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Gravitational perturbations in a cavity: Nonlinearities
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Motivated by recent studies of nonlinear perturbations of asymptotically anti-de Sitter spacetimes, we
study gravitational perturbations of (n + 2) dimensional Minkowski spacetime with a spherical Dirichlet
wall. By considering the tensor, vector, and scalar perturbations on the n sphere, we present simplified
nonhomogeneous equations at arbitrary order in a weakly nonlinear perturbation theory for each sector.
A suitable choice of perturbative variables is required at higher orders to simplify the expression for the
boundary conditions and to expand the variables in terms of linear order eigenfunctions. Finally we
comment on the nonlinear stability of the system. Some of the tools used can easily be generalized to study

nonlinear perturbations of anti-de Sitter spacetime.
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I. INTRODUCTION

The seminal work of Bizon and Rostworowski [1]
demonstrated that four dimensional anti-de Sitter spacetime
(AdS) was nonlinearly unstable to spherically symmetric
massless scalar field perturbations. The endpoint of the
instability was a Schwarzschild-AdS black hole." It was
thus concluded that AdS was unstable for black hole
formation for a large class of arbitrarily small perturbations
and that reflecting boundary conditions played a key role in
causing instability [3]. Later, it was demonstrated in [4] that
the instability was seen in all dimensions. The instability
was also present for complex scalar fields [5] in AdS
spacetime. The necessary conditions for an AdS-like
instability were analyzed in [6]. In [7], turbulent behavior
characterized by a Kolmogorov-Zakharov power spectrum
was uncovered for the Klein-Gordon gravity system.
Noncollapsing solutions in asymptotically AdS spacetimes
were studied in [8—14]. Going beyond Einstein gravity, the
system of a scalar field and gravity with a Gauss-Bonnet
term was analyzed in [15,16]. The AdS instability problem
was also studied in [17-19], using the two-time framework
(TTF) and a careful analysis using rigorous renormalization
group methods [20,21]. Interacting scalar fields in AdS
were studied in [22]. Of particular interest are numerical
studies of nonspherically symmetric collapse in the
Einstein gravity-scalar field system in asymptotically
AdS spacetime [23,24]. A massless scalar field in flat
space enclosed in a spherical cavity was studied as a toy
model for AdS-like boundary conditions and it was shown
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'Funher, it was shown that the Schwarzchild-AdS black hole
was stable for the spherically symmetric Einstein-Klein-Gordon
system [2].
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to lead to a nonlinear instability [25]. The massive scalar
field-gravity system in a cavity in flat space was studied in
[26]. A comprehensive review of work on the instability of
AdS, particularly the scalar field-gravity system can be
found in [27]. Recently, there was also a rigorous proof
of the instability of AdS for a specific Einstein-matter
system—the Einstein-massless Vlasov system in spherical
symmetry [28].

Gravitational turbulent instability was first studied
in AdS in [29]. This uncovered geons—time-periodic,
asymptotically AdS solutions that were stable [29]; see
also [30-37]. Purely gravitational perturbations of AdS
satisfying the cohomogeneity-two biaxial Bianchi IX
ansatz were studied and black hole formation was observed
in [38].

In this work, we depart from the system of gravitational
perturbations of AdS spacetime. Instead, we consider
gravitational perturbations of Minkowski spacetime with
a spherical Dirichlet wall in (rn + 2) dimensions with n > 2.
The boxlike boundary conditions mimic those in AdS
spacetime; however, we find important differences both
from the point of view of stability and in the mathematical
analysis of higher order equations. Linearized perturbations
of this system have been studied in [39] and it has been
shown to be linearly stable. Further, linear perturbations
have an asymptotically resonant spectrum. We extend this
study to the nonlinear regime using weakly nonlinear
perturbation theory. We define appropriate variables at
any order in perturbation theory. We show that they are
expanded in terms of the linear eigenfunctions with
time dependent coefficients obeying forced harmonic
oscillator equations. The forcing terms are comprised of
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lower order perturbations. This structure enables a descrip-
tion of the system through a perturbation of an integrable
Hamiltonian (the Hamiltonian of nonresonant linear har-
monic oscillators)—the perturbation leading to the forcing
terms at higher orders. It is then possible to use specific
results in Hamiltonian perturbation theory to argue that if
the linear level oscillators have frequencies satisfying a
number-theoretic (Diophantine) condition that character-
izes the fact that they are nonresonant(7.1), then the system
is stable [6] for generic perturbations. These results from
nonlinear dynamics [40] were used in [6] to comment on
the stability of the AdS soliton for the gravity-scalar field
system. However, what is important for the purpose of
application of these results is the structure of the equations
for the perturbation variables which is common in both
cases—enabling use of Hamiltonian perturbation theory.
Further, we have an asymptotically resonant spectrum at
the linear level in both cases. Our analysis shows that the
system is nonlinearly stable under arbitrarily small per-
turbations. We also see that an indicator of the magnitude of
the perturbation that may be required to trigger instability is
the deviation of this asymptotically resonant spectrum from
a fully resonant one (which can be quantified in number-
theoretic terms). If the initial data contains high frequen-
cies, this minimum magnitude of perturbation required to
trigger instability could be really small. Thus, numerical
studies with a finite amplitude for perturbations could still
see a nonlinear instability in the case of systems with
asymptotically resonant spectra at the linear level such as
the system in this paper. For example, in [25], an instability
was observed in numerical studies of a massless scalar
field in a cavity in flat space with Neumann boundary
conditions—for which the spectrum is asymptotically
resonant. Maliborski and Rostworowski [14] repeated
the numerical study (with Neumann boundary conditions)
for smaller amplitudes and found that there was indeed a
threshold amplitude of scalar field below which the
instability was not triggered. This implies that there is
stability under arbitrarily small perturbations. So also, in
[26] a massive scalar field in the cavity with both Dirichlet
and Neumann boundary conditions leads to an asymptoti-
cally resonant spectrum at the linear level, with numerical
studies observing an instability for a finite amplitude of
perturbations. However, this does not preclude stability
under arbitrarily small perturbations.

