However, for pulses with a very

short duration or ultraintense lasers (higher focusing
increases the diffraction angle and intensity) the paraxial
approximation can no longer be valid; see e.g., [41,42] and
references therein. Thus it would be desirable to go beyond
the paraxial approximation. Various approaches to the
solution of this problem were proposed. In Ref. [39] the
authors construct auxiliary electromagnetic backgrounds
which captures some essential features of transverse
magnetic beams near the beam axis. Next, they show that
the dynamics of a charged particle in such models can be
explicitly discussed (without approximation); in this way
they obtain some insight into predictions and analyses for
experiments with intense or ultrashort lasers. More pre-
cisely, the following electromagnetic fields (see [39]):

E⃗ðxÞ ¼ EðuÞðx1; x2;
ffiffiffi
2

p
uÞ; B⃗ðxÞ ¼ EðuÞð−x2; x1; 0Þ;

ð5:1Þ

were considered, where the function EðuÞ is picked, at
least, at u ¼ 0. Such fields capture some essential features
of the transverse magnetic beams near the beam axis, such
as the polarization structure, the local rise of the transverse
fields, and the suppression of the longitudinal field as well
as satisy E⃗ · B⃗ ¼ 0 while, in contrast to (3.5), E⃗2 − B⃗2 > 0
(see also [39]).
In what follows, first, we shall show that such fields can

emerge from the gravitational metrics if we slightly modify
the correspondence between gravitational, given by (2.1),
and electromagnetic fields. As before we put A ¼ H in the
one-form (3.1); however, this time we add a new term with
an arbitrary function F ,

Â ¼ −x ·HðuÞxduþ F ðuÞdv: ð5:2Þ

Then one gets

E⃗ ¼ ðf1; f2; _F Þ; B⃗ ¼ ð−f2; f1; 0Þ; ð5:3Þ

jμ ¼
ffiffiffi
2

p �
trðHÞ þ 1

2
F̈
�
ð1; 0; 0; 1Þ; jμjμ ¼ 0; ð5:4Þ

where f1 and f2 are given by (3.3). Now, repeating the
previous considerations [i.e., using the Lorentz equa-
tions (3.6) and next integrating] one finds the following
relation:

m
du
dτ

¼ −eF ðuÞ −D; ð5:5Þ

where D is a constant of integration [see also (6.4)]. Then
the Lorentz equations in terms of the u coordinate read
(cf. [56])

ẍðeF þDÞ þ e _F _x ¼ 2eHx; ð5:6Þ
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v̈ðeF þDÞ þ 2e _F _v ¼ −2ex ·H _x: ð5:7Þ

Let us consider the diagonal profile H11 ¼ H22,
H12 ¼ H21 ¼ 0, and the function

F ðuÞ ¼ 2

Z
u

−∞
ūH11ðūÞdū ð5:8Þ

(we assume here the vanishing of the gravitational profile at
plus/minus null infinity in such a way that the function F is
well defined). Consequently, one gets the electromagnetic
field given by (5.1) with

EðuÞ ¼
ffiffiffi
2

p
H11ðuÞ: ð5:9Þ

Of course, the function F can be chosen up to a (irrelevant)
constant, and our choice F ð−∞Þ ¼ 0, due to the asymp-
totic vanishing of the gravitational profile and (5.5), gives

D ¼ −pv; ð5:10Þ

where pv < 0 [cf. (3.8)]. Finally, let us note that the choice
of the matrixH, trðHÞ ≠ 0, corresponds to the, nonvacuum,
generalized plane gravitational waves (here, in general, we
do not assume that the weak energy condition holds) and,
consequently, gives nonvacuum electromagnetic fields.
The general solution of Eqs. (5.6) was obtained in

Ref. [39] by means of some integrals of motion. Here
we apply a slightly different method. First, let us recall that
having a particular solution to the second-order homog-
enous linear differential equation, the general solution can
be expressed in terms of some integrals containing this
solution. For a diagonal matrix H and (5.8) the functions
xi1ðuÞ ¼ u are particular solutions to the transverse Lorentz
force equation (5.6). Thus using the above property of
ordinary differential equations we obtain that the general
solution is a linear combination of xi1 and the second
solution of the form

xi2ðuÞ ¼ u
Z

du
u2ðeF ðuÞ − pvÞ

ð5:11Þ

[in the case of the longitudinal direction Eq. (5.7) can be
integrated once [39] ].
Now, taking H11 ¼ Hð1Þ

