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In the late inspiral phase, gravitational waves from binary neutron star mergers carry the imprint of the
equation of state due to the tidally deformed structure of the components. If the stars contain solid crusts,
then their shear modulus can affect the deformability of the star and, thereby, modify the emitted signal. We
investigate the effect of realistic equations of state (EOSs) of the crustal matter, with a realistic model for the
shear modulus of the stellar crust in a fully general relativistic framework. This allows us to systematically
study the deviations that are expected from fluid models. In particular, we use unified EOSs, both
relativistic and nonrelativistic, in our calculations. We find that realistic EOSs of crusts cause a small
correction, of ∼1%, in the second Love number. This correction will likely be subdominant to the statistical
error expected in LIGO-Virgo observations at their respective advanced design sensitivities, but rival that
error in third generation detectors. For completeness, we also study the effect of crustal shear on the
magnetic-type Love number and find it to be much smaller.
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I. INTRODUCTION

The detection of gravitational waves (GWs) from the
binary neutron star (BNS) merger event GW170817 has
ushered in a new probe for constraining the equation of
state (EOS) of neutron stars [1–5]. Post-Newtonian theory
predicts that the inspiral signal from BNSs will carry an
imprint of the EOS of neutron stars [6–9]. This result has
been vetted by numerical relativity simulations as well. One
can use this imprint to study the properties of dense matter
far from the nuclear saturation density with an event having
a significantly high signal-to-noise ratio in the future
generation of detectors [10]. Neutron stars are also believed
to have a solid crust as their outermost layers [11]. The
effect of the crust is a crucial ingredient for probing nuclear
physics through GWs. The pioneering work of Carter and
collaborators that introduced the theory of elastic solids in
general relativity (GR) [12,13] has paved the way for
studying the effect of NS crust in a consistent relativistic
framework. Many of the studies concerning the NS
perturbation incorporating crust elasticity have used the
Cowling approximation [14,15]. By contrast, there exist
only a few studies that have accounted for full GR effects in
the analysis [16,17].
In one of the first attempts in this direction, Penner et al.

tried to extract tidal information by employing an elastic
crust [18] and followed it up in another work to study the
crustal failure during BNS inspiral [19]. However, they

used mostly modest details of dense matter and rudimen-
tary crust models. Therefore, the tidal behavior of different
crust models inspired from various realistic nuclear inter-
actions has not been very clear from their results. At this
point, it should be mentioned that there have been other
studies that investigate the tidal deformability of a solid
quark star using a similar GR perturbative framework
[20,21]. The point of interest in them is mostly the
phenomenology of a solid core of a star forming due to
a deconfinement phase transition at the center. In our case,
we solely focus on the effect of a solid crust encapsulating a
fluid core.
The elastic properties of a NS crust strongly depend on

the composition of matter across a range of subnuclear
densities. In the outer crust, the nuclei are arranged in the
form of a body-centered-cubic lattice that is embedded in a
noninteracting and degenerate electron gas [22,23]. As the
density increases with depth, the neutron-drip point
(∼3 × 10−4 fm−3) is reached, which signals the beginning
of the inner crust. In this region, the neutron-rich nuclei are
arranged as a lattice immersed in interpenetrating gas of
free neutrons and electrons [24–27]. The shear modulus is
also higher in the inner crust. Thus, the inner crust
contributes the most towards the tidal response due to
shear. This region extends till the crust-core transition
density (∼8 × 10−2 fm−3). Complex structures (e.g., rod,
slab, bubble, etc.—collectively known as nuclear pasta) are
expected to occur in the inner crust as the matter gradually
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changes from crystalline to homogeneous phase, with
increasing density [28–31]. Beneath the inner crust, the
outer core starts, with uniform nuclear matter. As the
density grows even higher, one reaches the inner core that
can have superfluid neutrons and, perhaps, even exotic
matter like strange baryons, meson condensates, quark
matter, etc., [32,33]. The characteristics of the matter in the
core is highly speculative. Additionally, the EOS of the
crust is qualitatively different and represents different
physical conditions than that in the core. Therefore, one
has to rely on proper matching of both EOSs at the crust-
core interface. This is very crucial as it has been found
that a proper thermodynamically consistent matching is
required to avoid large uncertainties on the macroscopic
properties of the star [34]. Even then there might be some
ambiguity due to different choices of crust-core transition
density. The best way is to use unified EOS models where
the EOSs of the crust and the core are calculated within the
same underlying theory. Hence, we employ unified EOSs
in our work.
The main aim of this paper is to provide a comprehensive

picture of the interplay between the perturbative response
of the elastic crust of a NS and the nuclear physics of the
constituents of the crustal matter using several unified EOS
models. We have reworked the formalism of Penner et al.
[18] using the analysis of the perturbed quantities from
Finn [17]. We find that realistic EOSs of crusts, with a
nonzero shear modulus, cause a small correction, of ∼1%,
in the second Love number. This correction will likely be
subdominant to the statistical error expected in LIGO-Virgo
observations at their respective advanced design sensitiv-
ities, but rival that error in third generation detectors.
The paper is organized as follows. In Sec. II, we discuss

the formalism for tidal deformation and derivation of the
Love numbers in elastic relativistic stars. Thereafter, we
present an overview of the EOS used in our calculation
in Sec. III. We discuss our results in Sec. IVand summarize
in Sec. V. Throughout our analysis we have assumed
c ¼ G ¼ 1.

