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Linear perturbations of spherically symmetric spacetimes in general relativity are described by radial
wave equations, with potentials that depend on the spin of the perturbing field. In previous work [Phys.
Rev. D 99, 104077 (2019)] we studied the quasinormal mode spectrum of spacetimes for which the radial
potentials are slightly modified from their general relativistic form, writing generic small modifications as a
power-series expansion in the radial coordinate. We assumed that the perturbations in the quasinormal
frequencies are linear in some perturbative parameter, and that there is no coupling between the
perturbation equations. In general, matter fields and modifications to the gravitational field equations
lead to coupled wave equations. Here we extend our previous analysis in two important ways: we study
second-order corrections in the perturbative parameter, and we address the more complex (and realistic)
case of coupled wave equations. We highlight the special nature of coupling-induced corrections when two
of the wave equations have degenerate spectra, and we provide a ready-to-use recipe to compute
quasinormal modes. We illustrate the power of our parametrization by applying it to various examples,
including dynamical Chern-Simons gravity, Horndeski gravity and an effective field theory-inspired model.
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I. INTRODUCTION

There are experimental and conceptual reasons to expect
that general relativity (GR) and the standardmodel of particle
physics should be modified at some level. Most modifica-
tions of GR involve additional gravitational degrees of
freedom (d.o.f.) and higher-order curvature corrections
[1,2]. Black holes (BHs) are a promising experimental
playground to reveal or constrain these modifications. For
example, light bosonic fields can trigger nonperturbative
effects in astrophysical BHs via superradiance, affecting the

spin distribution of astrophysical BHs and leading to
potentially observable gravitational-wave and electromag-
netic signatures [3–10].
In the absence of large, smoking-gun effects, we must

rely on precision measurements. Astrophysical BHs in GR
are remarkably simple, being characterized only by their
mass and spin by virtue of the so-called “no-hair theorems”
[11–16]. As such, they are ideal laboratories for precision
measurements: any deviation from this simplicity is a
potential hint of new physics. In particular, the relaxation
of BH spacetimes to their equilibrium configuration in GR
is very simple. Consider for example two BHs merging to
form a single spinning BH, a process of particular relevance
for gravitational-wave astronomy. The merger can be
highly dynamical and violent. However, according to
GR, at late times the remnant must be a slightly perturbed
Kerr solution, described by only two parameters: its mass
and spin. The relaxation to a Kerr remnant is well described
by linear perturbation theory. This is known as the “ring-
down” stage, where the gravitational-wave amplitude con-
sists of a superposition of exponentially damped sinusoids
or “quasinormal modes” (QNMs) with characteristic
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frequencies and damping times [17,18]. A superposition of
QNMs accurately describes the merger waveform even
before the peak of the gravitational-wave emission [19–26].
Therefore, one possible test of GR consists of testing the
consistency between vacuum, linearized GR predictions
and the observed QNM spectrum. This idea is now
commonly called “black hole spectroscopy” [27–30].
The general procedure to test a given modification of GR

is to find BH solutions, compute their QNM spectrum, and
finally constrain deviations of the spectrum from the GR
predictions through gravitational-wave observations. The
differential equations that must be solved to determine the
QNM spectrum have a relatively simple, “universal”
structure. A general parametrization of Schwarzschild
perturbations induced by scalar, vector and tensor fields
shows that linearized perturbations always lead to wavelike
equations [31–34]. However, in general these wavelike
equations are coupled. Verifying which theories lead to
coupled perturbation equations is a laborious task, but some
known examples in the literature include the low-energy
limit of string-motivated theories, such as Einstein-dilaton-
Gauss-Bonnet [35–38] and dynamical Chern-Simons
(dCS) gravity [39–43]. Coupling also occurs in effective
field theory (EFT) modifications of GR [44–47].
Even if GR is the correct theory of gravity, matter fields

can couple with each other, and the perturbations of these
fields will in general be coupled. This happens, for
instance, in the Einstein-Maxwell system [48–54] or for
axionic fields in charged BH backgrounds [9,55–57].
We have recently computed QNM frequencies for scalar,

vector and tensor perturbations of a spherically symmetric
spacetime which can be described as small deviations
from the corresponding GR perturbation equations (see
Ref. [58], henceforth Paper I). We wrote deviations in the
corresponding radial potentials as a power series in the
(inverse) radial coordinate. We found that corrections to
the QNM frequencies are (to leading order) linear in these
perturbations, and we computed the coefficients that
determine these corrections. Here we extend these results
by calculating quadratic corrections in the perturbative
potentials, as well as the corrections that arise from
coupling power-law perturbative corrections between the
scalar, vector, polar (even-parity) and axial (odd-parity)
gravitational perturbation equations in GR. We still work
under the assumption that the background solution is
nonspinning (although, as shown in Paper I, the formalism
can be applied to spinning black holes in the slow-rotation
limit [42,59]) and that the perturbation equations are
separable.

A. Executive summary

Our starting point is a generalized, matrix-valued master
equation for the coupled radial perturbations induced by N
fields Φ ¼ fΦig (i ¼ 1;…; N):

f
d
dr

�
f
dΦ
dr

�
þ ½ω2 − fV�Φ ¼ 0: ð1Þ

Here f ¼ 1 − rH=r, rH ¼ 2M is the horizon radius,ω is the
complex QNM frequency, and VðrÞ ¼ VijðrÞ is a N × N
matrix of radial potentials.1 The factor of f ensures that the
effective potential terms vanish at the horizon.
We assume the background spacetime to be asymptoti-

cally flat, and we parametrize V as a sum of the GR
potentials VGR

ij and small power-law series corrections δVij:

Vij ¼ VGR
ij þ δVij; ð2Þ

δVij ¼
1

r2H

X∞
k¼0

αðkÞij

�
rH
r

�
k
: ð3Þ

Here VGR
ij denotes the potentials describing massless spin

s ¼ 0, 1, 2 perturbations in GR. Usually, VGR
ij ¼ 0 for i ≠ j

and VGR
ii ≠ 0, since the fields decouple in GR (but see

[48,57] for counterexamples). The coefficients αðkÞij are
independent of r, but they may be functions of ω [41,58].
For k ≥ 1 the potential matrix vanishes at spatial infinity,
i.e., VijðrÞ → 0 as r → ∞. Perturbations with k ¼ 0 tend to

a constant value, δVij → αð0Þij =r
2
H. For simplicity, we

neglect off-diagonal contributions that fall off slower than

the GR potentials [cf. Eqs. (6)–(8) below]: αð0Þij ¼ αð1Þij ¼ 0

for i ≠ j.
The terms δVij in the master equation (1) will, in general,

modify the GR QNM frequencies ω0 by a correction that is

perturbatively small in αðkÞij . The key result of this work is
that the corrected QNM frequencies read