In order to write down the perturbation equations, we use
the gauge invariant formalism developed by Kodama,
Ishibashi, and Seto [41] which we extend to higher order.
We present simplified equations for the tensor, vector, and
scalar (on the n sphere) perturbations. In all cases, there are
subtleties involved in the imposition of Dirichlet wall
boundary conditions at higher orders, and in the analysis
of solutions to the perturbation equations satisfying these
boundary conditions. We analyze these solutions at arbi-
trary order and apply the results in [6] to comment on the

nonlinear stability of this system. Section II describes the
methodology of the perturbation theory analysis at arbitrary
order. A brief summary of the Ishibashi-Kodama-Seto
formalism is also given. The linearized tensor, vector,
and scalar perturbations are analyzed in Sec. III. The scalar
eigenfunctions at linear order satisfy a modified orthogon-
ality relation owing to the appearance of frequency depen-
dent boundary conditions in the scalar sector. Section IV
contains the higher order perturbation equations. By
defining shifted perturbation variables (shifted by source
terms) at higher order when necessary, we can expand the
perturbation variables in terms of the linear order eigen-
functions, with time dependent coefficients obeying a
forced harmonic oscillator equation. Section V is a brief
section on how the various source terms are obtained from
the solutions to perturbation equations at lower orders. In
Sec. VI, we analyze special modes with /; = 0, 1 in the case
of scalar modes and [, = 1 for vector modes. For these
modes, the perturbation equations need appropriate gauge
fixing. The modes can be obtained by solving these
equations and it can be readily seen that at linear order,
these modes reduce to pure gauge as expected. Section VII
contains a summary and discussion of the nonlinear
stability of this system, by using the equations obtained
in the paper and nonlinear dynamics results in [6].
Appendices A and B have detailed computations for some
of the equations in the rest of the paper. Appendix C
contains an explicit evaluation of the second order source
terms in the case when we have only tensor perturbations at
linear order.

II. METHODOLOGY

We use perturbation theory to study gravitational per-
turbations in (n + 2) dimensional Minkowski spacetime
with a spherical Dirichlet wall. For this we need to find
solutions to Einstein’s field equations with A = 0,

G

1
w = Rﬂl/ —Egm/R =0.

(2.1)
We now follow the analysis and partly the notation in
Rostworowski [32]. The “bar” quantities refer to the
background Minkowski metric ds>=—dt* +dr* + r*dQ2,
where dQ? is the metric for the n sphere, n > 2. Since we
are dealing with weakly nonlinear perturbations, we let
9w = Gu + 69, Where

8gu = Y el (2.2)
1<i
Then the inverse metric is given by
g7 = (7" =597 + 50957 05" — -+ )Y
= g% + 597, (2.3)
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The Christoffel symbol is decomposed as

I
D =T +5@" - 576957 + - )

X (vyég/}y + vvégﬁﬂ - vﬁégﬂv)

=T9, + oIy, (2.4)

Similarly the Ricci tensor is decomposed as

R, =R, + V,oI% -V, %, + 6T%8T}, — 5T4,0T%

=R, +6R,,. (2.5)

The Lorentzian Lichnerowicz operator A; is defined as

28, On, = -V°V, 0, - V,V,0h
+ vﬂvamhg + vyv()l(i hz
+ R h¢ + R, DR = 2R 0, (2.6)
We also define a quantity mA,,,, as
U = [e1{=Vl (=57 397" + -+ )
X (V/Aég/lu + vuég/lu - V/légﬂu)]
+VLl(=g76gg" + - )
X (vuégla + vaég/ly - vﬂﬁgﬂa)]
— 261%, 617, + 2617,01%, } (2.7)

where [¢/] f denotes the coefficient of ¢’ in the expansion of
power series Y €'f;. Since the background metric is
Minkowski, the Ricci and the Riemann tensor I_QW and
R"mﬂ vanish. Moreover, the total metric g, is the solution
of the vacuum Einstein’s equation (2.1). Therefore, by
plugging the expressions (2.3), (2.4), and (2.5) in (2.1) and
collecting terms in like powers of €, we obtain

24, 9n,, = s, (2.8)
where A, (), is defined as
28, Ony,, =20, Oy, — 5,570, Dhyy  (2.9)
and the source (S, is given in terms of (4, as
@S, =4, - ! GG VA . (2.10)
2

The background Minkowski metric g, is of the following
form:

ds? = g, d2"dz" = g (y)dy“dy’ + r*(y)dQs., (2.11)

where the metric dQ2

dQ% =y, (w)dw'dw/, (2.12)
is the metric for the n sphere and has a constant sectional
curvature K = 1.

One can use the gauge invariant formalism of Ishibashi,
Kodama, and Seto [41] to study the perturbations, the
difference being that we extend it to higher orders as
well. We associate a covariant derivative each with ds?2,
Gupdy®dy?, and dQ2 which are V,;, D,, and D, respec-
tively. We will also decompose the metric perturbations
(i)hﬂl, according to their behavior on the n sphere i.e., into
the scalar type, S, the vector type, V;, and the tensor type,
T;;. Note that in the following sections, A = D'D; where
raising (and lowering) of Di (and DY) is done with vij- The
scalar harmonics S satisty

(A+K)S =0, (2.13)
with k2 = [ (I, +n—1) where [, =0,1,... from where
one can construct scalar type vector harmonics S;

Si = —leD,-S (2.14)
which satisfy
D'S; = kS (2.15)
as well as scalar type tensor harmonics
| R 1
Si; :k_gDszS"'_VUS (2.16)
which satisfy
Si=0, D;S= ("_1)25_”1{) . (2.17)
Vector harmonics V; are defined by
(A+ )V, =0 (2.18)
with k2 = 1,(l, + n—1) — 1 where [,, = 1,2, ... such that
D;Vi = 0. (2.19)

One can construct the following tensor from the vector
harmonics:

(2.20)

which satisfy
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Vi=0; DV = %M- (2.21)
Tensor harmonics, T;; are defined for n > 2 by

A+ )T, = (2.22)

with k> = I(I +n—1) — 2 where [ = 2,3, .... They satisfy

Ti=0; D,T/=0. (2.23)

Henceforth, we shall consider n > 2. The analysis
that follows can also be done for n =2, the only
change being that we do not have the tensor spherical
harmonics in that case. The metric perturbations are
decomposed as

Ohyy = Z(i)fabks Sk,

kS

(i al_r<z fak§k1+z ak\/kz)
Oy = 2 <Z< T+ 230

k

Tk \/k Wij

+2Z HY Sk ()HLkS}/USk“)>. (2.24)

In the following sections, we drop the subscripts k, k,, and
k, from the metric perturbations to avoid cluttering the
equations.

We now consider these perturbations in presence of a
spherical Dirichlet wall of radius R. We need to fix the
metric induced on a surface of radius r = R, requiring

W, = 0f, = OFY = O, = O = O

— OH, = 0|, _g. (2.25)

However, the metric components are also gauge dependent.

