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We study the detector’s response when moving along an ingoing null geodesic. The backgrounds are
chosen to be black hole spacetimes [(1þ 1)-dimensional Schwarzschild metric and near-horizon effective
metric for any stationary black hole in arbitrary dimensions] as well as a Friedmann-Lemaitre-Robertson-
Walker (FLRW) universe. For black holes, the trajectories are defined in Schwarzschild coordinates, and
the field modes correspond to a Boulware vacuum, whereas for the FLRW case, the detector is moving
along the path defined in original cosmic time and the field modes are related to a conformal vacuum.
The analysis is done for three stages (de Sitter, radiation dominated, and matter dominated) of the universe.
We find that, although the detector is freely falling, it registered particles in the above-mentioned respective
vacuums. We confirm this by different approaches. The detection probability distributions, in all situations,
are thermal in nature.

DOI: 10.1103/PhysRevD.100.045004

I. INTRODUCTION

It is now a well-known fact that black holes radiate [1].
One noticeable observation in this context is that radiation
from the horizon is an observer-dependent fact. For instance,
Hawking radiation is observed by a static observer at infinity,
whereas a freely falling frame does not perceive any
thermality. This fact is well supported by the Unruh effect
[2], where a uniformly accelerated observer (Rindler frame)
[3] sees the Minkowski vacuum as a thermal state. All this
resemblance between these two facts is well compatible with
the equivalence principle. Several recent investigations have
been done related to the nature of the observed particles in
this thermal bath [4–7]. A very recent investigation revealed
that these particles can exhibit Brownian-like motion in this
thermal bath and satisfy the well-known equilibrium fluc-
tuation-dissipation theorem [4,6].
Recently, Scully et al. [8] explicitly showed that a

radially freely in-falling atomic detector will see a
Boulware vacuum as a thermal bath. Although apparently
it seems that this process signifies the breakdown of the
equivalence principle as there is no gravitational acceler-
ation, this is indeed not so. Actually, the relative accel-
eration between the Boulware field modes and the detector
plays the trick. This fact is well supported by some earlier
sporadic attempts [9,10]. It may be noted that the work in
Ref. [8] is confined to a Schwarzschild black hole and the
path of the detector was chosen to be timelike.

In the present paper, we investigate different cases within
the setup of Ref. [8]. First of all, in every situation, the
ingoing path is taken to be null-like. Considering the
detector to be moving along this path, we investigated
its response for the black hole as well as Friedmann-
Lemaitre-Robertson-Walker (FLRW) backgrounds. For the
black hole metric, the modes are chosen to be Boulware
ones, and the detector moves radially in a null path. Here,
we start with a (1þ 1)-dimensional Schwarzschild black
hole, and then the same has been extended to the near-
horizon effective metric of any arbitrary dimensional
stationary black hole. This basically generalizes the inves-
tigation. For the latter case, the detector is allowed to move
with the near-horizon region, whereas in the Schwarzschild
one it moves from infinity to the horizon.
We also discuss the detector response in three stages

[de Sitter (dS) era, radiation-dominated era, and matter-
dominated era] of the FLRWuniverse. The field mode under
investigation is the conformalmode,which is obtained by the
solution of the massless Klein-Gordon (KG) equation in
the conformal time coordinate. The corresponding vacuum is
called the conformal vacuum. We find that the detector,
which is following the ingoing null path in the original
cosmic time coordinate, perceives particles in the conformal
vacuum. It is interesting to mention that, in this analysis for
a dS universe, the excitation probability depends only on the
detector’s frequency, whereas others are a function of both
the mode frequency as well as that of the detector. For the
latter ones, the probability decreases with the increase of the
frequency of the detector.
The organization of the paper is as follows. In the next

section, we briefly set up the main idea and formula of the
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detector’s response function. This quantity is first calcu-
lated and analyzed for (1þ 1)-dimensional Schwarzschild
black hole in Sec. III by deriving the ingoing radial null
trajectories of the detector. Sections V and VI discuss the
same for a near-horizon effective metric for any stationary
arbitrary dimensional black hole and (1þ 1)-dimensional
FLRW universe, respectively. In Sec. VII, we analyze the
(1þ 3)-dimensional FLRW situation for a massless, con-
formally coupled scalar field. Finally, we conclude in
Sec. VIII. For cross verification, the particle production
procedure, for the present cases, has also been analyzed in
two other different approaches. This is presented in two
appendixes (Appendixes A and B), which are added at
the end.

II. SETUP: ATOMIC DETECTOR

Now let us consider a two-level (say, a is the excited
level and b is the ground state) atom is moving freely along
a particular geodesic in our spacetime backgrounds (black
hole and FLRW universe). Let us consider massless scalar
fieldΦ under this background whose modes are denoted by
uν with frequency ν. The modes of the atomic detector
are labeled by ψω, where ω is its characteristic frequency.
Then the interaction Hamiltonian between the field and the
atomic detector is given by [8] (see [11] for the details of
the detector response)

V̂ðλÞ ¼ g½ðâνuν þ H:c:Þðσ̂ωψω þ H:c:Þ�: ð1Þ

In the above, the operator âν is the photon annihilation
operator and σ̂ω is the atomic detector lowering operator.
Here g is the coupling constant and determines the strength
of interaction, whereas H.c. signifies the Hermitian con-
jugate. λ is the detector’s clock time.
Initially, the atomic detector is in the ground state and

there are no photons for the field mode frequency ν; i.e., the
field is in the Boulware vacuum (which gives an empty
spacetime for a stationary observer) for the black hole and
conformal vacuum for the FLRW universe. We denote the
Boulware vacuum or the conformal vacuum and the one-
particle state of the field Φ as j0i and j1νi, respectively,
whereas the ground and the excited states of the atomic
detector are labeled by jbi and jai, respectively. Now the
transition (jbi → jai) amplitude of the detector for the
detection of one scalar particle state at the first-order
perturbation theory is given by

Γ ¼ −i
Z

λf

λi

dλh1ν; ajV̂ðλÞj0; bi; ð2Þ

where λ is the detector’s clock time. For a massive detector
it is the proper time, while for the massless one it is the
affine parameter, which defines the four-momentum pa of
the detector in such a way that it satisfies pa∇apb ¼ 0 with
pa ¼ dxa=dλ. Therefore, the probability of excitation of

the atomic detector, at this order, for the interaction
Hamiltonian (1) turns out to be