ω ≈ ω0 þ αðkÞij d
ij
ðkÞ þ αðkÞij α

0ðsÞ
pqd

ij
ðkÞd

pq
ðsÞ þ

1

2
αðkÞij α

ðsÞ
pqe

ijpq
ðksÞ ; ð4Þ

where eijpqðksÞ ¼ epqijðskÞ , i; j; p; q ¼ 1;…; N, k; s ¼ 0;…;∞,

and we use the Einstein summation convention. A prime

denotes a derivative with respect to ω, with all αðsÞpq and α0
ðsÞ
pq

evaluated at ω0. The derivation of Eq. (4) is presented in
Appendix B.
The values of ω0 for the tensor, vector and scalar

perturbations [18,29] and the coefficients diiðkÞ [58] are

available online [60]. The values of dijðkÞ and eijpqðksÞ for these

same perturbations were first computed in this work, and
they are also available online [60]. We stress that dijðkÞ and

1In principle the coupled perturbation equations may also
involve “frictionlike” terms of the form fZ∂rΦ, i.e., terms of first
order in radial derivatives [33]. However the matrix Z can be
reabsorbed into V through field redefinitions, as shown in
Appendix A.
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eijpqðksÞ depend on the unperturbed potentials VGR
ij and on the

unperturbed QNM frequency ω0.
Equation (4) allows for the efficient calculation of the

QNM frequencies to quadratic order through simple multi-
plications and additions. While this expression may look

complex, its use is trivial: the prefactors αðsÞpq and their
derivatives are, in principle, all independent, with their
values prescribed by the specific theory in question
(cf. Sec. VI for examples).

B. Plan of the paper

The plan of the paper is as follows. In Sec. II we present
the eigenvalue problem for the QNM frequencies, and we
briefly review the numerical method to find them. In
Sec. III we compute quadratic corrections for uncoupled
fields. In Sec. IV we show that coupling fields whose
spectra are nondegenerate leads to quadratic corrections in
the QNM frequencies. In Sec. V we show that coupling
fields whose spectra are degenerate leads to corrections in
the QNM frequencies which are linear in the perturbation
parameter. Finally, in Sec. VI we apply the formalism to
some specific examples: dCS gravity [41,43], Horndeski
gravity [33], and an EFT-inspired model [45]. In Sec. VII
we discuss some limitations of our analysis and directions
for future work.
To improve readability, we relegate several technical

results to the Appendices. As already mentioned, in
Appendix A we demonstrate that frictionlike terms (con-
taining first derivatives of the fields) can be reabsorbed in
the definition of the potentials, and in Appendix B we
derive Eq. (4). In Appendix C we look at the case of three
fields. There we show that (i) QNM frequency corrections
arising from the coupling of two fields are independent of
the total number of coupled fields up to quadratic order, and
(ii) when two uncoupled fields have nondegenerate spectra,
a linear coupling between the fields gives rise to quadratic
QNM frequency corrections. Finally, in Appendix D we
prove that when two uncoupled fields have degenerate
spectra, a linear coupling between the fields gives rise to
linear QNM frequency corrections.

II. BACKGROUND

A. Quasinormal modes in general relativity

Gravitational perturbations of the Schwarzschild geom-
etry in GR can be classified by their behavior under parity.2

It is common to classify the metric perturbations as odd
(or axial, or Regge-Wheeler) and even (or polar, or Zerilli).
These are governed by master variablesΦ� which obey the
master equations [62,63]

f
d
dr

�
f
dΦ�
dr

�
þ ½ω2 − fV��Φ� ¼ 0: ð5Þ

The effective potential for odd perturbations reads

V− ¼ lðlþ 1Þ
r2

−
3rH
r3

; ð6Þ

while the effective potential for even perturbations is

Vþ ¼ 9λr2Hrþ 3λ2rHr2 þ λ2ðλþ 2Þr3 þ 9r3H
r3ðλrþ 3rHÞ2

; ð7Þ

where λ ¼ l2 þ l − 2, and l is an angular harmonic index
labeling the tensorial spherical harmonics used to separate
the angular dependence of the perturbations. These two
potentials are, quite remarkably, isospectral [64,65], and
maintaining isospectrality under generic perturbations of
the potentials requires fine tuning [58].
Perturbations of a Schwarzschild background induced

by scalar and vector fields are of interest not only in
modified gravity theories (that in general introduce addi-
tional d.o.f.), but also in phenomena that involve coupling
between gravitational and nongravitational fields. In GR,
Schwarzschild perturbations induced by fields ϕs of spin
s ¼ 0, 1 are also described by master equations similar to
Eq. (5), with potentials [18]

Vs ¼
lðlþ 1Þ

r2
þ ð1 − s2Þ rH

r3
: ð8Þ

Note that V2 ¼ V−, i.e., the s ¼ 2 potential in Eq. (8)
corresponds to odd gravitational perturbations.

B. Calculation of the quasinormal frequencies

There are many techniques to compute QNM frequen-
cies [18,42,66]. Since we are striving for generality, here
we follow a direct integration approach [42]. The idea is
to integrate the radial wave equations from the horizon to
infinity given an initial guess of the QNM frequency, and to
vary the frequency until Eq. (1) and the relevant boundary
conditions are satisfied. The values of the fields at the
horizon must be specified to perform the integration. The

horizon fields form an N-dimensional vector ΦðiÞ
H and we

can perform the integration for any basis of N such

ΦðiÞ
H ¼ fΦðiÞ

j g, with the final result independent of the
choice of basis. For simplicity, in our integrations we

consider a basis such that ΦðiÞ
j ¼ δij, and we then construct

an N × N matrix S from the integration of the N fields
under these N initial conditions. The eigenvalues of Eq. (1)
are then the complex roots of

2It is possible to construct definite parity perturbations even in
the Kerr background: see e.g., Appendix C of [61].
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SðωÞ≡ detSðωÞ ¼ 0; ð9Þ

which can be found numerically.
As we show below, by expanding Eq. (9) with respect to

the small parameters αðkÞij we get semianalytic expressions

for the coefficients dijðkÞ and eijpqðksÞ appearing in Eq. (4).

