
 

Gravitational perturbations in a cavity: Nonlinearities
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Motivated by recent studies of nonlinear perturbations of asymptotically anti-de Sitter spacetimes, we
study gravitational perturbations of (nþ 2) dimensional Minkowski spacetime with a spherical Dirichlet
wall. By considering the tensor, vector, and scalar perturbations on the n sphere, we present simplified
nonhomogeneous equations at arbitrary order in a weakly nonlinear perturbation theory for each sector.
A suitable choice of perturbative variables is required at higher orders to simplify the expression for the
boundary conditions and to expand the variables in terms of linear order eigenfunctions. Finally we
comment on the nonlinear stability of the system. Some of the tools used can easily be generalized to study
nonlinear perturbations of anti-de Sitter spacetime.
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I. INTRODUCTION

The seminal work of Bizon and Rostworowski [1]
demonstrated that four dimensional anti-de Sitter spacetime
(AdS) was nonlinearly unstable to spherically symmetric
massless scalar field perturbations. The endpoint of the
instability was a Schwarzschild-AdS black hole.1 It was
thus concluded that AdS was unstable for black hole
formation for a large class of arbitrarily small perturbations
and that reflecting boundary conditions played a key role in
causing instability [3]. Later, it was demonstrated in [4] that
the instability was seen in all dimensions. The instability
was also present for complex scalar fields [5] in AdS
spacetime. The necessary conditions for an AdS-like
instability were analyzed in [6]. In [7], turbulent behavior
characterized by a Kolmogorov-Zakharov power spectrum
was uncovered for the Klein-Gordon gravity system.
Noncollapsing solutions in asymptotically AdS spacetimes
were studied in [8–14]. Going beyond Einstein gravity, the
system of a scalar field and gravity with a Gauss-Bonnet
term was analyzed in [15,16]. The AdS instability problem
was also studied in [17–19], using the two-time framework
(TTF) and a careful analysis using rigorous renormalization
group methods [20,21]. Interacting scalar fields in AdS
were studied in [22]. Of particular interest are numerical
studies of nonspherically symmetric collapse in the
Einstein gravity-scalar field system in asymptotically
AdS spacetime [23,24]. A massless scalar field in flat
space enclosed in a spherical cavity was studied as a toy
model for AdS-like boundary conditions and it was shown

to lead to a nonlinear instability [25]. The massive scalar
field-gravity system in a cavity in flat space was studied in
[26]. A comprehensive review of work on the instability of
AdS, particularly the scalar field-gravity system can be
found in [27]. Recently, there was also a rigorous proof
of the instability of AdS for a specific Einstein-matter
system—the Einstein-massless Vlasov system in spherical
symmetry [28].2

Gravitational turbulent instability was first studied
in AdS in [29]. This uncovered geons—time-periodic,
asymptotically AdS solutions that were stable [29]; see
also [30–37]. Purely gravitational perturbations of AdS
satisfying the cohomogeneity-two biaxial Bianchi IX
ansatz were studied and black hole formation was observed
in [38].
In this work, we depart from the system of gravitational

perturbations of AdS spacetime. Instead, we consider
gravitational perturbations of Minkowski spacetime with
a spherical Dirichlet wall in (nþ 2) dimensions with n ≥ 2.
The boxlike boundary conditions mimic those in AdS
spacetime; however, we find important differences both
from the point of view of stability and in the mathematical
analysis of higher order equations. Linearized perturbations
of this system have been studied in [39] and it has been
shown to be linearly stable. Further, linear perturbations
have an asymptotically resonant spectrum. We extend this
study to the nonlinear regime using weakly nonlinear
perturbation theory. We define appropriate variables at
any order in perturbation theory. We show that they are
expanded in terms of the linear eigenfunctions with
time dependent coefficients obeying forced harmonic
oscillator equations. The forcing terms are comprised of
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1Further, it was shown that the Schwarzchild-AdS black hole

was stable for the spherically symmetric Einstein-Klein-Gordon
system [2]. 2We thank the referee for bringing this paper to our attention.
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lower order perturbations. This structure enables a descrip-
tion of the system through a perturbation of an integrable
Hamiltonian (the Hamiltonian of nonresonant linear har-
monic oscillators)—the perturbation leading to the forcing
terms at higher orders. It is then possible to use specific
results in Hamiltonian perturbation theory to argue that if
the linear level oscillators have frequencies satisfying a
number-theoretic (Diophantine) condition that character-
izes the fact that they are nonresonant(7.1), then the system
is stable [6] for generic perturbations. These results from
nonlinear dynamics [40] were used in [6] to comment on
the stability of the AdS soliton for the gravity-scalar field
system. However, what is important for the purpose of
application of these results is the structure of the equations
for the perturbation variables which is common in both
cases—enabling use of Hamiltonian perturbation theory.
Further, we have an asymptotically resonant spectrum at
the linear level in both cases. Our analysis shows that the
system is nonlinearly stable under arbitrarily small per-
turbations. We also see that an indicator of the magnitude of
the perturbation that may be required to trigger instability is
the deviation of this asymptotically resonant spectrum from
a fully resonant one (which can be quantified in number-
theoretic terms). If the initial data contains high frequen-
cies, this minimum magnitude of perturbation required to
trigger instability could be really small. Thus, numerical
studies with a finite amplitude for perturbations could still
see a nonlinear instability in the case of systems with
asymptotically resonant spectra at the linear level such as
the system in this paper. For example, in [25], an instability
was observed in numerical studies of a massless scalar
field in a cavity in flat space with Neumann boundary
conditions—for which the spectrum is asymptotically
resonant. Maliborski and Rostworowski [14] repeated
the numerical study (with Neumann boundary conditions)
for smaller amplitudes and found that there was indeed a
threshold amplitude of scalar field below which the
instability was not triggered. This implies that there is
stability under arbitrarily small perturbations. So also, in
[26] a massive scalar field in the cavity with both Dirichlet
and Neumann boundary conditions leads to an asymptoti-
cally resonant spectrum at the linear level, with numerical
studies observing an instability for a finite amplitude of
perturbations. However, this does not preclude stability
under arbitrarily small perturbations.
In order to write down the perturbation equations, we use

the gauge invariant formalism developed by Kodama,
Ishibashi, and Seto [41] which we extend to higher order.
We present simplified equations for the tensor, vector, and
scalar (on the n sphere) perturbations. In all cases, there are
subtleties involved in the imposition of Dirichlet wall
boundary conditions at higher orders, and in the analysis
of solutions to the perturbation equations satisfying these
boundary conditions. We analyze these solutions at arbi-
trary order and apply the results in [6] to comment on the

nonlinear stability of this system. Section II describes the
methodology of the perturbation theory analysis at arbitrary
order. A brief summary of the Ishibashi-Kodama-Seto
formalism is also given. The linearized tensor, vector,
and scalar perturbations are analyzed in Sec. III. The scalar
eigenfunctions at linear order satisfy a modified orthogon-
ality relation owing to the appearance of frequency depen-
dent boundary conditions in the scalar sector. Section IV
contains the higher order perturbation equations. By
defining shifted perturbation variables (shifted by source
terms) at higher order when necessary, we can expand the
perturbation variables in terms of the linear order eigen-
functions, with time dependent coefficients obeying a
forced harmonic oscillator equation. Section V is a brief
section on how the various source terms are obtained from
the solutions to perturbation equations at lower orders. In
Sec. VI, we analyze special modes with ls ¼ 0, 1 in the case
of scalar modes and lv ¼ 1 for vector modes. For these
modes, the perturbation equations need appropriate gauge
fixing. The modes can be obtained by solving these
equations and it can be readily seen that at linear order,
these modes reduce to pure gauge as expected. Section VII
contains a summary and discussion of the nonlinear
stability of this system, by using the equations obtained
in the paper and nonlinear dynamics results in [6].
Appendices A and B have detailed computations for some
of the equations in the rest of the paper. Appendix C
contains an explicit evaluation of the second order source
terms in the case when we have only tensor perturbations at
linear order.

II. METHODOLOGY

We use perturbation theory to study gravitational per-
turbations in (nþ 2) dimensional Minkowski spacetime
with a spherical Dirichlet wall. For this we need to find
solutions to Einstein’s field equations with Λ ¼ 0,

Gμν ¼ Rμν −
1

2
gμνR ¼ 0: ð2:1Þ

We now follow the analysis and partly the notation in
Rostworowski [32]. The “bar” quantities refer to the
background Minkowski metric ds2¼−dt2þdr2þr2dΩ2

n,
where dΩ2

n is the metric for the n sphere, n ≥ 2. Since we
are dealing with weakly nonlinear perturbations, we let
gμν ¼ ḡμν þ δgμν where

δgμν ¼
X
1≤i

ðiÞhμνϵi: ð2:2Þ

Then the inverse metric is given by

gαβ ¼ ðḡ−1 − ḡ−1δgḡ−1 þ ḡ−1δgḡ−1δgḡ−1 − � � �Þαβ
¼ ḡαβ þ δgαβ: ð2:3Þ
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The Christoffel symbol is decomposed as

