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In this work, we analyze the constraints imposed by Poincaré symmetry on the gravitational form factors
appearing in the Lorentz decomposition of the energy-momentum tensor matrix elements for massive states
with arbitrary spin. By adopting a distributional approach, we prove for the first time nonperturbatively that
the zero momentum-transfer limits of the leading two form factors in the decomposition are completely
independent of the spin of the states. It turns out that these constraints arise due to the general Poincaré
transformation and on-shell properties of the states, as opposed to the specific characteristics of the
individual Poincaré generators themselves. By expressing these leading form factors in terms of
generalized parton distributions, we subsequently derive the linear and angular momentum sum rules
for states with arbitrary spin.
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I. INTRODUCTION

The matrix elements of local operators are of central
importance in characterizing the nonperturbative structure
of any quantum field theory (QFT). In the case of the
energy-momentum tensor (EMT), these matrix elements
encode a wide variety of different phenomena, from the
quantum corrections which arise in the gravitational motion
of particles [1], to tensor-nucleon interactions [2] or the
distribution of mass and angular momentumwithin hadrons
[3–7]. Although there is a significant breadth of literature
on these objects, most recent studies have chosen to focus
on particular cases where the states have lower spin
(generally spin 0, 1

2
, or 1 [3–12]) or correspond to specific

particles, as opposed to analyzing the constraints imposed
for arbitrary states. While this approach has proven to be
successful phenomenologically, it potentially risks obscur-
ing the underlying properties governing these constraints,
preventing one from separating model-specific and general
QFT effects.
An important feature of EMT matrix elements, like any

other local matrix elements, is that they can be decomposed
into a series of Lorentz structures. The coefficients of these

terms, known as the gravitational form factors (GFFs), are
constrained by the symmetry properties of the EMT,
together with its conservation and the physical requirement
that the states are on shell. Although this structure has been
understood for many years, the subsequent form factor
analyses have generally contained technical difficulties
such as in the handling of boundary terms and the
construction of well-defined normalizable states, leading
to incorrect conclusions, as discussed in detail in Ref. [13].
In Ref. [14], it was demonstrated in the spin- 1

2
case that

these difficulties can be circumvented by taking into
account the distributional characteristics of the Poincaré
charge operators and matrix elements, avoiding the neces-
sity to define the wave packet structure of the physical
states themselves. These characteristics arise as a conse-
quence of the fact that in local formulations of QFT fields
are defined to be operator-valued distributions which
satisfy a series of physically motivated axioms, including
locality and relativistic covariance [15–17]. Since these
axioms are assumed to hold independently of the coupling
regime, this framework allows one to derive genuine
nonperturbative constraints in a purely analytic manner.
The main conclusion of Ref. [14] is that the zero momen-
tum-transfer limit of the leading two GFFs in the spin- 1

2
EMT matrix element decomposition are completely con-
strained by the Poincaré transformation and on-shell
properties of the states. This raises an important question:
does this characteristic continue to hold for higher-spin
states, and if so, how is this limit affected by the spin of the
states? The main goal of this work will be to address this
question. As a byproduct, by relating these leading GFFs to
generalized parton distributions (GPDs), which can be in
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principle be accessed in processes such as deeply virtual
Compton scattering (DVCS) [18–20], the generalization of
the well-known spin- 1

2
sum rules can be analyzed for

arbitrary spin states.
The remainder of this paper is structured as follows. In

Sec. II, we define the leading terms which appear in the
decomposition of the EMT matrix elements for massive
states of arbitrary spin. Using this decomposition in
Sec. III, we then apply the procedure developed in
Ref. [14] to the angular momentum and boost matrix
elements and outline the subsequent constraints on the
GFFs. In Sec. IV, we generalize this approach to the
covariant Lorentz generators and discuss the implications
of these results in Sec. V. Finally, in Sec. VI, we conclude
by summarizing our key findings.

II. GRAVITATIONAL FORM FACTORS FOR
ARBITRARY SPIN STATES

In order to analyze the constraints imposed on the GFFs
appearing in the decomposition of the EMT matrix ele-
ments for states of arbitrary spin, one must first outline how
these states are defined. Due to the distributional nature of
quantized fields, it follows that any definite momentum
eigenstate jpi is in fact a distributional-valued state [17].
Normalizable states jgi ¼ R d4pgðpÞjpi are constructed by
integrating jpi with test functions (or wave packets) gðpÞ,
chosen to belong to the space of Schwartz functions of fast
decrease SðR1;3Þ. As will be discussed later, this choice of
test functions also plays an important role in the definition
of charge operators. For the purposes of the analysis in this
paper, we will be concerned only with massive physical on-
shell states. Since jpi is a priori defined for any four-
momentum p ∈ R1;3, one can impose this requirement by
considering eigenstates which are restricted to the upper
hyperboloid Γþ

M ¼ fp ∈ R1;3∶p2 ¼ M2; p0 > 0g as fol-
lows,

jp;m;Mi ¼ δðþÞ
M ðpÞjp;mi≡ 2πθðp0Þδðp2 −M2Þjp;mi;

ð1Þ

whereM is the mass of the state andm is the canonical spin
projection in the z-direction. As a result, even if the test
function gðpÞ has support outside of the mass shell, the
normalizable state jgi satisfies the mass shell constraint.
Since the norm of the unrestricted eigenstate jp;mi is given
by hp0; m0jp;mi ¼ 2p0ð2πÞ3δ3ðp0 − pÞδm0m, the above def-
inition implies that the inner product of the on-shell states
has the following Lorentz-covariant form:

hp0; m0;Mjp;m;Mi ¼ ð2πÞ4δ4ðp0 − pÞδðþÞ
M ðpÞδm0m: ð2Þ

Now, it remains to parametrize the EMT matrix elements
with respect to these states. Taking the EMToperator Tμν to
be the symmetric version [21], it follows from the

conservation of this current, together with the Lorentz
covariance and discrete space-time symmetries, that the
matrix elements for arbitrary spin can be written as [22]

hp0; m0;MjTμνð0Þjp;m;Mi
¼ η̄m0 ðp0ÞOμνðp0; pÞηmðpÞδðþÞ

M ðp0ÞδðþÞ
M ðpÞ; ð3Þ

with the Lorentz-covariant factor

Oμνðp0;pÞ¼ p̄fμp̄νgAðq2Þþ ip̄fμSνgρqρGðq2Þþ��� ð4Þ

The � � � indicates contributions with an explicitly higher-
order dependence on the four-momentum transfer q ¼
p0 − p. We define the average four-momentum,
p̄ ¼ 1

2
ðp0 þ pÞ, and the symmetrization, afμbνg ¼ aμbνþ

aνbμ. Sμν are the Lorentz generators in the chosen spin
representation, and ηmðpÞ are the arbitrary spin generali-
zation of the spinor and polarization vector in the half-odd
and half-even spin cases, respectively. In particular, in the
spin- 1