II. ANALYTICAL SETUP

In this section, we present the analytical formulation of
our work. Our focus is to calculate the tidal deformation of
neutron stars with a solid crust. A solid crust supports shear
stress and as a result two different types of pulsation mode
arise. The odd parity modes are called torsional modes,
which creates twist in the star. These were first discussed in
1983 by Schumaker and Thorne [16]. Then in 1990 Finn
[17] presented a new set of even parity type modes for a
solid star. Since our focus is to calculate the tidal defor-
mation of a neutron star we only need static perturbation
equations which are basically zero frequency modes of
pulsation problem. The set of static polar perturbation
equations for a solid star are first given by Penner et al.
[18]. However, we found some inconsistencies in their

equations, in particular, they do not match with the zero
frequency limit of pulsation equations given by Finn [17].
The reason behind this is that the form of the perturbed
stress-energy tensor considered by Penner et al. was
incorrect. One can simply see this from a dimensional
analysis: For example, the ½θθ� or ½ϕϕ� component of the
perturbed stress-energy tensor has a factor missing with
dimensions of ½Length�2. The ½rθ� component of the
perturbed stress-energy tensor has a similar dimensional
error. These errors got propagated to their perturbed
Einstein equations and consequently affect their results.
Recently, Lau et al. [21] has also pointed out same sort of
inconsistencies. Therefore, we rederive all the equations in
this work. Throughout the paper, we follow the notation of
Thorne and Campolattaro [35] as was also adopted by Finn
[17], so that we can easily verify our equations with that of
Finn’s at zero frequency limit.
Our aim is to quantify the effect of elasticity of crust in

the tidal deformability of neutron stars. For this we first
calculate the background of the star by solving the standard
Tolman-Oppenheimer-Volkoff (TOV) equation. In the next
step we consider a static linear perturbation of this back-
ground model which takes into account elastic crust. To
study the linear perturbation we expand each component of
the fluid displacement vector and perturbed metric in terms
of spherical harmonics. Each spherical harmonics is char-
acterized by l,m and parity, which can be either even ð−1Þl
or odd ð−1Þlþ1. Under small amplitude motions these two
parity decouple from each other and, hence, can be treated
separately. Here we consider both cases individually and
compute the deviation in Love number.

A. Background problem

The equilibrium of a static, spherically symmetric
relativistic star is given by

ds2 ¼ gαβdxαdxβ

¼ eνðrÞdt2 − eλðrÞdr2 − r2dθ2 − r2sin2θdϕ2; ð1Þ

where ν and λ are two metric functions, and λ can be
expressed in terms of mass mðrÞ inside a radius of r,

eλðrÞ ¼
�
1 −

2mðrÞ
r

�
−1
: ð2Þ

Here we are interested in neutron stars which have a fluid
core and a solid crust. We assume that in equilibrium
configurations the contribution of shear stress due to the
presence of solid crust vanishes [17,18]. In reality, this
assumption is not necessarily correct. But since we are
interested in small amplitude perturbation we can think that
the background shear is almost negligible and its contri-
bution is important only in the perturbed configuration.
Therefore, the contribution of shear stress only enters
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through the perturbed stress-energy tensor. The advantage
of this assumption is that it makes our background problem
very simple as we can now use the perfect fluid stress-
energy tensor to model the background star,

Tαβ ¼ ðρþ PÞuαuβ − Pgαβ; ð3Þ

where uα, ρðrÞ and PðrÞ denote fluid 4-velocity, energy
density and pressure, respectively, inside the star. Solving
the Einstein equation for this equilibrium configuration we
arrive at the TOV equation,

dPðrÞ
dr

¼ −
½ρðrÞ þ PðrÞ�½mðrÞ þ 4πr3PðrÞ�

r½r − 2mðrÞ� ; ð4Þ

dνðrÞ
dr

¼ −
1

ρðrÞ þ PðrÞ
dPðrÞ
dr

; ð5Þ

dmðrÞ
dr

¼ 4πr2ρðrÞ: ð6Þ

For a cold neutron star it is reasonable to assume that
this fluid does not exchange heat with the surroundings.
Therefore, one can take the EOS to be a zero-temperature
barotrope: P ¼ PðρÞ. Given the EOS of neutron stars,
Eqs. (4) and (6) can be solved to obtain their mass-radius
relationship.

B. Even parity perturbation

1. Fluid perturbation equations

First we consider l ¼ 2, static, even parity perturbations
in the Regge-Wheeler gauge. Since we are only interested
in quadrupole deformation, the l ¼ 2 case is considered
from the beginning. Also we further simplify the equation
of motion by choosing spherical harmonics with m ¼ 0.
Under these assumptions the perturbed metric becomes

hαβðrÞ ¼

0
BBBBB@

H0ðrÞeν 0 0 0

0 H2ðrÞeλ 0 0

0 0 r2KðrÞ 0

0 0 0 r2sin2θKðrÞ

1
CCCCCA

× P2ðcos θÞ: ð7Þ

The contravariant component of the fluid displacement
field takes the form

ξr ¼ e−λ=2

r2
WP2ðcos θÞ; ð8Þ

ξθ ¼ −
V
r2
∂θP2ðcos θÞ: ð9Þ

For the case of a perfect fluid all the off-diagonal com-
ponents of the perturbed stress-energy tensor vanish. The
nonvanishing components of the perturbed stress-energy
tensor are

δT0
0 ¼ δρ;

δTi
i ¼ −δP:

For a barotrope we can assume the following form of
perturbed pressure:

δP ¼ dP
dρ

δρ ¼ c2sδρ;

where c2s is the speed of sound inside the star.
The set of equations which describes the fluid problem is

given by

W0 ¼ r2eλ=2

2
ð−K þH0Þ þ

3W
r

þ 3Veλ=2; ð10Þ

V 0 ¼ eλ=2W
r2

þ 2V
r
; ð11Þ

K0 ¼ H0ν
0 þH0

0; ð12Þ

H00
0 þH0

0

�
2

r
þ eλ

�
2mðrÞ
r2

þ 4πrðP − ρÞ
��

þH0

�
−
6eλ

r2
þ 4πeλ

�
5ρþ 9Pþ ρþ P

cs2

�
− ν02

�
¼ 0;

ð13Þ

where the prime denotes the derivative with respect to r.
Basically, only a single differential equation, namely ofH0,
is sufficient to determine the tidal Love number of a fluid
star. The rest of the three coupled differential equations are
needed just to join the fluid core of the star with the
solid crust.