Under an infinitesimal gauge transformation 5z =, ()¢?,
metric perturbation (i>hﬂy transforms as
@, - On,, -V, 0, -v,0,, (2.26)
1.e.,
(i)hab - whab - Da<i)Cb - Db<i)Cm
_ /)
)hal - lhal_ z(>§ _rzDu<é>v
r
Oh;; — On;; — D0, — D¢,
- 2rDa Z:a}/ij (227)

Let ¢, = OT, S and O¢; = r OLS; + r DLV, Thus the
gauge transformations for ()f,, ()f, ()" (@) (T), (i>H(T”>,
()H,, and VH; are

Of p = Of = DT, — DT, (2.28)
. . _ (OL\ k.
0fy = 0, - rDa< ) +=207,,  (229)
r r
. . ko Do
OF, - O, -0 _ZTor, (230
nr r
O _ o 4 ks
_ /L)
(l)ft(zv> N (l)f((;)) _ rDa< L >’ (2.32)
WD — Og® 4 Koo 2.33
T T + 7 ) ( . )
OH; — OH . (2.34)

For all cases except [, =0, 1 and /, = 1 modes, one can
define the following gauge invariant variables:

(hz, — (F0) 4 ki D,OHY, (2.35)
OF 1y = Of 4y + ZD(a(i)Xh);
F = 0Of, + Oy + ;D“r(”Xa, (2.36)
where ()X, is defined as
(x, — kL <(i>fa + kl Du<i>H§f>> . (237)

Since the expressions for A L(l)h/w have already been given
in terms of the gauge invariant variables in [41], one can
similarly get A L(i)h”,, in terms of the ith order gauge
invariant variables VH,, 1z, F , and )F by replacing
Wh,,, by Oh,,. After we have solved for these variables we
will use equations (2.35)—(2.37) to obtain <")h,w. Before we
do so, we can use the gauge freedom to put some terms to

zero. In subsequent sections, we will work in a gauge in
which

Wf, = 0f, =Y =0l =0, (2.38)
(The above gauge choice is the same as used by [42] in
case of vector perturbations and [39] in case of scalar
perturbations.)
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Our strategy will be to first look at the equations for
linearized modes. The spectrum of linear perturbations is an
important indicator of nonlinear stability. If the spectrum is
resonant, and if the higher order perturbation equations
have the appropriate form that leads to energy transfer to
higher frequency modes, there is likely to be an instability
of the kind observed for AdS spacetime [1]. As we showed
in earlier work [6] in the context of the Einstein-
Klein-Gordon system, results from KAM theory indicate
that when the spectrum is not perfectly resonant but only
approximately so, it is stable under arbitrarily small
perturbations. However a relatively small amplitude of
perturbations may trigger instability that can be observed in
numerical studies (as opposed to arbitrarily small pertur-
bations for a fully resonant spectrum). It is possible to
quantify in number-theoretic terms how close the spectrum
is to being resonant. This is an indicator of the magnitude of
perturbation that may be required in order to trigger
instability. A crucial ingredient in [6] was the structure
of the perturbation equations of the Einstein-Klein-
Gordon system in weakly nonlinear perturbation theory.
The scalar field at third order obeys forced harmonic
oscillator equations. The system can then be described
by a Hamiltonian that is a perturbation of an integrable
Hamiltonian (linear harmonic oscillators) and it is possible
to use Hamiltonian perturbation theory to arrive at these
conclusions. There are two questions of interest for our
system: what is the spectrum of the linearized perturba-
tions, and what is the structure of the higher order
perturbation equations? In subsequent sections, we will
address both of these questions. By choosing appropriate
master variables, we simplify the perturbation equations
until the higher order equations for the master variables
resemble those of a forced harmonic oscillator (as in
weakly nonlinear perturbation theory for the FEinstein
gravity-scalar field system).

III. LINEARIZED EQUATIONS

We will first have a look at the leading order equations
in ¢,
WG, = A, Wh,, =0. (3.1)
Henceforth we drop the superscript “(1)” on (l)huv- Based
on the methodology in [41], linear perturbations of flat
space in a cavity with Dirichlet boundary conditions at the
cavity wall were studied in [39]. In the following sub-
sections, we revisit the linearized perturbations before
moving to higher orders. In particular, we are interested
in the spectrum of linearized perturbations as well as the
linear order eigenfunctions as this is important to study the
nonlinear evolution of the perturbations. We use methods of
Takahashi and Soda [42] for simplifying the equations for
vector and scalar perturbations.

A. Tensor perturbations
In this case,
hab = O,

hai=0; by =Y rPHpcTj.

k

(3.2)

Upon substituting (3.2) in the leading order in € Einstein’s
equations, <1)G,w, we obtain the equation governing tensor
type perturbations as given in [41], wherein upon taking
Hp = @7 we get

—r?®; + PO} 4+ nrdy — (I +n—1)d; =0. (3.3)
Equation (3.3) can be put in the form
&, + LD, =0, (3.4)
where
i- -r—lna,(r"a,) +l(l+r+l). (3.5)

The solution to (3.4) is given by
Q7 = Z apx cos(wp it +byy)e, (r),  (3.6)
p=1

where e, (r) is given by

Jy(wpr) (n—1)
e,,’l(r):d,,,lr(n_if)/z; l/:l+ 3 .

(3.7)

Constants a, ) and b, are determined from initial con-
ditions and d,,; is the normalization constant given by

_ V2
R (@, R)

ciated with a mode number p for each [. They
are determined from the Dirichlet boundary condition:
q)T =0atr= R,

. The eigenfrequencies w,,; are discrete and asso-

(3.8)

=0, = ?',
where j, , is the pth zero of a Bessel function of order v.
For large values of p, -eigenfrequencies approach
(p +v/2—1/4) & therefore it is an asymptotically reso-
nant spectrum.
The eigenfunctions e,; form a complete set and are
orthonormal in the space of functions f,z([O, R], r"dr). The
inner product (f, g); is defined as [X f(r)g(r)r'dr.

B. Vector perturbations

The following equations govern the linear vector per-
turbations [41]:
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D,(r"=1z%) =0, (3.9)
oo )]
+(k%—(n— 1))Za 0. (3.10)

r

These, when expanded yield three equations. Of them, two
are independent. The third equation can be obtained from
the first two through a suitable combination. Here we will
use only two of them. One is obtained by expanding
equation (3.9):

. Z
Z,=(n-1>"+2. (3.11)

The other is obtained by making the substitution a = r in
(3.10):

Z

2 _(n—
—&L+@&&Q—&;ﬁ—m

}"2

Z,=0. (3.12)

Next we substitute the expression for Zt from (3.11) in
(3.12), so that we get a second order equation in Z,:

_Z"r+Z/r/+(n_2)Z/r_(lv<lv+n_12)+(n—2))zr
r r

=0. (3.13)

We rewrite Z,y as
Zrkl, == rd)vklv. (314)

Hence upon writing (3.13) in terms of the new variable
®,y,, we obtain the following master equation:

&, +L,®, =0, (3.15)
where L, is defined as
. 1 1,(1, -1
g:_Tavmg+iiiﬁ—l. (3.16)
r r

Let @, = cos(wt + b)¢, (r), so that Eq. (3.15) could be
rewritten as

L,p, = o*¢,. (3.17)
Demanding Dirichlet boundary condition is equivalent to
imposing Z, =0 at » = R. In order to impose this con-
dition, we will write (3.11) in terms of @, to get

Z, = r®, + nd,. (3.18)

Then using the ansatz @, = cos(wt + b)¢,x (r) and then
integrating with respect to ¢, we get

z:éﬁ@;+n¢}mmm+m. (3.19)