2
case, one has that Sμν ¼ i

4
½γμ; γν�, ηmðpÞ ∝ umðpÞ,

and Eq. (3) agrees1 with the well-known matrix element
parametrization of the nucleon EMT [23–25]. The para-
metrization (3) also assumes that the covariant density
matrix ½ρm0mðpÞ�AB ¼ ½ηmðpÞ�A½η̄m0 ðpÞ�B has the mass-inde-
pendent normalization

Tr½ρm0mðpÞ� ¼ ½ηmðpÞ�A½η̄m0 ðpÞ�A ¼ η̄m0 ðpÞηmðpÞ ¼ δm0m:

ð5Þ

Note that the trace is performed in the spin representation
space only. A characteristic feature of Eq. (3) is that the
arbitrary spin ηmðpÞ appears in a purely external manner
and that the complexity of this expression is determined by
the possible combinations of contracting p̄μ and Sμν with
qμ, while respecting the conservation and symmetry of Tμν.
Equation (3) also makes it manifest that the nonperturbative
structure is completely encoded in the GFFs.
Now that the structure of the EMT matrix elements for

arbitrary spin has been determined, in the proceeding
sections, we will apply an analogous approach to
Ref. [14] in order to derive constraints on the GFFs
Aðq2Þ and Gðq2Þ. In Ref. [22], these constraints were
outlined using a perturbative gravitational approach
together with the Rarita-Schwinger representation. Two
other derivations were also proposed in Ref. [26]: one
based on the expansion of the EMT in momentum space2

1Here, we have chosen to define a single form factor Gðq2Þ for
the component involving the Lorentz generator, so Gðq2Þ ¼
Aðq2Þ þ Bðq2Þ in comparison with Ref. [14] for the spin- 1

2
case.

2We observe that this first derivation contains a loophole since
a possible contribution of the type p̄μp̄νJ0ρqρ, allowed owing to
Wigner rotation effects [27], has not been considered. This is in
line with Ref. [13], in which the fallacy of the expansion used in
Ref. [26] (and also later in Ref. [28]) was pointed out.
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and another using Schwinger’s multispinor formalism
together with a nonrelativistic expansion. In contrast to
these former works, the proof we provide is purely non-
perturbative and relies only on the Poincaré invariance of
the QFT and the distributional properties of the matrix
elements. Moreover, this approach properly takes into
account Wigner rotation effects and does not require one
to consider a nonrelativistic expansion or a particular
massive spin representation of the states.

III. LORENTZ GENERATORMATRIX ELEMENTS

In Ref. [14], it was first demonstrated that one can derive
constraints on the GFFs by performing a distributional
matching procedure. This procedure involves comparing
the parametrization of the matrix elements of the Poincaré
charges with the representation that results from the explicit
action of these charges on the states. Due to the distribu-
tional nature of the Poincaré currents, a rigorous definition
of the corresponding charges requires integration with a
sequence of appropriate test functions. As will be empha-
sized in the calculations that follow, taking into account the
subtleties of these charge definitions is essential for
obtaining consistent form factor constraints. A more
detailed discussion of the motivation behind the various
charge definitions can be found in Ref. [14] and references
within.

A. Angular momentum matrix element

Let us start with the angular momentum operator Ji. Its
rigorous definition reads

Ji ¼ 1

2
ϵijklim

d→0
R→∞

Z
d4xfd;RðxÞ½xjT0kðxÞ − xkT0jðxÞ�; ð6Þ

where fd;RðxÞ≡ αdðx0ÞFRðxÞ ∈ SðR1;3Þ, and the test func-
tions αd and FR satisfy the conditions

Z
dx0αdðx0Þ ¼ 1; αdðx0Þ⟶d→0

δðx0Þ; ð7Þ

FRð0Þ ¼ 1; FRðxÞ ⟶R→∞
1: ð8Þ

This definition guarantees that Ji is convergent within
matrix elements and also independent of the specific
choice of test functions used in the limit.3 Using this
definition and a translation of the EMT operator
TμνðxÞ ¼ eiP·xTμνð0Þe−iP·x, it follows that the angular
momentum matrix element between the states jp;m;Mi
can be written as

hp0; m0;MjJijp;m;Mi

¼ ϵijklim
d→0
R→∞

Z
d4xfd;RðxÞxjeiq·xhp0; m0;MjT0kð0Þjp;m;Mi

¼ −iϵijklim
d→0
R→∞

∂f̃d;RðqÞ
∂qj hp0; m0;MjT0kð0Þjp;m;Mi; ð9Þ

with f̃d;RðqÞ ¼
R
d4xeiq·xfd;RðxÞ. From the conditions in

Eqs. (7) and (8), one has that

lim
d→0
R→∞

f̃d;RðqÞ ¼ ð2πÞ3δ3ðqÞ; ð10Þ

which, due to Eq. (9), implies that one must determine the
product of derivatives of delta ∂jδ3ðqÞ ¼ ∂

∂qj δ
3ðqÞ and

other factors in order to evaluate the full matrix element.
The general form for this type of covariant distributional
expression is derived in Appendix A. In particular, using
the parametrization in Eq. (3) together with Eq. (A10), it
follows that Eq. (9) can be written as

hp0; m0;MjJijp;m;Mi ¼ ð2πÞ4δðþÞ
M ðp̄ÞJ i

m0mðp̄; qÞ; ð11Þ

with the reduced matrix element

J i
m0mðp̄; qÞ ¼ −iϵijkp̄k½δm0m∂jδ4ðqÞ

− ∂j½η̄m0 ðp0ÞηmðpÞ�jq¼0δ
4ðqÞ�Aðq2Þ

þ 1

2
ϵijk½η̄m0 ðp̄ÞSjkηmðp̄Þ�δ4ðqÞGðq2Þ: ð12Þ

It is important to note that the temporal derivative of δ4ðqÞ
which can potentially appear due to Eq. (A10) drops out of
this expression due to the contraction with ϵijkp̄k. In order
to further simplify this expression, one needs to evaluate the
derivative term for arbitrary spin. As proved in Appendix B,
it turns out that one has the following closed form
expression,

∂
∂qj ½η̄m0 ðp0ÞηmðpÞ�

����
q¼0

¼ i
jp̄j2 ϵ

jlrp̄l½Σr
m0mðp̄Þ − Σr

m0mðkÞ�;

ð13Þ

where kμ ¼ Mgμ0 is rest-frame four-momentum and
Σi
m0mðp̄Þ ¼ Tr½ρm0mðp̄ÞΣi� with Σi ¼ 1

2
ϵijkSjk the spin

matrices in the chosen spin representation. Inserting
Eq. (13) into Eq. (12) then gives

J i
m0mðp̄; qÞ ¼ ½Σi

m0mðkÞ − δm0miϵijkp̄k∂j�δ4ðqÞAðq2Þ
þ Σi

m0mðp̄Þδ4ðqÞ½Gðq2Þ − Aðq2Þ�; ð14Þ

where we used the fact that helicity (i.e., spin projection
along momentum) is invariant under longitudinal boosts:
ˆ̄p · Σm0mðp̄Þ ¼ ˆ̄p · Σm0mðkÞ, with ˆ̄p ¼ p̄=jp̄j.