11 given by (2.6) one gets

F ðuÞ ¼ −a
u2 þ ϵ2

; ð5:12Þ

and the following electromagnetic vector field

E⃗ ¼
ffiffiffi
2

p
a

ðu2 þ ϵ2Þ2 ðx
1; x2;

ffiffiffi
2

p
uÞ;

B⃗ ¼
ffiffiffi
2

p
a

ðu2 þ ϵ2Þ2 ð−x
2; x1; 0Þ; ð5:13Þ

which was studied, in another gauge, in [39]. More
precisely, it was shown there that the transverse Lorentz
equations are explicitly solvable; moreover, there exist
solutions exhibiting the focusing property. Namely, for the
electromagnetic field (5.13) the conditions (2.11) lead to
the following solutions to Eqs. (5.6):

xðuÞ ¼ xin

1 − g

�
1þ ug

ϵ
ffiffiffiffiffiffiffiffiffiffiffi
1 − g

p
�
π

2
þ tan−1

�
u

ϵ
ffiffiffiffiffiffiffiffiffiffiffi
1 − g

p
���

;

ð5:14Þ

where

g≡ ea
−pvϵ

2
ð5:15Þ

satisfies g < 1. Now, one can show that for g < 0 there is a
point u0 such that xiðu0Þ ¼ 0, i.e., focusing; for g > 0
there is no focusing. For example, taking a ¼ −sgnðeÞ one
gets the focusing case g ¼ jej

ϵ2pv
< 0. The transverse and

longitudinal electric field profiles of (5.13) as well as
solutions (5.14) are plotted in Fig. 1.

FIG. 1. The transverse and longitudinal electric field profiles corresponding to (5.13), i.e., (5.16) with r ¼ 0, as well as the transverse
part of focusing solutions (5.14) (e ¼ −1, a ¼ ϵ ¼ 1, pv ¼ −1=3).
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For g ≥ 1 the solutions are also expressible in terms of
elementary functions (they consist of composition of
logarithmic and rational functions); however, they exhibit
singularities even though the starting potential is regular.
This fact is related to the coefficient eAv − pv appearing in
front the second derivative in Eqs. (5.6) and (5.7). The
condition g < 1 ensures that this coefficient is never zero.
Then for the continuous potential the solutions of these
equations are regular. If there are some points where this
coefficient vanishes (here g ≥ 1), then the order of the
differential equations is at most one and then singularities
can appear. This is the reason for which starting from the
continuous potential we arrive, for some physical param-
eters, at singular solutions. Moreover, the vanishing of this
coefficient implies [see Eq. (5.5)] that reparametrization is
valid only on some intervals (not globally defined) which
makes considerations more complicated. In view of the
above here and below we skipped such singular solutions as
physically less transparent.

In Ref. [39] it was suggested that it would be interesting
to analyze explicitly an example of the electric field (5.1)
with multiple field oscillations [in contrast to (5.13)].
To this end we consider a counterpart of the circularly
polarized plane gravitational waves (2.7). Namely, let us
put γ ¼ rϵ, r > 0 in Hð2Þ [see (2.7) and (2.8)] and consider
the profile

H11 ¼ H22 ¼
a

ðu2 þ ϵ2Þ2 cosð2r tan
−1ðu=ϵÞÞ;

H12 ¼ H21 ¼ 0: ð5:16Þ

Then the function F is as follows: for r ¼ 1

F ðuÞ ¼ au2

ðu2 þ ϵ2Þ2 ; ð5:17Þ

and for r ≠ 1

F ðuÞ ¼ a
2ϵru sinð2r tan−1ðu=ϵÞÞ þ ðϵ2 − u2Þ cosð2r tan−1ðu=ϵÞÞ

2ϵ2ðr2 − 1Þðu2 þ ϵ2Þ þ a cosðπrÞ
2ϵ2ðr2 − 1Þ : ð5:18Þ

Let us begin with the case of r ¼ 1. Then

EðuÞ ¼
ffiffiffi
2

p
a

ϵ2 − u2

ðu2 þ ϵ2Þ3 ; ð5:19Þ

and the transverse part of the electromagnetic field is picked at u ¼ 0 and has two zeros (in contrast to the profile discussed
in [39]). In what follows we shall show that the trajectories as well as the focusing conditions can also be explicitly
written down.
To this end let us consider three cases distinguished by the value of the constant g given by Eq. (5.15). First, let g > 0.