Γα
μν ¼ Γ̄α

μν þ
1

2
ðḡ−1 − ḡ−1δgḡ−1 þ � � �Þαβ

× ð∇̄μδgβν þ ∇̄νδgβμ − ∇̄βδgμνÞ
¼ Γ̄α

μν þ δΓα
μν: ð2:4Þ

Similarly the Ricci tensor is decomposed as

Rμν ¼ R̄μν þ ∇̄αδΓα
μν − ∇̄νδΓα

αμ þ δΓα
αλδΓλ

μν − δΓλ
μαδΓα

λν

¼ R̄μν þ δRμν: ð2:5Þ

The Lorentzian Lichnerowicz operator ΔL is defined as

2ΔL
ðiÞhμν ¼ −∇̄α∇̄α

ðiÞhμν − ∇̄μ∇̄ν
ðiÞh

þ ∇̄μ∇̄α
ðiÞhαν þ ∇̄ν∇̄α

ðiÞhαμ

þ R̄μα
ðiÞhαν þ R̄να

ðiÞhαμ − 2R̄μανλ
ðiÞhαλ: ð2:6Þ

We also define a quantity ðiÞAμν as

ðiÞAμν ¼ ½ϵi�f−∇̄α½ð−ḡ−1δgḡ−1 þ � � �Þαλ
× ð∇̄μδgλν þ ∇̄νδgλν − ∇̄λδgμνÞ�
þ ∇̄ν½ð−ḡ−1δgḡ−1 þ � � �Þαλ
× ð∇̄μδgλα þ ∇̄αδgλμ − ∇̄λδgμαÞ�
− 2δΓα

αλδΓλ
μν þ 2δΓλ

μαδΓα
λνg; ð2:7Þ

where ½ϵi�f denotes the coefficient of ϵi in the expansion of
power series

P
i ϵ

ifi. Since the background metric is
Minkowski, the Ricci and the Riemann tensor R̄μν and
R̄μ

ναβ vanish. Moreover, the total metric gμν is the solution
of the vacuum Einstein’s equation (2.1). Therefore, by
plugging the expressions (2.3), (2.4), and (2.5) in (2.1) and
collecting terms in like powers of ϵ, we obtain

2Δ̃L
ðiÞhμν ¼ ðiÞSμν; ð2:8Þ

where Δ̃L
ðiÞhμν is defined as

2Δ̃L
ðiÞhμν ¼ 2ΔL

ðiÞhμν − ḡμνḡαβΔL
ðiÞhαβ ð2:9Þ

and the source ðiÞSμν is given in terms of ðiÞAμν as

ðiÞSμν ¼ ðiÞAμν −
1

2
ḡμνḡαβðiÞAαβ: ð2:10Þ

The background Minkowski metric ḡμν is of the following
form:

ds2 ¼ ḡμνdzμdzν ¼ gabðyÞdyadyb þ r2ðyÞdΩ2
n; ð2:11Þ

where the metric dΩ2
n

dΩ2
n ¼ γijðwÞdwidwj; ð2:12Þ

is the metric for the n sphere and has a constant sectional
curvature K ¼ 1.
One can use the gauge invariant formalism of Ishibashi,

Kodama, and Seto [41] to study the perturbations, the
difference being that we extend it to higher orders as
well. We associate a covariant derivative each with ds2,
gabdyadyb, and dΩ2

n which are ∇̄M, D̄a, and D̄i respec-
tively. We will also decompose the metric perturbations
ðiÞhμν according to their behavior on the n sphere i.e., into
the scalar type, S, the vector type, V i, and the tensor type,
T ij. Note that in the following sections, ▵̂ ¼ D̂iD̂i where
raising (and lowering) of D̂i (and D̂i) is done with γij. The
scalar harmonics S satisfy

ðΔ̂þ k2sÞS ¼ 0; ð2:13Þ

with k2s ¼ lsðls þ n − 1Þ where ls ¼ 0; 1;… from where
one can construct scalar type vector harmonics Si

Si ¼ −
1

ks
D̄iS ð2:14Þ

which satisfy

D̄iSi ¼ ksS ð2:15Þ

as well as scalar type tensor harmonics

Sij ¼
1

k2s
D̄iD̄jSþ 1

n
γijS ð2:16Þ

which satisfy

Si
i ¼ 0; D̄jS

j
i ¼

ðn − 1Þðk2s − nKÞ
nks

Si: ð2:17Þ

Vector harmonics V i are defined by

ðΔ̂þ k2vÞV i ¼ 0 ð2:18Þ

with k2v ¼ lvðlv þ n − 1Þ − 1 where lv ¼ 1; 2;… such that

D̄iV i ¼ 0: ð2:19Þ

One can construct the following tensor from the vector
harmonics:

V ij ¼ −
1

2kv
ðD̄iV j þ D̄jV iÞ; ð2:20Þ

which satisfy
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V i
i ¼ 0; D̄jV

j
i ¼

ðk2v − ðn − 1ÞKÞ
2kv

V i: ð2:21Þ

Tensor harmonics, T ij are defined for n > 2 by

ðΔ̂þ k2ÞT ij ¼ 0 ð2:22Þ

with k2 ¼ lðlþ n − 1Þ − 2 where l ¼ 2; 3;…. They satisfy

T i
i ¼ 0; D̄jT

j
i ¼ 0: ð2:23Þ

Henceforth, we shall consider n > 2. The analysis
that follows can also be done for n ¼ 2, the only
change being that we do not have the tensor spherical
harmonics in that case. The metric perturbations are
decomposed as

ðiÞhab ¼
X
ks

ðiÞfabks
Sks

;

ðiÞhai ¼ r

�X
ks

ðiÞfaks
Sksi þ

X
kv

ðiÞfðvÞakv
Vkvi

�

ðiÞhij ¼ r2
�X

k

ðiÞHTkTkij þ 2
X
kv

ðiÞHðvÞ
Tkv

Vkvij

þ 2
X
ks

ððiÞHðsÞ
Tks

Sksij þ ðiÞHLks
γijSks

Þ
�
: ð2:24Þ

In the following sections, we drop the subscripts k, kv, and
ks from the metric perturbations to avoid cluttering the
equations.
We now consider these perturbations in presence of a

spherical Dirichlet wall of radius R. We need to fix the
metric induced on a surface of radius r ¼ R, requiring

ðiÞftt ¼ ðiÞft ¼ ðiÞHðsÞ
T ¼ ðiÞHL ¼ ðiÞfðvÞt ¼ ðiÞHðvÞ

T

¼ ðiÞHT ¼ 0jr¼R: ð2:25Þ

However, the metric components are also gauge dependent.
Under an infinitesimal gauge transformation δ̄zα¼P

i
ðiÞζα,

metric perturbation ðiÞhμν transforms as

ðiÞhμν → ðiÞhμν − ∇̄μ
ðiÞζν − ∇̄ν

ðiÞζμ; ð2:26Þ

i.e.,

ðiÞhab → ðiÞhab − D̄a
ðiÞζb − D̄b

ðiÞζa;

ðiÞhai → ðiÞhai − D̄i
ðiÞζa − r2D̄a

�ðiÞζi
r2

�
;

ðiÞhij → ðiÞhij − D̄i
ðiÞζj − D̄j

ðiÞζi
− 2rD̄ar ðiÞζaγij: ð2:27Þ

Let ðiÞζa ¼ ðiÞTaS and ðiÞζi ¼ r ðiÞLSi þ r ðiÞLðvÞV i. Thus the

gauge transformations for ðiÞfab, ðiÞfa, ðiÞf
ðvÞ
a , ðiÞHðsÞ

T , ðiÞHðvÞ
T ,

ðiÞHL, and ðiÞHT are

ðiÞfab → ðiÞfab − D̄a
ðiÞTb − D̄b

ðiÞTa; ð2:28Þ

ðiÞfa → ðiÞfa − rD̄a

�ðiÞL
r

�
þ ks

r
ðiÞTa; ð2:29Þ

ðiÞHL → ðiÞHL −
ks
nr

ðiÞL −
D̄ar
r

ðiÞTa; ð2:30Þ

ðiÞHðsÞ
T → ðiÞHðsÞ

T þ ks
r

ðiÞL; ð2:31Þ

ðiÞfðvÞa → ðiÞfðvÞa − rD̄a

�ðiÞLðvÞ

r

�
; ð2:32Þ

ðiÞHðvÞ
T → ðiÞHðvÞ

T þ kv
r

ðiÞLðvÞ; ð2:33Þ

ðiÞHT → ðiÞHT: ð2:34Þ

For all cases except ls ¼ 0, 1 and lv ¼ 1 modes, one can
define the following gauge invariant variables:

ðiÞZa ¼ ðiÞfðvÞa þ r
kv

D̄a
ðiÞHðvÞ

T ; ð2:35Þ

ðiÞFab ¼ ðiÞfab þ 2D̄ðaðiÞXbÞ;

ðiÞF ¼ ðiÞHL þ
ðiÞHðsÞ

T

n
þ 1

r
D̄arðiÞXa; ð2:36Þ

where ðiÞXa is defined as

ðiÞXa ¼
r
ks

�
ðiÞfa þ

r
ks

D̄a
ðiÞHðsÞ

T

�
: ð2:37Þ

Since the expressions for ΔL
ð1Þhμν have already been given

in terms of the gauge invariant variables in [41], one can
similarly get ΔL

ðiÞhμν in terms of the ith order gauge
invariant variables ðiÞHT , ðiÞZa, ðiÞFab, and ðiÞF by replacing
ð1Þhμν by ðiÞhμν. After we have solved for these variables we
will use equations (2.35)–(2.37) to obtain ðiÞhμν. Before we
do so, we can use the gauge freedom to put some terms to
zero. In subsequent sections, we will work in a gauge in
which