P↑ ¼
����
Z

λf

λi

dλh1ν; ajV̂ðλÞj0; bi
����
2

¼ g2
����
Z

λf

λi

dλu�νðλÞψ�
ωðλÞ

����
2

: ð3Þ

This is our working formula and will be reexpressed in
different forms according to the situation.
For the black holes, here we are interested only on the

radial trajectories of the atomic detector which will
approach towards the horizon. Therefore, the variable λ
of the above equation has be expressed in terms of radial
coordinate r (say), and the integration limit of r has to be
from the initial value of r (say, ri) to horizon rH. Under this
circumstance, we reexpress (3) as

P↑ ¼ g2
����
Z

rH

ri

dr

�
dλ
dr

�
u�νðrÞψ�

ωðrÞ
����
2

: ð4Þ

This we will explicitly evaluate by considering the ingoing
radial motion of the atomic detector. For a particular back-
ground metric, one has to first find the expressions for the
modes uν and ψω and then, using the solutions of the
equations of motion for the detector trajectory, express
everything in terms of the radial coordinate. Two types of
path are allowed: timelike and null-like. The detector
response for the timelike path has been extensively studied
in Ref. [8] for a Schwarzschild black hole. Here, we shall
concentrate on null-like paths in a more general background.
In the latter discussion, we shall start our analysis

with the (1þ 1)-dimensional Schwarzschild background
where the detector is moving from infinity to the horizon.
Then the same will be extended to a more general back-
ground with arbitrary dimensions by confining the motion
of the detector very close to the horizon. Also the three
stages of the FLRW universe will be discussed. For these,
we, in the next section, will find the null radial trajectories
for the detector.

III. NULL RADIAL TRAJECTORIES FOR
THE DETECTOR: (1 + 1)-DIMENSIONAL

SCHWARZSCHILD BLACK HOLE

The Schwarzschild metric in (1þ 1)-dimensional space-
time in terms of Schwarzschild coordinates ðts; rÞ is given by

ds2 ¼ −fðrÞdt2s þ
dr2

fðrÞ ; ð5Þ

where fðrÞ ¼ ð1 − rH
r Þ with the horizon is located at rH ¼

2M. Here M is the mass of the black hole. To remove the
coordinate singularity at r ¼ rH, consider the Painlevé
coordinate transformation:
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dts ¼ dtp −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fðrÞp
fðrÞ dr: ð6Þ

Under this transformation, the metric will take the form

ds2 ¼ −fðrÞdt2p þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fðrÞ

p
dtpdrþ dr2: ð7Þ

As there is no explicit tp dependence in the metric
coefficients, there will be a timelike Killing vector
χa ¼ ð1; 0; 0; 0Þ. Hence, the energy of the particle moving
in this background is given by E ¼ −χapa ¼ −ptp, where
ptp is the covariant time component of the momentum
pa ¼ ðptp; prÞ.
Now, in order to find the null trajectory, we shall start

with the dispersion relation gabpapb ¼ 0 for a massless
particle, where the contravariant component of momentum
is defined as pa ¼ dxa=dλ with λ identified as the affine
parameter such that pa∇apb ¼ 0 is satisfied. Expanding
the dispersion relation for the metric (7) and replacing
ptp ¼ −E, we obtain

E2 − fðrÞp2
r þ 2Epr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fðrÞ

p
¼ 0: ð8Þ

The solution of the above for E yields

E ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fðrÞ

p
pr � pr: ð9Þ

Here the positive sign stands for the outgoing trajectory,
while the negative one refers to the ingoing trajectory.
Concentrating only on the ingoing one and using
Hamilton’s equation of motion, one finds the radial
equation as

_r ¼ dr
dλ

¼ ∂E
∂Pr

¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fðrÞ

p
− 1: ð10Þ

Also, we have ds2 ¼ 0 for a null path. This yields, for the
ingoing path, (dtp=dr) as

dtp
dr

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fðrÞp

− 1

fðrÞ : ð11Þ

Equations (10) and (11) will help us to express the affine
parameter λ and the coordinate time tp in terms of radial
coordinate r.
Substituting the expression for fðrÞ ¼ 1 − rH=r in (10)

and (11) and then integrating, we find

λ ¼ −rþ 2
ffiffiffiffiffiffiffiffi
rHr

p
− 2rH ln

� ffiffiffi
r

p
ffiffiffiffiffiffi
rH

p þ 1

�
; ð12Þ

tp ¼ −rþ 2
ffiffiffiffiffiffiffiffi
rHr

p
− 2rH ln

� ffiffiffi
r

p
ffiffiffiffiffiffi
rH

p þ 1

�
; ð13Þ

up to some irrelevant integration constant. The above
implies that the Painlevé time tp can be identified as the
affine parameter for the null path. For our main purpose, we
shall notice that the relation between the Schwarzschild
time ts and radial coordinate r is needed. This can be
obtained by finding the relation between ts and tp.
Integrating (6) for the present value of fðrÞ, one obtains

tp ¼ ts þ 2
ffiffiffiffiffiffiffiffi
rHr

p þ rH ln

0
B@

ffiffiffiffi
r
rH

q
− 1ffiffiffiffi

r
rH

q
þ 1

1
CA: ð14Þ

Substituting this in (13), we find the required expression:

ts ¼ −r − rH ln

�
r
rH

− 1

�
þ const: ð15Þ

Equations (12) and (15) represent the trajectory of the
null-like detector incoming radially towards the black hole.
We shall use them in the explicit evaluation of (4).

IV. EVALUATION OF DETECTOR
RESPONSE FUNCTION

In this section, we try to study the detector response
function while using results developed in the previous
sections. To do so, we first need to find our uν and ψω.

A. Detector and scalar field mode functions

The positive frequency mode corresponding to the
detector is

ψω ¼ e−iωλ: ð16Þ
The positive frequency mode for the massless scalar field
can be obtained by solving the KG equation□Φ ¼ 0 under
the background (5). This is easily solved in the Regge-
Wheeler coordinates:

r�ðrÞ ¼ rþ rH ln

�
r
rH

− 1

�
: ð17Þ

The interval (5) in this new coordinate looks like

ds2 ¼ fðr�Þ½−dt2s þ dr�2�; ð18Þ
and the KG equation reduces to the following form:

� ∂2

∂t2s −
∂2

∂r�2
�
Φ ¼ 0: ð19Þ

It leads to two solutions e−iνðts�r�Þ, where the positive sign
corresponds to ingoing and the negative sign refers to
outgoing modes. Since only the outgoing modes can be
detected by the detector (as ingoing modes enter into the
black hole and are trapped in this region), we consider the
mode solution of scalar field as
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uν ¼ e−iνðts−r�Þ: ð20Þ

Note that it is also the positive frequency mode. This is our
Boulware field mode.

