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Spinor-helicity variables for cosmological horizons in de Sitter space

Adrian David,"" Nico Fischer,”" and Yasha Neiman'*

'Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
*Friedrich Schiller University Jena, 07737 Jena, Germany

® (Received 10 June 2019; published 7 August 2019)

We consider massless fields of arbitrary spin in de Sitter space. We introduce a spinor-helicity formalism,
which encodes the field data on a cosmological horizon. These variables reduce the free S-matrix in an
observer’s causal patch, i.e., the evolution of free fields from one horizon to another, to a simple Fourier
transform. We show how this result arises via twistor theory, by decomposing the horizon < horizon
problem into a pair of (more symmetric) horizon < twistor problems.
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I. INTRODUCTION

In field theory on flat spacetime, the S-matrix between
past and future infinity is an object of fundamental
importance. For massless theories such as Yang-Mills
and general relativity (GR), the spinor-helicity formalism
[1] has emerged as the ideal language [2] for studying the
S-matrix (with the exception of some highly symmetric
cases, in which twistor language is superior [3-5]). Since
our Universe appears to have a positive cosmological
constant, it is of great theoretical interest to study the
“S-matrix” in a static (i.e., observable) patch of de Sitter
space, with an observer’s past and future horizons in the
roles of past/future infinity. So far, there has been remark-
ably little work on this problem. Instead, the main focus of
theoretical attention in de Sitter space has been with
correlations on its conformal boundary [6-8], which are
unobservable in a true asymptotic de Sitter space (but
become observable in approximate, temporary de Sitter
scenarios such as inflation).

In this paper, we take some first steps toward the de Sitter
S-matrix. First, we encode the lightlike field data on a
cosmological horizon in terms of spinor-helicity variables,
equivalent to those introduced in [7] for the Poincare patch
(see also the constructions for anti-de Sitter, in the Poincare
patch [9] and in stereographic coordinates [10]). Then, in
our main result, we relate the spinor-helicity variables
associated with two cosmological horizons (and thus two
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Poincare patches) to obtain the free S-matrix in the static
patch for massless fields of any spin. Our formalism and
result provide a plausible starting point for efficiently
including the effects of interactions in future work.

II. GEOMETRIC SETUP

De Sitter space is best described as a hyperboloid of unit
spacelike radius embedded in flat 4 4 1d spacetime,

dSy = {x* € RM|x,x* = 1}. (1)

We will use lightcone coordinates x* = (u, v,r) for R4,
where r is an R3 vector, and the metric is dx,dxt =
—dudv + dr?. These coordinates are adapted to a de Sitter
observer, whose initial and final horizons are defined by
(u=0,v<0) and (u > 0, v = 0), respectively. The hori-
zons’ spatial section is the two-sphere S, of unit vectors
r? = 1. The tangent space of this S, at a point r can be
spanned by a complex null basis (m,m),

m-r=0; m? = 0;
This basis is defined up to phase rotations (m,m) —
(e’?m, e~"m), which describe SO(2) rotations of the S,
tangent space. In our setup, these rotations will play the
role of the massless fields’ little group.

Vectors in dS, are simply R'* vectors constrained to the
tangent space of the hyperboloid (1). Spinors in dS, can be
constructed similarly from embedding-space spinors (see
e.g., [11]), but we will not need that construction here. For
the statement of our main result, it will suffice to introduce
the two-component spinors w“ of spatial SO(3) rotations.
The antisymmetric metric on SO(3) spinors is €., with
inverse €€y, = 5. We raise and lower indices via

Wy = eaﬁy/ﬂ. We denote the Pauli matrices by 6%.
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Spinors have a complex conjugation y* — p* — —y?,
under which €, is real but 6% is imaginary.

For the derivation of our main result, we will also need
the four-component spinors of the R'# embedding space,
i.e., the twistors of dS,. These can be constructed as pairs of
SO(3) spinors (see e.g., [12]),

el

where the i and complex conjugation on the second spinor
are for later convenience. The SO(1,4) spinor index a is
lowered via Y, = (—iu% 4,). Complex conjugation is
inherited directly from that of the SO(3) spinors. The
R4 gamma matrices y, = (y,.7,,Y) can be written in
2 x 2 block notation as

<mwb=((_$ﬁ3),(36?)’(_ﬁf -E%)>'

We will sometimes omit both SO(3) and SO(1,4) spinor
indices. In a product, this will imply bottom-to-top index
contraction.