III. DECOUPLED FIELDS: QUADRATIC
CORRECTIONS

Let us start for simplicity from the case of a single field,

and therefore a single nonzero αðkÞij ¼ α in the expansion
(3). The QNM frequencies are the roots of Eq. (9), where
the matrix S (now a scalar) is a function of both ω and α. As
α and α0 ≡ ∂ωα are in principle independent, we can vary α
while holding α0 constant. By expanding S up to second
order in α we get

Sðω; αÞ ¼ Sjα¼0 þ α
dS
dα

����
α¼0

þ α2

2

d2S
dα2

����
α¼0

: ð10Þ

Let us restrict the expansion of Sðω; αÞ to those points
such that Eq. (9) is satisfied. These points will describe a
curve ωðαÞ starting from ω ¼ ω0, α ¼ 0. Replacing the
total derivative with respect to α with the directional
derivative along ωðαÞ, one finds

0 ¼ Sðω0; 0Þ þ α

� ∂
∂αþ ∂ω

∂α
∂
∂ω
�
S

����
α¼0

þ α2

2

� ∂
∂αþ ∂ω

∂α
∂
∂ω
�

2

S

����
α¼0

: ð11Þ

Each term in the expansion must vanish identically along
the curve ωðαÞ. Near α ¼ 0, this curve is approximated by
the expansion ω ≈ ω0 þ αdþ α2e: cf. Eq. (4). By inserting
this expansion into the linear term of Eq. (11), we find

� ∂
∂αþ ðdþ αeÞ ∂

∂ω
�
S

����
α¼0

¼ 0: ð12Þ

We can now evaluate this expression at ðω0; 0Þ and solve
for d:

d ¼ −
1

∂ωSjðω0;0Þ

∂S
∂α
����
ðω0;0Þ

: ð13Þ

Following the same steps for the quadratic term in Eq. (11)
we find an expression for e:

e ¼ −
1

∂ωSjðω0;0Þ

� ∂2

∂α2 þ 2d
∂2

∂α∂ωþ d2
∂2

∂ω2

�
S

����
ðω0;0Þ

:

ð14Þ

By construction, both of these expressions depend on the
structure of S at α ¼ 0, but not on the value of α in the
expansion (4), as long as α is small. Therefore these results
encode deviations from the GR spectrum in a theory-
independent manner.
We now reinsert the k index labeling specific power-law

corrections to the potentials. For linear corrections we get

dðkÞ ¼ −
1

∂ωSjðω0;0Þ

∂S
∂αðkÞ

����
ðω0;0Þ

; ð15Þ

while quadratic corrections yield

eðksÞ ¼ −
1

∂ωSjðω0;0Þ

� ∂2

∂αðkÞ∂αðsÞ þ dðkÞ
∂2

∂αðsÞ∂ω
þ dðsÞ

∂2

∂αðkÞ∂ωþ dðkÞdðsÞ
∂2

∂ω2

�
Sjðω0;0Þ: ð16Þ

Note that Eq. (14) and Eq. (16) agree when k ¼ s, as a
result of the definition of eðksÞ in the expansion (4).
The linear corrections dðkÞ where found to five signifi-

cant figures in Paper I. Here we present numerical results
for the coefficients eðksÞ for a single field perturbed by a
power law potential.
In Table I we list rHeðkkÞ for axial and scalar gravitational

perturbations with l ¼ 2 and selected values of k. The
values for l ¼ 2;…; 5 and k; s ¼ 0;…; 10 for the scalar,
vector, axial gravitational and polar gravitational cases are
available online [60]. The large-k behavior of eðkkÞ for axial
perturbations is shown in Fig. 1. In Paper I we found that
the linear coefficients dðkÞ in the large-k limit are well
approximated by

dðjÞ ≈
κ

jβ
sinðγ ln jþ ζÞ ð17Þ

where ðκ; β; γ; ζÞ are numerical coefficients. Assuming the
same functional form for eðkkÞ for axial perturbations with
l ¼ 2, the best-fit parameters are β ≈ 1.7 and γ ≈ 2.4,
to be compared with β ≈ 0.66 and γ ≈ 1.5 for dðkÞ.

TABLE I. The quadratic frequency coefficients eðkkÞ for the
decoupled odd-parity gravitational and scalar field perturbations
with l ¼ 2, as defined in (4). The values for eðksÞ with
k; s ¼ 0;…; 10 and l ≤ 5 for scalar, vector, axial gravitational
and polar gravitational perturbations are available online [60].

Axial Scalar
k rHeðkkÞ rHeðkkÞ
2 −0.00580þ 0.000345 i −0.00303 − 0.0000263 i
3 −0.000620 − 0.000470 i −0.000964 0.000211i
4 0.000731 − 0.00116 i −0.0000341 − 0.000162 i
5 0.000991 − 0.00112 i 0.000250 − 0.000351 i
10 0.000678þ 0.0000227 i 0.000263 − 0.0000671 i
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At quadratic order, cross-term corrections eðksÞ also con-
tribute. Representative correction coefficients eðksÞ for axial
gravitational perturbations with k ≥ s and l ¼ 2 are shown
in Fig. 2.
These quadratic corrections are necessary when

α > 10−5. The real and imaginary parts of eðkkÞ and dðkÞ
are of the same order of magnitude (compare Table I of
Paper I with Table I in this paper). If αðkkÞeðkkÞ < 10−5dðkÞ
the quadratic correction would be smaller than the numeri-
cal error in the leading term, which is currently available to
five significant figures. By this argument, we expect the
n-th corrections to be needed when α ≳ 10−5=n.

IV. NONDEGENERATE COUPLED FIELDS

Let us now consider the coupling between any two of the
scalar, vector, axial gravitational and polar gravitational
perturbations (excluding for the moment couplings
between axial and polar gravitational perturbations, which
will be the subject of Sec. V below). We will show that dijðkÞ
is zero for i ≠ j (i.e., that leading-order corrections induced
by the couplings are quadratic) and that the number of
coupled fields does not change the values of diiðkÞ ¼ dðkÞ or

eijpqðksÞ . We have produced an extensive list of the coefficients

eijpqðksÞ for l ¼ 2;…; 5 and k; s ¼ 0;…; 10, which is avail-

able online [60].
The unperturbed QNM spectrum is the union of the

spectra for each unperturbed field. In this section we
assume that these unperturbed spectra are nondegenerate.
Corrections around the tensor QNM spectrumwill be called
tensor-led in the following. Similarly, corrections around
the scalar (vector) QNM spectra are scalar- (vector-)led,
respectively. Spectra with multiple branches, corresponding
to different fields, have been observed in extreme-mass
ratio simulations and nonlinear BH mergers in Einstein-
Maxwell theory [67–70], Chern-Simons theory [71], and
scalar Gauss-Bonnet gravity [38,72].
The argument used in the derivation of Eqs. (13) and (16)

can be generalized with the replacement αðkÞ → αijðkÞ. The
result is

dijðkÞ ¼ −
1

∂ωSjðω0;0Þ

∂S
∂αðkÞij

����
ðω0;0Þ

ð18Þ

and

FIG. 1. Real and imaginary parts of eðkkÞ [Eq. (4)] for axial gravitational perturbations with selected values of l and 2 ≤ k ≤ 50.

FIG. 2. Real and imaginary parts of eðksÞ [Eq. (4)] for axial gravitational perturbations with l ¼ 2, showing the dependence on k at
fixed s. The leftmost value for each s corresponds to eðssÞ, and it is bounded by the l ¼ 2 curves in Fig. 1.
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eijpqðksÞ ¼ −
1

∂ωSjðω0;0Þ

� ∂2

∂αðkÞij ∂αðsÞpq

þ dijðkÞ
∂2

∂αðsÞpq∂ω
þ dpqðsÞ

∂2

∂αðkÞij ∂ω
þ dijðkÞd

pq
ðsÞ

∂2

∂ω2

�
S

����
ðω0;0Þ

: ð19Þ

While these equations look more complex than Eqs. (13)
and (16), they are entirely equivalent but expressed in full
generality. Moreover, they reduce to the single-field case
when i ¼ j ¼ p ¼ q.
We now discuss some important subtleties in problems

involving coupled fields.

