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We explicitly derive a vortex inspired solution for the metric perturbation within the linearized Einstein
general theory of relativity in arbitrary dimensions D ≥ 4. We focus on D ¼ 4 where our solution is the
gravitational analog of the well-known electromagnetic (or electron) Bessel vortex beams. Next we
visualize the perturbed spacetime via tidal tendexes and frame-drag vortexes. We display and analyze
mostly two-dimensional sections of the tendexes and the vortexes for different values of an angular
momentum of the wave solution. Corresponding geodesic deviation equations are solved and the results are
visualized. We show that the physically most important quadrupolelike case leads to a wave with rotating
polarization. We discuss asymptotical features of the found solution. We provide also several 3D plots of
tendex lines. One of them concerns a special cylindrical-like case and we utilize the topological
classification of singularities of the depicted line fields as an approach to characterize the radiation field.
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I. INTRODUCTION

Gravitational waves were observed rather recently [1].
The topic is challenging in both its experimental and
theoretical parts. Nevertheless, it opens new horizons for
exploring astrophysical phenomena. The first successful
measurement detected the coalescence of two massive
black holes. This breakthrough discovery was followed
by the coalescence of two neutron stars [2]. These new
types of data combined with well-developed techniques for
measuring electromagnetic radiation, neutrinos and cosmic
rays have established so-called multimessenger astronomy.
Moreover, the multimessenger approach has been applied
to test relativity models extending the Einstein theory of
relativity, e.g., multidimensional theories [3]. This stimu-
lates a development of new detectors and one may expect
that one will be able to extract more features from the
signals via the next generation detecting devices. This is the
reason to study more exotic waves in unconventional
settings.
There is a well-established analogy between waves in

electromagnetism and in gravity [4,5]. This makes one
ponder which electromagnetic phenomena have their
counterparts in general relativity.
Bessel beams are a promising example. Diffraction, the

spreading of propagating waves, is a feature of a majority of
waves that appear in nature. Almost 30 years ago, however,

a so-called “nondiffracting” beamwas discovered byDurnin
in the optical domain [6]. Its lateral field distribution can be
described by a Bessel function of the first kind, and unlike
most laser beams, which spread upon propagation, the
transverse distribution of these Bessel beams remains
constant. As with a plane wave, such idealized Bessel
beams would be of infinite transverse extent and carry an
infinite amount of energy and, therefore, they can be
generated experimentally over a limited spatial range only.
Bessel beams are not limited to the optical domain but can be
observed and utilized at various scales from electron beams
[7] at the nanoscale and electromagnetic waves [8–11] at the
microscale, to acoustic waves [12,13] at the macroscale.
Furthermore, they can serve as tractor beams [14].
Optical approximations to Bessel beams can be prepared

in the laboratory either by focusing aGaussian beamwith an
axicon lens [11] to generate a Bessel-Gauss beam, or simply
by placing a narrow annular aperture in the far field [6,15].
Vortex beams, which include Bessel beams, have

attracted significant attention in the field of electron
microscopy in the past decade. Their properties and
methods of creation have been under intense investigation
since their theoretical prediction [16] and first experimental
realization [17,18]. Vortex beams with high mode purity are
generated using the holographic reconstruction principle,
employing either amplitude [19] or phase [20] diffraction
holograms, in the electron microscope.
Unlike their photon counterpart, electron vortex beams

are composed of charged particles and therefore they*zouharm@isibrno.cz

PHYSICAL REVIEW D 100, 044050 (2019)

2470-0010=2019=100(4)=044050(14) 044050-1 © 2019 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.100.044050&domain=pdf&date_stamp=2019-08-28
https://doi.org/10.1103/PhysRevD.100.044050
https://doi.org/10.1103/PhysRevD.100.044050
https://doi.org/10.1103/PhysRevD.100.044050
https://doi.org/10.1103/PhysRevD.100.044050


possess an induced magnetic moment. Both magnetic
moment and intrinsic orbital angular momentum allow
for coupling to materials. This feature promises interesting
applications, such as investigating magnetic chiral proper-
ties [21–23], probing and controlling plasmons [24,25],
determining chirality of various objects [26], manipulating
nanoparticles [27] or polarizing the spin of electrons [28],
though many of these utilizations are still at early develop-
ment stages.
One can expect that there is also a gravity counterpart to

these Bessel beams, i.e., gravitational waves at the cos-
mological scale. Cylindrical gravitational waves were
considered already by Einstein and Rosen [29]. The exact
cylindrical gravitational wave solution, called an Einstein-
Rosen wave, with Bessel functions of zeroth order is
discussed also in Weber’s monograph [30]. Furthermore,
a Bessel gravitational solution of the zeroth order in
linearized gravity is mentioned in the classical book of
Misner, Thorne, and Wheeler (MTW) [31]. The lack of a
general order solution is a motivation to consider Bessel
gravitational waves. Also, Bessel functions arise in numeri-
cal relativity; e.g., large order Bessel functions appear in the
Fourier transform of gravitational waves from pulsars [32].
There is a series of papers [5,33–36] that introduced a

method for visualizing spacetime curvature via tendexes
and vortexes. The series shows what powerful tools the
concepts of tendexes and vortexes are by examining several
types of solutions—from weak fields, including plane
waves, to Kerr black holes.
To our best knowledge, the Bessel gravitational wave

problem is not fully analyzed and also visualized in the
current literature. A spinorial solution has been found
for D ¼ 4 [37], but the metric has neither been presented
nor examined. We fill in this gap and, moreover, we obtain
a multidimensional linearized spacetime. In this paper
we study the Bessel solution of the wave equation for
the metric perturbation in the Lorenz gauge. We apply the
concept of tendexes and vortexes and we visualize the
Bessel gravitational wave for different values of parameters
entering our solution. In order to simplify the physical
interpretation we also use the standard method of visual-
izing displacements of test particles.
The reminder of this paper is organized as follows:

The Bessel solution is derived in Sec. II. Details of the
calculations, focused on general dimension D ≥ 4, are
presented in the Appendix. In the following, we restrict
ourselves to the case of D ¼ 4. We briefly summarize the
concept of tendexes and vortexes in Sec. III and continue
by computing the tidal and the frame-drag field of the
Bessel solution. Section IV contains an analysis of different
cases of the gravitational Bessel wave, including cylindrical
waves, and we provide visualizations via their tendex and
vortex lines. The main part of our visualizations consists
of a series of two-dimensional plots of tendex and vortex
lines in selected regions. Moreover, several 3D plots and a

geodesic deviation plot are provided in specific subcases of
the gravitational wave. We give some concluding remarks
in Sec. V.
Throughout this paper we employ the following con-

ventions. We suppose that the spacetime is D-dimensional,
D ≥ 4. We use the geometric unit system c ¼ G ¼ 1. The
spacetime metric has a mostly plus signature and we use the
same conventions as in MTW [31]. The range of the Greek
indices is from zero toD − 1; spatial coordinates are labeled
by lowercase Latin indices running from 1 to D − 1. When
providing an expression in an orthonormal basis, we
emphasize this using hats over the corresponding indices.

II. THE LINEARIZED FIELD EQUATIONS
AND THEIR SOLUTIONS

We suppose that the spacetime metric g in the weak field
approximation differs only slightly from the Minkowski
metric η,

gμν ¼ ημν þ hμν; jhμνj ≪ 1: ð1Þ

It is useful to employ a coordinate system adapted to the
symmetries of the investigated problem, in this case the
cylindrical coordinate system. The visualization will be
performed in either the adapted system or in Cartesian
coordinates. We express the background metric in
Minkowski/Cartesian coordinates

ðt; x; y; zÞ∶ ημνjMink ¼ diagð−1; 1; 1; 1Þ

and for comparison also in the cylindrical coordinates

ðt; r;φ; zÞ∶ ημνjCyl ¼ diagð−1; 1; r2; 1Þ:

The linearized Einstein field equations in vacuum reduce
to the wave equations for the metric perturbation

□hμν ¼ 0; ð2Þ

in the so-called Lorenz gauge (which is sometimes called
the Hilbert, Einstein, De Donder or Fock gauge)

hμν;μ −
1

2
h;ν ¼ 0; ð3Þ

where □ denotes the d’Alembertian operator in curvilinear
coordinates, the semicolon denotes the covariant derivative,
h ¼ hμμ and we raise and lower indices with the
Minkowski metric.
Our starting ansatz is

hμν ¼ ℜfAμνJlðκrÞeiϕg; ϕ ¼ lφþ kz − ωt; ð4Þ

where Aμν is a matrix to be determined. The above solution
is described by the parameters k; κ;l and ω. The
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corresponding quantities in optics are z- and r-components
of the wave vector (k and κ), the z-component of the total
angular momentum l and the frequency ω, respectively. Jl
denotes a Bessel function of the first kind and lth order and
ℜ stands for the real part. This ansatz is inspired by
linearizing the exact cylindrical wave solution from [30].
A relatively simple solution to Eqs. (2) and (3) is

determined in the cylindrical coordinate system by

Aμν ¼

2
6664

− a
κ2
ðω2 þ k2Þ 0 0 2 a

κ2
ωk

0 a 0 0

0 0 ar2 0

2 a
κ2
ωk 0 0 − a

κ2
ðω2 þ k2Þ

3
7775; ð5Þ

where a is a constant and a dispersion relation ω2 ¼
k2 þ κ2 is enforced by the wave equations. Let us call this
solution the “gravitational Bessel wave.”
This solution can be extended to a general dimension

D ≥ 4. We employ a split of the spatial hypersurface of
dimension D − 1 into two parts. The first part is a B-
dimensional submanifold (lowercase Latin indices from the
beginning of the alphabet, e.g., a, b) parametrized as a
sphere, hence the radius r and the angle φ. The remaining
second part is a submanifold (lowercase Latin indices from
the middle of the alphabet, e.g., m, n) parametrized with z-
like coordinates. The solution has a similar form as that in
Eq. (4), the Aμν is richer and the radial dependence through
the Bessel function JlðκrÞ is generalized. A detailed
derivation, that applies to the D ¼ 4 case as well, can be
found in the Appendix. This derivation, performed in
Minkowski coordinates, complements the above brief
one utilizing curvilinear coordinates.
The amplitude matrix in Eq. (5), valid forD ¼ 4, extends

for D ≥ 4 to

A00 ¼
ω2 þ ðD − 3Þk2
ð2 −DÞωk2 c̃þD − B − 2

2 −D
b̃;

A0m ¼ c̃
km
k2

;

Aab ¼ −
�

1

2 −D
κ2

ωk2
c̃þD − B − 2

2 −D
b̃

�
δab;

Amn ¼
�
−c̃ω
k2

þ b̃

�
kmkn
k2

−
1

2 −D

�
κ2

ωk2
c̃ − Bb̃

�
δmn ð6Þ

where b̃ and c̃ are free parameters of the solution and
k2 ¼ δmnkmkn. The dispersion relation is simply general-
ized with the multidimensional k2.
A nondivergent D ≥ 4 solution is obtained in the

case of B ¼ 2; the radial dependence is the same as in
theD ¼ 4 ansatz Eq. (4). This nondivergentD ≥ 4 solution
reduces to the above D ¼ 4 one in Eq. (5), if we identify
c̃ ¼ 2ωk2a=κ2.