2. Elastic perturbation equations

We assume our background star to be relaxed and
unstrained. An elastic crust does not affect the equilibrium
model. The contribution of elasticity comes only through
the perturbed stress-energy tensor. Therefore, the perturbed
stress-energy tensor in the solid medium becomes

δTαβ ¼ δTfluid
αβ þ δΠαβ;

where δΠαβ is the anisotropic stress-energy tensor. A
detailed derivation calculating this anisotropic stress-
energy tensor is given by Finn and Penner and co-workers

]17,18 ]. The nonvanishing components of δΠαβ are [36]
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δΠr
r ¼ AYlm ¼ 2μ

3

�
K −H2 þ 2re−λ=2

�
W0

r3
−
3W
r4

�

−
lðlþ 1ÞV

r2

�
Ylm; ð14Þ

δΠr
A ¼ BYlm;A ¼ μ

�
e−

λ
2

r2
W − r2e−λ

�
V 0

r2
−
2V
r3

��
Ylm;A;

ð15Þ

δΠA
B ¼ 2μVYlmjAB þ μ

3

�
H2 − K − 2re−λ=2

�
W0

r3
−
3W
r4

�

− 2
lðlþ 1ÞV

r2

�
δABYlm; ð16Þ

where A and B run over the coordinates θ and ϕ. The
vertical denotes covariant derivatives on the two sphere.
Also we have defined two terms A and B which are related
to the radial and tangential components of the anisotropic
shear stress tensor. Now Eqs. (14) and (15) can be used to
integrate W and V (only the l ¼ 2, m ¼ 0 case has been
considered here):

W0 ¼ r2eλ=2

2

�
3

2μ
A − K þH0

�
þ 3W

r

þ ð16πμr2 þ 3ÞVeλ=2; ð17Þ

V 0 ¼ eλ=2W
r2

þ 2V
r

−
Beλ

μ
: ð18Þ

In the Regge-Wheeler gauge the perturbed number density
takes the form [35]

Δn
n

¼
�
−
e−λ=2

r2
W0 −

6V
r2

þH2

2
þ K

�
; ð19Þ

and the corresponding Lagrangian changes in density and
pressure are

Δρ ¼ ðρþ PÞΔn
n

; ð20Þ

ΔP ¼ c2sΔρ: ð21Þ

The Lagrangian change in pressure is related to the
Eulerian change as

ΔP ¼ δPþ ξrP0 ¼ δP −
ðρþ PÞν0

2r2
e−λ=2W: ð22Þ

Combining Eqs. (20)–(22) we get an expression for the
perturbed Euler pressure:

δP ¼ ðPþ ρÞc2s
�
−

3

4μ
Aþ 3

2
K −

9V
r2

þ e−λ=2

r3

�
−3þ rν0

2c2s

�
W

�
: ð23Þ

The ½rr� component of the perturbed Einstein tensor gives
another expression for δP:

16πr2eλðδP−AÞ ¼ 4eλK −H0½6eλ − 2þ r2ðν0Þ2�− r2ν0H0
0

− 16πμVr2ðν0Þ2 þ 16πeλrBð2þ rν0Þ:
ð24Þ

By solving these two algebraic equations, Eqs. (23) and
(24), we calculate δP and A. The ½rθ� component leads to
the equation of motion for K:

K0 ¼ H0ν
0 þH0

0 þ
16πμðrν0 þ 2ÞV

r
− 16πBeλ: ð25Þ

Subtraction of the ½ϕϕ� component from the ½θθ� compo-
nent leads to

H2 ¼ H0 þ 32πμV: ð26Þ

We write the sum of the ½θθ� and ½ϕϕ� components in terms
of A and B:

−δP ¼ e−λ

16πr
ðν0 þ λ0ÞH0 −

4μV
r2

−
B
2r

ð4þ rλ0 þ rν0Þ

− B0 þ A
2
: ð27Þ

We can use this equation to integrate B:

B0 ¼ e−λ

16πr
ðν0 þ λ0ÞH0 −

B
2r

ð4þ rλ0 þ rν0Þ − 4μV
r2

þ δPþ A
2
: ð28Þ

If we take the trace of the perturbed Einstein equation we
arrive at a second order equation for H0:

− r2H00
0 þ

�
1

2
rλ0 − rν0 − 2

�
rH0

0 þ r2ν0K0 −
1

2
r2ν0H0

2

þ 6eλH0 þ ½2ðeλ − 1Þ − rðλ0 þ 3ν0Þ�H2

¼ −8πr2eλð3δPþ δρÞ: ð29Þ

After plugging Eqs. (25) and (26) into the above equation
we get

BISWAS, NANDI, CHAR, and BOSE PHYS. REV. D 100, 044056 (2019)

044056-4



− r2H00
0 þ

�
1

2
rðλ0 − ν0Þ − 2

�
rH0

0 þ ½6eλ þ 2ðeλ − 1Þ − rðλ0 þ 3ν0Þ þ r2ðν0Þ2�H0

¼ 8π

�
−r2eλð3δPþ δρÞ þ 8μ

�
1 − eλ þ r

�
ν0 þ 1

2
λ0
�
−
1

4
ðrν0Þ2

�
V

þ 2r2ν0ðμVÞ0 þ 2r2ν0Beλ
�
: ð30Þ

The five differential equations (17), (18), (25), (28) and
(30) given above together with two algebraic equations (23)
and (24) form a complete set of equations which describe
the evolution of perturbed quantities in the elastic medium
of the star.

