
 

Observability of spherical photon orbits in near-extremal Kerr black holes
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We investigate the spherical photon orbits in near-extremal Kerr spacetimes. We show that the spherical
photon orbits with impact parameters in a finite range converge on the event horizon. Furthermore, we
demonstrate that the Weyl curvature near the horizon does not generate the shear of a congruence of such
light rays. Because of this property, a series of images produced by the light orbiting around a near-extremal
Kerr black hole several times can be observable.
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I. INTRODUCTION

A large number of gravitational lens systems have been
observed in our Universe [1]. In the case of the gravitational
lensing by a black hole, it would be possible that we
observe a series of images produced by a direct light, light
orbiting around the black hole once, twice, and so on. The
series of images are related to the unstable photon orbits
with constant radii around the black hole, the so-called
spherical photon orbits [2]. The photons escaping from the
spherical photon orbits toward an observer make the series
of images.
Very recently, the Event Horizon Telescope Collaboration

reported observations of a bright emission ring in the central
region of M87 [3–8] by using a global very long baseline
interferometry array. It is interpreted that the observed ring is
produced by photons orbiting the supermassive black hole
sitting in the center of M87.
There are a lot of black hole candidates, and many of

them are thought to be rapidly rotating black holes [9].
Therefore, it is important to investigate the gravitational
lensing by rapidly rotating black holes. It is well known that
the radius of the prograde circular photon orbit on the
equatorial plane of a Kerr black hole approaches the
horizon radius in the extremely rotating limit. If we can
observe the images related to such photon orbits, we obtain
information on the near-horizon geometry of the extremal
Kerr black hole.
In a slowly rotating black hole case, it would be hard to

observe the images produced by light orbiting around the
black hole because the brightness of the images decreases
as the light ray winds. The Weyl curvature around the black
hole generates the shear of a congruence of the light rays,

and the shear induces the expansion of the congruence.
Hence, the brightness of the images decreases exponen-
tially as the number of windings increases.
In an extremely rotating black hole case, it is known that

the near-horizon geometry with long throat structure admits
enhanced symmetry [10,11]. Recently, in the context of the
Kerr/CFT correspondence [12,13], the near-horizon region
of the near-extremal Kerr black hole has been an interesting
area that provides new phenomena. Then, we suppose that
spherical photon orbits that exist in the near-horizon region
in the near-extremal Kerr black hole have different proper-
ties from the ones in a slowly rotating black hole [14,15].
We show, in this article, that the Weyl curvature does not
generate the shear of a congruence of the spherical photon
orbits near the horizon of near-extremal Kerr black holes.

II. SPHERICAL PHOTON ORBITS
IN Kerr SPACETIMES

The Kerr metric in the Boyer–Lindquist coordinates
ðt; r; θ;φÞ is given by

gμνdxμdxν ¼ −
ΔΣ
A

dt2 þ Σ
Δ
dr2 þ Σdθ2

þ A
Σ
sin2θ

�
dφ −

2Mar
A

dt

�
2

; ð1Þ

Σ ¼ r2 þ a2cos2θ;

Δ ¼ r2 þ a2 − 2Mr;

A ¼ ðr2 þ a2Þ2 − a2Δsin2θ: ð2Þ

When jaj ≤ M, the metric describes a rotating black
hole with mass M and specific angular momentum a.
The black hole spacetime has the event horizon at
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r ¼ rþ ≔ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
and the inner horizon at

r ¼ r− ≔ M −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
. The event horizon is generated

by the null tangent vector field

χa ¼ ð∂=∂tÞa þΩhð∂=∂φÞa; ð3Þ

where Ωh ¼ a=ðr2þ þ a2Þ is the angular velocity of the
event horizon. We use units in which M ¼ 1 in what
follows.
Let ka be a tangent vector to the null geodesics para-

metrized by an affine parameter λ in the Kerr spacetime.
According to the time translation symmetry and axisym-
metry, E ¼ −kt and L ¼ kφ are constants of motion. In
addition, we have a constant of motion [16],