It can be shown that the D ¼ 4 solution is equivalent to
the one reported in the recent paper [37]. The authors of
[37] use the spinorial formalism [38,39] and they have the
following spinorial components (a misprint in ϕ0111 is
corrected, and we have aligned their notation to ours by the
relabeling kz ¼ k, M ¼ l, ρ ¼ r):

2
6666664

ϕ0000

ϕ0001

ϕ0011

ϕ0111

ϕ1111

3
7777775
¼ eiϕ

2
6666664

ðωþ kÞ4e−2iφJl−2ðκrÞ
iðωþ kÞ3κe−iφJl−1ðκrÞ
−ðωþ kÞ2κ2JlðκrÞ

−iðωþ kÞκ3eiφJlþ1ðκrÞ
κ4e2iφJlþ2ðκrÞ

3
7777775
:

This spinorial solution is written in Cartesian coordinates
(φ; r are treated as functions of Cartesian coordinates).
In fact, one can define the self-dual analog G of the
Riemann curvature tensor and express its componentsG0i0j

using the spinorial components (for details see [37]). We
have calculated G0i0j in cylindrical coordinates for both the
spinorial-based solution [37] and our solution (4) and (5),
linearized to the first order in the metric perturbation. The
two sets of the components are the same apart from a
multiplicative constant.
If we set l ¼ k ¼ 0 (see also Sec. IV E), then our

gravitational Bessel wave reduces to the cylindrical gravi-
tational wave in Exercise 35.3 of MTW [31]. Of course, the
cylindrical symmetry is broken in the general case of the
gravitational Bessel wave, where we have the so-called
“screw symmetry” instead, generated by the sum of a
translation and a rotation; see Eq. (7).
In the general case, there is a Killing vector field given by

the following formula with constants o, p, q:

ξ ¼ o
∂
∂tþ p

∂
∂φþ q

∂
∂z ; plþ qk − oω ¼ 0:

It can be shown that the Killing vector is always spacelike
except for the case of opl ≠ 0. An inequality relation
between the free components of the Killing vector ensures
that the vector becomes timelike for some finite real values
of r.
The purely spatial part, o ¼ 0, of the general Killing

vector field describes the screw symmetry

ξ ¼ −k
∂
∂φþ l

∂
∂z : ð7Þ

We refer the reader to [40] for more information on the
analysis of screw-symmetric gravitational and electromag-
netic waves and movements of testing particles subjected
to these waves from the point of view of integrable
systems.
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III. TENDEXES AND VORTEXES

Let us summarize definitions introduced in the series of
papers dedicated to visualizations of spacetime curvature,
namely our Ref. [33]. A tendex denotes a collection of
tendex lines which are integral curves of unit eigenvectors
of the tidal field E [as defined below in Eq. (8)]. The
associated eigenvalue along a single curve is called the
line’s “tendicity.” We will color tendex lines by the sign of
their tendicity. Red (solid) lines have negative tendicity; an
object, e.g., a person, oriented along them is stretched. The
blue (dashed, in 2D plots only) lines have positive
tendicity; an object oriented along them is squeezed.
Similarly, a vortex describes a bundle of vortex lines

which are integral curves of unit eigenvectors of the frame-
drag field B [see Eq. (9)]. The eigenvalue associated with a
given line is called the “vorticity” of this line. The red (solid)
lines have negative vorticity. A person oriented along these
lines will have their head rotated counterclockwise—i.e., to
the right—with respect to their feet. The blue (dashed, in 2D
plots only) lines have positive vorticity and they rotate the
person’s head clockwise.
The color intensity of the lines will represent the strength

of the tendicity (vorticity). We will appropriately scale the
color intensities for best visual presentations in our figures;
the scaling will be achieved via the multiplicative factor
and/or a suitable choice of a color map.
One can split the Weyl curvature tensor C into its so-

called “electric” part E, which can be interpreted as a tidal
field, and “magnetic” part B, that can be interpreted as a
frame-drag field:

Eαβ ¼ Cαμβνe
μ
0̂
eν
0̂
; i:e:; Eij ¼ Ci0̂j0̂: ð8Þ

Bαβ ¼ − � Cαμβνe0̂
μe0̂

ν; i:e:; Bij ¼
1

2
ϵipqCpq

j0̂: ð9Þ

The above equations use the following notation. The
symbol * denotes the Hodge dual, �Cρμσν ¼ 1