3The independence of the choice of temporal test function αd
can in particular be interpreted as the quantum generalization of
the time independence of the charge [29].
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To derive constraints on Aðq2Þ and Gðq2Þ, one can
observe that, due to the transformation properties of the
states jp;m;Mi under rotations, the Ji reduced matrix
elements must have the general form

J i
m0mðp̄; qÞ ¼ ½Σi

m0mðkÞ − δm0miϵijkp̄k∂j�δ4ðqÞ; ð15Þ

which is derived in Appendix A. Since Eqs. (14) and (15)
are simply different representations of the same matrix
element, the coefficients of these distributions must
coincide, which requires that the following identities hold:

Aðq2Þδ4ðqÞ ¼ δ4ðqÞ; ð16Þ

Aðq2Þ∂jδ4ðqÞ ¼ ∂jδ4ðqÞ; ð17Þ

½Gðq2Þ − Aðq2Þ�δ4ðqÞ ¼ 0: ð18Þ

Combining these identities implies the constraint4

Að0Þ ¼ Gð0Þ ¼ 1; ð19Þ

which proves that the q → 0 behavior of the two leading
GFFs in the EMT matrix element decomposition is com-
pletely independent of both the spin and internal compo-
sition of the states and that the actual limiting values of
these form factors coincide.

B. Boost matrix element

Another important point which was raised in Ref. [14] is
that the constraints on the GFFs are not specifically related
to the conservation of angular momentum, contrary to what
is often thought in the literature. To emphasize this point, it
was demonstrated (for spin 1

2
) that identical form factor

constraints can also be obtained using the matrix elements
of the boost generators Ki. Since the calculations in the
preceding section concluded that Að0Þ ¼ Gð0Þ ¼ 1 is a
spin-independent constraint, one would therefore expect
that the same constraint must also arise from the structure
of hp0; m0;MjKijp;m;Mi. It turns out that this is in fact the
case, as will be demonstrated in the remainder of this
section.
Similarly to Ji, the boost generator is rigorously

defined by

Ki ¼ lim
d→0
R→∞

Z
d4xfd;RðxÞ½x0T0iðxÞ − xiT00ðxÞ�; ð20Þ

and hence the boost matrix element can be written in the
form

hp0; m0;MjKijp;m;Mi

¼ ilim
d→0
R→∞

∂f̃d;RðqÞ
∂qi hp0;m0;MjT00ð0Þjp;m;Mi: ð21Þ

The term proportional to hp0; m0;MjT0ið0Þjp;m;Mi van-
ishes due to the definition of the test functions in Eqs. (7)
and (8):

lim
d→0
R→∞

Z
d4xeiq·xx0αdðx0ÞFRðxÞ ¼ 0: ð22Þ

Inserting the parametrization (3) and using Eq. (A10), one
can write

hp0;m0;MjKijp;m;Mi¼ð2πÞ4δðþÞ
M ðp̄ÞKi

m0mðp̄;qÞ; ð23Þ

with the reduced matrix element

Ki
m0mðp̄; qÞ ¼ i½δm0mðp̄0∂i − p̄i∂0Þδ4ðqÞ

− p̄0∂i½η̄m0 ðp0ÞηmðpÞ�jq¼0δ
4ðqÞ�Aðq2Þ

þ ½η̄m0 ðp̄ÞS0iηmðp̄Þ�δ4ðqÞGðq2Þ: ð24Þ

Due to Eq. (13), one sees that in order to further simplify
this relation one requires an explicit expression for
ϵijkp̄jp̄0Σk

m0mðp̄Þ. As shown in Appendix B, due to the
properties of the covariant density matrix ρm0mðp̄Þ, one can
prove that

ϵijkp̄jp̄0Σk
m0mðp̄Þ ¼ −jp̄j2κim0mðp̄Þ þMϵijkp̄jΣk

m0mðkÞ;
ð25Þ

where κim0mðp̄Þ ¼ Tr½ρm0mðp̄Þκi� with κi ¼ S0i the boost
generator matrices in the chosen spin representation. Upon
insertion into Eq. (24), this finally gives

Ki
m0mðp̄;qÞ¼

�
−

ϵijkp̄j

p̄0þM
Σk
m0mðkÞþδm0miðp̄0∂i− p̄i∂0Þ

�
×δ4ðqÞAðq2Þþκim0mðp̄Þδ4ðqÞ½Gðq2Þ−Aðq2Þ�:

ð26Þ
Just as the rotation transformation properties of the states
jp;m;Mi were used to constrain the matrix elements of Ji,
one can perform an analogous procedure for boosts. In this
case, the Ki reduced matrix elements have the general form

Ki
m0mðp̄; qÞ ¼

�
−

ϵijkp̄j

p̄0 þM
Σk
m0mðkÞ

þ δm0miðp̄0∂i − p̄i∂0Þ
�
δ4ðqÞ; ð27Þ

which is derived in Appendix A. Comparing this with
Eq. (26), one immediately sees that the equality of

4Technically Aðq2Þ and Gðq2Þ are distributions in q and so are
in general not pointwise defined. Nevertheless, one can interpret
Að0Þ and Gð0Þ using a limiting procedure [14].
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these expressions implies the same relations5 as in
Eqs. (16)–(18). As anticipated, this result emphasizes that
the form factor constraints are not specific to the properties
of any one Lorentz generator. In the next section, we will
instead consider the constraints imposed on Aðq2Þ and
Gðq2Þ by the covariant Poincaré generators: the four-
momentum operator Pμ and the covariant generalizations
of Ji and Ki.

IV. COVARIANT GENERATOR
MATRIX ELEMENTS

Before discussing the covariant generalization of the
rotation and boost operators, consider the simplest case of
the four-momentum operator Pμ. Although Pμ does not
involve an explicit factor of xα in its definition, Pμ is
nevertheless defined by smearing with the same class of test
functions as the Lorentz generators

Pμ ¼ lim
d→0
R→∞

Z
d4xfd;RðxÞT0μðxÞ; ð28Þ

and hence the Pμ matrix element can be written as

hp;m0;MjPμjp;m;Mi
¼ lim

d→0
R→∞

f̃d;RðqÞhp0; m0;MjT0μð0Þjp;m;Mi: ð29Þ

Inserting the form factor decomposition of Eq. (3) and
applying Eq. (A5), it immediately follows that

hp̄þ 1

2
q;m0;MjPμjp̄ −

1

2
q;m;Mi

¼ ð2πÞ4δðþÞ
M ðp̄Þp̄μδm0mAðq2Þδ4ðqÞ; ð30Þ

where the Gðq2Þ-dependent terms have dropped out due
to the explicit q factor. Since the on-shell states are defined
to have an inner product as in Eq. (2), and jp;m;Mi
are momentum eigenstates satisfying Pμjp;m;Mi ¼
pμjp;m;Mi, these relations therefore imply the spin-
independent constraint

Aðq2Þδ4ðqÞ ¼ δ4ðqÞ; ð31Þ
which is simply Að0Þ ¼ 1.