Q ¼ Kabkakb − ðL − aEÞ2; ð4Þ

where Kab is the Killing tensor defined by

Kab ¼ Σ2ðdθÞaðdθÞb þ sin2θ½ðr2 þ a2ÞðdφÞa − aðdtÞa�
× ½ðr2 þ a2ÞðdφÞb − aðdtÞb� − a2cos2θgab: ð5Þ

Introducing the dimensionless impact parameters

b ¼ L
E
; q ¼ Q

E2
; ð6Þ

for nonvanishing E, since Kabkakb ≥ 0, we have the
inequality

qþ ðb − aÞ2 ≥ 0: ð7Þ

In terms of the parameters b and q, the null geodesic
equations are

kt ¼ _t ¼ 1

Σ

�
aðb − asin2θÞ þ r2 þ a2

Δ
½r2 þ aða − bÞ�

�
;

kr ¼ _r ¼ σr
Σ

ffiffiffiffiffiffiffi
−V

p
;

kθ ¼ _θ ¼ σθ
Σ

ffiffiffiffiffiffiffi
−U

p
;

kϕ ¼ _φ ¼ 1

Σ

�
b

sin2θ
− aþ a

Δ
½r2 þ aða − bÞ�

�
; ð8Þ

where σr, σθ ¼ �1, the dots denote derivatives with respect
to λ, and functions V, U are given by

V ¼ Δ½qþ ðb − aÞ2� − ½r2 þ aða − bÞ�2; ð9Þ

U ¼ cos2θ

�
b2

sin2θ
− a2

�
− q: ð10Þ

From the equation of motion for θ in Eq. (8), U ≤ 0 should
hold, and then, the allowed region of θ is classified into the
following three cases:

ðiÞ If q > 0; then j cos θj ≤ uþ; ð11Þ

ðiiÞ If q ¼ 0 and b2 > a2; then θ ¼ π=2; ð12Þ

ðiiiÞ If q ≤ 0 and b2 ≤ ða −
ffiffiffiffiffiffi
−q

p Þ2;
then u− ≤ j cos θj ≤ uþ; ð13Þ

where

u� ¼ 1ffiffiffi
2

p
a

�
a2 − b2 − q�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 − b2 − qÞ2 þ 4a2q

q �
1=2

:

ð14Þ

In a special case ðb; qÞ ¼ ðasin2θ0;−a2cos4θ0Þ in (iii),
where θ0 is a constant, ka is identified with the principal
null vectors in the Kerr spacetime:

Na
� ¼ r2 þ a2

Δ
ð∂=∂tÞa � ð∂=∂rÞa þ a

Δ
ð∂=∂φÞa: ð15Þ

Hereafter, we focus on the spherical photon orbits [2],
_r ¼ 0 and ̈r ¼ 0, in the range rþ < r or 0 < r < r−. Then,
the radial equation in Eq. (8) leads to the equations

V ¼ 0;
dV
dr

¼ 0: ð16Þ

Solving coupled algebraic equations (16) for b and q, we
obtain

b ¼ 2ð1 − a2Þ
aðr − 1Þ −

ðr − 1Þ2
a

þ 3 − a2

a
; ð17Þ

q ¼ −
4ð1 − a2Þ
a2ðr − 1Þ2 −

12ð1 − a2Þ
a2ðr − 1Þ

þ 3

a2
ð4a2 − 3Þ þ 4

a2
ð1þ a2Þðr − 1Þ

þ 6

a2
ðr − 1Þ2 − 1

a2
ðr − 1Þ4: ð18Þ

Figure 1 shows b and q as functions of the radius
of spherical photon orbits, r, in a near-extremal Kerr
black hole. Since Eqs. (17) and (18) lead to the inequality
b2 > a2 − q, then any spherical photon orbit does not fall
in the case of (iii), and therefore q ≥ 0. It implies that the
spherical photon orbits appear in the range

rþ < r1 ≤ r ≤ r2; 0 < r ≤ r3 < r−; ð19Þ
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where

r1 ¼ 2þ 2 cos

�
2

3
ArccosðaÞ − 2π

3

�
; ð20Þ

r2 ¼ 2þ 2 cos

�
2

3
ArccosðaÞ

�
; ð21Þ

r3 ¼ 2þ 2 cos

�
2

3
ArccosðaÞ þ 2π

3

�
ð22Þ

are solutions to the equation q ¼ 0. In the extremal limit,
a → 1, we see that r1 → rþ and r3 → r−, and then, on the
equatorial plane, there exists a circular photon orbit that
approaches the event horizon.