2
ϵρμηλCηλ

σν.
Expressions with Latin (spatial) indices are written in 3þ 1
notation, e0̂

μ is chosen to be part of an orthonormal tetrad

and denotes the components of the foliation’s unit time
basis vector used in a 3þ 1 split of the spacetime.
Furthermore, we use the MTW convention for the Levi-
Civita tensor ϵ0̂ 1̂ 2̂ 3̂ ¼ 1, ϵipq ¼ ϵ0̂ipq and ϵ1̂ 2̂ 3̂ ¼ 1 in right-
handed orthonormal frames. Let us note that in vacuum, as
is our case, the Weyl curvature tensor equals the Riemann
tensor.
We will solve the eigenvalue problem for both tensors E

and B in the orthonormal basis,

Eâ b̂v
b̂ ¼ λvâ; Bâ b̂v

b̂ ¼ λvâ;

and integration of the differential equation

dxμðsÞ
ds

¼ vâðxρðsÞÞeâμðxρðsÞÞ

will follow to find their streamlines in a coordinate basis
(s denotes a parameter along the streamlines).
To accomplish this goal we have used Maple to verify

some symbolic calculations and custom PYTHON scripts
utilizing several libraries [41–46] to create visualizations of
streamlines. These scripts use integration methods based on
a Runge-Kutta algorithm. The standard numerical integra-
tion on a grid was modified in order to cover for possible
sign differences of eigenvectors at different grid points. We
had to decide which of the to-be-interpolated neighboring
eigenvectors are to be flipped (change of sign); the criterion
was based on the value of the dot product. This compli-
cation reflects the fact that we are dealing with the so-called
line field which is not just a vector field but its projective
equivalent [47]. In order to cover the whole range of
displayed coordinates “nicely,” with streamlines extending
up to the displayed boundaries and with a reasonable
density, we have used a larger range and then we have
removed the boundary regions.
In the case of the Minkowski spacetime perturbed by the

gravitational Bessel wave [Eqs. (4) and (5)], the general
formulas from Eqs. (8) and (9) become

Eâ b̂ ¼
a
2

2
664
f½E1 − k2�Jl þ E0Jlþ1g cosϕ f−E1Jl þ E0lJlþ1g sinϕ κk½lκr Jl − Jlþ1� sinϕ

� f½−E1 þ ω2�Jl − E0Jlþ1g cosϕ kl
r Jl cosϕ

� � −κ2Jl cosϕ

3
775; ð10Þ

Bâ b̂ ¼ ωa

2
664
fB1Jl − B0lJlþ1gk sinϕ f½B1 − 1

2
�Jl þ B0Jlþ1gk cosϕ − 1

2
B0lJlκ cosϕ

� −fB1Jl − B0lJlþ1gk sinϕ 1
2
fB0lJl − Jlþ1gκ sinϕ

� � 0

3
775; ð11Þ
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where we have introduced some useful abbreviations

Em¼ ω2þk2

ðκrÞmþ1
½lðl−1Þ�m; Bm¼ Em

ω2þk2
; Jl≡ JlðκrÞ:

The components indicated by � are determined by the
symmetry of the matrix. The tetrad is given by

e0̂ ¼ ∂t; e1̂ ¼ ∂r; e2̂ ¼
1

r
∂φ; e3̂ ¼ ∂z: ð12Þ

This orthonormal basis is of zeroth order in the metric
perturbation which is sufficient because we work in the
linearized theory.

IV. VISUALIZATION AND DISCUSSION
OF THE RESULTS

The calculated tidal and frame-drag fields presented in
Eqs. (10) and (11) are rather complicated because of a large
amount of nonzero components. The case l ¼ 0 is simple
enough to be solved exactly. For l > 0we split the analysis
into two limiting ranges of the coordinate r, namely r ≈ 0
and large values of r, and use only the leading terms in r and
1=r respectively. This allows us to approximate the tidal and
frame-drag fields but still also to visualize and to analyze the
dominant features in these regions. For the sake of brevity
we do not explicitlywrite the coordinate dependencies of the
leading terms of given approximations but we only express
the approximated tendexes, vortexes and associated eigen-
values using these leading components.

A. The case of l= 0, arbitrary value of r

A simple general solution of tendexes of the tidal field
Eqs. (10) can be found in the case of l ¼ 0:

λ1;2 ¼
1

2

h
−E2̂ 2̂ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE1̂ 1̂ − E3̂ 3̂Þ2 þ 4E2

1̂ 3̂

q i
; λ3 ¼ E2̂ 2̂

and the corresponding eigenvectors

v1;2 ¼
−E1̂ 3̂e1̂ þ ðE1̂ 1̂ − λ1;2Þe3̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2
1̂ 3̂

þ ðE1̂ 1̂ − λ1;2Þ2
q ; v3 ¼ e2̂: ð13Þ

Similarly, the vortexes are given by

λ1;2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
1̂ 2̂

þ B2
2̂ 3̂

q
; λ3 ¼ 0

and

ffiffiffi
2

p
v1;2 ¼

B1̂ 2̂

λ1;2
e1̂ þ e2̂ þ

B2̂ 3̂

λ1;2
e3̂; ð14Þ

v3 ¼
−B2̂ 3̂e1̂ þ B1̂ 2̂e3̂

jλ1;2j
: ð15Þ

Both panels in Fig. 1 display a quasiperiodic pattern of
the tendexes in the ðr; zÞ plane. The period in the r direction
is not constant but it undergoes small changes as r
increases; this is due to the specifics of the tendexes’
solution and it is also related to the roots of the Bessel
functions. The figure contains areas where tendexes with