A. Effect of N coupled fields

One may worry that if we consider the case of three
fields and only couple two of them, the resulting dijðkÞ may

differ from the case of only two fields. This is because the
roots of Eq. (9) will remain the same when the number of
fields increases, but the functional dependence of the
determinant around the roots will not. Therefore, the
derivatives in Eqs. (18) and (19) will be different depending
on the number of fields we consider.
Fortunately, the structure of Eq. (9) together with the αijðkÞ

expansion implies that we only need to consider the
corrections due to the roots of the 1 × 1 and 2 × 2 minors
of Swhich contain the field corresponding to the spectra we
perturb about. Hence for each ω0, one 1 × 1 minor and
(N − 1) 2 × 2 minors contribute corrections at quadratic
order. This is shown in Appendix C. As a result, the value
of N plays no role in the calculation of dijðkÞ or e

ijpq
ðksÞ , beyond

setting the range of the sums over the indices i and j.
The 1 × 1 minor of the matrix S corresponds to the case

of an uncoupled field. Moreover, the 1 × 1 minor captures
all effects of the additional potentials to quadratic order.
Hence, we can make the identification diiðkÞ ¼ dðkÞ and

eiiiiðksÞ ¼ eðksÞ, where dðkÞ and eðksÞ are found from the

uncoupled case in Sec. III.
The roots of the 2 × 2minors will give corrections due to

field couplings up to quadratic order. We will now only
consider the case of 2 coupled fields and examine the roots
of these 2 × 2 minors.

B. Coupling between nondegenerate spectra generates
quadratic corrections

Diagonal perturbation terms δViiðrÞ generate linear and
quadratic corrections to the QNM frequencies. On the
contrary, perturbative couplings δVijðrÞ only generate
quadratic corrections, as long as the spectra of the unper-
turbed fields are nondegenerate. This is shown in
Appendix C by examining the structure of S.
While corrections to the QNM frequencies due to the

coupling between two fields with nondegenerate spectra are

quadratic in α, the magnitude of these coupling-induced
corrections when the values of α are specified need not be
smaller than a given linear correction: for example, in dCS

gravity αðkÞ11 ¼ OðϵÞ and αðkÞ12 ¼ Oðϵ1=2Þ (see e.g., [43] and
Sec. VI), so the two corrections are formally of the same
order in ϵ.
Since there are no linear corrections, Eq. (19) simplifies

to

eijpqðksÞ ¼ −
1

∂ωS

����
ðω0;0Þ

� ∂2

∂αðkÞij ∂αðsÞpq

�
S

����
ðω0;0Þ

: ð20Þ

Some representative coefficients for scalar-axial gravita-
tional and scalar-polar gravitational couplings are listed in
Table II.
We stress again that these results only hold when the two

unperturbed fields are not isospectral. For example, in the
derivation of Eqs. (18) and (19) we have made the
assumption that ∂ωSjðω0;0Þ ≠ 0, which does not hold when
the union of the unperturbed spectra is degenerate at ω0.
This assumption rules out the important case of a coupling
between the axial and polar gravitational perturbations,
which are known to be isospectral. We now turn to the
effect of couplings between fields with degenerate spectra.

V. DEGENERATE COUPLED FIELDS

So far we made the assumption that the spectra of the
coupled system in Eq. (1) are nondegenerate in the

unperturbed case, i.e., when αðkÞij ¼ 0 for all i, j, k. This
was used to obtain Eqs. (18) and (19), and also in
Appendix C. Unfortunately this assumption is not valid
whenever there is a coupling between the axial and polar
gravitational perturbations, because in GR the correspond-
ing QNM frequencies are well known to be isospectral
[64,65].
In this section we show that couplings between degen-

erate spectra yield linear corrections to the QNM frequen-
cies. Furthermore, the expansion (4) does not apply in this
case. If all elements of δV are nonzero, the total first-order

TABLE II. Quadratic correction coefficients e1221ðkkÞ [cf. Eq. (20)]
for scalar-axial gravitational and scalar-polar gravitational cou-
plings. We show tensor-led l ¼ 2 corrections for a few selected
values of k. The coefficients for k; s ¼ 0;…; 10 are available
online [60].

Axial-Scalar Polar-Scalar
k rHe1221ðkkÞ rHe1221ðkkÞ
2 −0.0388 − 0.00196 i −0.0386 − 0.00135 i
3 −0.0146 þ0.000930 i −0.0155þ 0.00162 i
4 −0.00567 − 0.000484 i −0.00644þ 0.00000923 i
5 −0.00228 − 0.00116 i −0.00288 − 0.000923 i
10 0.000457 − 0.000387 i 0.000318 − 0.000545 i
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correction to the spectra is not the sum of the corrections
found from each individual element of δV, but it is rather a
nonlinear combination of these corrections.
To illustrate the nature of the problem, let us start again

with a simple example. Consider the system defined by�
d2

dr2�
þ ω2 − fV0

�
ϕ1 þ αZϕ2 ¼ 0; ð21Þ

�
d2

dr2�
þ ω2 − fV0

�
ϕ2 þ αZϕ1 ¼ 0; ð22Þ

for some potential V0 and coupling Z. The QNM spectra of
ϕ1 and ϕ2 are trivially degenerate for α ¼ 0. To see that
corrections enter at linear order, diagonalize the system
with the transformation

ϕ1 ¼ ðϕþ þ ϕ−Þ=2; ð23Þ
ϕ2 ¼ ðϕþ − ϕ−Þ=2: ð24Þ

The resulting equations are then�
d2

dr2�
þ ω2 − fV0 þ αZ

�
ϕþ ¼ 0; ð25Þ

�
d2

dr2�
þ ω2 − fV0 − αZ

�
ϕ− ¼ 0: ð26Þ

It is clear that the corrections to the spectra will enter at
linear order in α despite the initial perturbations being
coupled, whereas the results of the previous section would
imply that the correction should be quadratic in α.
In Appendix D we consider a general potential matrix of

the form (3). Assuming a QNM frequency expansion of the
form

ω ¼ ω0 þ ϵω1; ð27Þ
we show that

ω1 ¼
δVþþ þ δV−− �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðδVþþ − δV−−Þ2 þ 4δVþ−δV−þ

p
2

:

ð28Þ
The coefficients δVþ− (for example) have the expansion

δVþ− ¼
X∞
k¼0

aðkÞþ−δV
ðkÞ
þ−: ð29Þ

Each of the factors δVðkÞ
�� and δVðkÞ

�∓ is related to the
expectation value of the kth term in a power-series
expansion of the potential perturbations: see Eqs. (D7)
and (D8) for their definitions.
One might have hoped that the corrections to the QNM

spectra from the coupling of the two degenerate fields
would allow for an expansion analogous to Eq. (4). Indeed,
in the absence of coupling, the argument of the square root

in Eq. (28) becomes a square, and we do recover a linear
sum over single-field expectation values. However, in
general, the presence of couplings makes this relation
nonlinear. Therefore we provide the values of the quantities

δVðkÞ
−þδV

ðsÞ
þ− for k; s ¼ 0;…10 and l ¼ 2…5 online [60]. In

Table III we also list a small sample of values of δVðkÞ
−þδV

ðkÞ
þ−

for l ¼ 2. In order to find linear corrections to the QNM
frequencies, these quantities must be plugged into Eqs. (28)

and (29). Note that δVðkÞ
þþ and δVðkÞ

−− are just the coefficients
dðkÞ for uncoupled (axial or polar) gravitational
perturbations.