Any r-dependent integration constant in the above expres-
sion is put to zero. Hence, if Dirichlet condition on Z, needs
to be satisfied at all times, we require

r¢/v + n¢11 = O|r:R' (320)
The linear stability of the vector modes has been shown in
[39] so we will not repeat the argument here. The

eigenfrequencies are discrete and hence can be associated
with a mode number p for each [,. Hence, we find that

) J L(a) ’ll}r) (n - 1)
Dok, = e;v,l,, = d[f’}” yr(n_f)/z ; v, =1,+ >
(3.21)
where d(;3 is the normalization constant given by
(v) \/Ewp,l,; 2 2 21-1)2
d;, =——" 1)°/4 R)* —v; .
P =T, (g R AT O R =]

(3.22)
The eigenfunctions ¢, = egfg(r) are complete and
form an orthonormal basis in the space of functions
L2([0,R], 7*dr). Therefore, the general solution to (3.15)
is given by

@, =Y aly cos(@, 1+ by el (). (3.23)

p=l '
(v)
rk,
ditions and w,, ; satisfies (3.20). The inner product (f, g),
is defined as [R f(r)g(r)r"dr. Upon substituting for ¢,
from (3.21) in (3.20) we obtain

where a and b,y are determined from initial con-

(n+1)
2

wrl, (or) + Jy (or) =0|,_g. (3.24)

Now we will look at the asymptotic nature of the
frequencies associated with vector modes by considering
the large argument expansion of the Bessel functions,

which is given by

2 ,
Jy, (2) ~ \/Z—ﬂcos <z - y?—%) as z = o0. (3.25)

This tells us that for large modes
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YA, BRI R

where z = wR. It can be seen that the frequencies tend
b, _ 3
to ( P + % - Z) %

C. Scalar perturbations

Using the Ishibashi-Kodama-Seto formalism [41], we
get the scalar perturbation equations. In order to obtain the
master equation, we will use the method followed by
Takahashi and Soda [42]. Scalar perturbations satisfy the
following identity:

2(n=2)F+F¢ =0, (3.27)
which is obtained from (traceless part of) the (1)Gij =0
equation. From ()G,, = 0 one gets

. k2 . 2n .
CF+ S F,—mF = =0, (3.28)
r r r
Similar to [42], we choose
F,, =2r(®, + F), (3.29)

where @, is our master variable. This helps us to integrate
(3.28) with respect to t and get an expression for F,, in
terms of F and ®; which is

242

243
§ @,.
n

F, =2rF' +2F - =SF
n

(3.30)

The extra integration constant, which would be a function
of r, is absorbed in the definition of ®,.
From G,, = 0 one gets

% —1 2n(n + 1
—2nF" +2F (—;+ n(n . )>F,r _2nnt D) g
r r r r
2k2(n—1) 2n(n—1)
+ < - )P =0 (3.31)

Substituting the expression for F,, from (3.30) into (3.31)
gives us an expression for F solely in terms of @ and its
derivative:

k2
F=-"lro,+ (Zgn-1)a,|.
k2 —n n

In the scalar component of MG, = 0 we will substitute for
F¢ from (3.27). This gives

(3.32)

) . 2(n—2
_(nr )Frr+Frt_Flrr+2F/+¥

F=0.

(3.33)

Next, by using )G,, = 0 and (3.27), one gets

.. 2n 2k2 2n(n—1) n
o4 S e L
r I I r
K2 —1 .
n <ﬁ—%>F+7"F, —0. (3.34)

We eliminate F”.,. from (3.34) by using (3.33). This gives

(ks —n)
2

2(ki = n)

2

—onk + F, — F+li,=0. (335)
r

Next, using the expressions for F,,, F,,, and F from (3.29),
(3.30), and (3.32) in (3.35) leads to the second order master
equation for @y ,

. 1,(1 -1
b~ " +L2")q>s =0.  (3.36)
r r
We can then rewrite (3.36) as
&, +L,®, =0, (3.37)

where L, = —£9,(r0,) + ”lj+'>
We substitute the ansatz @, = cos(wt + b)¢, in (3.37)
and get
Lyps = w2¢s- (338)
The eigenfrequencies @ must satisfy the mixed fre-
quency dependent boundary condition obtained by requir-

ing f, (or equivalently F,) to vanish at the boundary
r = R. This is given by

(n—1)r¢), + (—w2r2 +(nn;1)(k§ +n(n - 1))>¢S

= 0|, (3.39)

In [39], the stability under scalar perturbations has been

demonstrated. The eigenfrequencies are discrete and can be

associated with the mode number, say p for each [.

Numerically, it can be seen that the spectrum is asymptoti-

cally resonant and high frequencies approach (p +% —3) Z.
The eigensolutions of Eq. (3.38) are

J, (@, ) (n—1)
_ L _ &) Tu \Wp L7, —
¢‘k‘ o ep,ls<r) - dp,ls pn=1)/2 > vy =l + B
(3.40)
where the constant dS)l is given by
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(s) R 2 R 2|71
d’ = J dr+ J R
Pl [A ‘ Vs (a)sz r)| rar (n _ 1) | Vs (a)[’al.‘ )|

(3.41)

Although the eigenfunctions e;‘;)l‘_ are not orthogonal, they

() () )

satisfy the modified orthogonality relation, (e pid> €ql )50

given by

R n+1
(e = [ el mar G R ®)
0 for
- { ! (3.42)
1 forp=gq

We can write the general solution to (3.38) in terms of a
series expansion of the discrete modes. We use the work
of Zecca [43] which deals with the Bessel equation in a
finite interval with singularity at one end and a eigenvalue
dependent boundary condition, similar to ours, at the
regular end point. He shows that the general solution
can be expanded in a series of Bessel functions within
this finite interval. Therefore, the solution to Eq. (3.37) is

derivative, and which satisfies the same boundary con-
ditions as J, (@, r) (or eif.)lx) can be expanded in a series

of these Bessel functions (or eigenfunctions ‘35:)1 ). Hence
we can write f(r) as

— Zapeﬁ;"jx (3.44)
14
where
R+1
0y = €)= [ e dr s s R ().
(3.45)

We will be using the above results when dealing with
higher order perturbations.