A. Pauli-Lubanski matrix element

The covariant generalization of Ji, the Pauli-Lubanski
operator Wμ, is defined by6

Wμ ¼ 1

2
ϵμρσλMρσPλ: ð32Þ

By definition, the rest-frame matrix element of Wμ coin-
cides with Ji, up to an overall mass coefficient. Before
calculating the matrix element of Wμ, one must first define
the general Lorentz generator Mμν. Similarly to Ji and Ki,
one has that

Mμν ¼ lim
d→0
R→∞

Z
d4xfd;RðxÞ½xμT0νðxÞ − xνT0μðxÞ�: ð33Þ

The matrix element of Wμ can then be written as

hp0;m0;MjWμjp;m;Mi

¼−iϵμρσλpλlim
d→0
R→∞

∂f̃d;RðqÞ
∂qρ hp0;m0;MjT0σð0Þjp;m;Mi; ð34Þ

which after inserting the parametrization (3) and applying
Eq. (A10) gives

hp0;m0;MjWμjp;m;Mi¼ð2πÞ4δðþÞ
M ðp̄ÞWμ

m0mðp̄;qÞ; ð35Þ

with the reduced matrix element

Wμ
m0mðp̄; qÞ ¼ Sμm0mðp̄Þδ4ðqÞGðq2Þ; ð36Þ

where Sμm0mðp̄Þ ¼ Tr½ρm0mðp̄ÞSμ� with Sμ ¼ 1
2
ϵμρσλSρσp̄λ

the covariant spin matrices7 in the chosen spin representa-
tion. The dependence on Aðq2Þ completely drops out due to
the contraction with ϵμρσλp̄λ and the explicit p̄σ factor
multiplying this term. Unlike the rotation and boost
generators, the Pauli-Lubanski operator acts in a diagonal
manner on the momentum component of the states, and so
the reduced matrix elements have the general form

Wμ
m0mðp̄; qÞ ¼ Sμm0mðp̄Þδ4ðqÞ: ð37Þ

Equating Eqs. (36) and (37) immediately implies the
constraint

Gðq2Þδ4ðqÞ ¼ δ4ðqÞ; ð38Þ
which is nothing more than the condition Gð0Þ ¼ 1.

B. Covariant boost matrix element

The covariant boost Bμ is defined by the symmetrized
expression

Bμ ¼ 1

2
½MνμPν þ PνMνμ� ð39Þ

and coincides with Ki within matrix elements of rest-frame
states. The general matrix elements of Bμ can be directly
related to those of the rotation and boost operators,8 and in

5Due to the nonvanishing ∂0δ4ðqÞ term, one also has the
constraint Aðq2Þ∂0δ4ðqÞ ¼ ∂0δ4ðqÞ. However, this relation is
essentially trivial because it implies ∂0Að0Þ ¼ 0, which follows
immediately from the fact that Aðq2Þ depends only on q2.

6Here, we use the convention ϵ0123 ¼ þ1.

7The explicit form for the covariant spin matrices in terms
of the nonconserved ones Σi

m0mðkÞ is given by Sμm0mðpÞ ¼
ðp · Σm0mðkÞ;MΣm0mðkÞ þ p·Σm0mðkÞ

p0þM pÞ.
8Given these definitions of Wμ and Bμ, the general Lorentz

generator can be written in the form, Mμν ¼ − 1
2P2 ½fBμ; Pνg−

fBν; Pμg� − 1
P2 ϵμναβWαPβ, where f·; ·g is the anticommutator.
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particular the corresponding reduced matrix elements
Bμ
m0mðp̄; qÞ are given by

B0
m0mðp̄; qÞ ¼ p̄iKi

m0mðp̄; qÞ; ð40Þ

Bi
m0mðp̄; qÞ ¼ p̄0Ki

m0mðp̄; qÞ þ ϵijkp̄jJ k
m0mðp̄; qÞ: ð41Þ

Using Eq. (26), it follows that Eq. (40) can be written as

B0
m0mðp̄; qÞ ¼ iδm0mp̄i½p̄0∂i − p̄i∂0�δ4ðqÞAðq2Þ

þ p̄iκim0mðp̄Þδ4ðqÞ½Gðq2Þ − Aðq2Þ�
¼ iδm0mp̄i½p̄0∂i − p̄i∂0�δ4ðqÞAðq2Þ; ð42Þ

where the last line follows from the fact that
p̄iκim0mðp̄Þ ¼ p̄iκim0mðkÞ ¼ 0. Comparing this with the gen-
eral boost matrix element representation in Eq. (27) pro-
jected on p̄ therefore implies the constraints

Aðq2Þ∂jδ4ðqÞ ¼ ∂jδ4ðqÞ; Aðq2Þ∂0δ4ðqÞ ¼ ∂0δ4ðqÞ:
ð43Þ

Similarly, computing Bi
m0mðp̄; qÞ, one obtains

Bi
m0mðp̄; qÞ ¼

Mϵijkp̄j

p̄0 þM
Σk
m0mðkÞδ4ðqÞAðq2Þ þ δm0mi½p̄2∂i − p̄iðp̄ · ∂Þ�δ4ðqÞAðq2Þ

þ ½ϵijkp̄jΣk
m0mðp̄Þ þ p̄0κim0mðp̄Þ�δ4ðqÞ½Gðq2Þ − Aðq2Þ�

¼ Mϵijkp̄j

p̄0 þM
Σk
m0mðkÞδ4ðqÞAðq2Þ þ δm0mi½p̄2∂i − p̄iðp̄ · ∂Þ�δ4ðqÞAðq2Þ; ð44Þ

where the last line follows from Eq. (B7) derived in
Appendix B. Comparing this with both the general Lorentz
generator matrix elements in Eqs. (15) and (27), one is left
with the constraints in Eq. (43), together with the condition
Aðq2Þδ4ðqÞ ¼ δ4ðqÞ.
The calculations in this section explicitly demonstrate

that the matrix elements of the covariantized rotation and
boost operators separately determine the constraints on
Gðq2Þ and Aðq2Þ, respectively. In other words, choosing
this covariant operator basis results in a diagonalization of
the constraints. Overall, it initially appears that the matrix
elements of the Lorentz generators, or their covariantized
versions, are sufficient to derive all of the form factor
constraints. Since these constraints follow from the Lorentz
transformations properties of the states, this seemingly
suggests that only Lorentz symmetry is involved. However,
in deriving the matrix element equations, we have also
implicitly used the space-time translation transformation:
eiP·xjp;m;Mi ¼ eip·xjp;m;Mi. This explains why the
condition Aðq2Þδ4ðqÞ ¼ δ4ðqÞ, which follows from the

matrix element of Pμ, is also implied by the matrix
elements of the various Lorentz generators. Ultimately,
this means that the total constraints on the GFFs are a result
of the full Poincaré symmetry, together with the on-shell
restriction of the states.