Imposing (2.11) one gets the solution

xðuÞ ¼ xin

�
1þ guffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4gþ g2
p �

1ffiffiffiffiffiffi
A−

p
�
π

2
þ tan−1

�
uffiffiffiffiffiffi
A−

p
��

−
1ffiffiffiffiffiffi
Aþ

p �
π

2
þ tan−1

�
uffiffiffiffiffiffi
Aþ

p ����
; ð5:20Þ

where

A� ≡ ϵ2

2

�
2þ g�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4gþ g2

q �
> 0: ð5:21Þ

Using g > 0 one can show, after some calculations, that there is no focusing.
Next, when 0 > g > −4, we have

xðuÞ ¼ xin

�
1þ gu

4B

�
π þ tan−1

�
uþ ϵ

ffiffiffiffiffiffiffiffiffiffiffi
−g=4

p
B

�
þ tan−1

�
u − ϵ

ffiffiffiffiffiffiffiffiffiffiffi
−g=4

p
B

��
−

ffiffiffiffiffiffi−gp
u

2ϵ
tanh−1

�
ϵ

ffiffiffiffiffiffi−gp
u

u2 þ ϵ2

��
; ð5:22Þ

where

B ¼ ϵ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g=4

p
: ð5:23Þ

K. ANDRZEJEWSKI and S. PRENCEL PHYS. REV. D 100, 045006 (2019)

045006-10



Then there is a point u0 where xiðu0Þ ¼ 0 for all initial
points, i.e., focusing. Let us note that taking a ¼ −sgnðeÞ
one gets g ¼ jej

pvϵ
2 < 0; however, only for some values of the

particle parameters does the condition g > −4 hold [in
contrast to the electromagnetic field (5.13), nonvanishing in
the transverse direction]. The transverse and longitudinal
electric field profiles corresponding to (5.19) as well as the
focusing solutions (5.22) are illustrated in Fig. 2.
Finally, for g ≤ −4 the solutions can also be expressed in

terms of elementary functions; however, they exhibit some
singularities, so thus we skip them here [see the discussion
after (5.15)].
For arbitrary function F the integral in (5.11) cannot be

explicitly computed, even when the functions E and F are
both rational ones [e.g., F given by (5.16) with the non-
negative integer r]. Thus, in what follows we give some
sufficient conditions to ensure the focusing property of the
electromagnetic field (5.1), and next we apply them to the
case (5.16).
To begin with, we should assume that the denominator in

the integral (5.11) does not vanish anywhere

eF ðuÞ − pv ≠ 0; ð5:24Þ

this can be achieved by a suitable choice of the range of
parameters e and/or pv (since F tends to zero at the null
infinities). Next, we rewrite the general solution in the
following form:

xiðuÞ ¼ Ci
1x

i
1ðuÞ þ Ci

2x
i
2ðuÞ

¼ Ci
1uþ Ci

2pv

eF ð0Þ − pv
þ Ci

2u
Z

u

−∞

GðūÞdū
ū2ðeF ðūÞ − pvÞ

;

ð5:25Þ

where

GðuÞ ¼ −epvðF ð0Þ − F ðuÞÞ
eF ð0Þ − pv

: ð5:26Þ

Then the function under the integral (5.25) is well defined
on the whole real line since Gð0Þ ¼ 0 and, by virtue of
(5.8), _Gð0Þ ¼ 0. Now imposing the conditions (2.11) one
obtains Ci

1 ¼ 0 and, by virtue of l’Hôpital’s rule, the
following form of the solution:

xðuÞ ¼ xin

�
−u

Z
u

−∞

GðūÞdū
ū2ðeF ðūÞ − pvÞ

−
pv

eF ð0Þ − pv

�
:

ð5:27Þ
Hence, the inequality

1

ðeF ð0Þ − pvÞ
Z

∞

−∞

eðF ð0Þ − F ðuÞÞdu
u2ðeF ðuÞ − pvÞ

> 0; ð5:28Þ

together with (5.24), implies a focusing point. For instance,
the condition (5.28) is satisfied when the function eF ðuÞ
has the global maximum at u ¼ 0,

eF ð0Þ ≥ eF ðuÞ: ð5:29Þ

One can check that in the case of the electromagnetic
field defined by (5.13) and (5.19) [equivalently, (5.16) with
r ¼ 0, 1] the criteria (5.24) and (5.29) yield the conditions
obtained above. Furthermore, applying these criteria to the
electromagnetic field defined by (5.16) with 0 < r < 1 we
arrive at the following focusing conditions:

for 0 < r ≤
1

2
; g < 0; ð5:30Þ

for
1

2
< r < 1;

2ð1 − r2Þ
cosðπrÞ þ r sinð π

2rÞ
< g < 0: ð5:31Þ

Taking into account the above discussed case r ¼ 1, we see
explicitly that when the profile of the electromagnetic field

FIG. 2. The transverse and longitudinal electric field profiles corresponding to (5.19), i.e., (5.16) with r ¼ 1, as well as the transverse
part of focusing solutions (5.22) (e ¼ −1, a ¼ ϵ ¼ 1, pv ¼ −1=3).
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vanishes at some points [see (5.9) and (5.16) with
1
2
< r ≤ 1], then there are some additional restrictions for

the particle parameters [see (5.30)]. Finally, it is worthwhile
to notice that (5.30) gives a new Kober’s-type inequal-
ity [70].
Finally, let us remember that differentiating (5.27) and

using (5.8) as well as (5.26) one obtains the relation

ẍ ¼ −pveEðuÞxin

ðeF − pvÞ2
; ð5:32Þ

thus the zeros of the electromagnetic profile E are strictly
related to the inflection points of the solutions (5.27);
see Figs. 1–3 (e.g., for r ¼ 0 and g < 0, Fig. 1, they are
concave).

VI. CONFORMAL SYMMETRY
AND INTEGRALS OF MOTION

To obtain a wider view on the results discussed above let
us have a look at them from the integrals of motion point of
view. The discussion of the integrability of the electro-
magnetic fields of the type which appear in previous
sections were partially elaborated in Refs. [36,39,40]. In
particular, it was shown there that such systems are
superintegrable. However, let us stress that such (super)
integrability does not ensure that the equations of motion
are explicitly solvable. In view of this the question is
whether there are new integrals of motion (or even better—
symmetry generators) which can help to find explicit
solutions. Let us study this problem in more detail for
the electromagnetic vortices discussed in Secs. III and IV.
To obtain the more complete picture of this problem first,
following Refs. [36,39,40] (however, applying our con-
ventions of the signature and gauge fixing), we present the
general discussion of the integrability.
Let us start with the Lagrangian of a relativistic particle

in an electromagnetic background Aμ,

L ¼ −m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
dxμ

dτ

dxμ
dτ

r
þ eAμ

dxμ

dτ
: ð6:1Þ

Since L is homogeneous of the first degree in velocities (it
is invariant under reparametrization), the Hamiltonian
(evolution generator) of the particle vanishes. To remedy
this problem and to describe the dynamical evolution, one
has to fix the gauge by choosing a time parameter τ ¼ τðxμÞ
(of course, all choices lead to equivalent results; however,
some of them can be more useful for given systems); the
most popular is the affine parametrization. On the other
hand, for the discussed systems the light-cone coordinates
are more suitable. In these coordinates the Lagrangian and
the affinity condition take the form

L¼−m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2

du
dτ

dv
dτ

−
�
dx
dτ

�
2

s
þeAu

du
dτ

þeAv
dv
dτ

þeA
dx
dτ

;

ð6:2Þ

2
du
dτ

dv
dτ

þ
�
dx
dτ

�
2

¼ −1: ð6:3Þ

Now, let us assume that the potential Aμ of the electro-
magnetic field can be chosen as follows: A ¼ Aðu;xÞ,
Au ¼ Auðu;xÞ, and Av ¼ AvðuÞ (such a situation includes
all the above considered cases). Then the form of the
potential determines the function τðxμÞ uniquely. Indeed,
the canonical momentum pv conjugated to the v coordinate
is an integral of motion. In consequence, the condition (6.3)
yields

pv ¼ m
du
dτ

þ eAvðuÞ ¼ const; ð6:4Þ

which implies the form of the affine parameter τ ¼ τðuÞ.
To make this reparametrization invertible one should
assume that the derivative du

dτ is of constant sign (posi-
tive or negative). Furthermore, for the free particle