I11. FIELD DATA ON THE HORIZON

We consider the free massless field equation for a totally
symmetric, double-traceless spin-s gauge potential i
in dS, [13],

Hi---Hs

(O+2(s* - )by, = SV/)V(mqbszﬂ‘_)
s(s—=1)
+ 2

v(ﬂl vﬂ2¢;3..‘;15)v =0, (4)

with a gauge symmetry 6¢,, , = V(, A, ) for totally
symmetric, traceless A, , . The cases s=0, 1, 2
describe the conformally coupled massless scalar, the
Maxwell equations, and linearized GR, respectively. In
the scalar case, the field’s value ¢(u, 0,r) on e.g., the final
horizon constitutes good boundary data for the field
equation ([J — 2)¢ = 0. For nonzero spin, good boundary
data consists of one complex scalar component for the
right-handed helicity, and its complex conjugate for the
left-handed one; see e.g., [14—16] for the standard con-
struction in flat spacetime and [17] for a general discussion
in terms of field strengths. In our present context, we can fix
a gauge such that ¢, , on the horizon has only spatial
components ¢; ;. Here, the i;’s are R* indices, which
must be tangent to the dS, hyperboloid, and thus to the S,
horizon section. The horizon boundary data are then given
by the traceless part of this ¢;, _; . Using the complex basis
(2) for the S, tangent space, we can reduce this traceless
part to a pair of scalars,

' ...mix¢il_”1':(l/l, 0, l‘),
¢ (u.r;m) = m'.mi;; (u,0,1). (5)

These respectively describe fields of helicity +s and
carry weight +s under the phase rotation (m,m) —
(e”m, e~"m). The symplectic form for the horizon data
(5) reads

9.
Q[6¢,, 5] = Z /duA d%&g{;&mag(bg h>’ (6)
h=x=s 2

where we sum over the two helicities ¢**) in the spinning
case, or over just one helicity ¢(©) = ¢ in the scalar case.

The boundary data on the initial horizon can be encoded
in the same way. Replacing the null time # with », and
noticing that the helicity associated with (m,m) is now
reversed, we write

PO (v, esm) =m0, 0,1),
) (v, 1; iy i (0,0,1). (7)
Finally, it is useful to define the gauge-invariant field

strength data corresponding to the gauge potential data
(Egs. (5) and (7)],

m) = m' ..

N

C*)(u,r;m) =

— s wrm),(8)

S

C(is) (’U, ) m) = ?
v

¢V (v.r;m). ©)

IV. THE S-MATRIX PROBLEM

For our purposes, the S-matrix problem in de Sitter space
is to relate the gauge-invariant field data (8) on the final
horizon to the corresponding data (9) on the initial one.
This statement of the problem, which will be more
convenient for us, is slightly more general than what is
usually termed the S-matrix. Usually, one would relate the
quantum states obtained by acting with the fields on some
vacuum; by focusing on the fields themselves, we avoid
committing to a particular vacuum state. We will ignore
here any subtleties related to zero-frequency modes, i.e., to
the horizons’ lower-dimensional boundaries (either at
asymptotic infinity or at the horizons’ S, intersection).
In other words, we will be dealing with the “hard part” of
the S-matrix.

For free fields, one can find the S-matrix by ‘“brute
force”, using the general technique for linear hyperbolic
equations. Essentially, the value of a massless field at some
final horizon point is determined by the intersection of that
point’s past lightcone with the initial horizon. Thus, fore.g.,
the scalar field, we have
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¢(u.0.r) = L fr’w

ufs, ov - (10)

v=2(rr'-1)/u

which can be obtained from the general formula,

«—>

¢(u,0,r) :/ (0, v r)a8 G(u,0,1;0,v,7),
S

in which G(x*;x*) = (=1/4x)6(x,x* = 1)0(u —u') is a
causal Green’s function in dS,. For the analogous general
treatment of nonzero spin, see [17]. In fact, the end result
(10) holds not only in the static patch (u > 0, v < 0), but
also for the horizons’ entire extent u,v € R, which
includes the antipodal patch (u < 0,v > 0). In the rest
of the paper, we will avoid specifying the range of u, v, and
our formulas will apply equally well to both (1 > 0, v < 0)
and u, v € R. While the (u > 0, v < 0) case is linked more
directly to observable physics, our formulas “live more
naturally” in the more global context u,v € R.

Despite its simplicity, Eq. (10) is not quite satisfactory.
Since it does not make explicit contact with the horizons’
symmetries, it is unlikely as a useful starting point for
interacting calculations.