B. Evaluation of probability of excitation

In order to evaluate (4), we have to substitute (10) with
fðrÞ ¼ 1 − rH=r and the expressions for modes from (16)
and (20). Expressing everything in terms of the radial
coordinate by using our path, given by Eqs. (12) and (15),
one obtains

P↑ ¼ g2

������
Z

rH

∞
dr

0
B@−

ffiffiffiffi
r
rH

q

1þ
ffiffiffiffi
r
rH

q
1
CAeiν½−2r−2rH lnððr=rHÞ−1Þ�

× eiω½−rþ2
ffiffiffiffiffiffi
rHr

p −2rH ln ðð ffiffi
r

p
=
ffiffiffiffi
rH

p Þþ1Þ�

������
2

; ð21Þ

where we have chosen the lower limit ri of the integration
as infinity, as the detector starts from very far from the
horizon.
The above integration cannot be evaluated analytically.

Of course, this can be analytically tackled under a particular
approximation. To get a feel of this response function (21),
we first evaluate it under a very large ω region. The same
has also been done in Ref. [8], where the path of the
detector was taken as timelike. Later, we shall analyze the
above numerically without any approximation.

1. Analytical approach: Large ω limit

To evaluate Eq. (21) analytically, we first change the r
variable to a suitable one:

ffiffiffiffiffiffiffiffiffiffi
r=rH

p ¼ z. Then (21) reduces
to the following form:

P↑ ¼ g2r2H

����
Z

1

∞

�
2z2dz
1þ z

�
eiν½−2rHz2−2rH lnðz2−1Þ�

× eiω½−zrHðz−2Þ−2rH lnðzþ1Þ�
����
2

: ð22Þ

This integration cannot be performed at this stage. But we
shall see that an approximate expression can be obtained
for large ω (more precisely, rHω ≫ 1). The same has also
been adopted in Ref. [8] for the timelike path. To imple-
ment this approximation, we do a variable substitution
x ¼ rHωðz − 1Þ. Then (22) turns out to be

P↑ ¼ g2r2H

����
Z

∞

0

dx
rHω

�
1þ x

rHω

�
2
�
1þ x

2rHω

�
−1

× eiν½−2rHð1þ
x

rHωÞ2−2rH lnð x
rHωÞ−2rH lnð1þ x

2rHωÞ�

× e
iω½rHð1− x2

r2
H
ω2
Þ−2rH lnð1þ x

2rHωÞ�
����
2

: ð23Þ

In the limit rHω ≫ 1, keeping only up to first order in
x=ðrHωÞ terms in the integrant, one obtains

P↑ ≃
g2r2H
r2Hω

2

����
Z

∞

0

dxx−2iνrHe−ið5νωþ1Þx
����
2

: ð24Þ

It is now straightforward to compute by using the standard
integration result (see page 604 of Ref. [12] for details):

Z
∞

0

xs−1e−bxdx ¼ expð−s ln bÞΓðsÞ; ð25Þ

where Res > 0 and Reb > 0. Using this, one finds

P↑ ≃
4πg2rHν

ω2ð1þ 5ν
ωÞ2

1

e4πrHν − 1
: ð26Þ

The evaluation of the integration in (24) is as follows. If
one compares this with (25), one finds s ¼ 1þ 2iνrH and
b ¼ ið5ν=ωþ 1Þ. The value of b makes the integration
divergent. To ensure the convergence, consider the value
of b as

b ¼ ið5ν=ωþ 1Þ þ ϵ; ð27Þ

with the limit ϵ → 0þ. Then one has

ln b ¼ lim
ϵ→0þ

ln

�
i

�
5ν

ω
þ 1

�
þ ϵ

�

¼ ln

���� 5νω þ 1

����þ iπ
2
sgn

�
5ν

ω
þ 1

�
; ð28Þ

where “sgn” is the sign function. Using this, we obtain

Z
∞

0

dxx−2iνrHe−ið
5ν
ωþ1Þx

¼
�
1þ 5ν

ω

�
−ð1þ2iνrHÞ

e−iπ=2e−πνrHΓð1þ 2iνrHÞ: ð29Þ

Substitution of this in (24) yields (26). The same pre-
scription will also be followed later.
So we see that the probability of excitation of the detector

is nonzero, and, hence, there must be particle production in
the Boulware vacuum with respect to the radially infalling
detector. Hence, a Boulware vacuum appears to be thermal
with a temperature identical to Hawking temperature T ¼ 1=
ð4πrHÞ. It must be emphasized that there is a crucial
difference between this one and that for the standard
Unruh-DeWitt detector. The exponential factor here depends
on the field frequency ν, whereas the same for the Unruh-
DeWitt case depends on the energy gap of the detector
levels. Now, below, we want to try a more holistic approach,
without any approximation. For that, we shall need the help
of the numerical technique.
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2. Numerical approach

The above approximate calculation suggests that there is
a thermal bath with respect to the radially infalling
observer, and this is valid for large values of the detector’s
frequency. Now to have a better understanding of the
expression (21) in all values of ω, here we shall examine
this numerically. First and foremost, to tackle this numeri-
cally we need to make all the variables dimensionless. For
that, we choose the following substitutions in Eq. (22):

rHω ¼ ω0; rHν ¼ ν0: ð30Þ

Then (22) reduces to the following form:

P↑

g2r2H
¼
����
Z

1

∞

�
2z2dz
1þ z

�
eiν

0½−2z2−2 lnðz−1Þ−2 lnðzþ1Þ�

× eiω
0½−z2þ2z−2 ln ðzþ1Þ�

����
2

: ð31Þ

Next, consider a variable substitution of the form
z − 1 ¼ x. Finally, to obtain a more convenient form,
further substitute xðxþ 2Þ ¼ y. This yields

P0
↑ ¼

����
Z

∞

0

dy

� ffiffiffiffiffiffiffiffiffiffiffi
1þ y

p
ffiffiffiffiffiffiffiffiffiffiffi
1þ y

p þ 1

�
e−ð2iν0þϵÞyy−2iν0

× e−iω
0½ ffiffiffiffiffiffi

1þy
p ð ffiffiffiffiffiffi

1þy
p

−2Þ�
� ffiffiffiffiffiffiffiffiffiffiffi

1þ y
p

þ 1
	
−2iω0

����
2

; ð32Þ

where we denoted P0
↑ ¼ P↑=g2r2H. In the above, we

inserted a ϵ parameter, which is ϵ → 0þ to make the
integrant convergent within the limits of integration.
Now with the help of the Mathematica package, we

numerically integrate the above expression for different
constant values of ω0 and then plot ν02P0

↑ as a function
of ν0. This is represented in Fig. 1. As expected, the plots
show a Planck-distribution-type nature. So the detector
must register particles in the Boulware vacuum. As we keep

increasing ω0, the peak keeps going lower and the curve
covers less area. This suggests that at a higher ω0 value the
chance of particle detection is lower. Also, the approximate
analytical approach that we took to deal the problem
suggested a Planck-type distribution. Hence, this numerical
solution plot also features the same characteristics. From
this plot, one thing is evident: that for a higher value of ω0
the transition probability decreases substantially.