3. Boundary condition at center and stellar surface

At the center of the star, all the perturbed quantities must
be regular. For our study we take the core of the star to be
fluid, for which the boundary conditions were analyzed by
Thorne and Campolattaro [35]. Here we just summarize
their result. All the perturbed quantities are expanded in
Taylor series about r ¼ 0 as

H0 ¼ rl½Hð0Þ
0 þHð2Þ

0 r2 þ…�; ð31Þ

K ¼ rl½Kð0Þ þ Kð2Þr2 þ…�; ð32Þ

W ¼ rlþ1½Wð0Þ þWð2Þr2 þ…�; ð33Þ

V ¼ rl½Vð0Þ þ Vð2Þr2 þ…�: ð34Þ

Using these expansions in Eq. (19) we get Wð0Þ ¼ −lVð0Þ.
Next, by combining Eqs. (24) and (28) for μ ¼ 0 we obtain

4eλK −H0½6eλ − 2þ r2ðν0Þ2 − rðν0 þ λ0Þ� − r2ν0H0
0 ¼ 0:

ð35Þ

It is straightforward to show that expansion of this equation

about r ¼ 0 leads to Kð0Þ ¼ Hð0Þ
0 . Therefore, out of four

constants appearing in Eqs. (31)–(34), only two are
independent. These two are fixed by the demand that the
Lagrangian perturbation of pressure vanishes at the surface
of the star.

4. Interface condition

We have derived the perturbation equations in the solid
crust region. Now we need to find the proper interface
conditions to join them with the fluid perturbation equa-
tions in the core. The interface conditions are obtained from
the equations of motion of fluid variables and the Einstein
field equation (please see [17] for the derivation). The
continuity of intrinsic curvature demands that H0, K, W
must be continuous at the interface:

½H0�ri ¼ 0; ð36Þ

½K�ri ¼ 0; ð37Þ

½W�ri ¼ 0: ð38Þ

Again, continuity of extrinsic curvature imposes two addi-
tional boundary conditions:

½ΔP − A�ri ¼ 0; ð39Þ

½B�ri ¼ 0: ð40Þ

Since W is continuous across the interface Eq. (39)
reduces to

½δP − A�ri ¼ 0: ð41Þ

By noting that A ¼ 0 in the fluid core we obtain the value of
radial stress at the interface as

Ai ¼ δPi − δPf; ð42Þ

where δPf and δPi are the Eulerian perturbations of
pressure at the base of the fluid core and at the interface,
respectively. Using Eqs. (23) and (28) we get the expression
of δPf and δPi:

δPf ¼ 1

2
ðρþ PÞH0f; ð43Þ

δPi ¼ ðPþ ρÞc2s
�
−

3

4μ
Ai þ

3

2
Ki −

9Vi

r2

þ e−λ=2

r3

�
−3þ rν0

2c2s

�
Wi

�
: ð44Þ

5. Calculation of electric tidal Love number

Our focus here is to calculate the electric love number of
neutron stars consisting of a fluid core and an elastic crust.
We first integrate the fluid perturbation equations starting
from the center of the star to the core-crust junction, using
the specified boundary conditions at the center. Next, we
integrate the elastic perturbation equations from this
junction to the surface. The starting point of the later
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integration is obtained by imposing the interface conditions
at the core-crust junction. Now, in order to calculate the
tidal Love number we have to match this internal solution
with the external solution at the surface of the star. We
suggest the reader see Refs. [7–9], where extensive details
about the calculation of the tidal Love number can be
found. The value of the tidal Love number can be computed
in terms of y and the compactness parameter C ¼ M

R as

k2 ¼
8

5
ð1− 2CÞ2C5½2Cðy− 1Þ− yþ 2�

�
2Cð4ðyþ 1ÞC4

þ ð6y− 4ÞC3 þ ð26− 22yÞC2 þ 3ð5y− 8ÞC− 3yþ 6Þ

− 3ð1− 2CÞ2ð2Cðy− 1Þ− yþ 2Þ log
�

1

1− 2C

��−1
;

ð45Þ

where y depends on the value ofH0 and its derivative at the
surface:

y ¼ rH0
0

H0

����
R
: ð46Þ

C. Odd parity perturbation

1. Fluid perturbation equations

Magnetic tidal Love numbers were computed together
by Binnington and Poisson (BP) [8] and Damour and Nagar
(DN) [9] back in 2009. In their calculation, BP assumed
that the tidal field varies slowly over the time, therefore it
never throws the body out of hydrostatic equilibrium.
Based on this assumption they derived all the perturbation
equations using a static-fluid ansatz and from there they
calculated magnetic tidal Love number. On the other hand,
instead of rederiving the perturbation equations, DN took
the Cunningham, Price and Moncrief master function [37]
governing odd parity perturbation of Schwarzschild space-
time and used a stationary perfect-fluid ansatz for the
stress-energy tensor. In 2015 Landry and Poisson (LP) [38]
revisited BP’s calculation by taking an irrotational state of
the fluid which permits internal motions of fluid inside the
body. They found that the magnetic tidal Love number for
this irrotational state was different from the magnetic Love
number associated with static fluid. LP also found that
their results agreed with DN’s result since irrotational
condition is automatically imposed by the stationary master
function chosen by DN. This state of affairs was recently
reexamined by Pani et al. [39]. In our work, we allow
internal motion of fluid since it is a more realistic
configuration to describe the fluid than the hydrostatic
equilibrium scenario.
We consider here magnetic-type perturbation for l ¼ 2,

m ¼ 0 in the Regge-Wheeler gauge by a time dependent
tidal field. However we assume the tidal field varies very

slowly over time, therefore, we neglect all the time
derivatives appearing in our field equations. But this slowly
varying tidal field does have impact on the internal motion
of the fluid, which establishes the irrotational state of it.
Under the above-mentioned assumption the perturbed
metric becomes

habðrÞ ¼

0
BBB@

0 0 0 h0ðr; tÞ
0 0 0 h1ðr; tÞ
0 0 0 0

h0ðr; tÞ h1ðr; tÞ 0 0

1
CCCA

× sin θ∂θP2ðcos θÞ: ð47Þ

The contravariant fluid displacement vector has the follow-
ing form:

ξr ¼ ξθ ¼ 0; ξϕ ¼ Uðr; tÞ sin θ∂θP2ðcos θÞ; ð48Þ

where Uðr; tÞ is the fluid displacement function for odd
parity perturbation. The perturbed 4-velocities correspond-
ing to this first order in displacement are

vr ¼ vθ ¼ 0; vϕ ¼ e−ν=2U;t sin θ∂θP2ðcos θÞ; ð49Þ

Since density and pressure are scalar they do not change
under odd parity perturbation. However, the fluid 4-
velocity will be shifted from uμ to uμ þ δuμ. In the first
order perturbation we note the following relation,
δuμ ¼ gμνδuν þ hμνuν, to compute the components of δuμ,

δur ¼ vr; δuθ ¼ vθ; δuϕ ¼ vϕ þ htϕut; ð50Þ

where vμ ¼ gμνδuν. Now, the irrotational state of the fluid
implies δur ¼ 0 ¼ δuA [38], where A runs over the
coordinate θ and ϕ. Consequently, the form of the per-
turbed stress-energy tensor can be written as

δTμ
ν ¼ ðρþ PÞðuμδuν þ δuμuνÞ − Pδμν : ð51Þ

Therefore, for the irrotational case, the ½tϕ� component of
the Einstein equation gives us

h000 −
λ0 þ ν0

2
h00 −

�
4eλ

r2
þ 2

r2
−
λ0 þ ν0

r

�
h0 ¼ 0; ð52Þ

For the static case, vϕ ¼ 0 gives δuϕ ¼ htϕut. In that case,
the ½tϕ� component of the Einstein equation gives us

h000 −
λ0 þ ν0

2
h00 −

�
4eλ

r2
þ 2

r2
−
λ0 þ ν0

r

�
h0 ¼ 0: ð53Þ

Notice that assumption of the irrotational state of fluid
changes the sign of λ0þν0

r in the term which is proportional
to h0.
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Since we will be working with irrotational state of fluid,
we need to solve Eq. (52) with the regular boundary
condition at the center:

h0 ¼ hð0Þ0 r3 þOðr5Þ; ð54Þ

where hð0Þ0 is an arbitrary constant.

2. Elastic perturbation equations

In this case the nonvanishing components of the aniso-
tropic stress-energy tensor are

δΠt
ϕ ¼ −μe−νh0 sin θ∂θP2ðcos θÞ; ð55Þ

δΠr
ϕ ¼ μe−λ

�
U0 −

2U
r

þ h1

�
sin θ∂θP2ðcos θÞ; ð56Þ

δΠθ
ϕ ¼ 3μ

r2
Usin3θ: ð57Þ

After including these anisotropic stress-energy tensors in
the perturbed Einstein equations the ½tϕ� gives us

h000 −
λ0 þ ν0

2
h00 þ

�
λ0 þ ν0

r
−
4eλ

r2
−

2

r2
þ 16πμeλ

�
h0 ¼ 0:

ð58Þ

We solve Eq. (52) from the center to the core-crust junction
and Eq. (58) from there to the stellar surface where at the
core-crust junction h0 is continuous.

3. Magnetic Love number calculation

The asymptotic behavior of Eq. (52) at large distances is
given by

�
1 −

2M
r

�
h000 þ

�
−

6

r2
þ 4M

r3

�
h0 ¼ 0: ð59Þ

By matching its asymptotic solution with the gtϕ compo-
nent of metric in asymptotically mass-centered Cartesian
coordinate [40,41], we obtain the expression of magnetic
Love number

j2 ¼
8C5

5

2Cðy − 2Þ − yþ 3

2C½2C3ðyþ 1Þ þ 2C2yþ 3Cðy − 1Þ − 3yþ 9� þ 3½2Cðy − 2Þ − yþ 3� logð1 − 2CÞ ; ð60Þ

where y ¼ rh0
0

h0
is evaluated at the surface of the star and C is

the compactness.

III. EQUATION OF STATE

It has been shown [34] that for an unambiguous
calculation of NS properties (especially radius and crust
thickness) it is necessary to adopt unified EOSs, where the
EOSs of crust and core are obtained with the same many-
body theory. As crust thickness plays the key role in the
present study we employ only unified EOSs here. We
consider six unified EOSs: SLy4 [42], KDE0V1 [43], SkI4

[44], NL3 [45,46], NL3ωρ [46,47] and DDME2 [46,48].
The first three are based on nonrelativistic Skyrme inter-
actions and are obtained from the CompOSE database
[49,50]. The other three are derived from the relativistic
mean-field (RMF) model. The RMF EOSs are not fully
unified as the outer crust is not calculated within the same
theory but is taken from Ref. [22]. Since most of the outer
crust is determined from the experimentally measured
nuclear masses, the choice of it does not significantly
affect the observables. The important properties of these
EOSs are shown in Table I. All of them are consistent with
the observed maximum mass (2.01� 0.04 M⊙) of the

TABLE I. Properties of the unified EOSs are tabulated here. Specifically, n0 is the saturation density, nt is the crust-core transition
density, K is the incompressibility, and J and L are the symmetry energy and its slope at saturation density, respectively.