ðiÞft ¼ ðiÞHL ¼ ðiÞHðsÞ
T ¼ ðiÞHðvÞ

T ¼ 0: ð2:38Þ

(The above gauge choice is the same as used by [42] in
case of vector perturbations and [39] in case of scalar
perturbations.)
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Our strategy will be to first look at the equations for
linearized modes. The spectrum of linear perturbations is an
important indicator of nonlinear stability. If the spectrum is
resonant, and if the higher order perturbation equations
have the appropriate form that leads to energy transfer to
higher frequency modes, there is likely to be an instability
of the kind observed for AdS spacetime [1]. As we showed
in earlier work [6] in the context of the Einstein-
Klein-Gordon system, results from KAM theory indicate
that when the spectrum is not perfectly resonant but only
approximately so, it is stable under arbitrarily small
perturbations. However a relatively small amplitude of
perturbations may trigger instability that can be observed in
numerical studies (as opposed to arbitrarily small pertur-
bations for a fully resonant spectrum). It is possible to
quantify in number-theoretic terms how close the spectrum
is to being resonant. This is an indicator of the magnitude of
perturbation that may be required in order to trigger
instability. A crucial ingredient in [6] was the structure
of the perturbation equations of the Einstein-Klein-
Gordon system in weakly nonlinear perturbation theory.
The scalar field at third order obeys forced harmonic
oscillator equations. The system can then be described
by a Hamiltonian that is a perturbation of an integrable
Hamiltonian (linear harmonic oscillators) and it is possible
to use Hamiltonian perturbation theory to arrive at these
conclusions. There are two questions of interest for our
system: what is the spectrum of the linearized perturba-
tions, and what is the structure of the higher order
perturbation equations? In subsequent sections, we will
address both of these questions. By choosing appropriate
master variables, we simplify the perturbation equations
until the higher order equations for the master variables
resemble those of a forced harmonic oscillator (as in
weakly nonlinear perturbation theory for the Einstein
gravity-scalar field system).

III. LINEARIZED EQUATIONS

We will first have a look at the leading order equations
in ϵ,

ð1ÞGμν ¼ Δ̃L
ð1Þhμν ¼ 0: ð3:1Þ

Henceforth we drop the superscript “(1)” on ð1Þhμν. Based
on the methodology in [41], linear perturbations of flat
space in a cavity with Dirichlet boundary conditions at the
cavity wall were studied in [39]. In the following sub-
sections, we revisit the linearized perturbations before
moving to higher orders. In particular, we are interested
in the spectrum of linearized perturbations as well as the
linear order eigenfunctions as this is important to study the
nonlinear evolution of the perturbations. We use methods of
Takahashi and Soda [42] for simplifying the equations for
vector and scalar perturbations.

A. Tensor perturbations

In this case,

hab ¼ 0; hai ¼ 0; hij ¼
X
k

r2HTk:Tkij: ð3:2Þ

Upon substituting (3.2) in the leading order in ϵ Einstein’s
equations, ð1ÞGμν, we obtain the equation governing tensor
type perturbations as given in [41], wherein upon taking
HTk ¼ ΦTk we get

−r2Φ̈T þ r2Φ00
T þ nrΦ0

T − lðlþ n − 1ÞΦT ¼ 0: ð3:3Þ

Equation (3.3) can be put in the form

Φ̈T þ L̂ΦT ¼ 0; ð3:4Þ

where

L̂ ¼ −
1

rn
∂rðrn∂rÞ þ

lðlþ n − 1Þ
r2

: ð3:5Þ

The solution to (3.4) is given by

ΦTk ¼
X∞
p¼1

ap;k cosðωp;ltþ bp;kÞep;lðrÞ; ð3:6Þ

where ep;lðrÞ is given by

ep;lðrÞ ¼ dp;l
Jνðωp;lrÞ
rðn−1Þ=2

; ν ¼ lþ ðn − 1Þ
2

: ð3:7Þ

Constants ap;k and bp;k are determined from initial con-
ditions and dp;l is the normalization constant given byffiffi

2
p

RJ0νðωp;lRÞ. The eigenfrequencies ωp;l are discrete and asso-

ciated with a mode number p for each l. They
are determined from the Dirichlet boundary condition:
ΦT ¼ 0 at r ¼ R,

⇒ ωp;l ¼
jν;p
R

; ð3:8Þ

where jν;p is the pth zero of a Bessel function of order ν.
For large values of p, eigenfrequencies approach
ðpþ ν=2 − 1=4Þ π

R; therefore it is an asymptotically reso-
nant spectrum.
The eigenfunctions ep;l form a complete set and are

orthonormal in the space of functions L̂2ð½0;R�; rndrÞ. The
inner product hf; giT is defined as

R
R
0 fðrÞgðrÞrndr.

B. Vector perturbations

The following equations govern the linear vector per-
turbations [41]:
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D̄aðrn−1ZaÞ ¼ 0; ð3:9Þ

−
1

rn
D̄b

�
rnþ2

�
D̄b

�
Za

r

�
− D̄a

�
Zb

r

���

þ ðk2v − ðn − 1ÞÞ
r

Za ¼ 0: ð3:10Þ

These, when expanded yield three equations. Of them, two
are independent. The third equation can be obtained from
the first two through a suitable combination. Here we will
use only two of them. One is obtained by expanding
equation (3.9):

_Zt ¼ ðn − 1ÞZr

r
þ Z0

r: ð3:11Þ

The other is obtained by making the substitution a ¼ r in
(3.10):

−∂2
t Zr þ r∂t∂r

�
Zt

r

�
−
ðk2v − ðn − 1ÞÞ

r2
Zr ¼ 0: ð3:12Þ

Next we substitute the expression for _Zt from (3.11) in
(3.12), so that we get a second order equation in Zr:

− Z̈r þ Z00
r þ

ðn − 2Þ
r

Z0
r −

ðlvðlv þ n − 1Þ þ ðn − 2ÞÞ
r2

Zr

¼ 0: ð3:13Þ

We rewrite Zrkv
as

Zrkv
¼ rΦvkv

: ð3:14Þ

Hence upon writing (3.13) in terms of the new variable
Φvkv

, we obtain the following master equation:

Φ̈v þ L̂vΦv ¼ 0; ð3:15Þ

where L̂v is defined as

L̂v ¼ −
1

rn
∂rðrn∂rÞ þ

lvðlv þ n − 1Þ
r2

: ð3:16Þ

LetΦvkv
¼ cosðωtþ bÞϕvkv

ðrÞ, so that Eq. (3.15) could be
rewritten as

L̂vϕv ¼ ω2ϕv: ð3:17Þ

Demanding Dirichlet boundary condition is equivalent to
imposing Zt ¼ 0 at r ¼ R. In order to impose this con-
dition, we will write (3.11) in terms of Φvkv

to get

_Zt ¼ rΦ0
v þ nΦv: ð3:18Þ

Then using the ansatzΦvkv
¼ cosðωtþ bÞϕvkv

ðrÞ and then
integrating with respect to t, we get

Zt ¼
1

ω
frϕv

0 þ nϕvg sinðωtþ bÞ: ð3:19Þ

Any r-dependent integration constant in the above expres-
sion is put to zero. Hence, if Dirichlet condition on Zt needs
to be satisfied at all times, we require

rϕ0
v þ nϕv ¼ 0jr¼R: ð3:20Þ

The linear stability of the vector modes has been shown in
[39] so we will not repeat the argument here. The
eigenfrequencies are discrete and hence can be associated
with a mode number p for each lv. Hence, we find that

ϕvkv
¼ eðvÞp;lv

¼ dðvÞp;lv

Jνvðωp;lvrÞ
rðn−1Þ=2

; νv ¼ lv þ
ðn − 1Þ

2
;

ð3:21Þ

where dðvÞp;lv
is the normalization constant given by

dðvÞp;lv
¼

ffiffiffi
2

p
ωp;lv

Jνvðωp;lvRÞ
½ðnþ 1Þ2=4þ ðωp;lvRÞ2 − ν2v�−1=2:

ð3:22Þ

The eigenfunctions ϕvkv
¼ eðvÞp;lv

ðrÞ are complete and
form an orthonormal basis in the space of functions
L̂2
vð½0;R�; rndrÞ. Therefore, the general solution to (3.15)

is given by

Φvkv
¼

X∞
p¼1

aðvÞp;kv
cosðωp;lv tþ bp;kv

ÞeðvÞp;lv
ðrÞ; ð3:23Þ

where aðvÞp;kv
and bp;kv

are determined from initial con-
ditions and ωp;lv satisfies (3.20). The inner product hf; giv
is defined as

R
R
0 fðrÞgðrÞrndr. Upon substituting for ϕv

from (3.21) in (3.20) we obtain

ωrJ0νvðωrÞ þ
ðnþ 1Þ

2
JνvðωrÞ ¼ 0jr¼R: ð3:24Þ

Now we will look at the asymptotic nature of the
frequencies associated with vector modes by considering
the large argument expansion of the Bessel functions,
which is given by

JνvðzÞ ∼
ffiffiffiffiffi
2

zπ

r
cos

�
z −

νvπ

2
−
π

4

�
as z → ∞: ð3:25Þ

This tells us that for large modes

DHANYA S. MENON and VARDARAJAN SUNEETA PHYS. REV. D 100, 044060 (2019)

044060-6



tan

�
z −

νvπ

2
−
π

4

�
¼ ðnþ 1Þ=2

z
; ð3:26Þ

where z ¼ ωR. It can be seen that the frequencies tend
to ðpþ νv

2
− 3

4
Þ π
R.