V. A GENERAL BLACK HOLE IN ARBITRARY
DIMENSIONS: NEAR-HORIZON ANALYSIS

The earlier discussion was done for the Schwarzschild
black hole in a (1þ 1)-dimensional background. Now we
want to extend the same discussion for other black holes in
arbitrary dimensions. It must be mentioned that a simple
extension to this situation is very complicated and very
difficult to analyze. But we can simplify the situation by
considering the near-horizon geometry of the black holes.
As we are interested in radial motion of the atomic detector
and want to examine if this can detect particles in the
Boulware vacuum, the above approximation is sufficient.
There will not be any loss of generality for the present
discussion. We have only to move the detector within our
region of approximation (not like the earlier one from
infinity to the horizon). So the detector will fall radially from
a near-horizon radial point (r, say) such that ðr=rH − 1Þ ≪ 1
to the horizon rH.
It is well known that the black hole spacetime, near the

horizon, is effectively (1þ 1) dimensions [13–15] (also see
Refs. [16,17] for more discussions and references). The
idea is the following. If one expands the massive KG action
(taken for simplicity) for a general black hole background,
in the near-horizon limit the action reduces to the form
which is similar to the massless KG equation under the
effective background (5). Only the explicit expression of
fðrÞ is different for different black holes. For example, for a
Kerr-Newman one, it is given by fðrÞ ¼ ðr2 − 2Mrþ a2þ
e2Þ=ðr2 þ a2Þ, whereM, e, and a are the mass, charge, and
rotation parameters of the black hole, respectively [18].
The near-horizon form (5) also includes anti–de Sitter
(AdS) black holes. Now since we are interested in the near-
horizon region, the metric coefficient fðrÞ can be taken as
the first leading term of the Taylor series expansion of it
around r ¼ rH:

fðrÞ ≃ 2κðr − rHÞ: ð33Þ

Here κ ¼ f0ðrHÞ=2 is the surface gravity, which includes
the explicit information about the particular black hole. We
shall see that the explicit expression of κ will not be needed
to achieve our main goal.
The null path, in this case, again given by (10) and (11)

with fðrÞ, is now identified as (33). Therefore, _r turns out
to be

FIG. 1. Plot of ν02P0
↑ vs ν0 for different values of ω0. Here we

choose the small parameter ϵ ¼ 0.01.
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_r ¼ dr
dλ

¼ −1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2κðr − rHÞ

p
≃ κðr − rHÞ − 2: ð34Þ

Integrating this, up to linear order in (r=rH − 1), we obtain

λ ≃ −
r
2
: ð35Þ

Similarly, Eq. (11), up to this order, yields tp ≃ −r=2.
Hence, using (6), the Schwarzschild time coordinate ts
turns out to be

ts ≃ tp þ
r
2
−

1

2κ
ln

�
r
rH

− 1

�
: ð36Þ

In this case, the tortoise coordinate r� in terms of the radial
coordinate turns out to be

r� ¼ 1

2κ
ln

�
r
rH

− 1

�
: ð37Þ

Here again the mode functions are of the form (16) and
(20). Substituting all these in the general formula (3),
we find

P↑ ¼ g2
����
Z

rH

ri

dr

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2κðr − rHÞ

p

×

�
r
rH

− 1

�
−iðν=κÞ

e−iðωr=2Þ
����
2

: ð38Þ

In the above, ri has to chosen such that its value satisfies
our near-horizon approximation; i.e., ðr=rH − 1Þ ≪ 1.
To make the above expression in a convenient form, let

us first change the variable: ðr=rHÞ − 1 ¼ x. Then (38)
reduces to

P↑ ¼ g2
����
Z

xi

0

rHdx
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2κrHx
p

× ðxÞ−iðν=κÞe−iðωrH=2Þð1þxÞ
����
2

: ð39Þ

In terms of dimensionless parameters ω0 ¼ rHω, ν0 ¼ ν=κ,
and κ0 ¼ κrH, we find the probability of excitation as

P0
↑ ¼

����
Z

xi

0

dx

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2κ0x

p ðxÞ−iν0e−ðiω02 þϵÞð1þxÞ
����
2

; ð40Þ

where P0
↑ ¼ P↑=ðg2r2HÞ. Now we numerically plot the

above in Fig. 2. This shows the detector register particle
in a Boulware vacuum and, like earlier, the probability
decreases with the increase of ω0.
Note that in this case we did not plot ν02P0

↑ vs ν0; instead,
we plottedP0

↑ vs ν
0. The reason is the following. In ν02P0

↑, ν
02

is an increasing function, while P0
↑ðν0Þ is a decreasing one.

Normally for the Planck case, in the range of low values of
frequency, ν02 dominates, which effectively gives the increas-
ing behavior, and after a certain value of ν0,P0 dominates and
gives a decreasing behavior of the composite function.
Therefore, effectively we obtain the Planck-type plot. But
for the present situation, in our numerical calculation we
observed that ν02P0

↑ is always an increasing function. This is
because, in the large values of ν0, the numerical values of the
ν02 term are always so large compared to that of P0

↑ such that
their multiplication always increases, and, hence, we never
get the decreasing behavior like the Planck plot, although
Fig. 2 shows P0

↑ always a decreasing function of ν0. Having
this limitation (which is just a numerical difficulty) and since
our main aim is to see if the probability is nontrivial, we just
show the nature of P0