III. SPHERICAL PHOTON ORBITS THAT
APPROACH THE HORIZON
IN THE EXTREMAL LIMIT

For a spherical photon orbit with a radius r, a set of
impact parameters b and q are given by Eqs. (17) and (18).
Then, the polar angle θ of the orbit varies in the range
θmin ≤ θ ≤ θmax, where θmin =max, are given by

cos θmin =max ¼ uþ: ð23Þ

With respect to r and θmin =max, we plot ðx; zÞ defined by

x ≔ sgnðbÞr sin θmin =max; z ≔ r cos θmin =max ð24Þ

for the spherical photon orbits in a near-extremal black hole
in Fig. 2. There are two closed curves: one is outside the
outer horizon, and the other is inside the inner horizon. In
the extremal limit, a → 1, the curves in Fig. 2 converge to
limit curves consisting of a piece of the circle, r ¼ 1, which
denotes the horizon and the modified cardioid defined by1

r ¼ 1� sin θ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� sin θÞ

p
: ð25Þ

We can classify the spherical photon orbits into two types:
the orbits that approach the unit circle, and the orbits that
approach the modified cardioid in the r − θmin =max plot as
a → 1. We call the former the “horizon class” and the latter
the “cardioid class”. A part of the curve outside the horizon
makes the cardioid together with a part of the curve inside
the horizon. There are the spherical photon orbits of the
horizon class both outside the outer horizon and inside
the inner horizon. The horizon class and the cardioid
class outside the event horizon are joined at the radius
rþcr ≔ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − a2Þ3

p
, while those inside the inner horizon

–4 –3 –2 –1 1
x

–3

–2

–1 

1

2

3
z

FIG. 2. For the spherical photon orbits in a near-extremal Kerr
spacetime with a ¼ 0.999, the relation of r and θmin =max in the
x − z plane is shown, where ðx; zÞ ¼ ðsgnðbÞr sin θmin =max;
r cos θmin =maxÞ. The black solid curve corresponds to the cardioid
class outside the outer horizon, and the black dashed curve does
that inside the inner horizon. The red solid curve and the red
dashed curve denote the horizon class outside the outer horizon
and inside the inner horizon, respectively. The gray dashed-dotted
curves show the outer horizon r ¼ rþ, and the inner one r ¼ r−.

FIG. 1. Plots of b (left) and q (right) as functions of r for a ¼ 0.999. The solid lines show the values of b and q for each radius of
spherical photon orbits in the range 0 < r ≤ r3 and r1 ≤ r ≤ r2.

1The last term in the right-hand side of Eq. (25) modifies a
standard cardioid (see also Ref. [17]).
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are joined at the radius r−cr ≔ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a23

p
. We should note

that the horizon class only appears for a ≥ 1=
ffiffiffi
2

p
.

Here, we concentrate on the spherical photon orbits of
the horizon class in the extremal limit, a → 1. We introduce
two small parameters ϵ and δ defined by

ϵ ≔ 1 − a; δ ≔ r − 1; ð26Þ

where r denotes the radius of spherical photon orbits. The
radii r1 and r3 in Eqs. (20) and (22) are expanded by ϵ as

r1 ¼ 1þ
ffiffiffi
8

3

r
ϵ1=2 þOðϵÞ and

r3 ¼ 1 −
ffiffiffi
8

3

r
ϵ1=2 þOðϵÞ; ð27Þ

respectively. These, together with Eq. (19), imply that

ϵ ≪
ffiffiffi
8

3

r
ϵ1=2 ≤ jδj ≪ 1: ð28Þ

Then, we can expand b and q in terms of ϵ and δ as

b ≃ 2þ 4ϵ

δ
þ 4ϵ − δ2; q ≃ 3 −

8ϵ

δ2
þ 8δ −

24ϵ

δ
: ð29Þ

If we take the limits ϵ → 0 and jδj → 0 under the
condition

ϵ ≪
ffiffiffi
8

3

r
ϵ1=2 ¼ jδj ≪ 1; ð30Þ

then we have

b → 2; q → 0: ð31Þ

On the other hand, if we take the limits ϵ → 0 and jδj → 0
under the condition

ϵ ≪ ϵ1=2 ≪ jδj ≪ 1; ð32Þ

then we have

b → 2; q → 3: ð33Þ

Hence, for the spherical photon orbits that approach the
horizon, δ → 0, in the extremal limit, ϵ → 0, the parameter
b approaches 2, and the parameter q takes a value in the
range 0 ≤ q ≤ 3.
In the extremal limit, a → 1, θmin =max of the spherical