EOS n0 (fm−3) K (MeV) J (MeV) L (MeV) nt (fm−3) Mmax=M⊙ μn¼ntðg cm−1 s−2Þ
SLy4 [42] 0.159 230.0 32.0 46.0 0.0800 2.05 2.34 × 1030

KDE0V1 [43,49] 0.165 227.5 34.6 54.7 0.0480 1.97 4.43 × 1029

SkI4 [44,49] 0.160 248.0 29.5 60.4 0.0359 2.18 2.24 × 1029

NL3 [45,46] 0.148 270.7 37.3 118.3 0.0548 2.77 2.20 × 1029

NL3ωρ [46,47] 0.148 272.0 31.7 55.3 0.0835 2.75 3.42 × 1030

DDME2 [46,48] 0.152 250.9 32.3 51.2 0.0735 2.48 2.21 × 1030

NL3 matched 0.148 270.7 37.3 118.3 0.0740 2.77 2.73 × 1030

NL3ωρ matched 0.148 272.0 31.7 55.3 0.0740 2.75 2.73 × 1030

DDME2 matched 0.152 250.9 32.3 51.2 0.0760 2.48 2.89 × 1030
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neutron stars [51]. The shear moduli for all the EOSs are
plotted in Fig. 1. They are calculated using the following
expression [52,53]:

μ ¼ 0.1194
niðZeÞ2

a
; ð61Þ

where a ¼ ½3=ð4πniÞ�1=3, ni ¼ ne=Z is the density of ions,
Z is the atomic number of the nucleus present and ne is the
electron number density,which is obtained using the relation
ne ¼ nbZ=A, where Z and A as functions of nb are found in
the respective references as indicated in Table I.

IV. RESULTS

In this section we present our numerical findings for a set
of neutron star EOSs that were discussed in Sec. III. First,
for each of these EOSs we generated a set of equilibrium
stellar configurations within the mass range of 1 M⊙ to
2 M⊙ by solving the TOV equations. In Fig. 2, crustal
thickness is plotted with respect to mass for each consid-
ered EOS. Then for each star we integrate all the perturbed
variables and calculate the corresponding Love number.

For our numerical calculations, we use dimensionless
variables in all the necessary differential equations, which
are presented in the Appendix. All the differential equations
are solved using fourth order Runge-Kutta method.

A. Even parity perturbations

1. Nonrelativistic EOS

In Fig. 3, we plot the change in k2 (in percent) due to the
inclusion of the crust as a function of mass for three
nonrelativistic EOSs. The fractional change in k2 is defined
as Δk2=kfluid2 , where Δk2 ¼ kfluid2 − kcrust2 ; kfluid2 and kcrust2

are, respectively, the tidal Love numbers of a purely fluid
star and a star with an elastic crust. Since the elastic crust
would resist deformation, it is expected that kcrust2 < kcore2 ,
resulting in Δk2 > 0. This is indeed the case as can be seen
from Fig. 3. It is also observed that as the thickness of the
crust increases, the change in Love number increases (for
comparison, see Fig. 2). The change in k2 is about 0.1%–
0.4% for KDE0V1 EOS, 0.3%–0.9% for SLy4 EOS and
0.1%–0.2% for SkI4 EOS. For a given mass, the increasing
order of crustal thickness among these three nonrelativistic

FIG. 1. Shear modulus vs ρ for (left panel) nonrelativistic and (right panel) relativistic EOSs.

FIG. 2. Crustal thickness vs mass for (left panel) nonrelativistic and (right panel) relativistic EOSs.
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unified EOSs is SLy4 > KDE0V1 > SkI4. A similar trend
is seen for the change in k2 in Fig. 3, which points to the
fact that stars with bigger crusts would have lesser
deformation, as expected.

2. Relativistic EOS

Change in k2 as a function of mass is plotted in Fig. 4 for
three unified RMF EOSs. To investigate the importance of
unified EOSs, we also include EOSs obtained by matching
a crust EOS with the core EOS in a thermodynamically
consistent way [34]. All three RMF EOSs of core are
matched to the BPSþ Baym-Bethe-Pethick [22,24] EOS
of the crust at nt ¼ n0=2, where n0 is the saturation density
of the core EOS (see Table I for values). From Fig. 2 we see
that the crust is bigger for the matched EOS than that of the
unified EOS for NL3, whereas for DDME2 and NL3ωρ the
scenario is the opposite. The reason is for unified NL3,
nt ¼ 0.0548 fm−3 and for the matched case nt ¼ n0=2 ¼
0.074 fm−3. As the transition from crust to core happens
later in the matched EOS, the crust is bigger in size for the

matched NL3. In contrast, the transition happens earlier for
the matched EOS in the case of DDME2 and NL3ωρ,
which leads to a reduction in the crustal thickness.
For nonrelativistic EOSs we have already seen that a

larger crustal thickness gives a larger deviation from the
fluid value of k2. A similar behavior is seen to be in play
here. However, the magnitude of the shear modulus also
plays a role in the change of k2. Models with a higher
magnitude of shear modulus will be less deformed, which
will correspond to a larger change in k2. A careful inspec-
tion of Figs. 1 and 4 supports this finding. Depending on
the magnitude of crustal thickness and shear modulus, one
of the effects dominates over the other. For example,
unified DDME2 has a larger crustal thickness than the
matched DDME2, but the shear modulus of the latter is
higher than that of the first. However, we find that the
change in k2 is higher for the matched DDME2. Since the
difference in crustal thickness between these two EOSs is
very small, the change in k2 is mainly caused by the
magnitude of the shear modulus in this case. For reference,
we have included the values of the shear modulus at the
bottom of the crust in the last column of Table I. Overall,
the change in k2 due to the presence of a solid crust is
between∼0.4% and 1.3% for all the RMF EOSs considered
here. It is also noted that Δk2 for a matched EOS can
considerably differ from that of a unified EOS. Among the
three RMF EOSs studied here we found that the difference
is highest for the NL3 EOS and can be as large as ∼90%.
This emphasizes the necessity of the use of unified EOSs in
such calculations.
The above results show that even with realistic EOSs and

realistic crustal models, the shear modulus of a solid crust
has a small effect on the electric tidal Love number. The
reason why the effect of the shear modulus on k2 is
negligible can be understood from Fig. 5, where the profile