V. APPLICATIONS

We now turn to the phenomenological implications of
our results, focusing specifically on the applications to
hadronic physics. The quantum interactions between matter
and gravity are in principle encoded in the GFFs, but in
practice, they are too weak to be directly measured in
experiment. One way of accessing information about QCD
matter is through the GPDs [18–20,25]. In this case, one is
dealing with a nonlocal operator along the lightlike
direction n, which enters into the description of DVCS
at the amplitude level. The leading-twist quark and gluon
GPDs have the following form,

Vq
m0m ¼ 1

2

Z
∞

−∞

dz
2π

eixðp̄·nÞzhp0; m0;Mjψ̄
�
−
z
2
n

�
ðγ · nÞW ½−z

2
n;z

2
n�ψ
�
z
2
n

�
jp;m;Mi; ð45Þ

Vg
m0m ¼ nαnβ

2xðp̄ · nÞ
Z

∞

−∞

dz
2π

eixðp̄·nÞzhp0; m0;MjFα
λ

�
−
z
2
n

�
W ½−z

2
n;z

2
n�Fλβ

�
z
2
n

�
jp;m;Mi; ð46Þ

where x is the longitudinal momentum fraction of the parton and W ½a;b� denotes a straight Wilson line in the adjoint
representation joining the space-time points a and b. The nonlocal quark and gluon operators which appear within the matrix
elements of these definitions (Oq

V and Og
V) are related to the quark and gluon EMT operators via the second Mellin moment
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Z
1

−1
dxxOq

V ¼
1

4ðp̄ ·nÞ2 ψ̄ð0Þðγ ·nÞðiD
↔
·nÞψð0Þ¼ nμnνT

μν
q

2ðp̄ ·nÞ2 ;

ð47Þ
Z

1

−1
dxxOg

V ¼ nμnν
2ðp̄ · nÞ2 F

μλð0ÞFλ
νð0Þ ¼ nμnνT

μν
g

2ðp̄ · nÞ2 ; ð48Þ

with D
↔

μ ¼ D⃗μ − D⃖μ. Equation (3) is the most general
decomposition for the symmetric and conserved EMT,
and the terms we are interested in depend at most linearly
on q. To spell out the relation between the GFFs in Eq. (3)
and the Mellin moments of GPDs, we need to restrict
ourselves to the twist-2 part of Eqs. (47) and (48). In
particular, neglecting terms with a higher power of q, the
total GPD correlator at twist 2 reads

hp0; m0;MjOV jp;m;Mi

¼ η̄m0 ðp0Þ
�
H1ðx; ξ; tÞ þ

iSαρnαqρ
p̄ · n

H2ðx; ξ; tÞ þ � � �
�

× ηmðpÞδðþÞ
M ðpÞδðþÞ

M ðp0Þ; ð49Þ

where ξ ¼ −ðq · nÞ=ð2p̄ · nÞ is the light-front longitudinal
momentum transfer, t ¼ q2, andOV ¼ Oq

V þOg
V . It follows

that one can write the spin-independent relations

Z
1

−1
dxxH1ðx; ξ; q2Þ ¼ Aðq2Þ þ � � � ; ð50Þ

Z
1

−1
dxxH2ðx; ξ; q2Þ ¼ Gðq2Þ þ � � � ; ð51Þ

where � � � denotes possible contributions arising from
nonleading GFFs which are multiplied at least by ξ2.
Using the results derived in this paper, one can now
generalize Ji’s sum rule [25] such that it holds independ-
ently of both the spin and structure of the hadron states.
From Eq. (19), it follows that for a state of arbitrary spin
with longitudinal polarization along, say, the z-direction
the total longitudinal linear and angular momentum
(summed over quarks and gluons) reads

Pz ¼
X
a¼q;g

Z
1

−1
dxxHa

1ðx; 0; 0Þ ¼ Að0Þ ¼ 1; ð52Þ

Jz ¼
X
a¼q;g

Z
1

−1
dxxHa

2ðx; 0; 0Þ ¼ Gð0Þ ¼ 1: ð53Þ

The totality of the structures that parametrize the EMT
cannot be constrained by the action of the Poincaré

generators alone and in general contains both asymmetric
and nonconserved terms. These terms are crucial in the
study of the mechanical properties of hadrons and receive
different contributions from quarks and gluons. In par-
ticular, a general expression for Ji’s relation which is valid
for quarks and gluons separately would require the
inclusion of such additional terms, as observed in
Refs. [11,12]. One approach to derive these terms is to
write a parametrization of the EMT for arbitrary spin states
as an expansion in terms of spin multipoles.9

Besides the hadronic relevance of the form factor
constraints derived in this work, one can also interpret
these conditions in a gravitational context. In particular, if
one considers the situation in which the states correspond to
a particle moving in an external (classical) gravitational
field, the zero momentum-transfer limit of the form factor
Bðq2Þ ¼ Gðq2Þ − Aðq2Þ has been argued to correspond to
the anomalous gravitomagnetic moment (AGM) of the
particle [31], by analogy to the case of the anomalous
magnetic moment of a charged particle. Due to the
constraint in Eq. (19), it follows immediately that
Bð0Þ ¼ 0, and hence with this interpretation, the AGM
must vanish for massive particles of any spin. However, as
previously outlined, this constraint arises purely from the
Poincaré invariance of the theory, and does not in fact rely
on any knowledge of the external gravitational inter-
actions.10 Einstein’s equivalence principle is therefore
not necessary to derive the constraint Bð0Þ ¼ 0.

VI. CONCLUSIONS

The purpose of this work was to establish the most
general constraints imposed on the form factors appearing
in the Lorentz decomposition of the energy-momentum
tensor matrix elements for massive states with arbitrary
spin. By comparing the form factor representation of the
angular momentummatrix elements with the representation
due to the transformation properties of the states under
rotations, we were able to prove that the q → 0 behavior of
the leading two form factors Aðq2Þ andGðq2Þ is completely
independent of both the spin and internal structure of the
states and in particular that Að0Þ ¼ Gð0Þ ¼ 1. Adopting an
analogous procedure for the matrix elements of the boost
generators Ki, we also established that the structure of
these objects implies identical constraints to those derived
using Ji. Together, these results emphasize that the con-
straints imposed on the leading gravitational form factors
are not specifically related to the properties of any one of
the Lorentz generators. Besides the standard Lorentz
generators, one can also use the covariantized version of

9See Ref. [11] for a discussion of the spin-1 case and Ref. [30]
for a parametrization of the vector current case for arbitrary spin.