C. Scalar perturbations

Using the Ishibashi-Kodama-Seto formalism [41], we
get the scalar perturbation equations. In order to obtain the
master equation, we will use the method followed by
Takahashi and Soda [42]. Scalar perturbations satisfy the
following identity:

½2ðn − 2ÞF þ Fc
c� ¼ 0; ð3:27Þ

which is obtained from (traceless part of) the ð1ÞGij ¼ 0

equation. From ð1ÞGrt ¼ 0 one gets

n
r
_Frr þ

k2s
r2

Frt − 2n _F0 −
2n
r

_F ¼ 0: ð3:28Þ

Similar to [42], we choose

Frt ¼ 2rð _Φs þ _FÞ; ð3:29Þ

where Φs is our master variable. This helps us to integrate
(3.28) with respect to t and get an expression for Frr in
terms of F and Φs which is

Frr ¼ 2rF0 þ 2F −
2k2S
n

F −
2k2s
n

Φs: ð3:30Þ

The extra integration constant, which would be a function
of r, is absorbed in the definition of Φs.
From ð1ÞGtt ¼ 0 one gets

− 2nF00 þ n
r
F0
rr þ

�
k2s
r2

þ nðn − 1Þ
r2

�
Frr −

2nðnþ 1Þ
r

F0

þ
�
2k2sðn − 1Þ

r2
−
2nðn − 1Þ

r2

�
F ¼ 0: ð3:31Þ

Substituting the expression for Frr from (3.30) into (3.31)
gives us an expression for F solely in terms of Φs and its
derivative:

F ¼ −
n

k2s − n

�
rΦ0

s þ
�
k2s
n
þ n − 1

�
Φs

�
: ð3:32Þ

In the scalar component of ð1ÞGir ¼ 0 we will substitute for
Fc
c from (3.27). This gives

−
ðn− 2Þ

r
Frr þ _Frt −F0

rr þ 2F0 þ 2ðn− 2Þ
r

F ¼ 0: ð3:33Þ

Next, by using ð1ÞGrr ¼ 0 and (3.27), one gets

− 2nF̈ þ 2n
r
F0 −

2k2s
r2

F þ 2nðn − 1Þ
r2

F −
n
r
F0
rr

þ
�
k2s
r2

−
nðn − 1Þ

r2

�
Frr þ

2n
r

_Frt ¼ 0: ð3:34Þ

We eliminate F0
rr from (3.34) by using (3.33). This gives

−2nF̈ þ ðk2s − nÞ
r2

Frr −
2ðk2s − nÞ

r2
F þ n

r
_Frt ¼ 0: ð3:35Þ

Next, using the expressions for Frt, Frr, and F from (3.29),
(3.30), and (3.32) in (3.35) leads to the second order master
equation for Φsks

,

Φ̈s −Φ00
s −

n
r
Φ0

s þ
lsðls þ n − 1Þ

r2
Φs ¼ 0: ð3:36Þ

We can then rewrite (3.36) as

Φ̈s þ L̂sΦs ¼ 0; ð3:37Þ

where L̂s ¼ − 1
rn ∂rðrn∂rÞ þ lsðlsþn−1Þ

r2 .
We substitute the ansatz Φs ¼ cosðωtþ bÞϕs in (3.37)

and get

L̂sϕs ¼ ω2ϕs: ð3:38Þ

The eigenfrequencies ω must satisfy the mixed fre-
quency dependent boundary condition obtained by requir-
ing ftt (or equivalently Ftt) to vanish at the boundary
r ¼ R. This is given by

ðn − 1Þrϕ0
s þ

�
−ω2r2 þ ðn − 1Þ

n
ðk2s þ nðn − 1ÞÞ

�
ϕs

¼ 0jr¼R: ð3:39Þ

In [39], the stability under scalar perturbations has been
demonstrated. The eigenfrequencies are discrete and can be
associated with the mode number, say p for each ls.
Numerically, it can be seen that the spectrum is asymptoti-
cally resonant and high frequencies approach ðpþ νs

2
− 5

4
Þ π
R.

The eigensolutions of Eq. (3.38) are

ϕsks
¼ eðsÞp;ls

ðrÞ ¼ dðsÞp;ls

Jνsðωp;lsrÞ
rðn−1Þ=2

; νs ¼ ls þ
ðn − 1Þ

2
:

ð3:40Þ

where the constant dðsÞp;ls
is given by
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dðsÞp;ls
¼
�Z

R

0

jJνsðωp;lsrÞj2rdrþ
R2

ðn− 1Þ jJνsðωp;lsRÞj2
�−1=2

:

ð3:41Þ

Although the eigenfunctions eðsÞp;ls
are not orthogonal, they

satisfy the modified orthogonality relation, heðsÞp;ls
; eðsÞq;ls

is,
given by

heðsÞp;ls
; eðsÞq;ls

is ¼
Z

R

0

eðsÞp;ls
eðsÞq;ls

rndrþ Rnþ1

ðn − 1Þ e
ðsÞ
p;ls

ðRÞeðsÞq;ls
ðRÞ

¼
�
0 for p ≠ q

1 for p ¼ q
: ð3:42Þ

We can write the general solution to (3.38) in terms of a
series expansion of the discrete modes. We use the work
of Zecca [43] which deals with the Bessel equation in a
finite interval with singularity at one end and a eigenvalue
dependent boundary condition, similar to ours, at the
regular end point. He shows that the general solution
can be expanded in a series of Bessel functions within
this finite interval. Therefore, the solution to Eq. (3.37) is

Φsks
¼

X∞
p¼0

aðsÞp;ks
cosðωp;ls tþ bp;ks

ÞeðsÞp;ls
ðrÞ; ð3:43Þ

where aðsÞp;ks
and bp;ks

are constants set by initial conditions.
An expansion theorem in his paper then implies that a
function fðrÞ in C1½0; 1� with square integrable second

derivative, and which satisfies the same boundary con-

ditions as Jνsðωp;lsrÞ (or eðsÞp;ls
) can be expanded in a series

of these Bessel functions (or eigenfunctions eðsÞp;ls
). Hence

we can write fðrÞ as

f ¼
X
p

σpe
ðsÞ
p;ls

ð3:44Þ

where

σp ¼ hf; eðsÞp;ls
is ¼

Z
R

0

frneðsÞp;ls
drþ Rnþ1

ðn − 1Þ fðRÞe
ðsÞ
p;ls

ðRÞ:

ð3:45Þ

We will be using the above results when dealing with
higher order perturbations.

IV. HIGHER ORDER EQUATIONS

The higher order perturbed equations have to be solved
for ðiÞhμν given a source which is composed of
1;…; ði − 1Þth order metric perturbations. For example,
the second order perturbed equations ð2ÞGμν ¼ 0 become

ð2ÞGμν ¼ Δ̃L
ð2Þhμν −

1

2
ð2ÞSμν ¼ 0; ð4:1Þ

where ð2ÞSμν is

ð2ÞSμν ¼ −
1

2
∇̄λhð−∇̄λhμν þ ∇̄νhλμ þ ∇̄μhλνÞ −

1

2
∇̄νhλσ∇̄μhσλ − ∇̄σhμλ∇̄σhλν

þ ∇̄λhσμ∇̄σhλν þ ∇̄λhλσð−∇̄σhμν þ ∇̄νhμσ þ ∇̄μhσνÞ
þ hλσð−∇̄λ∇̄σhμν − ∇̄μ∇̄νhλσ þ ∇̄λ∇̄μhσν þ ∇̄σ∇̄νhμλÞ

þ 1

2
ημν

�
−
1

2
∇̄αh∇̄αhþ 2∇̄αhαβ∇̄βhþ 3

2
∇̄αhβσ∇̄αhβσ

− ∇̄αhσβ∇̄σhαβ − 2∇̄αhασ∇̄βhβσ þ hλσ∇̄λ∇̄σhþ hλσ∇̄α∇̄αhλσ − 2hαβ∇̄α∇̄σhσβ

�
: ð4:2Þ

The details of the calculation are given in Appendix A. Now we look at a general ith order equation where i ≥ 2.
Equation (2.8) can be written in terms of D̄a and D̄i operators. Using the expansion of ΔLhμν given in the appendix of

[41] we obtain the perturbed equations, ðiÞGμν ¼ 0 in terms of ðiÞHT , ðiÞF, ðiÞFab, and ðiÞZa. For μ ¼ i, ν ¼ j one obtains

X
k

½−r2D̄aD̄a
ðiÞHT − nrD̄arD̄a

ðiÞHT þ ðk2 þ 2KÞðiÞHT �kTkij

þ
X
kv

�
−
2kv
rn−2

D̄aðrn−1ðiÞZaÞ
�
kv

Vkvij þ
X
ks

½−k2s ½2ðn − 2ÞðiÞF þ ðiÞFc
c��ks

Sksij

¼ ðiÞSij −
X
ks

½Q4�ks
γijSks

: ð4:3Þ

DHANYA S. MENON and VARDARAJAN SUNEETA PHYS. REV. D 100, 044060 (2019)

044060-8



We do not write the explicit form of ½Q4� as it is not required in our calculations and it does not contribute when we finally
project to individual tensor components of each type.
Similarly from the ðiÞGai ¼ 0 equation one gets