↑ as a function of ν0 which is sufficient
to argue that the probability of a transition is nonvanishing.
Interestingly, the nature is similar to a Bose-Einstein dis-
tribution, and this tells us that the vacuum appears to be
thermal with respect to our infalling observer. In later cases
as we shall see, fortunately, such a difficulty does not arise.
Before concluding this section, let us comment on the

choice of the vacuum (here it is Boulware) when the
detector is in the near-horizon region. A Boulware vacuum
is defined with respect to a static observer in the ðt; r�Þ
coordinates in which the scalar modes are given by (20),
called Boulware modes. This vacuum, asymptotically at
r → ∞, is a Minkowski vacuum. So a static observer at
r → ∞, where the spacetime is higher dimensional, defines
this vacuum as Minkowski. Now we considered that
another observer with an atomic detector is freely falling
towards the horizon from a point within the near-horizon
regime. This detector is interacting with the Boulware
modes. As we said, this observer will see this effectively
(1þ 1)-dimensional spacetime when it is constrained to
move within this limit. For this observer, what we found is
that the Boulware mode appears to be thermal. So here we
have two observers: One is defining the Boulware vacuum,
and the scalar modes corresponding to this are investigated

FIG. 2. Plot of P0
↑ vs ν0 for different values of ω0. Here we

choose the small parameter ϵ ¼ 0.001, xi ¼ 0.5, and κ0 ¼ 1.
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by another observer, who is moving within the near-horizon
region. This can also be interpreted as that only the radial
motion of the latter observer with its detector has to be
turned on when the observer is within this region.

VI. NULL PATH IN FRW UNIVERSE AND
DETECTOR RESPONSE: (1 + 1)
SPACETIME DIMENSIONS

Having discussions on black hole spacetimes, now we
move to the metric for the homogeneous isotropic universe.
The FRW metric in (1þ 1) dimensions is given by

ds2 ¼ −dt2 þ a2ðtÞdx2; ð41Þ

where the scale factor in different eras of the universe are as
follows:

aðtÞ ¼

8>><
>>:

eðt=αdÞ; de Sitter era;

C0t1=2; radiation-dominated era;

C0t2=3; matter-dominated era:

ð42Þ

Note that in the aboveC0 is a dimensionful constant. As the
scale factor has to be dimensionless, for the radiation-
dominated era, it has a dimension of t−1=2, whereas the
same for the matter-dominated era is t−2=3. In conformal
time dη ¼ dt=aðtÞ, the metric (41) takes the form

ds2 ¼ a2ðηÞð−dη2 þ dx2Þ; ð43Þ

in which the solution of the massless KG equation leads to
the following positive frequency outgoing mode:

uν ¼ e−iνðη−xÞ: ð44Þ

We call this mode a conformal mode and the corresponding
vacuum a conformal vacuum. Our target is to investigate
this conformal vacuum from the perspective of an atomic
detector which is moving along the null trajectory in ðt; xÞ
coordinates.
Before going to the main discussion, let us briefly discuss

the reason behind calling the above mode a conformal mode.
The Lagrangian density for a scalar field ϕ coupled to
gravity is

L ¼
ffiffiffiffiffiffi−gp
2

½∇aϕ∇aϕ − ðm2 þ ξRÞϕ2�; ð45Þ

wherem is the mass of ϕ, ξ is the coupling constant, andR is
the Ricci scalar. ξ ¼ 0 is the minimally coupled case, while

ξ ¼ n − 2

4ðn − 1Þ ð46Þ

is known as the conformally coupled case. Here n is the
spacetime dimensions. For the latter case, if m ¼ 0, then the

action as well as the field equation for ϕ is invariant under
the transformations gabðxÞ → g0abðxÞ ¼ Ω2ðxÞgabðxÞ and

ϕðxÞ → ϕ0ðxÞ ¼ Ωð2−nÞ=2ðxÞϕðxÞ ð47Þ

(see the discussion in Sec. 3.2 in Ref. [11]). Now for gab ¼
ηab (Minkowski metric), i.e., g0ab is a conformally
Minkowski spacetime, then ϕ0 is the solution of the scalar
field equation in g0ab, while ϕ is the solution for the same in
ηab. So, for the conformal coupling case, the mode solutions
in g0ab can be obtained by knowing the same in ηab by using
the relation (47). Consequently, the Minkowski vacuum is
also the vacuum for ϕ0. Therefore, the modes are called here
as conformal modes and the corresponding vacuum is
known as a conformal vacuum (see the discussion in
Sec. 3.7 in Ref. [11]). Now for the (1þ 1)-dimensional
situation (n ¼ 2), both minimal coupling and conformal
coupling cases coincide as ξ ¼ 0 [see Eq. (46)], while for the
(1þ 3)-dimensional case (which we shall discuss in the next
section), such a thing does not happen. Since for the
conformal coupling case the scalar modes are easily obtain-
able by knowing those inMinkowski spacetime, we keep our
discussion to this simple situation for the moment, although
it does not matter for a (1þ 1)-dimensional FLRW metric.
The ingoing null path for the metric (41) is dt ¼

−aðtÞdx, which in terms of conformal time turns out to be

η ¼ −x: ð48Þ

Here, the detector mode is again given by (16), and one can
verify that the detector’s time λ in this case is t. Then the
probability of excitation of the detector (3) takes the
following form:

P↑ ¼ g2
����
Z

tf

ti

dte2iνηþiωt

����
2

: ð49Þ

Now we shall evaluate the above integration for the three
stages of the universe by substituting the respective values
of conformal time η in terms of detector time t.

A. de Sitter era

For a de Sitter universe, the relation between η and t is
η ¼ −ðαdÞe−ðt=αdÞ. Here the limits of integration variable
can be −∞ to þ∞. Substituting this in (49) and then
changing the variable to x ¼ e−ðt=αdÞ, we obtain

P↑ ¼ g2α2d

����
Z

∞

0

dxe−2iνxαdðxÞ−iωαd−1
����
2

: ð50Þ

To evaluate this integration, as earlier, we need to again
make it convergent by using ϵ prescription as discussed
below Eq. (26) and then finally need to take ϵ → 0þ limit.
Here we identify s ¼ −iωαd þ ϵ and b ¼ 2iναd þ ϵ with
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ϵ > 0. ϵ has been added in order to make the integration
convergent. Using this earlier trick, we find the excitation
probability of the detector as

P↑ ¼ 2πg2αd
ω

1

e2παdω − 1
: ð51Þ

This probability exhibits thermal nature with temperature
T ¼ 1=ð2παdÞ, which is the standard value of the de Sitter
horizon temperature as obtained earlier by different meth-
ods. Note that, in this case, the above result does not depend
on the scalar mode frequency ν.