IV. HIGHER ORDER EQUATIONS

The higher order perturbed equations have to be solved
for (i)h/w given a source which is composed of
1,...,(i — 1)th order metric perturbations. For example,

0 ) ; . (2) _
Py, = Z a;)k cos(@p,, 1 + bPJ‘s)e;.)ls(r ), (3.43) the second order perturbed equations '*'G,, = 0 become
p=0
~ 1
@G =A,00p —_Qs =
where aﬁf?ky and b, \ are constants set by initial conditions. G = AL 2 S =0, (4.1)
An expansion theorem in his paper then implies that a
function f(r) in C'[0,1] with square integrable second  where (%S, is
|
1= = = = 1= = = =
@s,, = - 5v 2h(=V*hy,, + Vb + V k) — —vbhﬂ”v hoy = Vh, NV,
+ V1N b+ Vi (=Y hy, + Vb, + VY ,hy,)
+ hﬂ(;(_vllv(ih;w vﬂvyh}m + vlvﬂho’y + v(ivvh‘ﬂl)
1 - - _ 3 -
+ 5w (— > V, hVeh + 2V h*N sh + 3 Vs, VehP?
— Vo hoV h® — 2V WV gh? + 1N,V b+ KONV, — 2haﬁvavah;;>. (4.2)

The details of the calculation are given in Appendix A. Now we look at a general ith order equation where i > 2.
Equation (2.8) can be written in terms of D, and D; operators. Using the expansion of A hy,, given in the appendix of

[41] we obtain the perturbed equations, )G, = 0 in terms of VH

, OF, OF , and OZ,. For y = i, v = j one obtains

Z[—rzD“Da(i)HT —nrD*rD,"Hy + (k* 4+ 2K)H ], Ty

k

+ kz {—
:(1) Z[Q4] yl] k,

—1<i>za)] Vi, ij + Z[—kz[z(n —2)0F 4
k, Kk,

Fel, S

(4.3)
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We do not write the explicit form of [Q,] as it is not required in our calculations and it does not contribute when we finally

project to individual tensor components of each type.
Similarly from the )G,; = 0 equation one gets

1 - _ [z _ [z K—(n-1K,
Elemo oo (5) -0, (52)] 5 0
K r r r r k.

v

| R : _ (1, _ .
+%:P&<FEDAW4WHQ—A%<¢W€>—%n—UDﬁW)‘SW—JWW

s

In order to decompose the various sectors we use the fact that
/Tif\/ijd”Q = /TifS,»jd"Q = /\/ijS,-jd"Q = /\/’Sid"Q =0.
We obtain the tensor equation from (4.3) which is
—?D*D,"H; — nrD*rD,VHy + (k* + 2K)H = / Ty 0S,;d"Q.
Similarly using (4.5) we obtain the two vector equations from (4.3) and (4.4)

1. _ (liz _ (z ky—(n—1K, -
__nDb{rn+2 |:Db< “) _ Da< b>:| } +L(Oza = /\/i{ (l)Sm.d"Q’
r r r r v

2k,
)

mw«ww:/ww%wg
r
For the scalar case we will use the following three equations, which are

NCc

D . . .
L (=D.OF, + D,OF,, + D,F,,)
-

- DD YF 4, + D,D,F; + D,D.VFS + n
K2 . S N (R R
+=5OF,, — D,D,\'F¢ = 2n( D,Dy'F + = D,rD,')F + - D,rD,/'F
r r r
n(n—1)
r2

DerD4rF ., — 2nD¢D OF

- mo
- (DCDd(’)F“’ n TnD"de(Z)FL.d +

2 - - .
—MD%DC(’)F +2(n—1)
r r

(k% —nk) (

—=WF — DD (F4

n- . o= K. _
- ;D”rDc@FZ + r—‘2<l>Fg) Nap = / Sk, V8, d"Q,
U e = (1, _ .
—ky| == Dy (r"2OF,) — rD, (= VF} ) =2(n = 1)D,F | = [ S} US,d"Q,
r r !
—k2[2(n —2)F 4 OF¢] = / Sy 0s,d"Q.
A. Tensor perturbations at higher orders
Let OHpy = Ody. Thus (4.6) becomes

. 1 [ e
o@m+m@n:p/wm%wg
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Condition (2.25) implies that at each order @) should
vanish at the boundary r = R. The set of eigenfunctions
e,;(r) are complete and also satisfy condition (2.25).
Hence, one can expand @7y as

[Se]

(i)q)Tk = Z <i)cp,k(t)ep,l(r)'

p=1

(4.13)

Hence (4.12) can be written as

i 1 ij (i
02, () + 2 e, (1) = <ﬁ [rios,, ep$,<r>>T.
(4.14)

B. Vector perturbations at higher orders

Before we proceed, we will define the following two
quantities:
Wy, = /

(i)VSZ = /

We first expand Eq. (4.8) and obtain the following:

vy 005;,d"Q (4.15)

Vi, 0S,,d"Q (4.16)

(z,

Oz, =(n-1)—L4 0z 4+ —0y. (4.17)

2k,r

(Note that in the preceding equation as well as in the
equations which follow, we drop the subscript k,, in Z,
for convenience.) Next, by making the substitution a = r
in (4.7), we obtain

. (7 2—(n=1).. (i)
-7 +7r0,0, <’> - W(l)zr — _&.
r r r
(4.18)

Now we substitute the expression for (7, from (4.17) in
(4.18) to get

_z 4 ozr 4 =Dy
r
_ (lv(lb +n- 12) =+ (n - 2)) (,’)Zr
I

(i)vs2 <i>vsl !
= - +r .
r 2k, r?

Now we rewrite (/Z,; in terms of a new variable (/@

(4.19)

sk, as

1 )
_ Oy pn=2)
2k,,r”/ Var dr). (4.20)

(i>Zrk,/ = r<<i)q)vk,,

The above definition is crucial, since it enables us to expand
the higher order perturbations () 1k, in terms of the com-

plete set of eigenfunctions e( ) . This will be made clear in a
while. Substitution of (4. 20) 1n (4 19) leads to the following
equation in terms of the variable ¢ >(I)Uky.

. . 1 [y Oy 1\’
(l)q)vkzr + L17(l)®vk7" - ; |: rxz + r<2k :;> :|

[ OV r=2ar
2k, r"

iy [ OV r=2ar
! 2k, r" '

(4.21)

Further simplification of the above equation can be done by
expanding <i)<I>1;kv in the basis of a complete set of functions
(which also satisfy the appropriate boundary condition) say
(@¢p,., as follows:

)i, (1). (4.22)

=30

We substitute for ()Z, from (4.20) in (4.17) and use the
expansion (4.22). The expression for (i)szv then becomes

)kab = Z / (i)Cp,kv(t)dt{r(i)¢g)kv + n(i)¢vk, } (423)
p=1

In the above equation any r-dependent integration constant
is put to zero. Then we apply the Dirichlet boundary

condition that requires ()Z, to vanish at » = R for all times.
This means

g, + nl (4.24)

O|r =R~

Note that the ansatz (4.20) has specifically been chosen so
that the boundary condition takes the above form. Since the

eigenfunctions corresponding to the linear perturbation
¢, = eg,”;(r) (which form a complete set) also satisfy
(4.24), we can choose to expand metric perturbations in this

basis, i.e., choose (), = ¢,. Taking the projection of
@.21) on e}
equation of the form

W2 (e (i)Vsz+ Oy Y/
@i, Cpk, r? 2k, r?