FIG. 3. Percentage change in k2 vs mass for nonrelativistic
unified EOSs.

FIG. 4. Percentage change in k2 vs mass for relativistic unified
EOSs.

FIG. 5. y is plotted as a function of radius for a 1.33 M⊙
neutron star using unified DDME2 EOS. The solid black curve
describes the profile of yðrÞ for a perfect fluid star and the dotted
red curve for a star whose crust is solid.
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of y is plotted as a function of radius in the presence and
absence of shear using unified DDME2 EOS. The dotted
(red) and solid (black) curves represent the cases of with
and without shear, respectively. It is seen that the values of
y mainly differ from the fluid case in the inner crust region,
while in the outer crust region the difference from the fluid
case is negligible. This happens because the magnitude of
the shear modulus is much higher in the inner crust and as a
result the inner crust has greater response towards the tidal
field than the outer crust. However, as the value of y at the
surface only enters into the calculation of k2 [see Eq. (46)],
we do not observe any significant change in it.

B. Numerical results for odd parity perturbations

1. Nonrelativistic EOS

In Fig. 6, we plot the percentage change in magnetic
Love number with respect to mass for three unified non-
relativistic EOSs. The change in magnetic Love number is
denoted as Δj2=jfluid2 , where Δj2 ¼ jjfluid2 − jcrust2 j; jfluid2 and
jcrust2 are, respectively, the magnetic Love number of a
perfectly fluid star and a star with elastic crust. The value of
the magnetic Love number is itself negative and that is why
the absolute values of the difference have been taken.
Similar to the electric Love number, the magnetic love
number is also found to be affected by the values of both the
crustal thickness and the shear modulus. The change in j2
varies between ∼0.00005% and 0.0005% for the consid-
ered nonrelativistic EOSs. This suggests the deviation in
the magnetic Love number due to the solid crust is
negligible.

2. Relativistic EOS

For RMF EOSs we observe similar types of changes in
j2 (Fig. 7). From Fig. 1 we see that the value of the shear

modulus is similar for all the matched EOSs but the crustal
thickness is different (see Fig. 2) with values in the order
NL3 > NL3ωρ > DDME2. We see a similar order of
change in j2 for matched EOSs. On the other hand, the
change in j2 is dominated by the magnitude of the shear
modulus for the unified EOSs as both the shear modulus
(see Fig. 1) and the change in j2 have the same order:
NL3ωρ > DDME2 > NL3. However, similar to nonrela-
tivistic EOSs, here also the changes in magnetic Love
number are in between ∼0.0001% and 0.0009% and hence
are practically negligible.

C. Summary of the results

Here we briefly summarize the key findings of our
numerical studies. We have analyzed the effect of the
elastic crust on both the electric and magnetic tidal Love
numbers for a set of realistic equations of state and realistic
models of the shear modulus. In our study, we used three
nonrelativistic and three relativistic EOSs. Nonrelativistic
EOSs are based on Skyrme interactions and relativistic
EOSs are constructed using relativistic mean-field theory.
We also used matched RMF EOS where core RMF EOSs
are matched to BPS EOSs of the crust at half of the
saturation density of the core EOS.
(a) Effect on electric Love number: The percentage

change in k2 is higher for relativistic EOSs than for
nonrelativistic ones. The reason is the RMF EOSs
have larger crustal thickness. We observed that the
EOSs with larger crustal thickness have a larger
change in k2 with respect to the fluid case. Also we
observe that a larger shear modulus corresponds to a
larger change in k2. So we conclude that the crustal
thickness and the magnitude of the shear modulus both
have an effect on the electric tidal Love number to
varying degrees depending on the EOS.

(b) Effect on magnetic Love number: Similar to electric
Love number both the crustal thickness and magnitude

FIG. 6. Percentage change in j2 vs mass for nonrelativistic
unified EOSs.

FIG. 7. Percentage of change in j2 vs mass for relativistic
unified EOSs.
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of the shear modulus have an effect on the magnetic
Love number. Note, however, that the magnetic Love
number is much smaller than the electric one for all of
these EOSs and therefore it is highly unlikely that their
imprints will be observed in BNS waveforms, let alone
these corrections, in the era of Advanced LIGO
and Virgo.

(c) Comparison between Penner et al. and our analysis:
Finally, we compare the results of our analysis with
that of Penner et al. [18]. In their analysis they used
a polytropic model for the EOSs and a simple profile
of a shear modulus that varies linearly with pressure.
We implement the same EOS and shear modulus
profile in our analysis and compare the obtained
results with that of Pennal et al. in Fig. 8. We see
that the changes in k2 for our calculation is up to 2
orders of magnitude larger than their analysis.
However, the change in k2 is still small and the
effect of the solid crust in k2 is unlikely to be
observed by the LIGO and Virgo detectors in the
near future. This may, however, change in the
detectors of the subsequent generation.