B. Radiation-dominated era

Here the conformal time is given by η ¼ ð2=C0Þtð1=2Þ.
The limits of integration are chosen to be 0 toþ∞; negative
values of t are not incorporated, as for these the scale factor
will be complex, which is not allowed for the existence of
our FRW metric (41). Then (49) turns out to be

P↑ ¼ 4g2
����
Z

∞

0

dx xeiωðxþð2ν=C0ωÞÞ2
����
2

; ð52Þ

where we used x ¼ t1=2 for the change of variable.
The above one will now be numerically plotted. For that,
we express the above in terms of the dimensionless
parameters z ¼ C0x, ω0 ¼ ω=C2

0, and ν0 ¼ ν=C2
0:

P0
↑ ¼

����
Z

∞

0

dz ze−ð−iω0þϵÞðzþð2ν0=ω0ÞÞ2
����
2

; ð53Þ

where P0
↑ ¼ ðC4

0P↑Þ=ð4g2Þ. Of course, the above can be
evaluated analytically but not in a convenient form. So we
shall numerically analyze this. Just for completeness, we
give below the analytical expression of this integration. For
that, we consider the variable transformation of the form
ðzþ 2ν0

ω0 Þ2 ¼ m to find

P0
↑ ¼

����
Z

∞

4ν02=ω02

dm
2

ffiffiffiffi
m

p
� ffiffiffiffi

m
p

−
2ν0

ω0

�
eiω

0m

����
2

: ð54Þ

The definition of the upper incomplete Gamma function
can be used for this evaluation, which is given by

expð−s ln bÞΓðs; tÞ ¼
Z

∞

t
e−bxxs−1dt: ð55Þ

Hence, we can write our expression (54) in terms of the
upper incomplete Gamma function as

P0
↑ ¼ 1

4

���� i
ω0 Γ

�
1;
4ν02

ω0

�
−

2ν0

ω0 ffiffiffiffiffi
ω0p eðiπ=4ÞΓ

�
1

2
;
4ν02

ω0

�����
2

:

ð56Þ
However, to understand the nature of probability, we

want to analyze numerically. For that, we will use Eq. (53).

The numerical plot for ν02P0
↑ vs ν0 is shown in Fig. 3. The

feature of the curves show that the probability is indeed
thermal and the detector sees the presence of particles in the
conformal vacuum. Here again the particle production
decreases with the increase of the detector’s frequency ω0.

C. Matter-dominated era

For the matter-dominated era, the relation between η and
t is η ¼ ð3=C0Þt1=3. Therefore, (49) becomes

P0
↑ ¼

����
Z

∞

0

dx
ffiffiffi
x

p
e−ð−iω0þϵÞðx3=2þð6ν0x1=2=ω0ÞÞ

����
2

: ð57Þ

Here again the limits of integration are chosen as 0 and ∞
and P0

↑ ¼ ð4C3
0P↑Þ=ð9g2Þ. We also used the change of

variables as x ¼ C0t2=3, ω0 ¼ ω=C3=2
0 , and ν0 ¼ ν=C3=2

0 ,
where all these new ones are dimensionless.
We numerically plot ν02P0

↑ vs ν
0 in Fig. 4. The plot shows

that the detector registers particles in the conformal
vacuum. Moreover, like earlier, the detection of particles
decreases with the increase of ω0.

FIG. 3. Plot of ν02P0
↑ vs ν0 for different values of ω0. Here we

choose the small parameter ϵ ¼ 0.01.

FIG. 4. Plot of ν02P0
↑ vs ν0 for different values of ω0. Here we

choose the small parameter ϵ ¼ 0.01.
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In the next section, we discuss the (1þ 3)-dimensional
FLRW background case where the scalar field is considered
to be conformally coupled and massless, as we are
interested in investigating particle production in the con-
formal vacuum. Here also, as we shall see, the probability
of a transition of the detector is finite and decreases with the
increasing of ω.

VII. DETECTOR RESPONSE IN A (1 + 3)-
DIMENSIONAL FLRW UNIVERSE

The FLRW metric in (1þ 3) dimensions is

ds2 ¼ −dt2 þ a2ðtÞjdx⃗j2
¼ a2ðηÞð−dη2 þ jdx⃗j2Þ; ð58Þ

which is conformal to Minkowski metric ds2M ¼ −dη2 þ
jdx⃗j2, where jdx⃗j2 ¼ dx2 þ dy2 þ dz2. As we said earlier,
to make life simple, in this background we consider a
conformally coupled scalar field. The minimally coupled
situation in this dimension is also very important to study.
This we keep for future study. It is well known that such a
scalar field equation, in the massless situation, is confor-
mally invariant. Moreover, the relation between the scalar
fields in the Minkowski and the conformally connected
backgrounds for the conformally coupled massless case is

ϕðxÞ ¼ Ω−1ðxÞϕMðxÞ; ð59Þ
when one finds gabðxÞ ¼ Ω2ðxÞηab and imposes the con-
dition that the scalar equation has to be invariant. In
addition, now the Minkowski vacuum is also the vacuum
for ϕðxÞ, known as the conformal vacuum (see Chap. 3 in
Ref. [11] for details). Here we shall discuss the particle
content in this vacuum observed by the freely moving
detector along the null path in the cosmic time coordinate.
For simplicity, we consider that the detector is moving

along only the x direction. In principle, one can consider
that this detector is moving along any arbitrary direction.
In that case, the calculation will be more complicated.
To avoid this mathematical calculation, here we assume that
the detector is moving only along the x direction, but this
will not make any loss of generality in our final goal. In this
case, the null ingoing path in conformal time is x ¼ −η.
The scalar mode in the conformal time coordinate can be
obtained by using the relation (59) with the identification
Ω ¼ aðηÞ. The outgoing scalar mode is given by uν ¼
a−1ðηÞe−iðνη−p⃗·x⃗Þ with ν ¼ jp⃗j. For our present choice of
trajectory, it turns out to be

uν ¼ a−1ðtÞe−iνð1þcos θÞη; ð60Þ
where θ is the angle between the detector’s direction and
the momentum of the scalar mode. On the other hand, the
detector’s mode is ψω ¼ e−iωt. Substitution of all these in
probability expression (3) yields

P↑ðθÞ ¼ g2
����
Z

tf

ti

dta−1ðtÞeiν0ηþiωt

����
2

; ð61Þ

where ν0 ¼ νð1þ cos θÞ.
Note that the quantity inside the modulus is proportional

to the transition amplitude and depends on θ. We must
integrate this one over the solid angle dΩ0 ¼ sin θdθdΦ
with θ ¼ 0 to θ ¼ π and Φ ¼ 0 to Φ ¼ 2π in order to
consider all modes which have the same momentum
jp⃗j ¼ ν but are moving in different directions. This will
lead to the following expression:

X ¼ 2π

Z
π

0

sin θdθ
Z

tf

ti

dta−1ðtÞeiν0ηþiωt

¼ 2π

iν

Z
tf

ti

dt
aðtÞη e

iωtðe2iνη − 1Þ: ð62Þ

Then the transition probability of the detector comes out
to be

P↑¼
4π2g2

ν2

����
Z

tf

ti

dt
aðtÞηe

iωtðe2iνη−1Þ
����
2≡4π2g2

ν2
jYj2: ð63Þ

This is our working formula for investigating different eras
of the universe.