FIG. 3. The transverse and longitudinal electric field profiles corresponding to (5.16) with r ¼ 4 as well as the transverse part of
focusing solutions (e ¼ −1, a ¼ ϵ ¼ 1, pv ¼ −1=2).
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pv ¼ pu ¼ ðp3 − p0Þ ffiffiffi
2

p
< 0, thus assuming that Av van-

ishes at null infinities, one obtains du
dτ < 0. Then

L ¼ m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2_v − _x2

p
þ eAu þ eAv _vþ eA · _x: ð6:5Þ

Finally, the condition (6.3) takes the form

_x2 þ m2

ðpv − eAvÞ2
¼ −2_v: ð6:6Þ

Of course, the above Lagrangian together with the con-
dition (6.6) implies the suitable equations of motion.
Now, we are in the position to form the Hamiltonian

formalism. The phase space obtained is six dimensional,
ðv; pvÞ and ðx;pÞ with the canonical Poisson brackets, and
the Hamiltonian is of the following form:

H ¼ ðp − eAÞ2 þm2

2ðpv − eAvÞ
− eAu: ð6:7Þ

Moreover, let us note that combining Eqs. (6.4) and (6.6)
one obtains the relation pu ¼ −H.
Let us now discuss the problem of integrals of motion.

First, let us consider the electromagnetic potential corre-
sponding to the plane gravitational waves (2.1), i.e.,
Auðu;xÞ ¼ −x · AðuÞx, A ¼ 0, and Av ¼ 0, where AðuÞ
is a symmetric matrix. Then the Hamiltonian (6.7) yields
the desired equations of motion (3.9) and (3.10). As we
indicated above pv is an integral of motion. However, it
turns out that [36] the quantities

Ik ¼ k · p − pvx · _k; ð6:8Þ

where k ¼ kðuÞ is a solution of the following set of
equations [cf. Eqs. (3.9)], and

k̈ ¼ 2e
−pv

Ak ð6:9Þ

are also integrals of motion. Of course, Ik and pv are in
involution. Moreover, by choosing four independent sol-
utions of the set of Eqs. (6.9) and noting that the Wronskian
of these solutions is independent of u (in consequence it
can be determined at one point), Ik yields four constants
of motion forming two (independent) copies of the
Heisenberg algebra. Summarizing, we have three integrals
in involution and the two additional integrals; thus the
motion in these electromagnetic fields is maximally super-
integrable. However, let us stress that even such super-
integrability does not ensure the explicit solutions of the
equations of motion (3.9) and (3.10) and does not select any
special profile A.
To better understand the explicit solvability of the dis-

cussed electromagnetic vortices (3.15) and (3.16), let us
recall that with any Killing vector field K, e.g., a Poincaré

generator in the Minkowski spacetime, one can associate an
integral of motion of the free particle. Of course, when an
electromagnetic background is switched on, then usually
this integral is not a conserved charge. However, if the Lie
derivative of the potential A ¼ Aμdxμ satisfies the follow-
ing condition:

LKA ¼ dχ; ð6:10Þ

with a function χ (i.e., LKF ¼ 0), then

IK ¼ KμPμ − eχ ¼ Kμ

�
m
dxμ

dτ
þ eAμ

�
− eχ; ð6:11Þ

is an integral of motion.
Now, let us assume that K is a conformal vector field

with the conformal factor 2ψ such that (6.10) holds. Then
along the trajectories one obtains

dIK
dτ

¼ mψ : ð6:12Þ

The key observation is that if ψ is a function of τ, then it can
be rewritten as a derivative of some function of τ; in
consequence one obtains a new, τ dependent, integral of
motion [for example, if K is a homothetic vector field
satisfying (6.10), then ψ ¼ ψ0 is a constant and conse-
quently IK −mτψ0 is an integral of motion].
Let us apply the above approach to the electromagnetic

vortices discussed in Secs. III and IV. To this end let us
recall that the space of conformal vector fields on the
Minkowski spacetime is generated by the Killing fields
together with three types (nonisometric) of conformal
fields: radial, special, and general ones (see [20]). In
particular, there is a standard special conformal vector S
(i.e., the one for which the gradient of the conformal factor
is a parallel null vector along the v coordinate); it is of the
following form:

S ¼ u2∂u −
1

2
x2∂v þ ux · ∇; ð6:13Þ

and its conformal factor reads ψ ¼ u. Since our aim is to
find conformal vectors satisfying conditions (6.10) for the
potential with Að1Þ [corresponding to (2.6)] we add to S
some Killing vectors (here Poincaré generators). Namely,
by straightforward computations one checks that the
following conformal vector field (obtained by adding the
u-translation generator)

Kð1Þ ¼ Sþ ϵ2∂u ¼ ðu2þ ϵ2Þ∂u −
1

2
x2∂vþux ·∇ ð6:14Þ

satisfies

LKð1ÞAð1Þ ¼ 0; ð6:15Þ
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i.e., Eq. (6.10) with χ ¼ 0. This fact perfectly agrees with
the gravitational picture where Kð1Þ is a conformal gen-
erator for the gravitational plane wave with the profile Hð1Þ
(see [21]). In consequence Eqs. (6.6) and (6.12) lead to the
following integral of motion:

Ið1Þ ¼ −
m2ϵ2

2p2
v
− ea

ðx1Þ2 − ðx2Þ2
pvðu2 þ ϵ2Þ

− ðu2 þ ϵ2Þ _x
2

2
−
1

2
x2 þ ux · _x; ð6:16Þ

which is of the same form as the one obtained for the plane
gravitational wave from Kð1Þ; see [21] (more precisely, they
coincide after replacement a → 2ae

−pv
in the gravitational

case). In summary, we see that the conformal generatorKð1Þ
implies, in the case of the discussed electromagnetic
vortices in the Minkowski spacetime, the same integral
of motion (modulo coupling constants) as Kð1Þ for the
gravitational wave (2.1) with Hð1Þ (but without the electro-
magnetic potential); the term arising from the electromag-
netic potential coincides with the additional term appearing
in _v in the case of gravitational waves. This immediately
allows us to understand better the role of the conformal
symmetry in the explicit solvability of the equations of
motion for the electromagnetic vortices (3.15). Indeed,
following Ref. [21] Ið1Þ can be rewritten as the sum of two
independent Ermakov-Lewis invariants [43–45], namely

Ið1Þ ¼ −
m2ϵ2

2p2
v
−
ϵ

2

�
ðρ_x1 − _ρx1Þ2 þ Λ1ðx1Þ2

ρ2

�

−
ϵ

2

�
ðρ_x2 − _ρx2Þ2 þ Λ2ðx2Þ2

ρ2

�
; ð6:17Þ

where Λi are defined by Eqs. (2.10) with replacement
a → 2ae

−pv
and ρ is of the form

ρðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ ϵ2

p
ffiffiffi
ϵ

p : ð6:18Þ

Moreover, the function ρ satisfies the set of the Ermakov-
Milne-Pinney equations for the profiles Að1Þ and Ãð1Þ (the
latter one is a diagonal matrix with the constant elements
−Λi, i ¼ 1, 2),

ρ̈I − Að1Þρ ¼ −
Ãð1Þ

ρ3
: ð6:19Þ

This information can be used to find the solutions of the
transverse part of the equations of motion. According to the
general procedure (see e.g., [67]), the transformation

dũ
du

¼ 1

ρ2ðuÞ ; x ¼ ffiffiffi
ϵ

p
ρðuÞx̃; ð6:20Þ

should relate the u-dependent linear oscillator, defined by
Að1Þ, to the harmonic one with the frequencies Λ1;2. In our
case, i.e., ρ given by (6.18), the above formulas yield the
Niederer transformation [Eqs. (4.1)] and consequently the
explicit integrability. Furthermore, it turns out (see [67] and
references therein) that the Ermakov-Lewis invariants can
be interpreted as the “classical” energy in the new coor-
dinates x̃; ũ. In our case this leads to the identity