VI. EXAMPLES

For illustration, we now apply the formalism to compute
QNM spectra for some classes of modified theories of gravity
that are known to lead to coupled perturbation equations.
Specifically, we consider two models where the coupling is
between scalar and tensor modes (dCS gravity [43] and
Horndeski gravity [33]) and a model where the coupling is
between axial and polar gravitational perturbations (the EFT
inspiredmodel [45] not considered in detail in Paper I), so that
the background QNM spectra are degenerate.

A. Dynamical Chern-Simons gravity

In dCS gravity, an effective low-energy theory with an
additional scalar d.o.f. [40], nonspinning BHs are described
by the Schwarzschild metric. The polar sector of gravita-
tional perturbations is the same as in GR, whereas axial
gravitational perturbations and scalar perturbations lead to
a coupled system of the form (1) [41,71] with the following
potentials, in the notation of Eqs. (3), (6) and (8):

V11 ¼ V−; ð30Þ

V12 ¼ V21 ¼
1

r2H

12ffiffiffi
β

p
r2H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π
ðlþ 2Þ!
ðl − 2Þ!

s �
rH
r

�
5

; ð31Þ

V22 ¼ Vs¼0 þ
1

r2H

144πlðlþ 1Þ
βr4H

�
rH
r

�
8

: ð32Þ

TABLE III. The product δVðkÞ
−þδV

ðkÞ
þ− defined in Eqs. (D7)

and (D8) for the case of axial-polar couplings for l ¼ 2.
The coefficients for l ¼ 2 and k; s ¼ 0;…; 10 are available
online [60].

k δVðkÞ
−þδV

ðkÞ
þ−

2 0.0324 − 0.000828 i
3 0.0313 − 0.00321 i
4 −0.000221 − 0.000215 i
5 0.0000165þ 0.00000100 i
10 0.00242216þ 0.00309852 i
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The parameter β appearing in the dCS action has dimen-
sions ½L�−4 and it sets the strength of the coupling, playing a
role similar to the Brans-Dicke parameter ωBD. It is useful
to introduce a small dimensionless coupling parameter
γ̄ ≡ β−1=2r−2H such that the equations decouple in the GR
limit γ̄ → 0.
We first study how the parameter γ̄ modifies the tensor-

led mode. Using Eq. (4) and reading off the relevant
coefficients from the potentials (30)–(32) we find

ω ¼ ω0 þ e1221ð55Þ

 
12γ̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π
ðlþ 2Þ!
ðl − 2Þ!

s !2

: ð33Þ

Proceeding similarly for the scalar-led mode, we find

ω ¼ ω0 þ 2dð8Þ144πlðlþ 1Þγ̄2 þ eð88Þ½144πlðlþ 1Þγ̄2�2

þ e1221ð55Þ

 
12γ̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π
ðlþ 2Þ!
ðl − 2Þ!

s !
2

: ð34Þ

These expressions illustrate the importance of specifying
the form of the coupling: since the off-diagonal terms V12

and V21 are proportional to β−1=2, coupling-induced cor-
rections end up being of the same order as the corrections
due to δV22.
Tensor-led and scalar-led dCS QNM frequencies have

been previosuly computed using various methods [71,73].

In Fig. 3 we compare Eqs. (33) and (34) (solid lines) with a
numerical QNM calculation based on the direct integration
of the perturbed field equations (bullets) for the funda-
mental l ¼ 2 mode. The left panel refers to tensor-led
modes, while the right panel refers to scalar-led modes. In
the inset we show the relative difference between the
quadratic expansions of Eqs. (33) and (34) and the
numerical calculation for the real (solid) and imaginary
(dashed) parts of the QNM frequencies.

B. Horndeski gravity

The perturbations of scalar and tensor fields on a
Schwarzschild background in Horndeski gravity were
studied in [33]. The even-parity perturbation equations
can be separated through field redefinitions, but there is
coupling between even gravitational and scalar perturba-
tions [31].
The master equation for the scalar-led modes takes the

form

d2ϕ
dr2�

þ
�
ω2 − f

�
Vs¼0 þ μ2 þ lðlþ 1Þ

r2
fΓ
��

ϕ ¼ 0: ð35Þ

The change to the spectrum is determined by an
“effective mass” parameter μ and by a second parameter
Γ, built out of the background values (denoted here by
overbars) of the free functions appearing in the Horndeski
action [74,75]:

FIG. 3. Fundamental axial l ¼ 2 QNM frequencies of Schwarzschild BHs in dCS gravity as function of γ̄ for the tensor-led (left) and
scalar-led (right) modes. Solid lines refer to Eqs. (33) and (34); bullets were computed through a direct integration method. The inset
shows the relative difference between the two calculations for the real (solid black lines) and imaginary (dashed red lines) part of the
modes.
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μ2 ¼ −Ḡ2ϕϕ

3Ḡ2
4ϕ þ Ḡ2X − 2Ḡ3ϕ

; ð36Þ

Γ ¼ 8Ḡ4X

3Ḡ2
4ϕ þ Ḡ2X − 2Ḡ3ϕ

: ð37Þ

Let ω0 belong to the spectrum of Vs¼0. Then the scalar-
led frequencies can be approximated as

ω ≈ ω0 þ dð0Þμ2 þ ½dð2Þ þ rHdð3Þ�lðlþ 1ÞΓþ 1

2
eð00Þμ4

þ 1

2
½eð22Þ þ 2rHeð23Þ þ r2Heð33Þ�½lðlþ 1ÞΓ�2

þ ½eð02Þ þ rHeð03Þ�lðlþ 1Þμ2Γ: ð38Þ
As noted in [33], for the class of Horndeski theories in
which the GW speed propagation satisfies cT ¼ 1, the Γ
factor vanishes identically. In this case Eq. (35) depends on
a single free parameter, given by the effective mass μ, and
the scalar-led frequencies simply reduce to

ω ≈ ω0 þ dð0Þμ2 þ
1

2
eð00Þμ4: ð39Þ

We compute the values of ω for the l ¼ 2 scalar mode in
Horndeski gravity using a direct integration method as a
function of the effective mass μ. In Fig. 4 we plot numerical

results (bullets) against the results obtained from Eq. (39)
(solid lines). The two approaches are in excellent agree-
ment, with relative deviations Δω ¼ ðωdir − ωfitÞ=ωfit ≲
10−4 for both the real and imaginary parts within the range
of masses we consider.