photon orbits of the horizon class is given by

j cos θmin =maxj ¼
1ffiffiffi
2

p
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðqþ 1Þðqþ 9Þ
p

− q − 3
i
1=2

≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffi
3

p
− 3

q
; ð34Þ

where the inequality is evaluated by q ¼ 3. This value was
also found by the analysis of the near horizon of the
extremal Kerr geometry in Refs. [18–21] and Ref. [22] in a
different context.
We can find another cardioid for the spherical photon

orbits in the relation between the impact parameters given
by Eqs. (17) and (18) as curves in the b − ffiffiffi

q
p

plane as
shown in Fig. 3. In the extremal limit, a → 1, the curves
converge to the cardioid that is expressed by using a
parameter ψ as

b − 1 ¼ 4ð1 − cosψÞ cosψ :ffiffiffi
q

p ¼ 4ð1 − cosψÞ sinψ ; ð35Þ

and the straight segment that connects ðb; ffiffiffi
q

p Þ ¼ ð2; ffiffiffi
3

p Þ
and (2, 0). The horizon class corresponds to the straight
segment, while the cardioid class does to the cardioid in
the b − ffiffiffi

q
p

plane. On the curves in Fig. 3, the horizon class
and the cardioid class are joined at critical points b�cr; q�cr
defined by bþcr ≔ 3=a − a, qþcr ≔ 6½2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − a2Þ3

p
�−

9=a2, and b−cr ≔ ð3=aÞ½1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − a2Þ23

p
� − a, qþcr ≔

ð3=a2Þ½1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a23

p
�4, respectively.

FIG. 3. The relation of b and
ffiffiffi
q

p
is shown for spherical photon

orbits in the case of a ¼ 0.999. The solid curve corresponds to the
spherical photon orbits in the range rþ < r1 ≤ r ≤ r2, and the
dashed curve does to the ones in 0 < r ≤ r3 < r−. The photon
orbits with ðb; ffiffiffi

q
p Þ ¼ ðb1; 0Þ; ðb2; 0Þ are the prograde circular

orbit at r ¼ r1 and the retrograde circular orbit at r ¼ r2 on the
equatorial plane, respectively. The photon orbit with ðb3; 0Þ is the
prograde circular orbit inside the inner horizon at r ¼ r3. In the
limit a → 1, the black solid curve and the black broken curve
converge to a cardioid, and the red solid curve and the red broken
curve do to a straight segment.
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IV. WEYL CURVATURE NEAR THE HORIZON OF
A NEAR-EXTREMAL Kerr SPACETIME

We consider a property of the Weyl curvature near the
horizon of the near-extremal Kerr geometry. To introduce a
parallelly propagated tetrad along a null geodesic [23], we
use the conformal Killing-Yano 2-form

h ¼ rðdt − asin2θdφÞ ∧ dr

þ a cos θ sin θ½adt − ðr2 þ a2Þdφ� ∧ dθ ð36Þ

and the Killing-Yano 2-form

f ¼ a cos θðdt − asin2θdφÞ ∧ dr

− r sin θ½adt − ðr2 þ a2Þdφ� ∧ dθ: ð37Þ

These forms yield parallelly propagated unit spacelike
vectors orthonormal to ka,

ma ¼ kbhba − λðξckcÞkaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ccdkckd

p ; na ¼ kbfbaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kcdkckd

p ; ð38Þ

and a null vector external to ka,

la ¼ mbhbaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ccdkckd

p þ Cb
dCdckbkc þ λ2ðξekeÞ2Ccdkckd

2ðCcdkckdÞ2
ka;