OV, gy

one gets a forced harmonic oscillator

2k, r"
~ [[Ovgrm=2ar]
+L”[ 2k |
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C. Scalar perturbations at higher order

Before we consider the scalar equations we will define
the following quantities:

S, = / Sy 0s,d"Q, (4.26)
s, = / Sk, 7S,,d"Q, (4.27)
S, = / Sk, 8,d"Q, (4.28)
k2 -1 » .
()5, = <_s+ (n )> (s, dr — s,
nr r
r /
+2 <r / (’)Ssldt> : (4.29)
r\n
‘ Si 08" (g N (s
(’)S, f ri s0) 50 4.30
== () - () 6
‘ (s,
S5 = / 0S,,d"Q + —5 (05 = —0 - (431)
ks r
(S = (S5 _§<i>ss4, (4.32)
. S (k2=n) [t 0se 1 .
()Sﬂ: 2n  2nlr /()S‘Yldt—'_ 2n _Tkz,[ﬂ()sﬁ]/'
(4.33)

Similar to the linear case, we need only five equations to get
a master equation governing scalar perturbations at higher
orders. First, we have equation (4.11) which relates
variables VF,,, )F . (through the trace (VF¢) and /F

—k2[2(n = 2)F + OF¢] = (s, (4.34)
For a =r, b =1 in (4.9) one gets
. k2. .2 4
R0p, + 5 0F, - on0F - Z0p = 05, (435)
r r r

Now we write /F,, in terms of the variable ("W, as
OF,, = 2r(%, 4+ OF), (4.36)

where (W _ itself is defined in terms of our master variable
(), as

g =0, — (5.

s S

(4.37)

The expression (S ¢ is defined as

n
X /r [r@k%_]) /r P2 Bdr’} (4.38)
where
n r? Iy k2
(Z)BO’ r) = K2 — |: <k2 (l)SsS) k2 ((n - 1) __> Ss3i|

(OIN
+r/ (08, dt +—22.
n k2

(4.39)

)

The above ansatz ensures that the boundary condition is
devoid of the products of the lower order metric perturba-
tion contributed by the source terms. The details are given
in Appendix B.

We integrate (4.35) with respect to ¢ and get an
expression for (JF,, in terms of (F and V¥, which is

2 2
2 i0pr 12 — 2K () _ 2Ks
n n

0F, =

. t .
(g, 4" / (s, dr.
n
(4.40)

For a = b =t in (4.9) one gets

2
_onlpr 4 Mop ("_2 n @) ()p, _ 200t1) (i
r r

N <2k%(n —-1) 2n(n-1)

- (4.41)

)<i>F _ ()g,,.

Substitution of (4.40) in (4.41) leads to an expression for
(F in terms of ("¢, and its derivatives:

n : k2 . P
“Eon {r()‘{"’ﬁr <n+n—1)<>l}"v—2k%<>ss3].

(4.42)

OF =

Consider the expansion of (4.10) for @ = r in which we
substitute for (VF¢ from (4.34). This gives

OF, 1+ OF o 40 4 21D op

(=2

= s, (4.43)
By making the substitution a = b = r in (4.9) and using
(4.34), one gets

2 _
_onp 4 Mg _ 2K op 20— 1)
r I I

k2 nn-1)\, 2n . ‘
+ <ﬁ_ ( r2 ))(Z)Frr +7(1)Frt = (Z>S‘v5-

Op _ Mo
r rr

(4.44)
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Now, we eliminate (VF"_ from (4.44) by using (4.43), to get

k2 — . 2(k% — ) o\
( sr2 n)(,)Frr_ ( sr2 n)(’>F+§<Z)F”:

—2]’1([)F + (i)Ss6'

(4.45)

Substituting the expression for F,,, WF,  and OF from
(4.36), (4.40). and (4.42) in (4.45) we obtain the following
equation in terms of variable <i)CI)SkS

<l)q)s + I:s(l>¢)s = (i)Ss9v (446)
where (IS is defined as
(i)Ss‘) = (l’>Ss7 + U)S‘sS + I:s(i)SSS' (447)

We can now expand ()@, in the basis of the eigenfunctions

(s)

of the linear perturbation e, () as follows:

Z 171 )

p=0

(4.48)

According to condition (2.25), we require ()F , to vanish at
the boundary r = R, which implies (i)d>skx should satisfy
(see Appendix B for further details)

. . K2\ .
POG! + (20 — 1) + (<n 1P _S> (p, — 0

n

r=R

(4.49)

The expansion (4.48) ensures that this boundary condition
is automatically satisfied; this has been shown in
Appendix B. One can now use (3.42) to show that the

(")c;‘f;: (1) satisfy

(l)C(S) + CUZ

a1, T @41.7¢q) (4.50)

where (...), is defined by (3.45).

V. CALCULATING THE SOURCE TERMS
The source terms (S, depend on (Vh,,,,@h,,....""Vh

Hence, once we calculate @y, O, | and Dy , we

uv

need to use them to get back (i)hﬂy. Since we have chosen
our gauge choice to be (2.38), determining f . , f 5;()
f Ef]'()_, and Hpy, completely fixes the various compo-
nents of Dh,,

Tensor components.—Since by definition, (VH 7y =, ,

determining @, determines Hry.
Vector components.—By definition, <’)Z,kl_ is related to

(), through (3.14) and (4.20) for linear order and higher

orders respectively. ()Z, is related to (VZ,, through
(3.11) and (4.17) for lineaf and higher orders re;pectively.
Hence the vector components are given by (1Z, = ("),

Scalar components.—Once the quantities (JF k, and
components of /F;, ~are determined in terms of |

the scalar components are given by

Of =k,OF, (5.1)
(i)ftt - 1t (52)
. 2 .
(l)frr = rr k_ (r(l) r)/’ (53)
. . r o
(l)frt = (I)Frt - k_ ( )fr (54)

VI. SPECIAL MODES

A. Scalar perturbations /; =0, 1 modes

1. I, =0 mode

In this case, S is constant and hence, S; and S;; vanish.
This means, only ()f,, and (VH, exist. We will use gauge
freedom to put

H, = Of, =0, (6.1)

Let Sy,, = [S;—07S0,,d"Q. We get the following

equations from G, =0, UG, =0, and UG, =0
respectively.
frr = SOrtv (62)
n(n—1)
frr ( frr = S()ll7 (63)
2n nn—1),. e
= >frt - %(l)frr = )SOrr (64)
From (6.2), we can obtain ()f,, as
. LF e .
Wy = [0Syt + O plror). (65)
n n
()f,.(t,,r) can be obtained from (6.3):
L (" Pg (0 2y
frr(tl’ ) = = -1 0 ; SOtt(tl’r)dr' (66)

Whereas, (f,, is given by
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DSy, | dt.  (6.7)

o= [ 0

2.1 =1 (k2=n) mode
Let IS, f S;, 1S, ,,d"Q. Since S;; vanishes for
this mode, only ()f,,, ( f and ‘)HL exist. We will use
gauge freedom to put ()f,,, ()f, and (VH, to zero. Now we

define the following quantities, composed solely of source
terms:

R R G
—/n ( / 08, ,,dt)] dr,

1 .- (n—1) [t (n—1)
g, — | _og, =l / 03, 4t (g
2 |:2\/?l 1rr+ 2\/7”_ 1rt + 2}"2 1
(6.9)
We will use the following four equations, namely
G, =0, UG, =0, UG,, =0, and G! = 0:
n
frr+ 2 lfrt \/_ >f ()Slrt’ (610)
n,. n? . 2\/n . n3? NS
;(”f:r 2 A = O = 08 (61)
1) 2/ =1) (e
frt frr_ (7'2 (>fr:()Srrv
(6.12)
(i)flrt+(n_1)(i)frt lfrr_( ) frr
r
_(”_1)(,') / _( _1)2<i)
Vnr " 2r2 "
(=17 _ Lagi
Uf, =—="81,. 6.13
\/ﬁl‘z fr n 1i ( )
We will redefine ()f,, as
. r
Wf, =—Dg,. (6.14)

NG
Substituting this ansatz in (6.10) and then integrating with
respect to ¢ gives

1. 1. .
e (D — () —08, dt. (6.15
\/ﬁ ¢0 \/ﬁ fr+/n 1rt ( )

The extra r-dependent integration function can be absorbed
in the definition of ()¢,. Substituting the expression for

(i)frr =

()f from (6.15) in (6.11) allows us to obtain (), in terms
f ey

Of = Op, + s, (6.16)
Now, by substituting (6.16) in (6.12), one obtains
Oy = (S,. (6.17)

Hence from (6.13), we can obtain the following expression
for gpy:

Vi = ‘z(ﬁ‘riﬁ 555,
S o) 2
N (n—1) 0§/ — 3(n—1)* 1)2 o
2y/nr N
_%m /2_(”;5)0)52_2\1/71&] (6.18)

Once ()¢, is obtained, )f,, )f, . and (f, can be
determined using (6.16), (6.15), and (6.14) respectively.

B. Vector perturbations I, =1 (k? =n —1) mode
Let ¢ = \/’
with these modes. Slnce V;; vanishes, only (i>fg”)

>Sl id"Q be the source associated
exist.

Through a suitable gauge choice, one can put (f 5”) to zero.

(v)

Thus, from )G;, = 0 one can obtain ()f,"” as

(6.19)

r

ey L[
0,0 = —/ 3 ar + P 1y, ),
I
where () (t,,7) is obtained from )G;, = 0 equation,

i) p(v 1 " ()l =\ J=
OFO (1), 7) :WA 1 O34 (1, F)dF. (6.20)

VII. SUMMARY AND DISCUSSION

In this article, we have analyzed perturbations of
Minkowski spacetime with a spherical Dirichlet wall
beyond linear order. This is a model where it is possible
to simplify the perturbation equations at arbitrary order, and
the tools and techniques we use can be generalized to study
perturbations of AdS spacetime. We work in weakly
nonlinear perturbation theory and decompose the pertur-
bations into scalar, vector, and tensor spherical harmonics
using the formalism of Ishibashi, Kodama, and Seto. The
system has already been shown to be stable at linear order
[39]. Further, the spectrum for the linear tensor, scalar and
vector perturbations is asymptotically resonant as opposed
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to a resonant spectrum in the case of AdS spacetime.
Therefore, in contrast to AdS where weakly nonlinear
perturbation theory is expected to break down due to
irremovable secular terms, we do not expect secular terms
in this model. We argue that it is possible to make a stronger
prediction—that of nonlinear stability under arbitrarily
small perturbations. This requires writing the perturbation
equations at any order in a vastly simplified form.

Even at linear order, the scalar sector of perturbations
requires careful analysis and we use techniques in [42] to
analyze the equations. This is because the Dirichlet wall
boundary conditions lead to a frequency-dependent boun-
dary condition for the scalar master variable (which
depends on the scalar perturbations), a fact noted in
[39]. Due to these boundary conditions, the scalar eigen-
functions are not orthogonal with respect to the usual inner
product. We define a modified orthogonality relation which
the eigenfunctions satisfy. Going beyond linear order, by
fixing gauge appropriately, we present the (nonhomogene-
ous) perturbation equations at arbitrary order in a simplified
form. The source terms are made of lower order perturba-
tions. At any order, the perturbation consists of scalar,
vector, and tensor-type parts. The equation for each of these
is derived by projecting onto the space of perturbations of
each type. Once these equations are obtained, we analyze
each type separately at arbitrary order. The tensor pertur-
bations are straightforward to analyze. The perturbation at
arbitrary order can be written in terms of the eigenbasis of
linear tensor perturbations with time dependent coeffi-
cients. These time dependent coefficients satisfy a simple
forced harmonic oscillator equation. In the case of vector
and scalar perturbations, we define new shifted master
variables (shifted by source terms) such that these new
variables obey the same boundary conditions as the linear
perturbations. They are then expanded in an eigenbasis of
linear perturbations with time dependent coefficients sat-
isfying a forced harmonic oscillator equation. This (forced
harmonic oscillator) structure of the equations is important
in predicting its nonlinear stability. The system can then be
described by a Hamiltonian that is a perturbation of the
integrable Hamiltonian of linear harmonic oscillators which
leads to forcing terms at a given order from perturbations of
lower order. A similar structure was observed in [6] in the
analysis of the AdS scalar field and the AdS soliton-scalar
field systems. The authors of [6] used specific results from
Hamiltonian perturbation theory (a theorem of Benettin and
Gallavotti [40]) to comment on stability of the perturbed
Hamiltonian. These results are for generic perturbations of
nonresonant linear harmonic oscillators and hence apply
for a wide range of examples, ranging from the AdS
soliton-scalar field system discussed in [6] to the problem
of interest in this paper. The discussion in [6] is lengthy, but
let us summarize some important results: if the spectrum
of the linear harmonic oscillators is nonresonant then there
is longtime stability under arbitrarily small perturbations.

Let w;, i =1,...,n denote the frequencies of the linear
oscillators n (assumed large but finite) participating sig-
nificantly in the dynamics and let @ € R" denote the
frequency vector with components w;. Let k € Z" — {0}
denote a vector of integers. The condition for a resonance is
thatw - k = 0 for some k € Z" — {0}. Let us now consider
a spectrum that is not resonant. This can be quantified by a
Diophantine condition on  for all k € Z" — {0} and some
y > 0, namely:

/4

|60'k| Z—nQ
||

(7.1)

|k| denoting supremum (over i) of |k;|. By choosing large
integers for k; we can get arbitrarily close to the resonance
condition. y quantifies how close the frequencies are to
being perfectly resonant—asymptotically resonant or nearly
resonant spectra will satisfy this condition for small y. The
theorem of Benettin and Gallavotti implies that the magni-
tude of perturbation required to trigger a possible instability
depends on y. The more “nonresonant” the system is, the
more magnitude of perturbation is required to trigger a
possible instability. An asymptotically resonant spectrum
approaches the resonant one for high frequencies. While the
asymptotically resonant spectrum (as opposed to a fully
resonant one) guarantees stability under arbitrarily small
perturbations, in a numerical study, it is possible to see an
instability for perturbations of finite magnitude. This mag-
nitude could be quite small if the initial perturbation involved
high frequencies. This analysis also explains the result of
previous numerical studies of the Einstein-scalar field system
where an instability was seen in a cavity with both Dirichlet
and Neumann boundary conditions. Neumann boundary
conditions resulted in an asymptotically resonant spectrum,
yet an instability was seen [25]. However, a careful analysis
by Maliborski and Rostworowski [14] by decreasing the
amplitude of perturbations revealed that a certain minimum
threshold amplitude of the scalar field was required to trigger
instability in the Neumann case where the spectrum is
asymptotically resonant as opposed to the Dirichlet case
where the spectrum is perfectly resonant and perturbations,
however small, result in black hole formation. This is exactly
as per the predictions of Hamiltonian perturbation theory.
Similarly, for massive scalar fields in a cavity with both
Dirichlet and Neumann boundary conditions, where the
spectrum is asymptotically resonant, an instability is seen for
finite magnitude of perturbations [26]. However, our analysis
only predicts stability for arbitrarily small perturbations, thus
there is no contradiction. We can thus use these results to
predict that the system we study in this paper will exhibit
similar behavior due to an asymptotically resonant spectrum.

Finally, we analyze certain special modes separately.
These are the scalar modes with [, =0, [, =1 and the
vector mode with /, = 1 for which the equations become
gauge dependent. By a choice of gauge fixing, we analyze
these perturbations at arbitrary order. It is possible to
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integrate the equations and write the form of the perturba-
tions. As expected, at linear order, these are pure gauge.

One of the interesting questions we have not addressed
and indeed, can be answered only numerically is the fate of
the system for gravitational perturbations of appropriate
magnitude that may trigger instability—whether a rotating
black hole is the result.

where

MR, =Arh,, =0 (AS5)

1= - - }
2@R,, =2A,Pn,, + Evah(—vahﬂb + V,h& 4V, he)
- hla<_vlvahﬂv - vyvyhla
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APPENDIX A: GENERAL SECOND ORDER
PERTURBATIONS (2)R —_ g/w (Z)Rﬂy — hv (I)le
We use (2.3) and (2.4) to get the expansions of metric = g &) (A7)
perturbation &g, and Christoffel’s symbol to second order. e
In thq following the superscript on the left-hand side of @ The second order in e Einstein’s equation is
quantity denotes the order of ¢,
20R,, — P, R—-5,YR—-h,VR=0 (A8)
a a a 12 uv v %
org, = rg, + ry, ... (A1)
where the last term vanishes because of condition (A5).
where Substituting the appropriate expressions in (A8) one finds
1 the second order equation to be
e, = ~(V, he + V,he — V°h,,) (A2)
A S A, ®n, =05, (A9)
a l = a VY a v
(2>r/w =5 (vﬂ(2>hu +V,@p% -V (Z)h,w)
1 _ _ _ APPENDIX B: BOUNDARY CONDITIONS FOR
=3 WVl + Vihy, = Vi) (A3) HIGHER ORDER SCALAR PERTURBATIONS
From using (4.40) and (4.34) we obtain the following
R, = VR, + PRy,... (A4) expression for (VF,:
|
, : N2k 2k o (s
OF, = 2rF 4 2(n = 1)F — nS (O) A n“ Iy %/ S dt + 730_ (B1)
Now we substitute for VF and V¥, from (4.42) and (4.37) in the above equation
) n . . K2\,
OF, =-— [2r2<l>q>g’ +2r(2n - 1)), + 2<(n -1)2 - —“) <t>q>s]
ki—n n
2(i) g (i) ¢! 2 k% (i) (i)
+k2—n 2r*0ST +2r(2n — 1)WSe +2( (n— 1) - Se| + B (B2)

where B is given by (4.39). We wish to choose a form for (i)Ssg which will ensure that the terms in second line of (B2)

vanish. Define

where

fo o, _kon / ' [#&«%—1) / " EE (B gy | dr.

(B3)
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Substituting (B3) in (B2) one obtains

. . . K2\ . 2 .
OF, = - kg’i . [%2(”@2’ +2r(2n = 1)@ +2 ((n - 1)’ - ,;) <’><I>.s} +2 ~ - {“))( [rzf” +r(2n—=1)f
k2 ) ) 2n—1 ! .
e (B ) e ™

One can easily see that for the choice of f and (!)y given by (B4), the last two lines in (B5) vanish. Hence the expression
for OF, is

n

. . . K2\ .
OF, =— [2r2<’>c1>{; +2r(2n = 1)@, +2 ((n -1)2 - —S> <l><1>s] : (B6)

k2 n

s—n

Applying Dirichlet condition (2.25) then gives

. . K2\
r20®Y + r(2n — 1) + <(n —-1)? - —‘) O, =0] . (B7)
n r=R
The expansion (4.48) ensures that condition (B7) is automatically satisfied. This can be seen as follows:
In terms of expansion (4.48), F,, is
i 2” - (s s) s) /! k% s
OF, = 2 Z ( )c;’)ls [rze;),‘y + (2n-— l)re;),x + <(n -1)2 - ;) e;.)ls} ) (B8)
s p=0
Since eﬁf_)l‘\_ satisfies (3.38), rZeS,)z\.H = (-r’w? + k%)egﬁl - nregf’)ll‘/. Hence by the use of this expression in (B8) one obtains
. o 2n(i)c(s>l 0 s (n—1) ;
OF, = Z - /fZ {(n - 1)”;,)4 + <—a)2r2 + T(k% +n(n— 1))> e;.)ls]’ (B9)
p=0 s

which vanishes at r = R because of (3.39).

APPENDIX C: SECOND ORDER SOURCE TERMS

The expansion of source terms in general is tedious. Nevertheless, here we give an example by considering a simple case.
Suppose we start out with only tensor-type perturbations at the linear level. Then (P4, ; is given by

D;T{! DTy,
@Ay=>"> Hp,Hr, (Tﬁll (=DiD;Tu,, +DiD;Tjy, +DiD;Tyy =DyD T, ) ———5—

K K 2
+ DT}, DT ~DTy, Dij.kz) DD Hio Hriry T Ta,, = D*Hing Do T T . (C1)
Similarly, ?)A,; and (*)A,, are
@A, = Z {HTkIDaHTkz—l]—ﬁl, (=D T, + DiTiyir) = %DaHTkIHTkZ—ﬂ—ﬁllDi—ﬂ—kzkl} (€2)

ky.ky

_ _ _ 1 - _ 1. - p
(Z)Aab = Z { <_HTk1DanHTk2 - DaHTlebHTkz —;Da’”HTklDbHTk2 —;Db’”DaHTklHTk2>Ti(/1Tkzij}- (C3)
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