C. An effective field theory model

One of the EFT models considered in [45] couples the
axial and polar gravitational perturbations. The wave
equations map onto Eq. (1) with

V11 ¼ Vþ; ð40Þ
V22 ¼ V−; ð41Þ

V12 ¼ V21 ¼ ϵVðrÞ; ð42Þ
where V− and Vþ were defined in Eqs. (6) and (7), VðrÞ
can be found in Appendix A of [45], and the small
dimensionless parameter ϵ is inversely related to the UV
cutoff scale of the EFT.
The spectra of Vþ and V− are degenerate when ϵ ¼ 0,

so the coupling should induce linear corrections, as dis-
cussed in Sec. V. This expectation is verified in Fig. 5.
There we consider perturbations about the fundamental

FIG. 4. Real and imaginary part of the l ¼ 2 mode of the
scalar-led mode in Horndeski gravity. The numerical results
obtained through direct integration (bullet points) are in excellent
agreement with Eq. (39) (solid line). The insets in each panel
show the relative deviation between the two calculations.

FIG. 5. Perturbations of the fundamental QNM frequencies
with l ¼ 2 for axial and polar gravitational perturbations,
coupled according to the EFT model of [45]. The bullet points
correspond to frequency values obtained through a direct inte-
gration method. The insets show a zoom for small ϵ where the
behavior ofω deviate from the linear trend, and therefore from the
linear approximation given by Eq. (28).
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QNM frequency with l ¼ 2, and we show how the two
branches of QNM frequencies—corresponding to the two
possible sign choices in Eq. (28)—change with ϵ. Note that
the coupled QNM frequencies computed by direct integra-
tion in Fig. 4 are novel results that were not presented in [45].
Fitting the two branches of QNM frequencies to a

seventh-order polynomial in ϵ gives a linear coefficient
ð−0.1479 − 0.2729iÞrH for the solid black branch, and
ð0.1480þ 0.2719iÞrH for the dashed red branch. The linear
corrections are nonzero, as they should, because the
uncoupled axial and polar spectra are degenerate.

VII. CONCLUSIONS AND A
COMPUTATIONAL RECIPE

We have extended the formalism of Paper I to compute
QNM frequencies of coupled fields as long as the pertur-
bations they induce are small deviations from the pertur-
bation equations for the Schwarzschild geometry in GR.
Our main result is a convenient, ready-to-use recipe to
compute QNM frequencies at quadratic order in the
perturbations. We crucially allow for the possibility of
coupling between the master equations. First-order (fric-
tionlike) terms in the field derivatives can be accommo-
dated through field redefinitions (cf. Appendix A).
We have found the expansion of the QNM frequencies

for uncoupled wave equations to quadratic order. Perhaps
our most interesting findings concern the QNM spectra of
coupled fields. When the coupling occurs between fields
with nondegenerate spectra at zero order in the perturba-
tions, linear-order corrections to the QNM frequencies
vanish. However, when the coupling occurs between fields
with degenerate spectra, the QNM frequency corrections
are linear in the perturbations.
Our results significantly simplify the task of computing

QNM frequencies in any modified theory of gravity, or any
theory allowing for additional fields. The general recipe for
this calculation can be summarized as follows:
(1) Derive the master equations for the perturbation

variables in the given theory;
(2) Eliminate first-order (frictionlike) terms in the field

derivatives through field redefinitions, as described
in Appendix A;

(3) Identify the relevant coefficients αðkÞij in the perturbed
potentials δVij [Eq. (3)] appearing in the general
coupled system of Eq. (1); if these coefficients are
frequency-dependent, compute their frequency

derivative α0ðsÞpq.
(4a) If any two unperturbed spectra are nondegenerate,

compute corrections to the QNM frequencies by
simple multiplications and additions using Eq. (4)
and the tabulated values of dijðkÞ and eijpqðksÞ , which are

available online [60].
(4b) If any two unperturbed spectra are degenerate, com-

pute corrections to the QNM frequencies using

Eq. (28) and the tabulated values of δVðkÞ
�� and

δVðkÞ
�∓ defined in Eqs. (D7) and (D8), which are also

available online [60].
In Sec. VI we illustrate this procedure for three classes of

modified theories of gravity leading to coupled perturbation
equations: two models coupling the scalar and tensor
modes (dCS gravity [43] and Horndeski gravity [33])
and an EFT model coupling the axial and polar gravita-
tional perturbations [45], where the background QNM
spectra are degenerate.
While our expansion is theory-agnostic, we make

assumptions about the effect of the modified gravity theory:
the background should be perturbatively close to the
Schwarzschild metric, and the corrections to the “ordinary”
potentials in the GR master equations should be amenable
to a power-series expansion in inverse powers of the radial
variable.
This results by construction in small corrections to theGR

QNM spectra (4). In general, as discussed in Paper I, new
nonperturbative frequencies (e.g., quasibound states emerg-
ing from zero frequency for massive scalars) may appear in
the spectrum, and these are not captured by our formalism.
The assumption that the background is only perturba-

tively different from the Schwarzschild solution is slightly
less restrictive than one might think. For example, in
Paper I we showed that slowly rotating Kerr BHs can be
accommodated within the formalism. Recent work on
higher-derivative corrections to the Kerr geometry [76]
and on QNM frequencies of rotating solutions for small
coupling [52,53] may allow us to make progress on the
calculation of QNMs in modified gravity for rotating BH
remnants, such as those observed by the LIGO/Virgo
collaboration [77]. Related attempts at parametrizing devi-
ations from the Kerr QNM spectrum [78,79] made use of
the connection between the stability of null geodesics and
QNMs [80–82]. Our formalism may help to clarify the
conditions under which this “geodesic correspondence”
applies [83,84].
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APPENDIX A: FRICTIONLIKE TERMS

The master wave equations for coupled fields can, in
general, contain “frictionlike” terms (i.e., terms which are
linear in derivatives of the perturbation variable).
Reference [31] lists several examples3 of coupled wave
equations of this type.
In this Appendix we show that a matrix Z of frictionlike

terms (proportional to the first radial derivative of the wave
function) can always be reabsorbed in the potential matrix
V through suitable field redefinitions.