ð39Þ

where ξa¼ð1=3Þ∇bhba¼ð∂=∂tÞa is the stationary Killing
vector, Kab ¼ facfbc coincides with the Killing tensor in
Eq. (5), and Cab ¼ hachbc is a conformal Killing tensor.
The parallelly propagated tetrad fka; la; ma; nag along a

null geodesic becomes singular due to an infinite gravita-
tional blue shift if the geodesic approaches the horizon.
Simultaneously, the divergence of kϕ means that a photon
orbits the black hole infinite times during a finite interval
of the affine parameter. In order to estimate the shear of a
congruence of null geodesics while they wind finite times
around the black hole, we should regularize the tetrad even
on the horizon. Then, we introduce

k̃a ¼
ffiffiffiffi
Δ

p
ka; l̃a ¼ laffiffiffiffi

Δ
p : ð40Þ

Note that k̃a and l̃a are parallelly propagated if we restrict
the null geodesics to spherical photon orbits.
We evaluate the tetrad components of the Weyl

tensor Ck̃ABk̃ ≔ Cabcdk̃
aðeAÞbðeBÞck̃d on the spherical pho-

ton orbits, where ðe1Þa ¼ ma and ðe2Þa ¼ na. Using
Eqs. (17) and (18), we have

Ck̃11k̃ ¼ −Ck̃22k̃ ¼
12r3Δ2½5ðr2 − a2cos2θÞ2 − 4r4�

ðr − 1Þ2Σ5
; ð41Þ

Ck̃12k̃ ¼ Ck̃21k̃

¼ 12ar2Δ2 cos θ½5ðr2 − a2cos2θÞ2 − 4a4cos4θ�
ðr − 1Þ2Σ5

:

ð42Þ

It is clear that these Weyl components are nonvanishing for
the spherical photon orbits of the cardioid class, where
r > 1. In contrast, for the spherical photon orbits of horizon
class, taking the limit ϵ → 0 and δ → 0, we find

Ck̃11k̃ ¼ −Ck̃22k̃

≃
12ð1 − 10cos2θ þ 5cos4θÞ

ð1þ cos2θÞ5 ðδ2 − 4ϵÞ → 0; ð43Þ

Ck̃12k̃ ¼ Ck̃21k̃

≃
12 cos θð5 − 10cos2θ þ cos4θÞ

ð1þ cos2θÞ5 ðδ2 − 4ϵÞ → 0:

ð44Þ

With the assumption that the congruence is twist-free,
the evolution of the expansion, Θ, and the shear, σAB, of a
congruence of spherical photon orbits in Kerr spacetimes
are determined by

d

dλ̃
Θ ¼ −

Θ2

2
− σABσAB; ð45Þ

d

dλ̃
σAB ¼ −ΘσAB þ Ck̃ABk̃; ð46Þ

where λ̃ is a affine parameter on the spherical photon orbit.
Then, Eqs. (43) and (44) mean that the Weyl curvature does
not produce the shear of a congruence of spherical photon
orbits of the horizon class in near-extremal Kerr black
holes. Hence, if the congruence has the initial conditions
Θ ¼ 0 and σAB ¼ 0, then Θ and σAB remains zero along
the orbit.
In the extremal limit, a → 1, we see, from Eqs. (8) and

(40), that k̃a of a spherical photon orbit of the horizon class
approaches the horizon generator χa, given by Eq. (3). On
the other hand, the regularized outgoing principal null
vector ðΔ=2ÞNaþ on the horizon is proportional to χa.
Although ðΔ=2ÞNaþ and k̃a are characterized by different
values of the constants of motion ðb; qÞ, both vectors
approach the unique null vector on the event horizon χa in
the limit a → 1 and r → 1. Therefore, we can understand
that the spherical photon orbit of the horizon class is shear-
free in this limit from the fact that the principal null
geodesic is shear-free in the Kerr spacetime, which is
classified in Petrov type D.
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V. SUMMARY AND DISCUSSIONS

Vanishing shear of a congruence of the spherical photon
orbits of the horizon class is interesting from the observa-
tional point of view. An image of a compact source through
a congruence of light rays in the horizon class around a
near-extremal Kerr black hole can keep its brightness even
if the photons orbit around the black hole many times, and
then, it would be observable. For extended sources, the
spherical photon orbits correspond to the bright border of
the black hole shadow [3–8,18,24–27]. In this case, photon
orbits of the horizon class and the ones of the cardioid class
would make high contrast of brightness of the shadow
border for an equatorial observer. It is an interesting and
important next work to clarify the relation quantitatively
between the contrast and spin parameter of the black hole.
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[13] G. Compére, Living Rev. Relativity 15, 11 (2012); 20, 1
(2017).