FIG. 1. Top: Tendexes in the case of l ¼ 0 corresponding to the
eigenvectors in the ðr; zÞ plane. The tendicities are positive for
dashed (blue) lines and negative for solid (red) lines. Values of the
other parameters are t ¼ 0, φ ¼ 0 and k ¼ κ ¼ 1. Bottom:
Tendicities in the case of l¼0 corresponding to the tendexes of
φ-aligned eigenvector v3 [see Eq. (13)] in the ðr; zÞ plane. The other
parameters have the samevalues as in the top panel. The signs of the
eigenvalues (colors) interchange in a chessboard pattern. The red
regions have negative tendicity and the blue regions have positive
tendicity. The color intensity represents the magnitude of the
tendicity. The color at (3.5,6.7) is red (lighter gray).
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opposite signs of tendicity cross each other, which is a
common and expected feature. Quite surprisingly, there are
also places where one of the tendicities is zero in this ðr; zÞ
section. Part of the tendicity in the ðr; zÞ plane must be
“transferred” to the φ direction orthogonal to the displayed
ðr; zÞ plane. This is a consequence of the fact that the tidal
field E is trace free which means the sum of its eigenvalues
has to vanish. This becomes clear when comparing the top
plot and the bottom one in Fig. 1—the total sum of their
tendicities vanishes (roughly speaking, the blue cancels out
the red). It is also interesting that there are regions where
tendicities in all three directions are nonzero. This means
that the general gravitational Bessel waves are not purely
transversal—unlike the plane gravitational wave—in the
region displayed. These findings are also valid asymptoti-
cally for large r and for all l; see Sec. IV D.
The structure of vortex lines in the ðr; zÞ plane is

indicated in Fig. 2. Equation (14) implies that the displayed
ðr; zÞ section is a plane of reflection symmetry for the
vortexes. Indeed, flipping the sign of the e2̂ component of
v1 gives −v2 and the minus sign is irrelevant for eigen-
vectors and vortex analysis. As a result, the vortex lines
corresponding to v1;2 in Eq. (14) must cross the plane at
equal and opposite inclinations and they have equal and
opposite vorticities. Figure 2 displays the vortex lines with
zero vorticity, so they are not physically relevant in the
sense to show a differential frame dragging along them.
However, they display the orientation of the other two
vortexes whose projection onto the plane is orthogonal to

the vortex lines shown. The shading of the displayed lines
represents the vorticities of the other two vortex lines.

B. The case of l= 1, small values of r

The calculated tidal field [see Eq. (10)] simplifies so that
one can approximate

λ1;2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
1̂ 3̂

þ E2
2̂ 3̂

q
; λ3 ¼ 0

and

ffiffiffi
2

p
v1;2 ¼

E1̂ 3̂

λ1;2
e1̂ þ

E2̂ 3̂

λ1;2
e2̂ þ e3̂; ð16Þ

v3 ¼
−E2̂ 3̂e1̂ þ E1̂ 3̂e2̂

jλ1;2j
ð17Þ

in the region of interest. Similarly, vortexes are given by the
same formulas with E replaced by B.
The left panel of Fig. 3 shows tendexes given by Eq. (16).

These tendex lines of v1 and v2 lie in a plane described by a
normal v3; see Eq. (17). The normal is oriented along the x
axis for small values of r and for the chosen parameters.
The z dependence, through ϕ, in Eq. (17), implies that the
normal vector field—approximately constant in the region
displayed—also rotates clockwise with increasing z.
More insight can be gained by a pointwise exact solution,

i.e. including terms of all orders in r in Eq. (10). Figure 4
displays such an exact solution—tendexes corresponding to
the largest and to the lowest eigenvalues. Their behavior is
depicted in a larger range than the one used in the left panel in
Fig. 3. One can clearly see that the pattern near the origin of
the ðy; zÞ plane shown in Fig. 3 (left) is present (close to the
center of the shaded plane, in Fig. 4, but perpendicular to it)
as expected. The tendex lines leave the ðy; zÞ plane further
away from the x axis and they form a helixlike pattern.

FIG. 2. Vortex lines in the case of l ¼ 0 in the ðr; zÞ plane
corresponding to the case presented in Fig. 1. Vorticity of these
lines is identically zero. Shading of the lines is determined by the
absolute value of the vorticity of the other two vortex lines. The
other lines do not lie in the plane and have equal and opposite
vorticities.

FIG. 3. Left: Tendexes for l ¼ 1 in the ðy; zÞ plane with t ¼
x ¼ 0 and tick distance 0.03. A similar plot represents vortexes
for l ¼ 2 in the ðx; yÞ plane with t ¼ z ¼ 0. Right: Tendexes for
l ¼ 2 in the ðx; yÞ plane with t ¼ z ¼ 0 and tick distance 0.5.
Thus the vortex lines are rotated by π=4 with respect to the
tendexes. We put k ¼ κ ¼ 1 in all cases. Each panel is centered at
the origin of the corresponding plane.
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Vortex lines with the positive and negative vorticities
(not displayed here) exhibit a similar pattern as shown in
the left panel of Fig. 3 with red and blue lines interchanged.
The plane of these vortexes (near the origin of the
coordinate system) is given by a normal aligned with y
axis for parameters chosen as in Fig. 3.