10Although the condition Bð0Þ ¼ 0 for arbitrary spin states has
been discussed before [22,26,31], until now, this statement has
not been proven in a nonperturbative manner.
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these operators, the Pauli-LubanskiWμ and covariant boost
generator Bμ, to derive constraints in the same manner. It
turns out that Bμ and Wμ separately imply Að0Þ ¼ 1 and
Gð0Þ ¼ 1, respectively. In other words, choosing this
covariant operator basis results in a diagonalization of
the constraints. The main conclusion from this analysis is
that the spin-independent constraints on Aðq2Þ and
Gðq2Þ are nonperturbative and arise purely due to the
general Poincaré transformation and on-shell properties of
the states. These results have several immediate implica-
tions, including the spin universality of Ji’s sum rule for
generalized parton distributions and the vanishing of the
anomalous gravitomagnetic moment for particles of
any spin.
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APPENDIX A: ON-SHELL MATRIX ELEMENTS
OF THE POINCARÉ GENERATORS

1. Covariant representation

The simplest on-shell matrix elements occur when
calculating the matrix elements of the four-momentum
operator. In this case, one has distributional relations of the
following form,

T ðp0; pÞ ¼ δðþÞ
M ðp0ÞδðþÞ

M ðpÞCðp0; pÞδ3ðp0 − pÞ; ðA1Þ

where Cðp0; pÞ is some function. In particular, Cðp0; pÞ
corresponds to the coefficients multiplying the form factors
in Eq. (3). As with any distribution, the key to simplifying
Eq. (A1) is to understand how it acts on a generic test
function f. For the purposes of the form factor analysis in
this paper, we are mainly interested in working with the
variables p̄ ¼ 1

2
ðp0 þ pÞ and q ¼ p0 − p. In these varia-

bles, one can write the smeared distribution T̄ ðp̄; qÞ ¼
T ðp0; pÞ in the following manner,

Z
d4p̄d4qT̄ ðp̄; qÞfðp̄; qÞ ¼

Z
d4p̄d4qδðþÞ

M

�
p̄þ 1

2
q

�
δðþÞ
M

�
p̄ −

1

2
q

�
C̄ðp̄; qÞδ3ðqÞfðp̄; qÞ

¼
Z

d4p̄d4q
δðp̄0 − p̄0⋆Þδðq0 − q0⋆Þ
4ðp̄0 þ 1

2
q0Þðp̄0 − 1

2
q0Þ C̄ðp̄; qÞδ

3ðqÞfðp̄; qÞ

¼
Z

d3p̄

 
C̄ðp̄0⋆; p̄; q0⋆; qÞfðp̄0⋆; p̄; q0⋆; qÞ

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp̄þ 1

2
qÞ2 þM2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp̄ − 1

2
qÞ2 þM2

q
!������

q¼0

¼
Z

d3p̄
C̄ðEp̄; p̄; 0; 0ÞfðEp̄; p̄; 0; 0Þ

ð2Ep̄Þ2
; ðA2Þ

where C̄ðp̄; qÞ ¼ Cðp0; pÞ and one has used that

p̄0⋆¼
1

2

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
p̄þ1

2
q
	
2þM2

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
p̄−

1

2
q
	
2þM2

r #
; ðA3Þ

q0⋆ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
p̄þ 1

2
q
	
2 þM2

r
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
p̄ −

1

2
q
	
2 þM2

r
; ðA4Þ

which implies p̄0⋆jq¼0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̄2 þM2

p
¼ Ep̄ and q0⋆jq¼0 ¼ 0.

On the level of distributions, Eq. (A2) implies that the
matrix element T̄ can be explicitly written as

T̄ ðp̄; qÞ ¼ 2πδðþÞ
M ðp̄Þ C̄ðp̄; 0Þ

2p̄0
δ4ðqÞ: ðA5Þ

The calculation of the rotation and boost generator matrix
elements instead requires one to evaluate more complicated
distributional relations of the form

T jðp0; pÞ ¼ δðþÞ
M ðp0ÞδðþÞ

M ðpÞCðp0; pÞ ∂
∂pj

δ3ðp0 − pÞ:

ðA6Þ
Performing an identical procedure as before and applying
the definition of the distributional derivative [32], the
smeared distribution T̄ jðp̄; qÞ ¼ T jðp0; pÞ is given by

Z
d3p̄

∂
∂qj

�
C̄ðp̄0⋆; p̄; q0⋆; qÞfðp̄0⋆; p̄; q0⋆; qÞ

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp̄þ 1

2
qÞ2 þM2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp̄ − 1

2
qÞ2 þM2

q �������
q¼0

:

ðA7Þ
Differentiating the denominator and evaluating at q ¼ 0
leads to a vanishing expression, so the only terms which
contribute are the derivatives of the coefficient and the test
function. Since p̄0 and q0 are set to p̄0⋆ and q0⋆, respectively,
both of which depend on q, this results in additional terms
besides those that arise due to the explicit q-dependence of
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f and C̄. Besides the fact that p̄0⋆jq¼0 ¼ Ep̄ and q0⋆jq¼0 ¼ 0,
it also follows from Eqs. (A3) and (A4) that

∂p̄0⋆
∂qj
����
q¼0

¼ 0;
∂q0⋆
∂qj
����
q¼0

¼ −
p̄j

Ep̄
: ðA8Þ

After applying the chain rule together with the above
identities, one obtains

Z
d3p̄

ð2Ep̄Þ2
�


−
p̄j

Ep̄

∂C̄ðEp̄; p̄; q0; qÞ
∂q0

����
q0¼q0⋆

þ ∂C̄ðEp̄; p̄; 0; qÞ
∂qj

�
fðEp̄; p̄; 0; qÞ

− C̄ðEp̄; p̄; 0; qÞ


−
p̄j

Ep̄

∂fðEp̄; p̄; q0; qÞ
∂q0

����
q0¼q0⋆

þ ∂fðEp̄; p̄; 0; qÞ
∂qj

��
q¼0

; ðA9Þ

which on the level of distributions implies

T̄ jðp̄; qÞ ¼ −2π
δðþÞ
M ðp̄Þ
2p̄0

�
C̄ðp̄; 0Þ∂jδ4ðqÞ

− C̄ðp̄; 0Þ p̄
j

p̄0
∂0δ4ðqÞ

−
�∂C̄
∂qj −

p̄j

p̄0

∂C̄
∂q0
�

q¼0

δ4ðqÞ
�
: ðA10Þ

2. Explicit matrix elements

In order to perform the distributional matching pro-
cedure, one requires the explicit forms for the rotation and

boost generator matrix elements. In the variables p0 and p,
these are given by

hp0; m0;MjJijp;m;Mi

¼ ð2πÞ4δðþÞ
M ðpÞ

�
Σi
m0mðkÞ þ δm0miϵijkpk ∂

∂pj

�
δ4ðp0 − pÞ;

ðA11Þ

hp0; m0;MjKijp;m;Mi

¼ −ð2πÞ4δðþÞ
M ðpÞ

�
ϵijkpj

p0 þM
Σk
m0mðkÞ

þ δm0mi

�
p0

∂
∂pi

− pi ∂
∂p0

��
δ4ðp0 − pÞ; ðA12Þ

which are a covariant generalization of those derived in
Ref. [13]. To derive these equations, one can use the fact
that states of arbitrary spin s transform under (proper
orthochronous) Lorentz transformations α as follows [16],