[14] S. E. Gralla, A. Lupsasca, and A. Strominger, Mon. Not. R.
Astron. Soc. 475, 3829 (2018).

[15] A. Lupsasca, A. P. Porfyriadis, and Y. Shi, Phys. Rev. D 97,
064017 (2018).

[16] B. Carter, Phys. Rev. 174, 1559 (1968).
[17] O. Y. Tsupko, Phys. Rev. D 95, 104058 (2017).
[18] J. M. Bardeen, Timelike and null geodesics in the Kerr

metric, in Black Holes (Les Astres Occlus), edited by C.
Dewitt and B. S. Dewitt (Gordon and Breach, NewYork,
1973), pp. 215–239.

[19] A. M. Al Zahrani, V. P. Frolov, and A. A. Shoom, Int. J.
Mod. Phys. D 20, 649 (2011).

[20] S. Hod, Phys. Lett. B 718, 1552 (2013).
[21] A. P. Porfyriadis, Y. Shi, and A. Strominger, Phys. Rev. D

95, 064009 (2017).
[22] T. Harada and M. Kimura, Phys. Rev. D 83, 084041 (2011).
[23] D. Kubiznak, V. P. Frolov, P. Krtous, and P. Connell, Phys.

Rev. D 79, 024018 (2009).
[24] P. J. Young, Phys. Rev. D 14, 3281 (1976).
[25] H. Falcke, F. Melia, and E. Agol, Astrophys. J. 528, L13

(2000).
[26] S. Doeleman et al., Nature (London) 455, 78 (2008).
[27] S. S. Doeleman et al., Science 338, 355 (2012).

IGATA, ISHIHARA, and YASUNISHI PHYS. REV. D 100, 044058 (2019)

044058-6

https://doi.org/10.12942/lrr-1998-12
https://doi.org/10.1023/A:1026286607562
https://doi.org/10.3847/2041-8213/ab0ec7
https://doi.org/10.3847/2041-8213/ab0c96
https://doi.org/10.3847/2041-8213/ab0c57
https://doi.org/10.3847/2041-8213/ab0e85
https://doi.org/10.3847/2041-8213/ab0f43
https://doi.org/10.3847/2041-8213/ab1141
https://doi.org/10.1007/s11214-013-0006-6
https://doi.org/10.1086/151796
https://doi.org/10.1086/151796
https://doi.org/10.1103/PhysRevD.60.104030
https://doi.org/10.1103/PhysRevD.60.104030
https://doi.org/10.1103/PhysRevD.80.124008
https://doi.org/10.1103/PhysRevD.80.124008
https://doi.org/10.12942/lrr-2012-11
https://doi.org/10.1007/s41114-017-0003-2
https://doi.org/10.1007/s41114-017-0003-2
https://doi.org/10.1093/mnras/sty039
https://doi.org/10.1093/mnras/sty039
https://doi.org/10.1103/PhysRevD.97.064017
https://doi.org/10.1103/PhysRevD.97.064017
https://doi.org/10.1103/PhysRev.174.1559
https://doi.org/10.1103/PhysRevD.95.104058
https://doi.org/10.1142/S0218271811018986
https://doi.org/10.1142/S0218271811018986
https://doi.org/10.1016/j.physletb.2012.12.047
https://doi.org/10.1103/PhysRevD.95.064009
https://doi.org/10.1103/PhysRevD.95.064009
https://doi.org/10.1103/PhysRevD.83.084041
https://doi.org/10.1103/PhysRevD.79.024018
https://doi.org/10.1103/PhysRevD.79.024018
https://doi.org/10.1103/PhysRevD.14.3281
https://doi.org/10.1086/312423
https://doi.org/10.1086/312423
https://doi.org/10.1038/nature07245
https://doi.org/10.1126/science.1224768