V. CONCLUSION

In this paper, we investigated the effect of the elastic
crust on the tidal deformation of neutron stars. We
presented a complete set of static perturbation equations
for both the fluid core and the solid crust of a neutron
star. We verified here that our static perturbation equa-
tions are consistent with the zero frequency limit of Finn
[17] but at variance with some of the expressions in
Penner et al. [18]. Recent independent calculations by
Lau et al. [21] have also pointed out that the set of static
perturbation equations given by Penner et al. [18] are
inconsistent with the zero frequency limit of pulsation

equations of Finn [17]. Our paper should be seen as an
extension of the work done by Penner et al. [18], who
used a simple model of neutron stars based on a
polytropic EOS and a simple linear profile for the crustal
shear modulus. In this paper, we investigated the effect of
realistic EOSs and a realistic model of a shear modulus
on the tidal deformability of neutron stars. We found that
realistic EOSs and shear modulus can cause a change of
∼1% in the electric tidal Love number, much larger than
that found by Penner et al. While this change may not be
of much consequence for LIGO-Virgo observations in the
near future, it may be important for subsequent gener-
ations of detectors.

ACKNOWLEDGMENTS

We would like to thank Sayak Datta and Kabir
Chakravarti for the helpful discussions. We also thank
Wolfgang Kastaun for carefully reading the manuscript and
making useful comments. This work was supported in part
by the Navajbai Ratan Tata Trust. B. B. acknowledges the
University Grant Commission (UGC) India for the finan-
cial support as a senior research fellow.

APPENDIX: DIMENSIONLESS FORM

1. Background equations

We introduce the following dimensionless variables:

ρ ¼ ρcρ̃; p ¼ pcp̃; r ¼ r0x and m ¼ m0m̃;

ðA1Þ

where ρc and pc are the central density and pressure,
respectively. So, the TOV equations take the form

dm̃
dx

¼ x2ρ̃; ðA2Þ

dp̃
dx

¼ ðρ̃þ bp̃Þðm̃þ x3bp̃Þ
xðx − 2bm̃Þ ; ðA3Þ

dν
dx

¼ −
b

ðρ̃þ bp̃Þ
dp̃
dx

; ðA4Þ

with

b ¼ pc

ρc
; ðA5Þ

m0 ¼ 4πr30ρc; ðA6Þ

r20 ¼
b

4πρc
: ðA7Þ

FIG. 8. Comparison between Penner et al. [18] and our
analysis.
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2. Perturbation equations for even parity

Here we introduce additional dimensionless variables as

Ṽ ¼ V
r2

; W̃ ¼ W
r3

; μ ¼ pcμ̃: ðA8Þ

Now we get following equations ( 0 ¼ d=dx):

dṼ
dx

¼ eλ=2
W̃
x
−
B̃
μ̃

eλ

x2
; ðA9Þ

B̃ ¼ B
r0pc

; ðA10Þ

dW̃
dx

¼ eλ=2

x

�
3Ã
4μ̃

−
1

2
ðK −H0Þ þ ð16πdμ̃x2 þ 3ÞṼ

�
;

ðA11Þ

Ã ¼ A
pc

; d ¼ pcr20; ðA12Þ

δp̃ ¼ δp
pc

¼ ρ̃þ bp̃
b

× c2s

�
−
3Ã
4μ̃

þ 3

2
K − 9Ṽ þ e−λ=2

�
−3þ xν0

2c2s

�
W̃

�
;

ðA13Þ

4b2ðδp̃ − ÃÞx2 ¼ 4eλK −H0ð6eλ − 2þ x2ν02Þ − x2ν0H0
0

− 4b2μ̃ Ṽ x4ν02 þ 4b2eλxB̃ð2þ xν0Þ;
ðA14Þ

dK
dx

¼ H0ν
0 þH0

0 þ 4b2μ̃ðxν0 þ 2ÞxṼ − 4b2B̃eλ; ðA15Þ

dB̃
dx

¼ e−λ

4b2x
ðν0 þ λ0ÞH0 −

B̃
2x

ð4þ xλ0 þ xν0Þ − 4μ̃ Ṽ

þ δp̃þ Ã
2
; ðA16Þ

− x2H00
0 þ

�
1

2
xðλ0 − ν0Þ − 2

�
xH0

0

þ ½6eλ þ 2ðeλ − 1Þ − xðλ0 þ 3ν0Þ þ x2ν02�H0

¼ 2b2x2
�
−eλδp̃ð3þ c−2S Þ

þ 8μ̃ Ṽ

�
1 − eλ þ x

�
ν0 þ 1

2
ν0
�
−
1

4
x2ν02

�

þ 4xν0μ̃ Ṽþ2x2ν0ðμ̃ ṼÞ0 þ 2ν0B̃eλ
�
: ðA17Þ

Boundary conditions at the center (for l ¼ 2) become

H0 ¼ ax2; ðA18Þ

K ¼ ax2; ðA19Þ

Ṽ ¼ c; ðA20Þ

W̃ ¼ −2c; ðA21Þ

where a and c are constants. Interface conditions are

Ãi ¼ δP̃i − δP̃f; ðA22Þ

δp̃f ¼ 1

2

ρ̃þ bp̃
b

Hof; ðA23Þ

δp̃i ¼
ρ̃þ bp̃

b
c2S

�
−
3Ã
4μ̃

þ 3

2
Ki − 9Ṽ þ eλ=2W̃

�
−3þ xν0

2c2S

��
:

ðA24Þ

3. Perturbation equations for odd parity

The dimensionless form of the odd parity perturbed
equation is

h000 −
λ0 þ ν0

2
h00 þ

�
λ0 þ ν0

x
−
4eλ

x2
−

2

x2
þ 16πdμ̃eλ

�
h0 ¼ 0:

ðA25Þ
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