A. de Sitter era

Using the value of the scale factor, given in Sec. VI, and
the identical steps as adopted in Sec. VI A, one finds

Y ¼ −
1

αd

Z þ∞

−∞
dt½e−2iναde−t=αdþiωt − eiωt�: ð64Þ

The last term is the Dirac delta function δðωÞ, and, since we
are working for positive frequency modes, i.e., ω > 0, it
will vanish. Next, proceeding in a similar way, one finds the
probability of excitation as

P↑ ¼ 8π3g2

ν2ωαd

1

e2πωαd − 1
; ð65Þ

which reflects the thermality with the correct de Sitter
temperature.

B. Radiation-dominated era

Proceeding similar to Sec. VI B, we find

P0
↑ ¼ 1

ν02

����
Z

∞

0

dx
x
e−ð−iω0þϵÞxðe4iν0x1=2 − 1Þ

����
2

; ð66Þ

where the following notations are introduced:
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P0
↑ ¼ P↑

π2g02
; ω0 ¼ ω

C2
0

; ν0 ¼ ν

C2
0

; g0 ¼ g
C2
0

;

ð67Þ

with the change of variable x ¼ C2
0t. In Fig. 5, we give the

numerical plot of this probability.

C. Matter-dominated era

Here the transition probability turns out to be

P0
↑ ¼ 1

ν02

����
Z

∞

0

dx
x
e−ð−iωþϵÞxðe6iν0x1=3 − 1Þ

����
2

; ð68Þ

where

P0
↑ ¼ 9P↑

4π2g02
; ω0 ¼ ω

C3=2
0

; ν0 ¼ ν

C3=2
0

;

g0 ¼ g

C3=2
0

; ð69Þ

with the use of the change of variable x ¼ C3=2
0 t. The

numerical plot is given in Fig. 6.
Note that here also we show the P0

↑ vs ν0 plot because of
the same reason as mentioned in Sec. V. Nevertheless, the
nature of our present plots are similar to Bose-Einstein
distribution, which implies particle content in a conformal
vacuum and it is thermal in nature. In all eras of the
universe, we found that the probability of transition
amplitude is nonzero. Hence, our present infalling detector
along the null trajectory in cosmic time will see the
conformal vacuum, defined in conformal time coordinates,
as full of particles. Like the (1þ 1)-dimensional case, here
also the probability decreases with the increase of the
detector’s frequency.

VIII. CONCLUSIONS AND DISCUSSIONS

In this work, we studied the response function of a two-
level atomic detector which is traveling freely along the null
(lightlike) trajectory under the background of a nontrivial
metric in a particular coordinate system. The spacetimes we
have considered here are (a) a (1þ 1)-dimensional general
static black hole and (b) a FLRW universe. For the FRW
case, all three stages of the universe, de Sitter, radiation
dominated, and matter dominated, were accounted for.
For the black hole case, the detector was moving along

the null trajectory in Schwarzschild coordinates. It has been
observed that the detector detects particles in the Boulware
vacuum. This has been established both analytically under
a large detector frequency approximation and also numeri-
cally (without any approximation). We noticed that the
probability of detection decreases with the increase of the
detector’s frequency ω. This analysis has been further
extended to any arbitrary dimensional stationary black
hole. In this case, we considered the near-horizon effective
metric of the full spacetime and allowed the detector to
move radially within this near-horizon region. Again,
we found that the probability of transition is finite,
indicating the creation of a particle in the Boulware vacuum
with respect to this specific observer. In all numerical
analysis, the plot between ν2PðνÞ vs ν is similar to the
Planck spectrum, and the peak decreases with the increase
of ω. We also presented a similar analysis in a (1þ 3)-
dimensional FLRW Universe.
In this approach, we further investigated the three stages

of a FLRW universe. We allowed the detector to move
along the null trajectory in original FLRW coordinates
(t, x), and massless scalar modes, under study, correspond
to a conformal vacuum. In all three stages, the conformal
vacuum appears to be filled with thermal particles with
respect to this null infalling observer. The de Sitter era was
analytically solvable and gives a perfect blackbody spec-
trum, whereas the radiation- and matter-dominated eras
were investigated numerically. These also showed the
particle content in a conformal vacuum with respect to

FIG. 5. Plot of P0
↑ vs ν0 for different values of ω0. Here we

choose the small parameter ϵ ¼ 0.01.

FIG. 6. Plot of P0
↑ vs ν0 for different values of ω0. Here we

choose the small parameter ϵ ¼ 0.01.
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our chosen class of observers. Here also, the probability
decreases with an increase of ω.
It must be mentioned that our present investigation is an

extension of the work of Scully et al. [8], where the authors
investigated the issue for the detector moving along a
timelike geodesic in Schwarzschild spacetime. Here we
took different paths, the null-like ones, and also discussed
the situation for other black holes in arbitrary dimensions.
Of course, in this case the analysis is valid only in the near-
horizon region. We further investigated the three stages of a
FLRW universe. Particle production in this case has been
attempted earlier by a different method but not by the
detector response method and for this different class of
observers (for example, see [19–21]; also see [22] for a
recent review). In this sense, the present investigation is
different from earlier ones and further enlightens the
observer dependence of particle production in the case
of curved spacetimes.