UðαÞjp; k;Mi ¼
X
l

DðsÞ
lk ðαÞjΛðαÞp; l;Mi; ðA13Þ

where DðsÞ is the (2sþ 1)-dimensional Wigner rotation
matrix and ΛðαÞ is the four-vector representation of α.
Since we are interested in the matrix elements of Ji and Ki,
one must consider the specific cases of a pure rotation
α ¼ Ri and boost α ¼ Bi about the i axis, where UðRiÞ ¼
e−iβJ

i
and UðBiÞ ¼ eiξK

i
. Combining Eq. (A13) for a

pure rotation together with the definition of the norm of
the on-shell states in Eq. (2) implies

hp0; m0;MjJijp;m;Mi ¼ i

� ∂
∂β hp

0; m0;MjUðRiÞjp;m;Mi
�
β¼0

¼ i
∂
∂β
�X

l
DðsÞ

lm ðRiÞhp0; m0;MjΛðRiÞp; l;Mi
�����

β¼0

¼ i
∂
∂β
�X

l
DðsÞ

lm ðRiÞð2πÞ4δ4ðp0 − ΛðRiÞpÞδðþÞ
M ðp0Þδm0l

�����
β¼0

¼ i

� ∂
∂βD

ðsÞ
lm ðRiÞ

�
β¼0

ð2πÞ4δ4ðp0 − pÞδðþÞ
M ðpÞ þ ð2πÞ4δðþÞ

M ðpÞδm0mi

� ∂
∂β δ

4ðp0 − ΛðRiÞpÞ
�
β¼0

;

ðA14Þ

where one has implicitly used the fact that δðþÞ
M ðΛðRiÞpÞ ¼ δðþÞ

M ðpÞ. By definition, Σi
m0mðkÞ ¼ i½ ∂∂βDðsÞ

m0mðRiÞ�β¼0
are the

(2sþ 1)-dimensional spin matrices. To consistently calculate the second term, one must use the distributional properties
of the Dirac delta. In general, due to the transformation properties of distributions under linear transformations [32],
one has that
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Z
d4pδ4ðp0 − ΛðRiÞpÞfðpÞ

≡ j detΛðRiÞj−1
Z

d4lδ4ðp0 − lÞfðΛ−1ðRiÞlÞ

¼ fðΛ−1ðRiÞp0Þ; ðA15Þ

where f is an arbitrary test function. Expanding the test
function around the point β ¼ 0 gives

fðΛ−1ðRiÞp0Þ¼fðp0Þþβϵijkp0j∂fðpÞ
∂pk

����
p¼p0

þOðβ2Þ:

ðA16Þ
Combining this expansion together with Eq. (A15),
one can then explicitly determine how the distribution
i½ ∂∂β δ4ðp0 − ΛðRiÞpÞ�β¼0

acts on test functions

Z
d4pi

� ∂
∂β δ

4ðp0 − ΛðRiÞpÞ
�
β¼0

fðpÞ

¼ i
∂
∂β
�
fðp0iÞ þ βϵijkp0j∂fðpÞ

∂pk

����
p¼p0

þOðβ2Þ
�����

β¼0

¼ iϵijkp0j∂fðpÞ
∂pk

����
p¼p0

; ðA17Þ

which implies the following equality:

i
� ∂
∂βδ

4ðp0−ΛðRiÞpÞ
�
β¼0

¼ iϵijkpk ∂
∂pj

δ4ðp0−pÞ: ðA18Þ

Combining this relation with Eq. (A14) finally proves
Eq. (A11).
In the case of a pure boost α ¼ Bi, the matrix element is

more complicated because the Wigner rotation matrix
DðsÞðBiÞ depends on both ξ and the momentum.
Nevertheless, one can demonstrate that11

i

� ∂
∂ξD

ðsÞ
m0mðBiÞ

�
ξ¼0

¼ ϵijkpj

p0 þM
Σk
m0mðkÞ: ðA19Þ

Performing identical steps as in Eq. (A14), it remains to
calculate an explicit expression for the distribution
i½ ∂∂ξ δ4ðp0 − ΛðBiÞpÞ�ξ¼0

. In this case,

fðΛ−1ðBiÞp0Þ ¼ fðp0Þ − ξp00∂fðpÞ
∂pi

����
p¼p0

þ ξp0i∂fðpÞ
∂p0

����
p¼p0

þOðξ2Þ; ðA20Þ

from which it follows that

i

� ∂
∂ξ δ

4ðp0 − ΛðBiÞpÞ
�
ξ¼0

¼
�
ip0

∂
∂pi

− ipi ∂
∂p0

�
δ4ðp0 − pÞ: ðA21Þ

Combining this with Eq. (A19) proves Eq. (A12).
In order to compare these equations with the on-shell

matrix elements, one must instead work with the variables
p̄ and q. Due to the explicit δ4ðp0 − pÞ component in the
first terms of Eqs. (A11) and (A12), these expressions are
simply proportional to δðþÞ

M ðp̄Þδ4ðqÞ. The second terms
involving derivatives of δ4ðp0 − pÞ are nontrivial, though,
due to the q-dependence of δðþÞ

M ðpÞ. Nevertheless, in the
case of rotations, one can write

δðþÞ
M ðpÞi

� ∂
∂β δ

4ðp0 − ΛðRiÞpÞ
�
β¼0

¼ −
δðp̄0 − 1

2
q0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp̄ − 1

2
qÞ2 þM2

q
Þ

2ðp̄0 − 1
2
q0Þ

× iϵijkðp̄ −
1

2
qÞk ∂

∂qj δ
4ðqÞ

¼ −
δðp̄0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp̄ − 1

2
qÞ2 þM2

q
Þ

2p̄0
iϵijkp̄k ∂

∂qj δ
4ðqÞ;

ðA22Þ

since the term involving the qj-derivative of qk vanishes
due to the antisymmetric tensor. If one now integrates this
expression with a test function fðp̄; qÞ, one ends up with

Z
d3p̄iϵijkp̄k

�
−

p̄j

4E3
p̄
fðEp̄; p̄; q0; qÞ

þ p̄j

4E2
p̄

∂fðp̄0; p̄; q0; qÞ
∂p̄0

����
p̄0¼2Ep̄

þ 1

2Ep̄

∂fðEp̄; p̄; q0; qÞ
∂qj

�
q¼0

: ðA23Þ

The first two terms vanish due to the contraction with
ϵijkp̄k, and hence one can conclude that

δðþÞ
M ðpÞiϵijkpk ∂

∂pj
δ4ðp0 − pÞ

¼ −δðþÞ
M ðp̄Þiϵijkp̄k ∂

∂qj δ
4ðqÞ: ðA24Þ

The Ji matrix element in ðp̄; qÞ variables is therefore
given by

11In Ref. [13], the authors derive the form for the infinitesimal
Wigner rotation for boosts, from which one can derive the
manifestly spin-representation independent expression in
Eq. (A19).
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hp̄þ1

2
q;m0;MjJijp̄−1

2
q;m;Mi

¼ð2πÞ4δðþÞ
M ðp̄Þ

�
Σi
m0mðkÞ−δm0miϵijkp̄k ∂

∂qj
�
δ4ðqÞ: ðA25Þ

One can perform exactly the same procedure in the pure
boost case, except this time there are two derivative
components. Changing variables in the expression