1. Single-field case

For simplicity, let us first consider adding a frictionlike
term to the master equation:

d2

dr2�
þ ϵZðr�Þ

dϕ
dr�

þ ðω2 − VÞϕ ¼ 0; ðA1Þ

for some function Zðr�Þ and small parameter ϵ (note that in
this Appendix, and here only, we redefine fV → V to
simplify the notation). A field redefinition

ϕ ¼ ξe−
ϵ
2

R
r� ZðtÞdt; ðA2Þ

is sufficient to remove the term proportional to the first
derivative [85]. The resulting field equation is

d2ξ
dr2�

þ
�
ω2 − V −

1

2
ϵZ0 −

1

4
ϵ2Z2

�
ξ ¼ 0; ðA3Þ

where the last term in parentheses (proportional to ϵ2Z2)
can be ignored in our perturbative framework. Therefore we
can use the formalism of the main text by a suitable
redefinition of the radial wave function and of the radial
potential. We will now extend this idea to the case of
multiple, coupled fields.

2. Coupled case

Let us now add a matrix of frictionlike terms to a coupled
set of master equations:

d2Φ
dr2�

þ ϵZðr�Þ
dΦ
dr�

þ Vðr�ÞΦ ¼ 0; ðA4Þ

for some matrix of functions Zðr�Þ and small parameter ϵ.
For simplicity, here and below we redefine ω2 − V1;2 →
V1;2, we use primes for derivatives with respect to r�, and
we consider the case of only two fields.
We make a field redefinition

Φ ¼
�
1 −

ϵ

2

Z
r�
ZðtÞdt

�
χ ; ðA5Þ

and we multiply the resulting equations on the left by�
1þ ϵ

2

Z
r�
ZðtÞdt

�
: ðA6Þ

This yields

d2χ
dr2�

þ ðV þ ϵWÞχ ¼ 0; ðA7Þ

where W is a matrix with elements

W11 ¼
1

2

�
V21

Z
r�
Z12dr0� − V12

Z
r�
Z21dr0� − Z0

11

�
;

ðA8Þ

W22¼
1

2

�
V12

Z
r�
Z21dr0�−V21

Z
r�
Z12dr0�−Z0

22

�
; ðA9Þ

W12 ¼
1

2

�
V12

Z
r� ðZ11 − Z22Þdr0�

þ ðV22 − V11Þ
Z

r�
Z12dr0� − Z0

12

�
; ðA10Þ

W21 ¼
1

2

�
V21

Z
r� ðZ22 − Z11Þdr0�

þ ðV11 − V22Þ
Z

r�
Z21dr0� − Z0

12

�
: ðA11Þ

3See e.g., their Eq. (60) for even-parity scalar-tensor pertur-
bations; Eqs. (88) and (89) for odd-parity vector-tensor pertur-
bations; Eqs. (94)–(97) for even-parity vector-tensor
perturbations; and Eq. (104) for even-parity massive Proca
perturbations [31].
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As a result, the field equations no longer depend on the first
derivative of any field. When V and Z are diagonal we
recover Eq. (A3) at linear order in ϵ, and when ϵ ¼ 0 we
recover the unperturbed QNM spectrum.
In general, the removal of frictionlike terms introduces

new potentials. For these new potentials to fit into our
perturbative formalism, all new contributions must vanish at
the horizon and (at most) tend to a constant at infinity. One
parametrization that would satisfy these requirements is

ϵZij ¼
1

rH

�
1 −

rH
r

�
2X
s≥2

βðsÞij
rsH
rs

ðA12Þ

for small parameters βðsÞij , which can be mapped to the

parameters αðkÞij discussed in the body of the paper. The
summation must start at s ¼ 2, so that the integrals in
Eqs. (A8)–(A11) do not diverge as r� → ∞.

APPENDIX B: EXPANSION OF ω

The coupling parameters αðkÞij appearing in Eq. (3) can, in
general, depend on the frequency ω. The computation of
the QNM frequency itself depends on the couplings, so a
nontrivial ω-dependence of the couplings will affect the
QNMs. Consider the implicit expansion of ω about the GR
value ω0:

ω ¼ ω0 þ αðkÞij ðωÞdijðkÞ þ
1

2
αðkÞij ðωÞαðsÞpqðωÞeijpqðksÞ þOðα3Þ:

ðB1Þ

One may also Taylor expand αkijðωÞ about ω0,

αðkÞij ðωÞ ¼ αðkÞij jω0
þ α0ðkÞij jω0

ðω − ω0Þ þOðα2Þ: ðB2Þ

We assume that αðkÞij and all of its derivatives evaluated at ω0

are small, so that we can consider them to be of the same
order. By substituting (B2) into (B1) we find

ω ≈ ω0 þ ½αðkÞij jω0
þ α0ðkÞij jω0

ðω − ω0Þ�dijðkÞ
þ 1

2
αðkÞij jω0

αðsÞpqjω0
eijpqðksÞ þOðα3Þ: ðB3Þ

Finally, substitute (B3) into itself to get the result quoted in
Eq. (4):

ω ≈ ω0 þ αðkÞij jω0
dijðkÞ þ α0ðkÞij jω0

αðsÞpqjω0
dijðkÞd

pq
ðsÞ

þ 1

2
αðkÞij jω0

αðsÞpqjω0
eijpqðksÞ þOðα3Þ: ðB4Þ

APPENDIX C: THE CASE OF THREE FIELDS

Let us schematically write the coupled master equations
for three fields as

0
B@

L1 þ δV11 δV12 δV13

δV21 L2 þ δV22 δV23

δV31 δV32 L3 þ δV33

1
CA
0
B@

ϕ

ψ

χ

1
CA¼ ω2

0
B@

ϕ

ψ

χ

1
CA

ðC1Þ

for some linear operators L1;2;3, perturbative potentials
δVij ¼ αijV̄ij and small parameters αij (in this Appendix
we slightly change the notation to minimize clutter).
We assume that the spectrum of L1 is nondegenerate with

the spectra of both L2 and L3. Expanding the fields in
powers of αij to linear order we find

ϕ ¼ ϕ0 þ α11ϕ11 þ α12ϕ12 þ α13ϕ13; ðC2Þ
ψ ¼ ψ0 þ α21ψ21 þ α22ψ22 þ α23ψ23; ðC3Þ
χ ¼ χ0 þ α31χ31 þ α32χ32 þ α33χ33: ðC4Þ

Note that all of the first-order fields are only functions of
the uncoupled zeroth-order fields.
Let us write down explicitly some of the field equations:

ω2ϕ0 ¼ L1ϕ0; ðC5Þ
ω2ϕ12 ¼ L1ϕ12 þ V̄12ψ0; ðC6Þ
ω2ψ23 ¼ L1ψ23 þ V̄23χ0: ðC7Þ

Recall from Sec. II B that we numerically integrate the
system of equations order by order with respect to a
diagonal basis of initial values at the horizon. We also
need to specify the value of each perturbation at the
horizon, which we set to zero for all but the zeroth-order
component of each field, so when αij ¼ 0 the perturbations
are not excited. We will denote by Nψðϕ12Þ, for example,
the numerically integrated solution to Eq. (C6). In this
notation, the superscript denotes which field is excited at
the horizon during the integration.
The purpose of this Appendix is to show that the

perturbed spectrum of L1 is calculated using Eqs. (18)
and (19), where the determinant S refers to the 1 × 1 or
2 × 2 minors of the 3 × 3 matrix