What, then, are the relevant symmetries? Naively, they
are the subgroup of dS, isometries that preserves both
horizons. These are the static-patch time translations
(u,v) = (e'u,e'v) and the SO(3) rotations of r. These
symmetries encourage one to work in terms of frequencies
and spherical harmonics. The S-matrix for the free scalar in
this basis was found in [18,19]. However, spherical
harmonics are rather unpleasant, so the generalization to
interacting theories again does not seem promising. Below,
we will describe a different basis for the S-matrix, which
replaces spherical harmonics with plane waves, by fixing
only one horizon at a time.

V. POINCARE MOMENTUM
AND SPINOR-HELICITY

Instead of fixing both horizons, let us consider the
residual symmetry from fixing just e.g., the final one.
This is the symmetry of the Poincare patch: the translations,
rotations, and dilatations of R3. On the horizon, the
rotations act on r € S, in the obvious way, the dilatations
rescale u, while a translation by a vector a shifts the light
rays according to u —» u —2a-r. A fixed momentum p
with respect to these translations describes two modes on
the horizon,

Positive frequency: & <r, + £> e~plu/2 - (11)

p|

Negative frequency: & <r, - %) etiplu/2 - (12)

These modes are waves with frequency +|p|/2 with respect
to the null time u, supported on an antipodal pair of light
rays r = +p/|p|. _

Let us now define spinor-helicity variables A,, 4, as
the spinor square root of p, such that p = AsA. The
corresponding positive-frequency mode will be a wave
supported at r = (164)/(A4), with frequency A4/2 with
respect to u. Moreover, we can use m = i(161)/(v/211)
and its complex conjugate m as the complex null basis (2)
for the S, tangent space. Thus, we package the positive-
frequency part of the horizon field data (5) into spinor
functions f*%)(A,.4,) as follows:

f(is)(/la,/_la)—/due i(A2) u/2¢ is( 10'/1 115,1) (13)

72 N20a

These spinor functions have the following manifest
symmetries:

(i) By construction, they have momentum Ac4 under the

Poincare-patch translations u — u — 2a - r.
(i) Under Poincare-patch dilatations, i.e., static-patch
time translations (u,v) — (e'u,e™'v), they scale
as fE)(A,A) = e fE) (22, e?]).
(iii) The field’s helicity +s is encoded in the scaling
relation f(55)(ei9/2), e=10/2]) = e*i50 f(£5) (), 7).
In fact, along with the more obvious SO(3) rotations, these
symmetries uniquely determine the encoding (13) of
horizon data into spinor functions, up to a prefactor that
can only depend on helicity. As a corollary, we conclude
that this spinor-helicity formalism must coincide with the
one constructed from a different point of view in [7].

As is frequently useful in the spinor-helicity formalism
[20], we can analytically continue to complex momenta by
making the two spinors (4,1) independent. As a special
case, by analytically continuing (4,4) — (i, i1), we obtain
the negative-frequency modes,

ARICR) (14)

In these variables, the field’s symplectic form (6) reads
simply
/ d*ad*2
27i)?

X (5f1 (Do

FEI(iA,id) =

Q[of1.6f2] =

M(iaid)—(1<2), (15)
where d?A is the spinor measure €,3dA%dA’ /2.

The field data (7) on the initial horizon can be treated in
the same way. Thus, the positive-frequency modes are
encoded as

T(+s a -\ i(au)v/2 1 (Es /«lO',M l/lO'//l
Fe i) = [ vl /%b(ﬂ( ) (16)
Ry 2
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The negative-frequency modes can again be obtained by
analytic continuation, as in (14). Note that y* is now the
square root of momentum in a different Poincare coordinate
patch—the one associated with the initial horizon.

VI. THE FREE S-MATRIX

In the framework of the previous section, ﬁnding the
S-matrix means relating the spinor functions f**)(1, 1) and
F&) (u, ir). Our paper’s main result (to be derived in the
next section) is that the free-field answer is simply a Fourier
transform,

- d? d2
FE (2 7) :/ (2/; - FOE) (o, ) o it (17)

This formula can be unpacked explicitly in terms of the
horizon field data (8) and (9), giving

: 2°
Crm) =2
aé(is) r;m’
x/ e —p.pylt0rm) . (18)
S5 v v=2(rr'-1)/u

which reproduces the spin-0 result (10) as a special case.
The phase of the null tangent vector m’ in (18) is fixed via

2m-m'=1-r-r. (19)

The explicit S-matrix (18) can be derived from the main
result (17) and the definitions (8), (9), (13), (16), via mostly
straightforward integrals. The two nontrivial “tricks” are as
follows:

(i) When integrating over A4 to invert the transform
(13), it helps to also average over the phase of 4,,
using the known weight of f(*%) under such phase
rotations. We then have an integral over both
magnitudes and phases, which becomes an integral
dzdz over the complex plane.