APPENDIX A: ALTERNATIVE APPROACH:
FOURIER TRANSFORMATION IN

MOMENTUM SPACE

1. Black hole

For our null trajectory (15), the outgoing massless scaler
field mode (20), with respect to the radially infalling
observer, takes the following form:

uνðrÞ ¼ e2irν
�

r
rH

− 1

�
2irHν

: ðA1Þ

Now we are interested in finding the corresponding
function in the momentum space. This is given by the
following Fourier transformation:

Fðω; νÞ ¼
Z

∞

−∞
dreiωruνðrÞ: ðA2Þ

Now note that the outgoing scalar modes exists only in the
region outside the horizon, and so only the nonvanishing
limit of integration of the above integral is rH to ∞. With
this, the substitution of (A1) in (A2) and then the use of the
change of integration variable ðr=rHÞ − 1 ¼ x yield

Fðω; νÞ ¼ rHeiðωþ2νÞrH
Z

∞

0

dxeirHðωþ2νÞxðxÞ2irHν: ðA3Þ

The modulus square of the above expression is our required
quantity we are looking for. With the substitution
rHðωþ 2νÞx ¼ z, one finds

jFðω; νÞj2 ¼ 1

ðωþ 2νÞ2
����
Z

∞

0

dze−izðzÞ−2irHν
����
2

: ðA4Þ

Finally, using (25), we obtain

jFðω; νÞj2 ¼ 4πrHν
ðωþ 2νÞ2

1

e4πrHν − 1
: ðA5Þ

Here again, we see that the above expression represents the
thermal behavior of the Boulware modes at temperature T ¼
1=ð4πrHÞ with respect to the radially infalling observer.

2. FLRW universe

In the case of a FLRWuniverse, the conformal mode (44)
for null path (48) takes the form

uν ¼ e−2iνη; ðA6Þ

which in Fourier space of the t coordinate is given by the
argument of the expression (49). Therefore, the square of
the absolute value of this for different stages of the
universe again coincides with the results obtained in
Sec. VI. So the Fourier trick approach also favors particle
production in a conformal vacuum with respect to our
infalling null observer.

APPENDIX B: OBSERVER’S METRIC AND
PARTICLE CREATION THROUGH
BOGOLIUBOV COEFFICIENTS

The actual event of particle production is always
perceived by calculating the number operator for the
vacuum under study. The detector’s click is not always a
confirmation of particle production. For example, a uni-
formly rotating detector in Minkowski spacetime always
shows a transition, whereas the calculation of a number
operator in a Minkowski vacuum gives a vanishing result
[23]. Therefore, it is always necessary to examine the
number operator in order to discuss observer-dependent
particle production. This is determined by one of the
Bogoliubov exponents, namely, βνω (see Chap. 3 in
Ref. [11]). In this case, one needs to find two sets of
observers and the corresponding field modes. In our present
cases, one observer is Boulware for a black hole or
conformal for FLRW. The other one is moving along the
null trajectory. To find the Bogoliubov coefficient, first it is
necessary to obtain the field modes in two frames. Here in
all situations one set of modes is known which are defined in
ðt; r�Þ coordinates for a black hole [Eq. (20)], while for
FLRW they are in conformal coordinates ðη; xÞ [see
Eq. (44)]. The other set of modes is not known to us at
this moment, as the metric for the null infalling observer has
not been introduced till now. Below, we shall construct the
metrics for this observer case by case and find the modes.

1. Schwarzschild black hole

It must be noted that, for the ingoing radial null path
(15), the ingoing null coordinate v ¼ ts þ r� is constant,
whereas the outgoing null coordinate is given by
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u ¼ ts − r� ¼ −2r − 2rH lnððr=rHÞ − 1Þ ¼ −2ts: ðB1Þ

So the metric (18), written in ðu; vÞ coordinates

ds2 ¼ −
fðu; vÞ

2
ðdudvþ dvduÞ ðB2Þ

for the Boulware observer, will be for our detector observer
by the following coordinate transformations:

dv → dv; du ¼ −2dts ¼ −
2dr
f

: ðB3Þ

The last one is obtained by differentiating (B1). Under this,
the metric (B2) takes the following conformally flat form:

ds2 ¼ ðdrdvþ dvdrÞ: ðB4Þ

Under the background, the outgoing massless scalar mode
is (20), i.e., uν ¼ ð1= ffiffiffiffiffiffiffiffiffiffiffiffiffi

2π · 2ν
p Þe−iνu, while that for the

above metric is ð1= ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π · 2ω

p Þeiωr. uν is normalized for the
range u ¼ −∞ to u ¼ þ∞; on the other hand, uω is
normalized for the range r ¼ ∞ to r ¼ rH.
Now expand the one mode in terms of the other as

1ffiffiffi
ν

p e−iνu ¼
Z

∞

0

dωffiffiffiffi
ω

p ðαωνeirω − β�ωνe−irωÞ; ðB5Þ

where the Bogoliubov coefficients are determined as

αων ¼
1

2π

ffiffiffiffi
ω

ν

r Z
∞

rH

dre−iνu−irω;

β�ων ¼ −
1

2π

ffiffiffiffi
ω

ν

r Z
∞

rH

dre−iνuþirω: ðB6Þ

Following the earlier steps, we find

jαωνj2 ¼
ωrH

πðω − 2νÞ2
1

1 − e−4πrHν
;

jβωνj2 ¼
ωrH

πðωþ 2νÞ2
1

e4πrHν − 1
: ðB7Þ

To get the above results, we considered ω > 2ν. Here we
obtain the nonvanishing value of jβωνj2, whose structure is
similar to a Planck distribution with temperature T ¼
1=ð4πrHÞ. This implies actual particle production in the
Boulware vacuum as seen by our particular observer.

2. FLRW universe

For the FLRW case, one set of observers (conformal) is
using u ¼ η − x and v ¼ ηþ x coordinates, and the
metric is

ds2 ¼ −
a2

2
ðdudvþ dvduÞ: ðB8Þ

The infalling observer’s coordinates are related to those for
the conformal one as follows:

dv → dv; du ¼ dη − dx ¼ 2η ¼ 2dt
a

; ðB9Þ

and correspondingly the metric is

ds2 ¼ −aðdtdvþ dvdtÞ: ðB10Þ

The relevant outgoing modes are uν ¼ ð1= ffiffiffiffiffiffiffiffiffiffiffiffiffi
2π · 2ν

p Þe−iνu
and uω ¼ ð1= ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π · 2ω
p Þe−iωt. In this case, the Bogoliubov

coefficients are given by

αων ¼
1

2π

ffiffiffiffi
ω

ν

r Z
dte−iνuþiωt;

β�ων ¼ −
1

2π

ffiffiffiffi
ω

ν

r Z
dte−iνu−iωt: ðB11Þ

These are the same integration, which was identified as the
detector’s response function P↑ in Sec. VI, particularly
jβωνj2. Clearly, these are nonvanishing, and the infalling
observer will see particles in the conformal vacuum.
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