S ¼

0
B@

NϕðϕÞ NϕðψÞ NϕðχÞ
NψðϕÞ NψðψÞ NψðχÞ
NχðϕÞ NχðψÞ NχðχÞ

1
CA ðC8Þ

which contain NϕðϕÞ. The proof goes as follows.
Let ω be in the spectrum of ϕ0, so that Nϕðϕ0Þ ¼ 0:

cf. Eq. (C5). Then we can conclude that:
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(i) Nϕðψ0Þ ¼ Nϕðχ0Þ ¼ 0, Nψðϕ0Þ ¼ Nψ ðχ0Þ ¼ 0 and
Nχðϕ0Þ ¼ Nχðψ0Þ ¼ 0, as the leading order is not
excited by our choice of basis.

(ii) Nϕðϕ12Þ ¼ Nϕðϕ13Þ ¼ 0: this is because the equa-
tions for ϕ12 and ϕ13 are sourced by ψ0 and χ0
[cf. Eq. (C6)], which are zero by our choice of basis.

(iii) Nϕðψ23Þ ¼ 0, and similar relations apply under
permutations ϕ → ψ → χ. This is because the equa-
tions for ψ23 is sourced by χ0 [cf. Eq. (C7)], which is
zero by our choice of basis.

In conclusion, the matrix S reduces to

0
B@

α11Nϕðϕ11Þ α21Nϕðψ21Þ α31Nϕðχ31Þ
α12Nψðϕ12Þ Nψ ðψ0Þ þ α22Nψ ðψ22Þ α32Nψ ðχ32Þ
α13Nχðϕ13Þ α23Nχðψ23Þ Nχðχ0Þ þ α33Nχðχ33Þ

1
CA; ðC9Þ

and its determinant reads

S ¼ α11Nϕðϕ11ÞNψðψ0ÞNχðχ0Þ
− α12α21Nϕðψ21ÞNψðϕ12ÞNχðχ0Þ
− α13α31Nχðϕ13ÞNϕðχ31ÞNψ ðψ0Þ
þ α11α33Nϕðϕ11ÞNχðχ33ÞNψðψ0Þ
− α11α22Nϕðϕ11ÞNψ ðψ22ÞNχðχ0Þ
þOðα3Þ ¼ 0: ðC10Þ

The αij coefficients of each term can be varied inde-
pendently, so each term in this sum must vanish. Note also
that Nψ ðψ0Þ ≠ 0 and Nχðχ0Þ ≠ 0, as we have assumed that
L1 is not degenerate with L2 and L3. The first three lines in
this sum give the corrections to linear and quadratic order,
and are explicitly those formed from the 1 × 1 and the 2 × 2
minors of S containing the (1, 1) element, because we
perturb around the spectrum of L1. The last two lines
vanish identically, because—recalling that Nψ ðψ0Þ ≠ 0 and
Nχðχ0Þ ≠ 0—the first line implies Nϕðϕ11Þ ¼ 0.
In conclusion: adding a third field does not affect our

expansion, and the roots of the 1 × 1 or 2 × 2 minors of the
matrix S [Eq. (C8)] which contain NϕðϕÞ can be used to
compute the appropriate coefficients. This argument can be
extended by induction to the case of N > 3 fields.
An immediate and important corollary of Eq. (C10) is

that there are no corrections to S which are linear in αij with
i ≠ j. Moreover, by looking at the second and third lines of
Eq. (C10) we conclude that couplings give quadratic
corrections only if αij ≠ 0 and αji ≠ 0 for i ≠ j. In
conclusion, a perturbative coupling between nondegenerate
operators Li and Lj gives at most quadratic corrections to
the QNM frequencies.

APPENDIX D: DEGENERATE SPECTRA

There is a well-known analogy between QNMs for the
potential V and quasibound states for the potential −V [86].
When we consider perturbations of the effective potential,
following this analogy and Refs. [87,88], we can compute

QNM frequencies by applying quantum mechanical per-
turbation theory. It is reasonable that these considerations
should extend to the coupled system considered in this
paper. In this Appendix we show that we can use quantum
mechanical perturbation theory for a coupled system which
is degenerate at zeroth order. We mostly follow standard
notation from nonrelativistic quantum mechanics.
Let H0 be a Hamiltonian with a degenerate eigenvalue

ω0 and two corresponding eigenstates jω0;þi, jω0;−i. A
generic eigenstate with eigenvalue ω0 is given by the linear
superposition

jω0i ¼ c1jω0;þi þ c2jω0;−i: ðD1Þ

We denote the states by “�” indices rather than numerical
indices because we are mainly interested in polar and axial
gravitational perturbations, but our discussion below is
generic.
We wish to find the spectra of the operator H0 þ δV,

where δV is a small correction to the Hamiltonian. Consider
the eigenvalue problem

ðH0 þ δVÞjωi ¼ ωjωi: ðD2Þ

To first order in perturbation theory, the eigenvalues and
eigenfunctions can be written as ω ¼ ω0 þ ω1 and
jωi ¼ jω0i þ jω1i, where ω1 and jω1i are first-order
corrections. Then Eq. (D2) becomes a relation between
first-order quantities:

ðδV − ω1Þjω0i ¼ ðω0 −H0Þjω1i: ðD3Þ

Using the relation hω0;�jðω0 −H0Þ ¼ 0 and acting to the
left with hω0;�j, one obtains

cþδVþþ þ c−δVþ− − ω1cþ ¼ 0 ðD4Þ

cþδV−þ þ c−δV−− − ω1c− ¼ 0; ðD5Þ

where δV�� ≔ hω0;�jδVjω0;�i, and similar relations
define the off-diagonal terms. This can be written in matrix
form as
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�
δVþþ − ω1 δVþ−

δV−þ δV−− − ω1

��
cþ
c−

�
¼ 0: ðD6Þ

To have a nontrivial solution for c�, the determinant must
be zero. This yields Eq. (28).
Fortunately, while the QNM frequency correction ω1 is

nonlinear in the expectation values, the expectation values
themselves are linear. If we expand the potential as in
Eq. (3), then the expectation values are given by

δV�� ¼
X∞
k¼0

αðkÞ��hω0;�jfðrÞ r
k−2
H

rk
jω0;�i

¼
X∞
k¼0

αðkÞ��δV
ðkÞ
��; ðD7Þ

δV�∓ ¼
X∞
k¼0

αðkÞ�∓hω0;�jfðrÞ r
k−2
H

rk
jω0;∓i

¼
X∞
k¼0

αðkÞ�∓δV
ðkÞ
�∓: ðD8Þ
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