(i) Conversely, when integrating over u%, i in (17), it
helps to localize the integral on values of u* with an
overall phase given by (19), where v’ = (iiou)/ (fu)

and m’ = (iuop)/(V/2ip).

VII. TWISTORIAL DERIVATION

To prove our S-matrix formula (17), we will relate it to a
picture that is covariant under the full SO(1,4) de Sitter
group. First, we will rewrite our transforms (13), (16)
between spinor-helicity functions and horizon data in
SO(1,4)-covariant language. For this, we combine 4,
and ig” into a twistor, i.e., an SO(1,4) spinor Y*, as in
(3). The final horizon’s spinor functions (13) can now be
treated as functions of the twistor variables (Y, Y), which
just happen to depend only on the (7,Y,7,Y) components,
i.e., the ones containing (/1,/_1)

£ 7) :/duei(YVuY)u/Zd)(u,Y}/uYY. YVﬂY)

l?)/MY ’ \/EY}/MY ’

where we removed the helicity superscripts to save space.
The initial horizon’s spinor functions (16) are now given by
the exact same formulas, but with u replaced everywhere by
v. Of course, this replacement amounts to interchanging the
null axes in R!* that define the two horizons.

For the second step of our proof, recall that free massless
fields in dS, (or in any conformally flat four-dimensional
[4d] spacetime) can be encoded, via the Penrose transform
[21,22], as holomorphic twistor functions F (is)(Y @), with
no dependence on the complex conjugate Y“. The de Sitter
group SO(1,4) [and, in fact, the entire conformal group
SO(2,4)] is realized on these functions by linear trans-
formations of the twistor argument Y“. In particular, the
Poincare-patch translations © — u — 2a - r and dilatations
(u,v) — (e'u, e™'v) are realized, respectively, as

FE) (R, i) = FE) (A, in” + i(a - 6)%Ap),
F(is>(/1a, iﬂa) N F(is)(e’/zﬂa, ie—t/2ﬂa)’ (20)
along with the obvious action of SO(3) rotations. Finally,

the field’s helicity is encoded in the twistor function’s
degree of homogeneity,

=-242s. (21)

We can now see that the Fourier transform of the twistor
function F(*%)(4,ifi) with respect to i has the defining
symmetries of the spinor-helicity function f*)(1, 1) on the
final horizon! Therefore, up to a prefactor that can be
absorbed into the definition of F(*)(4, ifi), we identify

_ d?ii
f(is)(l’ /1) — /_’u
2

or, in SO(1,4)-covariant notation

FE)(2,ip)e*?, (22)

= dZy,dZ -
f(Y’ Y) - / 4;'_ F(yvqu_" YMYUZ)ele"y"Zy

where the helicity superscripts are again omitted. But now,
by SO(1,4) covariance, upon interchanging u < v, we
must get the spinor-helicity functions f**)(¥,Y) for the
initial horizon! Back in SO(3) spinor notation, this last
statement reads

d’2 .
ix /47 )_ /—F j:s l'—) —12;4‘ (23)

Combining the two ‘“half’-Fourier transforms (22) and
(23), we obtain the free S-matrix (17).
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VIII. CONCLUSION

In this paper, we applied a spinor-helicity formalism to
the horizon data of massless fields in de Sitter space and
derived an elegant expression for the free S-matrix of
massless fields with any spin. We extended the known
analogies [7] with the spinor-helicity formalism in flat
spacetime, in particular establishing a “half’-Fourier trans-
form relation between spinor-helicity and twistor functions.
We also went beyond [7] by working with two different
horizons, each of which has a different notion of momen-
tum. Despite this seeming complication, we saw that the
momenta on the two horizons are related by a simple Fourier
transform (17), once we consider their spinor square root.
This Fourier-transform relationship can also be understood
as a change of basis in the Hilbert space of a massless
particle on the (complexified) 3d conformal boundary [12].

Having found the free S-matrix in the spinor-helicity
basis, we obtained an explicit expression (18) in terms of
horizon field data for any spin. More importantly, there is
now hope that perturbation theory for interacting fields in
the de Sitter causal patch can be constructed with relative
ease. In the future, we would like to explore this possibility,
in particular for Yang-Mills and GR. In addition, we expect
that the language developed here can be fruitfully applied to
higher-spin gravity [23,24], the only known working model
[25] for dS/CFT holography in 3 4+ 1 dimensions.
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