Ið1Þ ¼ −ϵ2
�
m2

2p2
v
þ Eð1Þ

�
; ð6:21Þ

where

Eð1Þ ¼ 1

2
x̃02 −

1

2
x̃ · H̃ð1Þx̃ ¼ 1

2
x̃02 þ Λ1ðx̃1Þ2

2
þ Λ2ðx̃2Þ2

2

ð6:22Þ

and Λi are defined by (2.10) with the above-mentioned
replacement. In consequence, we obtain an interpretation of
the integral of motion associated with the proper conformal
generator Kð1Þ.
In the case of the potential Að2Þ defined by the profile

(2.7) we have to add toKð1Þ (and consequently to S) another
Poincaré generator. Namely, direct computations show that
the conformal vector field

Kð2Þ ¼ Kð1Þ − γðx2∂1 − x1∂2Þ ð6:23Þ

satisfies

LKð2ÞAð2Þ ¼ 0; ð6:24Þ

i.e., Eq. (6.10) with χ ¼ 0. Moreover, the conformal factor
is the same as for Kð1Þ, i.e., ψ ¼ u. In consequence, by
virtue of Eqs. (6.6) and (6.12) one obtains the following
integral of motion:

Ið2Þ ¼ −
m2ϵ2

2p2
v
−

e
pv

ðu2 þ ϵ2Þx · Að2Þx

− ðu2 þ ϵ2Þ _x
2

2
−
1

2
x2 þ u _x · x − γ _x × x; ð6:25Þ

which again differs from the one obtained for the plane
gravitational wave (2.1) with the profile (2.7) by the
replacement a → 2ae

−pv
(cf. results in [21]). Furthermore,

the function ρ and profile Að2Þ satisfy the Ermakov-Milne-
Pinney type equation [similar to Eq. (6.19)]. In conse-
quence, they lead to the transformation (2.12); i.e., it allows
one to find the explicit solution of the transversal equa-
tion (3.9). Finally, following [21] the integral of motion Ið2Þ
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can be interpreted as the sum total energy for the system
defined by the equations of motion (2.14), i.e.,

Ið2Þ ¼ −ϵ2
�
m2

2p2
v
þ Eð2Þ

�
; ð6:26Þ

where

Eð2Þ ¼ 1

2
ðy0Þ2 þ 1

2
Ωþðy1Þ2 þ

1

2
Ω−ðy2Þ2 ð6:27Þ

and Ω� are given by Eqs. (2.15) with a → 2ae
−pv

.
Summarizing, we have shown that some special con-

formal transformations of the Minkowski spacetime can be
chosen in such a way that they preserve electromagnetic
fields and consequently generate new integrals of motion.
In the presented cases these integrals can be interpreted in
terms of the Ermakov-Lewis invariants (Ermakov-Milne-
Pinney equations) leading to the Niederer transformation
and, consequently, explicit solutions in terms of new
variables. Moreover these integrals can be interpreted as
the total energy of the dynamical system in new coordi-
nates. All these observations coincide with the gravitational
picture where these conformal vector fields survive for the
plane gravitational waves ([21] and references therein)
obtained by means of the Kerr-Schild ansatz; the difference
is that instead of the electromagnetic potential there is a
suitable term in the gravitational metrics.
Finally, since the Kerr-Schild ansatz can be extended to

the fixed backgrounds (see Sec. III) this suggests that the
above observations concerning the conformal vector fields
Kð1;2Þ in the Minkowski spacetime should be extended to
the electromagnetic potential Að1;2Þ in the fixed gð1;2Þ
backgrounds. This fact can be checked directly by noting
that the condition (6.10) is metric independent. This
coincides with the results obtained in Sec. IV.
Above we discussed the integrability problem for the

electromagnetic field defined by the potential (3.1). Finally,
let us review these issues for the electromagnetic field
considered in Sec. V, i.e., defined by

Auðu;xÞ ¼ −H11ðuÞx2; A ¼ 0;

AvðuÞ ¼ 2

Z
u

−∞
ūH11ðūÞdū; ð6:28Þ

whereH11 is an arbitrary function such that the last integral
exists. Then the Hamiltonian formalism is given by (6.7)
together with the above mentioned Poisson brackets
[leading directly to Eqs. (5.6) and (5.7)]. Also in this case
the canonical momentum pv is a constant of motion; the
problem of other integrals of motion of such a system was
discussed (in a slightly different gauge) in Refs. [39,40].
Namely, it was shown that each of the two following
Poincaré generators KðiÞ,