C. The case of l ≥ 2, small values of r

The range of the coordinate r allows us to approximately
solve for tendexes as follows:

λ1;2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
1̂ 1̂

þ E2
1̂ 2̂

q
; λ3 ¼ 0

and

v1;2 ¼
ðλ1;2 þ E1̂ 1̂Þe1̂ þ E1̂ 2̂e2̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2λ1;2ðλ1;2 þ E1̂ 1̂Þ
p ; v3 ¼ e3̂: ð18Þ

Again, formulas for the vortexes are given by simply
replacing E with B in the eigenvalue and eigenvector
equations above.
A simple pattern of tendexes is displayed in the right

panel of Fig. 3. The pattern rotates clockwise with
increasing z and counterclockwise with increasing t (which
enters through the phase ϕ).
We shall illustrate this behavior using also a standard

approach to describe spacetime curvature effects—
geodesic deviation. Consider a circle of testing particles
in the ðx; yÞ plane of a small diameter with the center at the
z axis. The tendex patterns indicate that this circle should
be stretched along the red (solid) tendex lines and squeezed

along the blue (dashed) tendex lines; we should get an
ellipse that rotates as time flows.
Now, let us turn our attention to another well-established

treatment of gravitational waves. The equation of geodesic
deviation [Eqs. (35.14) and (35.15) of MTW [31]] in the
proper reference frame [48] describes the oscillations of
locations of test particles which are induced by the wave as
measured by an observer in the spatial origin of the proper
reference frame. The equation is often solved in a con-
venient transverse-traceless (TT) gauge where hTTjk ¼
2ω−2Rj0k0 (Box 35.1 in MTW [31]). We do not present
the explicit and rather lengthy expressions of the gravita-
tional Bessel wave in the transverse-traceless gauge,
because they are the same (up to the constant 2ω−2) as
the expressions for the tidal field in Eq. (10) as follows
from Eq. (8).
If we consider the limit r → 0, we get nonzero compo-

nents of the TT-gauge metric only for l ≤ 2. Figure 5
shows the time evolution of the ðx; yÞ plane oscillations
(z ¼ 0), perpendicular to the direction of the propagation of
the vortex wave for the case l ¼ 2. The consecutive time
snapshots reveal a rotating ellipse. This agrees with the
rotating polarization in the right-handed direction as
predicted by the tendexes, i.e. counterclockwise for a
gravitational wave propagating toward the reader.
Figure 6 displays the tendexes corresponding to the

largest and the lowest tendicities in order to describe their
behavior beyond the approximation used in the right panel

FIG. 4. Tendexes in the case of l ¼ 1 for t ¼ 0 and k ¼ κ ¼ 1.
Tendex lines are color coded by the sign of the eigenvalues, the
most positive tendicity is colored blue (dark gray, in the upper
right and lower left) and the most negative tendicity is colored red
(light gray, in the upper left and lower right). The range displayed
along each axis is ½−3.5; 3.5�.

FIG. 5. Time sequence depicting the transverse effect of the
gravitational Bessel wave with l ¼ 2 in the ðx; yÞ plane at
equidistant times over one period.

FIG. 6. Tendexes in the case of l ¼ 2 with t ¼ 0 and
k ¼ κ ¼ 1. Tendex lines are colored by the sign of the eigen-
values, blue (dark gray) for the most positive and red (light gray)
for the most negative. The range of each of the three coordinates
is ½−3.5; 3.5�.
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in Fig. 3. One can see that the corresponding part of
Fig. 3—the perpendicular set of lines oriented along the x,
respectively y, axis—is reproduced near the origin (center
of the shaded plane) as expected. The tendexes leave the
ðx; yÞ plane further away from the z axis and a spiraling
pattern is revealed.
In Fig. 7 we present the structure of tendex lines in the

ðx; yÞ plane for the case l ¼ 3. The diagram demonstrates
the appearance of a singular point in the center. Singular
points are also present for higher values of l. Such a point
is called the triradius if l ¼ 3. The appearance of these
singular points is related to the vanishing of components of
the TT-gauge metric (and thus also the tidal field) in the
limit r → 0 for l ≥ 3.
Directions of vortex lines corresponding to the case

l ¼ 2 are indicated in the left panel of Fig. 3. It demon-
strates that the vortexes are rotated by π=4 with respect to
the tendexes. The magnitude of vorticities has the same
decaying behavior as the magnitude of tendicities. The
vortex lines in the case l ¼ 3 are rotated by π=6 with
respect to the tendex lines in the close vicinity of the center.
Let us note that l ≥ 2 tendexes of positive and negative

eigenvalue exhibit the same pattern which is only rotated by
π=l close enough to the z axis. The same applies to
vortexes.

D. Asymptotical behavior for large values of r

The Newman-Penrose formalism is an approach widely
used to analyze the asymptotical behavior of a gravitational
wave at null infinity. Let us recall the basic ingredients. We
use the following complex null tetrad:

l ¼ 1ffiffiffi
2

p ðe0̂ þ e1̂Þ; n ¼ 1ffiffiffi
2

p ðe0̂ − e1̂Þ;

m ¼ 1ffiffiffi
2

p ðe2̂ þ ie3̂Þ; m� ¼ 1ffiffiffi
2

p ðe2̂ − ie3̂Þ:

We inserted the tetrad from Eq. (12) into the above
formulas and we computed the complex Weyl scalars
defined as follows:

Ψ0 ¼ Cμνρσlμmνlρmσ; Ψ1 ¼ Cμνρσlμnνlρmσ;

Ψ2 ¼ Cμνρσlμmνm�ρnσ; Ψ3 ¼ Cμνρσlμnνm�ρnσ;

Ψ4 ¼ Cμνρσnμm�νnρm�σ:

The authors of [33] (see their Appendix) have proved a
relation among the tidal field E, the frame-drag field B and
the Weyl scalars:

Eâ b̂þ iBâ b̂ ¼

2
64
2Ψ2 −ðΨ1−Ψ3Þ iðΨ1þΨ3Þ
� Ψ0þΨ4

2
−Ψ2 − i

2
ðΨ0−Ψ4Þ

� � −Ψ0þΨ4

2
−Ψ2

3
75: ð19Þ

The peeling theorem [49] leads to the conclusion that
asymptotically only Ψ4 contributes to E and B in an
asymptotically flat spacetime. The gravitational Bessel
wave does not decay in the z direction; hence our spacetime
under study—the Minkowski spacetime perturbed by the
wave—is not asymptotically flat in the strict sense required
by the peeling theorem. Also the radial falloff ∼r−1

2 is
slower than for an asymptotically flat spacetime.
Nevertheless, the general formula (19) does still apply.
We obtained that in leading order (in r) only the even-
numbered Weyl scalars are real and the odd-numbered
Weyl scalars are imaginary. Then Eq. (19) implies that the
tidal field E is given by the entries on the main and
the minor diagonal and the frame-drag field B is given by
the complementary entries. The leading order behavior in
Eqs. (10) and (11) confirms this result.
This implies that the limit for large values of r must have

formally the same solution of the eigenvalues and eigen-
vectors as the case of l ¼ 0. Moreover, the formal solution
is applicable to all values of l; this holds true for both
tendexes and vortexes. Figure 8 (top) displays the tendex
lines in the ðr; zÞ plane for l ¼ 2 and k ≠ κ. A periodic
tiling, similar to that in Fig. 1 (with l ¼ 0), appears again.
The choice k ≠ κ produces wiggly tendexes. This contrasts
the tendex lines that are resembling straight lines almost
everywhere in the case of k ¼ κ (not displayed in a separate
figure but already forming for larger r in Fig. 1). We display
a 3D inset of tendexes instead of periodic tiling in the
bottom part of Fig. 1. The most positive/negative tendicity
lines are shown. We see that the red curves, no longer
visible in the ðr; zÞ plane in the vicinity of the point marked
by the arrow, are aligned with the direction tangent to the

FIG. 7. Tendex lines in the ðx; yÞ plane with the same
parameters as in the right panel of Fig. 3 but in the case of l ¼ 3.
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coordinate φ. The reason why this occurs is the same as the
one already mentioned in Sec. IVA. In Fig. 8 (bottom) the
corresponding vortex lines are also shown. The same
comments as in the case of l ¼ 0 apply here. Moreover,
the features displayed in Fig. 8 are qualitatively identical
for higher values of l. Of course, the dependence on φ will

be different for different values of l but it is not very
significant in Fig. 8.
Let us comment on the direction of propagation of the

wave. Consider the enlarged region in Fig. 8 at the tip of the
arrow. The zero vorticity line (bottom panel) is vertical
there. The ðr; zÞ section displayed is a plane of reflection
symmetry for the remaining mutually perpendicular vor-
texes; thus these vortex lines intersect the plane of the
figure with inclination angle equal to π=4 and they are
orthogonal to the vertical curve shown. As a result theymust
form a “cross ×” pattern in the ðx; yÞ plane. The positive
tendicity lines are aligned along the x direction while the
negative tendicity lines are aligned along the y direction; i.e.
a “plus þ” pattern is formed. This is clearly seen from both
the top panel and the inset. In summary, the vortex and
tendex lines are × shaped, coplanar and relatively rotated by
π=4. This implies that the wave is locally propagating along
the perpendicular direction, the z axis. Thus the situation
depicted in Fig. 3 close to r ¼ 0 is locally reproduced in the
large r regions as well. The behavior of the wave is much
more complex in a general position.
It is known that wavefronts of Durnin’s photon beams

have a shape of a generalized cone; see e.g., [50]. In our
case, the tiling shifts in the z direction as we change the
angle φ. Thus we can suspect that a sort of generalized
cone (wiggly for k ≠ κ) is present also in the case of a
gravitational Bessel wave. A deeper analysis reflecting an
impact of the Poincaré-Hopf theorem as in [36] with a
sphere replaced probably by a conelike surface would be
necessary to reach a more definite conclusion.

E. The case of k = 0

In this subsection, we will discuss the special case of
k ¼ 0, which for l ¼ 0 corresponds to cylindrical gravi-
tational waves extensively studied in the literature. This
knowledge can give us some hints of what to expect in our
general case, e.g., a type of possible sources. We shall recall
some related properties of cylindrical gravitational waves
and then wewill turn our attention to the specific subcase of
our solution.
Cylindrically symmetric waves are locally characterized

by two commuting, spatial, Killing vector fields with an
integrable orthogonal space. One can find coordinates
ðφ; zÞ such that the Killing vectors are ∂=∂φ and ∂=∂z.
Furthermore, there exists an axis with respect to the
coordinate φ (with 0 and 2π identified) [51].
Cylindrically symmetric waves have played a significant

role in the solution of several problems. We will mention
some of the problems in the following. There is a well-
known exact solution of Einstein equations—the already
mentioned Einstein-Rosen waves, which were utilized in
discussions concerning the reality of gravitational radiation
[52]. Results about the underlying topology of a specific
class of cylindrical gravitational waves are available as well
[53]; e.g., spacelike hypersurfaces of these gravitational
waves can be homeomorphic for example to a tree-torus.