δðþÞ
M ðpÞ½ip0 ∂

∂pi
− ipi ∂

∂p0
�δ4ðp0 − pÞ and integrating with a

test function gives

i
Z

d3p̄

�
1

2

∂fðEp̄; p̄; q0; qÞ
∂qi −

p̄i

2Ep̄

∂fðEp̄; p̄; q0; qÞ
∂q0

�
q¼0

;

ðA26Þ
where the two terms involving p̄0-derivatives of the test
function cancel one another. From this, we conclude that

δðþÞ
M ðpÞ

�
ip0

∂
∂pi

− ipi ∂
∂p0

�
δ4ðp0 − pÞ

¼ −δðþÞ
M ðp̄Þ

�
ip̄0

∂
∂qi − ip̄i ∂

∂q0
�
δ4ðqÞ; ðA27Þ

and hence the Ki matrix element in ðp̄; qÞ variables has the
form

hp̄þ 1

2
q;m0;MjKijp̄ −

1

2
q;m;Mi

¼ ð2πÞ4δðþÞ
M ðp̄Þ

�
−

ϵijkp̄j

p̄0 þM
Σk
m0mðkÞ

þ δm0mi

�
p̄0

∂
∂qi − p̄i ∂

∂q0
��

δ4ðqÞ: ðA28Þ

APPENDIX B: ARBITRARY SPIN ηmðpÞ
IDENTITIES

In this Appendix, we prove a series of identities
involving the arbitrary spin ηmðpÞ.

1. Proof of Eq. (13)

In order to prove Eq. (13), it is important to first
recognize that one can write

∂
∂qi ½η̄m0 ðp0ÞηmðpÞ� ¼

�∂η̄m0 ðp̄þ 1
2
qÞ

∂qi
�
ηmðp̄Þ

þ η̄m0 ðp̄Þ
�∂ηmðp̄ − 1

2
qÞ

∂qi
�

¼
�∂η̄m0 ðp̄þ 1

2
qÞ

∂qi �ηmðp̄Þ

− η̄m0 ðp̄Þ
�∂ηmðp̄þ 1

2
qÞ

∂qi
�
: ðB1Þ

The rest and moving frame ηm are related by a global boost,
ηmðpÞ ¼ eiξðpÞ·κηmðkÞ, where kμ ¼ Mgμ0 is the rest-frame
four-momentum, κi ¼ S0i are the standard boost generator
matrices in the chosen spin representation, and the boost
parameter is given by ξðpÞ ¼ ξðpÞξ̂ðpÞ, with ξðpÞ ¼
sinh−1ðjpj=MÞ and ξ̂ðpÞ ¼ p=jpj. Let us first consider
the derivative of the exponential argument in this boost,
evaluated at q ¼ 0,

∂
∂qi
�
iξ

�
p̄þ 1

2
q

�
· κ

�����
q¼0

¼
� ∂
∂qi ξ

�
p̄þ 1

2
q

��
q¼0

ðiξ̂ · κÞ þ ξ
∂
∂qi
�
iξ̂

�
p̄þ 1

2
q

�
· κ

�����
q¼0

¼ −
p̄i

2jp̄jp̄0ξ
ðiξ · κÞ þ i

2jp̄j ϵ
ijkϵklrξ̂jξlκr

¼ −
p̄i

2jp̄jp̄0ξ
ðiξ · κÞ − i

2jp̄j2 ϵ
ijkp̄j½Σk; ðiξ · κÞ�; ðB2Þ

where we used the fact that the boost generators transform as a three-vector under rotations ½Σk; κl� ¼ iϵklrκr. Because the
commutator with Σk ¼ 1

2
ϵkijSij acts as a derivation, it follows from the above relation that the qi-derivative on the full

exponential can be written as

� ∂
∂qi e

iξðp̄þ1
2
qÞ·κ
�
q¼0

¼ −
p̄i

2jp̄jp̄0ξ
ðiξ · κÞeiξðp̄Þ·κ − i

2jp̄j2 ϵ
ijkp̄j½Σk; eiξðp̄Þ·κ�; ðB3Þ

and similarly with κ ↦ −κ. Using these expressions together with Eq. (B1), one finds that
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∂
∂qi ½η̄m0 ðp0ÞηmðpÞ�

����
q¼0

¼ Tr

�
ρm0mðkÞ

� ∂
∂qi e

−iξðp̄þ1
2
qÞ·κ
�
q¼0

eiξðp̄Þ·κ
�
− Tr

�
ρm0mðkÞe−iξðp̄Þ·κ

� ∂
∂qi e

iξðp̄þ1
2
qÞ·κ
�
q¼0

�

¼ p̄i

jp̄jp̄0ξ
Tr½ρm0mðkÞðiξ · κÞ� þ

i
jp̄j2 ϵ

ijkp̄jTr½ρm0mðkÞfðe−iξðp̄Þ·κΣkeiξðp̄Þ·κÞ − Σkg�: ðB4Þ

The first term vanishes because of the trace12

Tr½ρm0mðkÞκi� ¼ 0, and one is left with

∂
∂qi ½η̄m0 ðp0ÞηmðpÞ�

����
q¼0

¼ i
jp̄j2 ϵ

ijkp̄jfTr½ρm0mðp̄ÞΣk� − Tr½ρm0mðkÞΣk�g: ðB5Þ

2. Proof of Eq. (25)

In order to prove Eq. (25), note that, since a state is
characterized only in terms of the momentum and Pauli-
Lubanski four-vectors, one can in general write [33]

η̄m0 ðp̄ÞSμνηmðp̄Þ ¼ −
1

M2
ϵμναβSαm0mðp̄Þp̄β; ðB6Þ

where Sαm0mðp̄Þ ¼ Tr½ρm0mðp̄ÞSα� with Sα ¼ 1
2
ϵαρσλSρσp̄λ

the standard covariant spin matrices in the chosen spin

representation, and ϵ0123 ¼ þ1. Contracting this relation
with the four-momentum leads to η̄m0 ðp̄ÞSμνηmðp̄Þp̄μ ¼ 0,
and hence

ϵijkp̄jΣk
m0mðp̄Þ ¼ −p̄0κim0mðp̄Þ; ðB7Þ

since κi ¼ S0i and Σk ¼ 1
2
ϵkijSij. Another consequence of

Eq. (B6) is that

η̄m0 ðp̄ÞSμνηmðp̄Þkμ ¼
1

M2
ϵνμαβk

μSαm0mðp̄Þp̄β

¼ −
1

M2
ϵνμαβk

μSαm0mðkÞp̄β

¼ η̄m0 ðkÞSμνηmðkÞp̄μ; ðB8Þ

and hence it follows that

Mκim0mðp̄Þ ¼ −ϵijkp̄jΣk
m0mðkÞ: ðB9Þ

Combining Eqs. (B7) and (B9) together with ðp̄0Þ2 ¼
jp̄j2 þM2 leads us to

ϵijkp̄jp̄0Σk
m0mðp̄Þ ¼ −jp̄j2κim0mðp̄Þ þMϵijkp̄jΣk

m0mðkÞ:
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