KðiÞ ¼ u∂i − xi∂v; i ¼ 1; 2; ð6:29Þ

satisfy the condition (6.10) with the functions χðiÞ of the
form

χðiÞ ¼ −AvðuÞxi; i ¼ 1; 2: ð6:30Þ

In consequence, the Killing vectors (6.29) generate two,
u-dependent, integrals of motions

IðiÞ ¼ −xipv þ upi þ exiAvðuÞ; i ¼ 1; 2: ð6:31Þ

These integrals together with the previous one, pv, are in
involution, and thus the system governed by the potential
(6.28) is integrable. Furthermore, it was shown that there is
an additional integral of motion (which is not a polynomial
in pv) that makes this system (minimally) superintegrable.
However, as in the case of the vortices discussed above this
superintegrability does not ensure the explicit form of
solutions. So the question is whether one can find other
symmetry generators which distinguish the fields discussed
in Sec. V and to give more transparent explanations of the
explicit solvability or, in general, a more detailed discus-
sion of the role of integrals of motion associated with the
conformal symmetry (see the recent Refs. [71,72]). These
issues are left for further investigations.

VII. CONCLUSIONS AND OUTLOOK

Let us summarize. In the present work, using the idea of
the classical double copy, we construct null electromag-
netic fields which are explicitly solvable and directly
generalize the electromagnetic vortices considered, in the
context of singular optics, in Ref. [33] (in contrast to the
latter ones, they form some pulses and the Dirac delta limit
of the profile can easily be done). Since these results are
strictly related to the notion of Niederer’s transformation,
we analyze the geometric extension of the latter in the case
of the plane gravitational spacetimes endowed with the
crossed electromagnetic fields (3.2) and (3.3); in this
approach the transverse part of the Lorentz force equations
transformed by the Niederer map can be obtained by means
of a new metric (conformally related to the initial one) and a
new, crossed, electromagnetic field. In consequence, for
some special cases related to the conformal symmetry of
spacetimes, the transverse Lorentz equations on a curved
spacetime can also be analytically solvable. We also showed
that these results possess their origin in additional integrals of
motion associated with conformal generators preserving the
discussed vortices and plane gravitational waves.
In the second part we showed that the electromagnetic

backgrounds which capture some essential features of the
transverse magnetic laser beam near the beam axis,
proposed in Ref. [39], can also emerge from some
gravitational counterparts. Moreover, one of the latter ones
leads to the electromagnetic profile with zeros and is
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analytically solvable in the transverse directions; such a
situation allowed us to discuss explicitly the focusing
conditions. Since the focusing properties of electromagnetic
fields seem to be especially interesting, thus we gave some
criteria and apply them to the electromagnetic counterparts of
some gravitational metrics. Finally, let us note that the form
of the electromagnetic fields discussed does not suggest the
solvability of the corresponding Lorentz force equations;
however, in view of the role of conformal symmetry in
gravity and the double copy conjecture, the integrability of
dynamics governed by these special electromagnetic fields
arises naturally (the existence of explicit solutions to the
geodesic equations coincides with the existence of the
explicit solutions to the Lorentz force equations). Such a
situation suggests deeper relations between both gravita-
tional and gauge theories in the double copy approach.
The results obtained can be extended in various direc-

tions. As usual the exact solvability at the classical level
should have its reflection at the quantum level. Thus it
would be interesting to consider the quantum picture of the
results obtained here, including both gravitational and
electromagnetic backgrounds (see e.g., [39,73]). This is
especially interesting in view of the double copy and recent
results presented in Ref. [74] for gravitational sandwiches.

Furthermore, let us recall that the Penrose limit of space-
times yields the plane gravitational waves; thus, the
question is which ones correspond to the distinguished
plane wave spacetimes gð1;2Þ (cf. [9,48,49]). Moreover, the
analytical solutions obtained can also be useful in the recent
studies concerning some aspects of optical effects in the
nonlinear plane gravitational waves [75,76] as well as
trapping problems in gravity [36–38]. Finally, following
Refs. [41,42] and [77,78], we hope that they can also be
useful in the study of the light-matter interaction, especially
for strong focusing of short or intense laser pulses.
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