X
kv

�
−

1

rn
D̄b

�
rnþ2

�
D̄b

�ðiÞZa

r

�
− D̄a

�ðiÞZb

r

���
þ k2v − ðn − 1ÞK

r
ðiÞZa

�
kv

Vkvi

þ
X
ks

�
−ks

�
1

rn−2
D̄bðrn−2ðiÞFb

aÞ − rD̄a

�
1

r
ðiÞFb

b

�
− 2ðn − 1ÞD̄a

ðiÞF
��

ks

Sksi ¼ ðiÞSai: ð4:4Þ

In order to decompose the various sectors we use the fact that

Z
T ijV ijdnΩ ¼

Z
T ijSijdnΩ ¼

Z
V ijSijdnΩ ¼

Z
V iSidnΩ ¼ 0: ð4:5Þ

We obtain the tensor equation from (4.3) which is

−r2D̄aD̄a
ðiÞHT − nrD̄arD̄a

ðiÞHT þ ðk2 þ 2KÞðiÞHT ¼
Z

T ij
k

ðiÞSijdnΩ: ð4:6Þ

Similarly using (4.5) we obtain the two vector equations from (4.3) and (4.4)

−
1

rn
D̄b

�
rnþ2

�
D̄b

�ðiÞZa

r

�
− D̄a

�ðiÞZb

r

���
þ k2v − ðn − 1ÞK

r
ðiÞZa ¼

Z
V i
kv

ðiÞSaidnΩ; ð4:7Þ

−
2kv
rn−2

D̄aðrn−1ðiÞZaÞ ¼
Z

V ij
kv

ðiÞSijdnΩ: ð4:8Þ

For the scalar case we will use the following three equations, which are

− D̄cD̄c
ðiÞFab þ D̄aD̄c

ðiÞFc
b þ D̄bD̄c

ðiÞFc
a þ n

D̄cr
r

ð−D̄c
ðiÞFab þ D̄a

ðiÞFcb þ D̄b
ðiÞFcaÞ

þ k2s
r2

ðiÞFab − D̄aD̄b
ðiÞFc

c − 2n

�
D̄aD̄b

ðiÞF þ 1

r
D̄arD̄b

ðiÞF þ 1

r
D̄brD̄a

ðiÞF
�

−
�
D̄cD̄d

ðiÞFcd þ 2n
r
D̄crD̄dðiÞFcd þ

nðn − 1Þ
r2

D̄crD̄drðiÞFcd − 2nD̄cD̄c
ðiÞF

−
2nðnþ 1Þ

r
D̄crD̄c

ðiÞF þ 2ðn − 1Þ ðk
2
s − nKÞ
r2

ðiÞF − D̄cD̄c
ðiÞFd

d

−
n
r
D̄crD̄c

ðiÞFd
d þ

k2s
r2

ðiÞFd
d

�
ηab ¼

Z
Sks

ðiÞSabdnΩ; ð4:9Þ

−ks
�

1

rn−2
D̄bðrn−2ðiÞFb

aÞ − rD̄a

�
1

r
ðiÞFb

b

�
− 2ðn − 1ÞD̄a

ðiÞF
�

¼
Z

Si
ks

ðiÞSaidnΩ; ð4:10Þ

−k2s ½2ðn − 2ÞðiÞF þ ðiÞFc
c� ¼

Z
Sij
ks

ðiÞSijdnΩ: ð4:11Þ

A. Tensor perturbations at higher orders

Let ðiÞHTk ¼ ðiÞΦTk. Thus (4.6) becomes

ðiÞΦ̈Tk þ L̂ðiÞΦTk ¼ 1

r2

Z
T ij
k

ðiÞSijdnΩ: ð4:12Þ
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Condition (2.25) implies that at each order ΦTk should
vanish at the boundary r ¼ R. The set of eigenfunctions
ep;lðrÞ are complete and also satisfy condition (2.25).
Hence, one can expand ΦTk as

ðiÞΦTk ¼
X∞
p¼1

ðiÞcp;kðtÞep;lðrÞ: ð4:13Þ

Hence (4.12) can be written as

ðiÞ̈cp;kðtÞ þ ω2
p;l

ðiÞcp;kðtÞ ¼
	
1

r2

Z
T ij
k

ðiÞSij; ep;lðrÞ



T
:

ð4:14Þ

B. Vector perturbations at higher orders

Before we proceed, we will define the following two
quantities:

ðiÞVs1 ¼
Z

V ij
kv

ðiÞSijdnΩ; ð4:15Þ

ðiÞVs2 ¼
Z

V i
kv

ðiÞSridnΩ: ð4:16Þ

We first expand Eq. (4.8) and obtain the following:

ðiÞ _Zt ¼ ðn − 1Þ
ðiÞZr

r
þ ðiÞZ0

r þ
1

2kvr
ðiÞVs1: ð4:17Þ

(Note that in the preceding equation as well as in the
equations which follow, we drop the subscript kv in Zakv

for convenience.) Next, by making the substitution a ¼ r
in (4.7), we obtain

−ðiÞZ̈r þ r∂t∂r

�ðiÞZt

r

�
−
ðk2v − ðn − 1ÞÞ

r2
ðiÞZr ¼ −

ðiÞVs2

r
:

ð4:18Þ

Now we substitute the expression for ðiÞ _Zt from (4.17) in
(4.18) to get

− ðiÞZ̈r þ ðiÞZ00
r þ

ðn − 2Þ
r

ðiÞZ0
r

−
ðlvðlv þ n − 1Þ þ ðn − 2ÞÞ

r2
ðiÞZr

¼ −
�ðiÞVs2

r
þ r

�ðiÞVs1

2kvr2

�0�
: ð4:19Þ

Now we rewrite ðiÞZrkv
in terms of a new variable ðiÞΦsks

as

ðiÞZrkv
¼ r

�
ðiÞΦvkv

−
1

2kvrn

Z
ðiÞVs1rðn−2Þdr

�
: ð4:20Þ

The above definition is crucial, since it enables us to expand
the higher order perturbations ðiÞΦvkv

in terms of the com-

plete set of eigenfunctions eðvÞp;lv
. This will be made clear in a

while. Substitution of (4.20) in (4.19) leads to the following
equation in terms of the variable ðiÞΦvkv

:

ðiÞΦ̈vkv
þ L̂v

ðiÞΦvkv
¼ 1

r

�ðiÞVs2

r
þ r

�ðiÞVs1

2kvr2

�0�

þ
R ðiÞV̈s1rðn−2Þdr

2kvrn

þ L̂v

�R ðiÞVs1rðn−2Þdr
2kvrn

�
: ð4:21Þ

Further simplification of the above equation can be done by
expanding ðiÞΦvkv

in the basis of a complete set of functions
(which also satisfy the appropriate boundary condition) say
ðiÞϕvkv

as follows:

ðiÞΦvkv
¼

X∞
p¼1

ðiÞcðvÞp;kv
ðtÞðiÞϕvkv

ðrÞ: ð4:22Þ

We substitute for ðiÞZr from (4.20) in (4.17) and use the
expansion (4.22). The expression for ðiÞZtkv

then becomes

ðiÞZtkv
¼

X∞
p¼1

Z
ðiÞcp;kv

ðtÞdtfrðiÞϕ0
vkv

þ nðiÞϕvkv
g: ð4:23Þ

In the above equation any r-dependent integration constant
is put to zero. Then we apply the Dirichlet boundary
condition that requires ðiÞZt to vanish at r ¼ R for all times.
This means

rðiÞϕ0
v þ nðiÞϕv ¼ 0jr¼R: ð4:24Þ

Note that the ansatz (4.20) has specifically been chosen so
that the boundary condition takes the above form. Since the
eigenfunctions corresponding to the linear perturbation

ϕv ¼ eðvÞp;lv
ðrÞ (which form a complete set) also satisfy

(4.24), we can choose to expand metric perturbations in this
basis, i.e., choose ðiÞϕv ¼ ϕv. Taking the projection of

(4.21) on eðvÞp;lv
one gets a forced harmonic oscillator

equation of the form

ðiÞ̈cðvÞp;kv
þ ω2

p;lv
ðiÞcðvÞp;kv

¼
	�ðiÞVs2

r2
þ
�ðiÞVs1

2kvr2

�0�

þ
R ðiÞV̈s1rðn−2Þdr

2kvrn

þ L̂v

�R ðiÞVs1rðn−2Þdr
2kvrn

�
; eðvÞp;lv



v
:

ð4:25Þ
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C. Scalar perturbations at higher order

Before we consider the scalar equations we will define
the following quantities:

ðiÞSs0 ¼
Z

Sij
ks

ðiÞSijdnΩ; ð4:26Þ

ðiÞSs1 ¼
Z

Sks
ðiÞSrtdnΩ; ð4:27Þ

ðiÞSs2 ¼
Z

Sks
ðiÞSttdnΩ; ð4:28Þ

ðiÞSs3 ¼
�
k2s
nr

þ ðn − 1Þ
r

�Z
t ðiÞSs1dt − ðiÞSs2

þ n
r

�
r
n

Z
t ðiÞSs1dt

�0
; ð4:29Þ

ðiÞSs4 ¼
R
Si
ks

ðiÞSridnΩ
ks

þ
�ðiÞSs0

k2s

�0
−
�ðiÞSs0

rk2s

�
; ð4:30Þ

ðiÞSs5 ¼
Z

Sks
ðiÞSrrdnΩþ n

rk2s
ðiÞS0s0 −

ðiÞSs0
r2

; ð4:31Þ

ðiÞSs6 ¼ ðiÞSs5 −
n
r
ðiÞSs4; ð4:32Þ

ðiÞSs7 ¼
ðiÞSs3
2n

−
ðk2s −nÞ
2n2r

Z
t ðiÞSs1dtþ

ðiÞSs6
2n

−
1

2rk2s
½r2ðiÞSs3�0:

ð4:33Þ

Similar to the linear case, we need only five equations to get
a master equation governing scalar perturbations at higher
orders. First, we have equation (4.11) which relates
variables ðiÞFtt, ðiÞFrr (through the trace ðiÞFc

c) and ðiÞF:

−k2s ½2ðn − 2ÞðiÞF þ ðiÞFc
c� ¼ ðiÞSs0: ð4:34Þ

For a ¼ r, b ¼ t in (4.9) one gets

n
r
ðiÞ _Frr þ

k2s
r2

ðiÞFrt − 2nðiÞ _F0 −
2n
r

ðiÞ _F ¼ ðiÞSs1: ð4:35Þ

Now we write ðiÞFrt in terms of the variable ðiÞΨsks
as

ðiÞFrt ¼ 2rððiÞ _Ψs þ ðiÞ _FÞ; ð4:36Þ

where ðiÞΨs itself is defined in terms of our master variable
ðiÞΦs as

ðiÞΨs ¼ ðiÞΦs − ðiÞSs8: ð4:37Þ

The expression ðiÞSs8 is defined as

ðiÞSs8 ¼ −
1

2

�
k2s
n
− 1

�
r−ð

ksffiffi
n

p þn−1Þ

×
Z

r
�
rð

2ksffiffi
n

p −1Þ
Z

r
r0ð−

ksffiffi
n

p þn−2Þ ðiÞBdr0
�
dr; ð4:38Þ

where

ðiÞBðt; rÞ ¼ n
k2s − n

�
r

�
r2

k2s
ðiÞSs3

�0
þ r2

k2s

�
ðn− 1Þ− k2s

n

�
ðiÞSs3

�

þ r
n

Z
t ðiÞSs1dtþ

ðiÞSs0
k2s

: ð4:39Þ

The above ansatz ensures that the boundary condition is
devoid of the products of the lower order metric perturba-
tion contributed by the source terms. The details are given
in Appendix B.
We integrate (4.35) with respect to t and get an

expression for ðiÞFrr in terms of ðiÞF and ðiÞΨs which is

ðiÞFrr ¼ 2rðiÞF0 þ 2ðiÞF−
2k2S
n

ðiÞF−
2k2s
n

ðiÞΨs þ
r
n

Z
t ðiÞSs1dt:

ð4:40Þ

For a ¼ b ¼ t in (4.9) one gets

− 2nðiÞF00 þ n
r
ðiÞF0

rr þ
�
k2s
r2

þ nðn−1Þ
r2

�
ðiÞFrr −

2nðnþ1Þ
r

ðiÞF0

þ
�
2k2sðn − 1Þ

r2
−
2nðn − 1Þ

r2

�
ðiÞF ¼ ðiÞSs2: ð4:41Þ

Substitution of (4.40) in (4.41) leads to an expression for
ðiÞF in terms of ðiÞΨs and its derivatives:

ðiÞF ¼ −
n

k2s − n

�
rðiÞΨ0

s þ
�
k2s
n
þ n − 1

�
ðiÞΨs −

r2

2k2s
ðiÞSs3

�
:

ð4:42Þ

Consider the expansion of (4.10) for a ¼ r in which we
substitute for ðiÞFc

c from (4.34). This gives

−
ðn − 2Þ

r
ðiÞFrr þ ðiÞ _Frt − ðiÞF0

rr þ 2ðiÞF0 þ 2ðn − 2Þ
r

ðiÞF

¼ ðiÞSs4: ð4:43Þ

By making the substitution a ¼ b ¼ r in (4.9) and using
(4.34), one gets

− 2nðiÞF̈ þ 2n
r

ðiÞF0 −
2k2s
r2

ðiÞF þ 2nðn − 1Þ
r2

ðiÞF −
n
r
ðiÞF0

rr

þ
�
k2s
r2

−
nðn − 1Þ

r2

�
ðiÞFrr þ

2n
r

_ðiÞFrt ¼ ðiÞSs5: ð4:44Þ
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Now, we eliminate ðiÞF0
rr from (4.44) by using (4.43), to get

−2nðiÞF̈þ ðk2s − nÞ
r2

ðiÞFrr −
2ðk2s − nÞ

r2
ðiÞFþ n

r
ðiÞ _Frt ¼ ðiÞSs6:

ð4:45Þ

Substituting the expression for ðiÞFrt, ðiÞFrr, and ðiÞF from
(4.36), (4.40). and (4.42) in (4.45) we obtain the following
equation in terms of variable ðiÞΦsks

ðiÞΦ̈s þ L̂s
ðiÞΦs ¼ ðiÞSs9; ð4:46Þ

where ðiÞSs9 is defined as

ðiÞSs9 ¼ ðiÞSs7 þ ðiÞ̈Ss8 þ L̂s
ðiÞSs8: ð4:47Þ

We can now expand ðiÞΦs in the basis of the eigenfunctions

of the linear perturbation eðsÞp;ls
ðrÞ as follows:

ðiÞΦs ¼
X∞
p¼0

ðiÞcðsÞp;ls
ðtÞeðsÞp;ls

ðrÞ: ð4:48Þ

According to condition (2.25), we require ðiÞFtt to vanish at
the boundary r ¼ R, which implies ðiÞΦsks

should satisfy
(see Appendix B for further details)

r2ðiÞΦ00
s þ ð2n − 1ÞrðiÞΦ0

s þ
�
ðn − 1Þ2 − k2s

n

�
ðiÞΦs ¼ 0

����
r¼R

:

ð4:49Þ

The expansion (4.48) ensures that this boundary condition
is automatically satisfied; this has been shown in
Appendix B. One can now use (3.42) to show that the
ðiÞcðsÞq;ls

ðtÞ satisfy

ðiÞ̈cðsÞq;ls
þ ω2

q;ls
ðiÞcðsÞq;ls

¼ hðiÞSs7; eðsÞq;ls
is ð4:50Þ

where h…is is defined by (3.45).

V. CALCULATING THE SOURCE TERMS

The source terms ðiÞSμν depend on ð1Þhμν;ð2Þhμν;…ði−1Þhμν.
Hence, once we calculate ðiÞΦTk, ðiÞΦvkv

, and ðiÞΦsks
, we

need to use them to get back ðiÞhμν. Since we have chosen

our gauge choice to be (2.38), determining ðiÞfabks
, ðiÞfðsÞrks

,
ðiÞfðvÞakv

, and ðiÞHTk, completely fixes the various compo-

nents of ðiÞhμν.
Tensor components.—Since by definition, ðiÞHTk¼ðiÞΦk,

determining Φk determines HTk.
Vector components.—By definition, ðiÞZrkv

is related to
ðiÞΦvkv

through (3.14) and (4.20) for linear order and higher

orders respectively. ðiÞZtkv
is related to ðiÞZrkv

through
(3.11) and (4.17) for linear and higher orders respectively.

Hence the vector components are given by ðiÞZa ¼ ðiÞfðvÞa .
Scalar components.—Once the quantities ðiÞFks

and
components of ðiÞFabks

are determined in terms of ðiÞΦsks
,

the scalar components are given by

ðiÞfr ¼ ksðiÞF; ð5:1Þ

ðiÞftt ¼ ðiÞFtt; ð5:2Þ

ðiÞfrr ¼ ðiÞFrr −
2

ks
ðrðiÞfrÞ0; ð5:3Þ

ðiÞfrt ¼ ðiÞFrt −
r
ks

ðiÞ_fr: ð5:4Þ

VI. SPECIAL MODES

A. Scalar perturbations ls = 0, 1 modes

1. ls = 0 mode

In this case, S is constant and hence, Si and Sij vanish.
This means, only ðiÞfab and ðiÞHL exist. We will use gauge
freedom to put

ðiÞHL ¼ ðiÞftt ¼ 0: ð6:1Þ

Let ðiÞS̃0 μν ¼
R
Sls¼0

ðiÞS0 μνdnΩ. We get the following
equations from ðiÞGrt ¼ 0, ðiÞGtt ¼ 0, and ðiÞGrr ¼ 0
respectively.

n
r
ðiÞ_frr ¼ ðiÞS̃0 rt; ð6:2Þ

n
r
ðiÞf0rr þ

nðn − 1Þ
r2

ðiÞfrr ¼ ðiÞS̃0 tt; ð6:3Þ

2n
r

ðiÞ_frt −
nðn − 1Þ

r2
ðiÞfrr ¼ ðiÞS̃0 rr: ð6:4Þ

From (6.2), we can obtain ðiÞfrr as

ðiÞfrr ¼
Z

t

t1

r
n

ðiÞS̃0 rtdtþ ðiÞfrrðt1; rÞ: ð6:5Þ

ðiÞfrrðt1; rÞ can be obtained from (6.3):

ðiÞfrrðt1; rÞ ¼
1

rn−1

Z
r

0

r̄n

n
ðiÞS̃0 ttðt1; r̄Þdr̄: ð6:6Þ

Whereas, ðiÞfrt is given by
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ðiÞfrt ¼
Z

t
�ðn − 1Þ

2r
ðiÞfrr þ

r
2n

ðiÞS̃0 rr

�
dt: ð6:7Þ

2. ls = 1 (k2s = n) mode

Let ðiÞS̃1 μν ¼
R
Sls¼1

ðiÞS1 μνdnΩ. Since Sij vanishes for
this mode, only ðiÞfab, ðiÞfa, and ðiÞHL exist. We will use
gauge freedom to put ðiÞftt, ðiÞft, and ðiÞHL to zero. Now we
define the following quantities, composed solely of source
terms:

ðiÞS1 ¼
1

rn

Z
r

0

r̄n
�
r̄ffiffiffi
n

p ðiÞS̃1 tt −
1ffiffiffi
n

p
�
r̄
Z

t ðiÞS̃1 rtdt
�0

−
ffiffiffi
n

p �Z
t ðiÞS̃1 rtdt

��
dr̄; ð6:8Þ

ðiÞS2 ¼
�

1

2
ffiffiffi
n

p ðiÞS̃1 rr þ
ðn − 1Þ
2

ffiffiffi
n

p
r

Z
t ðiÞS̃1 rtdtþ

ðn − 1Þ
2r2

ðiÞS1

�
:

ð6:9Þ

We will use the following four equations, namely
ðiÞGrt ¼ 0, ðiÞGtt ¼ 0, ðiÞGrr ¼ 0, and ðiÞGi

i ¼ 0:

n
r
ðiÞ_frr þ

n
r2

ðiÞfrt þ
ffiffiffi
n

p
r

ðiÞ_fr ¼ ðiÞS̃1 rt; ð6:10Þ

n
r
ðiÞf0rr þ

n2

r2
ðiÞfrr þ

2
ffiffiffi
n

p
r

ðiÞf0r þ
n3=2

r2
ðiÞfr ¼ ðiÞS̃tt; ð6:11Þ

2n
r

ðiÞ_frt −
nðn − 1Þ

r2
ðiÞfrr −

2
ffiffiffi
n

p ðn − 1Þ
r2

ðiÞfr ¼ ðiÞS̃rr;

ð6:12Þ

ðiÞ_f0rt þ
ðn − 1Þ

r
ðiÞ_frt −

1

2
ðiÞf̈rr −

ðn − 1Þ
2r

ðiÞf0rr

−
ðn − 1Þffiffiffi

n
p

r
ðiÞf0r −

ðn − 1Þ2
2r2

ðiÞfrr

þ ðn − 1Þ2ffiffiffi
n

p
r2

ðiÞfr ¼
1

n
ðiÞS̃i1 i: ð6:13Þ

We will redefine ðiÞfrt as

ðiÞfrt ¼
rffiffiffi
n

p ðiÞ _ϕ0: ð6:14Þ

Substituting this ansatz in (6.10) and then integrating with
respect to t gives

ðiÞfrr ¼ −
1ffiffiffi
n

p ðiÞϕ0 −
1ffiffiffi
n

p ðiÞfr þ
Z

t r
n

ðiÞS̃1 rtdt: ð6:15Þ

The extra r-dependent integration function can be absorbed
in the definition of ðiÞϕ0. Substituting the expression for

ðiÞfrr from (6.15) in (6.11) allows us to obtain ðiÞfr in terms
of ðiÞϕ0:

ðiÞfr ¼ ðiÞϕ0 þ ðiÞS1: ð6:16Þ

Now, by substituting (6.16) in (6.12), one obtains

ðiÞϕ̈0 ¼ ðiÞS2: ð6:17Þ

Hence from (6.13), we can obtain the following expression
for ðiÞϕ0:

ðiÞϕ0 ¼
ffiffiffi
n

p
r2

2ðn − 1Þ2
�
1

n
ðiÞS̃i1 i þ

r
2n

ðiÞ _̃S1 rt

þ ðn − 1Þ
2r

�
r
n

Z
t ðiÞS̃1 rtdt

�0
þ ðn − 1Þ2

2nr

Z
t ðiÞS̃1 rtdt

þ ðn − 1Þ
2

ffiffiffi
n

p
r

ðiÞS01 −
3ðn − 1Þ2
2

ffiffiffi
n

p
r2

ðiÞS1

−
rffiffiffi
n

p ðiÞS02 −
ðnþ 1Þffiffiffi

n
p ðiÞS2 −

1

2
ffiffiffi
n

p S̈1

�
: ð6:18Þ

Once ðiÞϕ0 is obtained, ðiÞfr, ðiÞfrr, and ðiÞfrt can be
determined using (6.16), (6.15), and (6.14) respectively.

B. Vector perturbations lv = 1 (k2v = n− 1) mode

Let ðiÞS̃ðvÞ1 ia ¼
R
V i
lv¼1

ðiÞS1 iadnΩ be the source associated

with these modes. Since V ij vanishes, only ðiÞfðvÞa exist.

Through a suitable gauge choice, one can put ðiÞfðvÞt to zero.

Thus, from ðiÞGir ¼ 0 one can obtain ðiÞfðvÞr as

∂t
ðiÞfðvÞr ¼ 1

r

Z
t

t1

ðiÞS̃ðvÞ1 irdt
0 þ ðiÞ_fðvÞr ðt1; rÞ; ð6:19Þ

where ðiÞ_fðvÞr ðt1; rÞ is obtained from ðiÞGit ¼ 0 equation,

ðiÞ_fðvÞr ðt1; rÞ ¼
1

rnþ1

Z
r

0

r̄n ðiÞS̃ðvÞ1 itðt1; r̄Þdr̄: ð6:20Þ

VII. SUMMARY AND DISCUSSION

In this article, we have analyzed perturbations of
Minkowski spacetime with a spherical Dirichlet wall
beyond linear order. This is a model where it is possible
to simplify the perturbation equations at arbitrary order, and
the tools and techniques we use can be generalized to study
perturbations of AdS spacetime. We work in weakly
nonlinear perturbation theory and decompose the pertur-
bations into scalar, vector, and tensor spherical harmonics
using the formalism of Ishibashi, Kodama, and Seto. The
system has already been shown to be stable at linear order
[39]. Further, the spectrum for the linear tensor, scalar and
vector perturbations is asymptotically resonant as opposed
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to a resonant spectrum in the case of AdS spacetime.
Therefore, in contrast to AdS where weakly nonlinear
perturbation theory is expected to break down due to
irremovable secular terms, we do not expect secular terms
in this model. We argue that it is possible to make a stronger
prediction—that of nonlinear stability under arbitrarily
small perturbations. This requires writing the perturbation
equations at any order in a vastly simplified form.
Even at linear order, the scalar sector of perturbations

requires careful analysis and we use techniques in [42] to
analyze the equations. This is because the Dirichlet wall
boundary conditions lead to a frequency-dependent boun-
dary condition for the scalar master variable (which
depends on the scalar perturbations), a fact noted in
[39]. Due to these boundary conditions, the scalar eigen-
functions are not orthogonal with respect to the usual inner
product. We define a modified orthogonality relation which
the eigenfunctions satisfy. Going beyond linear order, by
fixing gauge appropriately, we present the (nonhomogene-
ous) perturbation equations at arbitrary order in a simplified
form. The source terms are made of lower order perturba-
tions. At any order, the perturbation consists of scalar,
vector, and tensor-type parts. The equation for each of these
is derived by projecting onto the space of perturbations of
each type. Once these equations are obtained, we analyze
each type separately at arbitrary order. The tensor pertur-
bations are straightforward to analyze. The perturbation at
arbitrary order can be written in terms of the eigenbasis of
linear tensor perturbations with time dependent coeffi-
cients. These time dependent coefficients satisfy a simple
forced harmonic oscillator equation. In the case of vector
and scalar perturbations, we define new shifted master
variables (shifted by source terms) such that these new
variables obey the same boundary conditions as the linear
perturbations. They are then expanded in an eigenbasis of
linear perturbations with time dependent coefficients sat-
isfying a forced harmonic oscillator equation. This (forced
harmonic oscillator) structure of the equations is important
in predicting its nonlinear stability. The system can then be
described by a Hamiltonian that is a perturbation of the
integrable Hamiltonian of linear harmonic oscillators which
leads to forcing terms at a given order from perturbations of
lower order. A similar structure was observed in [6] in the
analysis of the AdS scalar field and the AdS soliton-scalar
field systems. The authors of [6] used specific results from
Hamiltonian perturbation theory (a theorem of Benettin and
Gallavotti [40]) to comment on stability of the perturbed
Hamiltonian. These results are for generic perturbations of
nonresonant linear harmonic oscillators and hence apply
for a wide range of examples, ranging from the AdS
soliton-scalar field system discussed in [6] to the problem
of interest in this paper. The discussion in [6] is lengthy, but
let us summarize some important results: if the spectrum
of the linear harmonic oscillators is nonresonant then there
is longtime stability under arbitrarily small perturbations.

Let ωi, i ¼ 1;…; n denote the frequencies of the linear
oscillators n (assumed large but finite) participating sig-
nificantly in the dynamics and let ω ∈ Rn denote the
frequency vector with components ωi. Let k ∈ Zn − f0g
denote a vector of integers. The condition for a resonance is
thatω · k ¼ 0 for some k ∈ Zn − f0g. Let us now consider
a spectrum that is not resonant. This can be quantified by a
Diophantine condition on ω for all k ∈ Zn − f0g and some
γ > 0, namely:

jω · kj ≥ γ

jkjn ; ð7:1Þ

jkj denoting supremum (over i) of jkij. By choosing large
integers for ki we can get arbitrarily close to the resonance
condition. γ quantifies how close the frequencies are to
being perfectly resonant—asymptotically resonant or nearly
resonant spectra will satisfy this condition for small γ. The
theorem of Benettin and Gallavotti implies that the magni-
tude of perturbation required to trigger a possible instability
depends on γ. The more “nonresonant” the system is, the
more magnitude of perturbation is required to trigger a
possible instability. An asymptotically resonant spectrum
approaches the resonant one for high frequencies. While the
asymptotically resonant spectrum (as opposed to a fully
resonant one) guarantees stability under arbitrarily small
perturbations, in a numerical study, it is possible to see an
instability for perturbations of finite magnitude. This mag-
nitude could be quite small if the initial perturbation involved
high frequencies. This analysis also explains the result of
previous numerical studies of the Einstein-scalar field system
where an instability was seen in a cavity with both Dirichlet
and Neumann boundary conditions. Neumann boundary
conditions resulted in an asymptotically resonant spectrum,
yet an instability was seen [25]. However, a careful analysis
by Maliborski and Rostworowski [14] by decreasing the
amplitude of perturbations revealed that a certain minimum
threshold amplitude of the scalar field was required to trigger
instability in the Neumann case where the spectrum is
asymptotically resonant as opposed to the Dirichlet case
where the spectrum is perfectly resonant and perturbations,
however small, result in black hole formation. This is exactly
as per the predictions of Hamiltonian perturbation theory.
Similarly, for massive scalar fields in a cavity with both
Dirichlet and Neumann boundary conditions, where the
spectrum is asymptotically resonant, an instability is seen for
finite magnitude of perturbations [26]. However, our analysis
only predicts stability for arbitrarily small perturbations, thus
there is no contradiction. We can thus use these results to
predict that the system we study in this paper will exhibit
similar behavior due to an asymptotically resonant spectrum.
Finally, we analyze certain special modes separately.

These are the scalar modes with ls ¼ 0, ls ¼ 1 and the
vector mode with lv ¼ 1 for which the equations become
gauge dependent. By a choice of gauge fixing, we analyze
these perturbations at arbitrary order. It is possible to
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integrate the equations and write the form of the perturba-
tions. As expected, at linear order, these are pure gauge.
One of the interesting questions we have not addressed

and indeed, can be answered only numerically is the fate of
the system for gravitational perturbations of appropriate
magnitude that may trigger instability—whether a rotating
black hole is the result.
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APPENDIX A: GENERAL SECOND ORDER
PERTURBATIONS

We use (2.3) and (2.4) to get the expansions of metric
perturbation δgμν and Christoffel’s symbol to second order.
In the following the superscript on the left-hand side of a
quantity denotes the order of ϵ,

δΓα
μν ¼ ð1ÞΓα

μν þ ð2ÞΓα
μν… ðA1Þ

where

ð1ÞΓα
μν ¼

1

2
ð∇̄μhαν þ ∇̄νhαμ − ∇̄αhμνÞ ðA2Þ

ð2ÞΓα
μν ¼

1

2
ð∇̄μ

ð2Þhαν þ ∇̄ν
ð2Þhαν − ∇̄αð2ÞhμνÞ

−
1

2
hαλð∇̄μhλν þ ∇̄νhλμ − ∇̄λhμνÞ ðA3Þ

δRμν ¼ ð1ÞRμν þ ð2ÞRμν… ðA4Þ

where

ð1ÞRμν ¼ ΔLhμν ¼ 0 ðA5Þ

2ð2ÞRμν ¼ 2ΔL
ð2Þhμν þ

1

2
∇̄αhð−∇̄αhμν þ ∇̄νhαμ þ ∇̄μhανÞ

− hλαð−∇̄λ∇̄αhμν − ∇̄μ∇̄νhλα

þ ∇̄λ∇̄μhαν þ ∇̄α∇̄νhμλÞ

þ ∇̄νhλα∇̄μhλα
2

− ∇̄λhαμ∇̄αhλν þ ∇̄αhμλ∇̄αhλν

− ∇̄λhλαð−∇̄αhμν þ ∇̄νhμα þ ∇̄μhανÞ ðA6Þ
ð2ÞR ¼ ḡμν ð2ÞRμν − hμν ð1ÞRμν

¼ ḡμν ð2ÞRμν: ðA7Þ

The second order in ϵ Einstein’s equation is

2ð2ÞRμν − ð2ÞhμνR̄ − ḡμνð2ÞR − hμνð1ÞR ¼ 0 ðA8Þ

where the last term vanishes because of condition (A5).
Substituting the appropriate expressions in (A8) one finds
the second order equation to be

Δ̃L
ð2Þhμν ¼ ð2ÞSμν: ðA9Þ

APPENDIX B: BOUNDARY CONDITIONS FOR
HIGHER ORDER SCALAR PERTURBATIONS

From using (4.40) and (4.34) we obtain the following
expression for ðiÞFtt:

ðiÞFtt ¼ 2rðiÞF0 þ 2ðn − 1ÞðiÞF −
2k2s
n

ðiÞF −
2k2s
n

ðiÞΨþ r
n

Z
t ðiÞSs1dtþ

ðiÞSs0
k2s

: ðB1Þ

Now we substitute for ðiÞF and ðiÞΨs from (4.42) and (4.37) in the above equation

ðiÞFtt ¼ −
n

k2s − n

�
2r2ðiÞΦ00

s þ 2rð2n − 1ÞðiÞΦ0
s þ 2

�
ðn − 1Þ2 − k2s

n

�
ðiÞΦs

�

þ n
k2s − n

�
2r2ðiÞS00s8 þ 2rð2n − 1ÞðiÞS0s8 þ 2

�
ðn − 1Þ2 − k2s

n

�
ðiÞSs8

�
þ ðiÞB ðB2Þ

where ðiÞB is given by (4.39). We wish to choose a form for ðiÞSs8 which will ensure that the terms in second line of (B2)
vanish. Define

ðiÞSs8 ¼ ðiÞχf ðB3Þ

where

f ¼ r−ð
ksffiffi
n

p þn−1Þ
; ðiÞχ ¼ −

k2s − n
2n

Z
r
�
rð

2ksffiffi
n

p −1Þ
Z

r
r0ð−

ksffiffi
n

p þn−2Þ ðiÞBdr0
�
dr: ðB4Þ
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Substituting (B3) in (B2) one obtains

ðiÞFtt ¼ −
n

k2s − n

�
2r2ðiÞΦ00

s þ 2rð2n − 1ÞðiÞΦ0
s þ 2

�
ðn − 1Þ2 − k2s

n

�
ðiÞΦs

�
þ 2n
k2s − n

�
ðiÞχ

�
r2f00 þ rð2n − 1Þf0

þ
�
ðn − 1Þ2 − k2s

n

�
f

�
þ r2f

�
ðiÞχ00 þ ðiÞχ0

�ð2n − 1Þ
r

þ 2
f0

f

���
þ ðiÞB ðB5Þ

One can easily see that for the choice of f and ðiÞχ given by (B4), the last two lines in (B5) vanish. Hence the expression
for ðiÞFtt is

ðiÞFtt ¼ −
n

k2s − n

�
2r2ðiÞΦ00

s þ 2rð2n − 1ÞðiÞΦ0
s þ 2

�
ðn − 1Þ2 − k2s

n

�
ðiÞΦs

�
: ðB6Þ

Applying Dirichlet condition (2.25) then gives

r2ðiÞΦ00
s þ rð2n − 1ÞðiÞΦ0

s þ
�
ðn − 1Þ2 − k2s

n

�
ðiÞΦs ¼ 0

����
r¼R

: ðB7Þ

The expansion (4.48) ensures that condition (B7) is automatically satisfied. This can be seen as follows:
In terms of expansion (4.48), ðiÞFtt is

ðiÞFtt ¼ −
2n

k2s − n

X∞
p¼0

ðiÞcðsÞp;ls

�
r2eðsÞp;ls

00 þ ð2n − 1ÞreðsÞp;ls
0 þ

�
ðn − 1Þ2 − k2s

n

�
eðsÞp;ls

�
: ðB8Þ

Since eðsÞp;ls
satisfies (3.38), r2eðsÞp;ls

00 ¼ ð−r2ω2 þ k2sÞeðsÞp;ls
− nreðsÞp;ls

0. Hence by the use of this expression in (B8) one obtains

ðiÞFtt ¼
X∞
p¼0

2nðiÞcðsÞp;ls

n − k2s

�
ðn − 1ÞreðsÞp;ls

0 þ
�
−ω2r2 þ ðn − 1Þ

n
ðk2s þ nðn − 1ÞÞ

�
eðsÞp;ls

�
; ðB9Þ

which vanishes at r ¼ R because of (3.39).

APPENDIX C: SECOND ORDER SOURCE TERMS

The expansion of source terms in general is tedious. Nevertheless, here we give an example by considering a simple case.
Suppose we start out with only tensor-type perturbations at the linear level. Then ð2ÞAij is given by

ð2ÞAij¼
X
k1

X
k2

HTk1
HTk2

�
Tkl
k1
ð−DiDjTklk2

þDkDiTjlk2
þDkDjTlik2

−DkDlTijk2
Þ−

DiTkl
k1
DjTklk2

2

þDkTl
ik1
DlTk

jk2
−DkTilk1

DkTl
jk2

�
−rDarDaHTk1

HTk2
γijTkl

k1
Tklk2

−r2DaHTk1
DaHTk2

Tikk1
Tk
jk2

: ðC1Þ

Similarly, ð2ÞAai and ð2ÞAab are

ð2ÞAai ¼
X
k1;k2

�
HTk1

D̄aHTk2
T kl
k1
ð−D̄iTk2kl þ D̄kTk2ilÞ −

1

2
D̄aHTk1

HTk2
Tkl
k1
D̄iTk2kl

�
ðC2Þ

ð2ÞAab ¼
X
k1;k2

��
−HTk1

D̄aD̄bHTk2
− D̄aHTk1

D̄bHTk2
−
1

r
D̄arHTk1

D̄bHTk2
−
1

r
D̄brD̄aHTk1

HTk2

�
T ij
k1
Tk2ij

�
: ðC3Þ
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