FIG. 8. Tendexes and vortexes in the case of l ¼ 2 and large
values of r corresponding to the eigenvector(s) in the ðr; zÞ plane
(t ¼ 0, φ ¼ 0 and k ¼ 2κ ¼ 1). Top and inset: The top panel
displays positive-tendicity lines as dashed (blue) and negative-
tendicity ones as solid (red) lines. The 3D inset contains the
minimal tendicity lines in red (light gray, almost aligned with the
y axis) and the maximal tendicity lines in blue (dark gray).
Bottom: Vortex lines of identically zero vorticity. The remaining
two vortex lines (not displayed) cross the lines shown, but are not
tangent to the plane, and they have vorticities that differ only in
sign. Shading of the curves presented in this plot is determined by
the absolute value of the vorticity of the other two vortexes.
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This means that these waves admit compact sources.
Moreover, waves of this kind belong to the class of
boost-symmetric spacetimes [54].
The importance of general cylindrically symmetric

waves naturally leads to the search for the corresponding
matter sources, even if they are often idealizations. These
include a pulsating mass cylinder [55] and cosmic strings
[56]. Cosmic strings were proposed by Kibble as one-
dimensional topological defects during a symmetry break-
ing phase transition early after the big bang [57]. An analog
of the black-hole thermodynamic laws can be formulated
also for cylindrically symmetric cosmic strings. They were
studied in [51], e.g., their modified Thorne energy, and the
energy flux of the gravitational waves, among other
invariantly defined quantities. Cosmic strings can generate
gravitational waves in broad bands from low to high
frequencies [58].
The k ¼ 0 case is simple enough to be solved without

any approximation in r in order to analyze the vortexes and
tendexes. Moreover, the components in Eqs. (10) and (11)
are independent of z.
The tidal field in Eq. (10) is a block-diagonal matrix

composed of two consecutive matrices, a 2 × 2 matrix and
a 1 × 1 matrix, along the main diagonal. This means that
the coordinate vector field ∂=∂z is always an eigenvector
with a corresponding eigenvalue given by E 3̂ 3̂. The formula
for the eigenvalue shows that its radial dependence is given
by the oscillating Bessel function. It follows that the plot
will consist of concentric regions where the tendicity
changes its sign when we move from one region to its
neighbor along the radial direction. In other words, the
color of the displayed tendicity will oscillate between red
and blue with changing r. The φ dependence, through
cosϕ, will also lead to azimuthal oscillations provided
l ≠ 0. In the case of l ¼ 0, only concentric annuli, each of
a single color, appear. An example in the case of l ¼ 2 is
displayed in the top part of Fig. 9.
The behavior of the two remaining tendexes is more

complex as far as l is concerned. Even so, periodicity in the
azimuthal direction is present here as well; compare the
case of l ¼ 2 and l ¼ 3 in Figs. 10 and 11.
The case of l ¼ 0 represents a cylindrically symmetric

wave as already mentioned. The vanishing of l ensures that
the φ dependence of components in Eq. (10) drops out. The
tidal field in Eq. (10) becomes diagonal which implies that
the eigenvectors are the coordinate vector fields. Plots of
each of the two eigenvectors in the ðx; yÞ plane will be
composed from concentric annuli regions of oscillating sign
of tendicity. Of course, the positions where the sign changes
are specific to each of them due to different radial depend-
ence of the eigenvalues. Nevertheless, we can make a general
comment on the asymptotic behavior because the radial
tendicity fades out faster than the other two eigenvalues. This
means that the tendicities corresponding to ∂=∂ϕ and ∂=∂z
are of the same magnitude but opposite sign for sufficiently
large values of r. The cylindrical wave becomes transversal

FIG. 9. Tendex lines in the case of l ¼ 2, k ¼ 0. The figure
consists of the following parts: The top part displays tendicity
corresponding to the vector field ∂=∂z. The red (lighter gray)
areas have negative tendicity and the blue (dark gray) areas have
positive tendicity. The color intensity represents the magnitude of
the eigenvalue. The cylinder displays positive tendex lines also
shown in Fig. 10. This time, the tendicity is marked using a
background color map instead of line color; purple (darker)
regions correspond to a large eigenvalue, and yellow (lighter)
regions depict a value closer to zero. The side of the cylinder
displays the large r limit of the tendexes evaluated at the radius of
the cylinder.

FIG. 10. Tendexes in the case of l ¼ 2, k ¼ 0 (exact in r)
corresponding to the eigenvectors in the ðx; yÞ plane in the range
of coordinates examined. Values of the other parameters are t ¼ 0
and κ ¼ 1.
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and it turns into a plane wave locally, with the propagation
direction ∂=∂r, far away from the z axis.
A similar reasoning applies to the case of l > 0: the

radial tendicity fades away faster again. The situation is
depicted in Figs. 9 and 10 in the case of l ¼ 2. The side of
the cylinder of Fig. 9 describes the asymptotical behavior
of positive tendex lines. Because the remaining tendicities
of the two eigenvectors ∂=∂ϕ and ∂=∂z sum up to zero and
the tendicities oscillate, there are regions where positive
tendicity is associated with ∂=∂ϕ and regions where it is
associated with ∂=∂z. Figure 9 displays this fact by the
presence of alternating regions in the cylinder side—
regions with horizontal tendex lines and regions with
vertical tendex lines. The boundaries of these regions
coincide with the “rays” of vanishing tendicity (white
regions) corresponding to the eigenvector ∂=∂z depicted
in the topmost part of Fig. 9. We also plot the magnitude of
the tendicity on the cylinder, we use a color map, as in [36],
in which purple (darker) areas correspond to large eigen-
values and yellow (lighter) regions are closer to zero.
The top base of the cylinder in Fig. 9 contains tendexes

with the positive tendicity for finite r. The side is joined to
the base as if it were at infinity. The topmost part of the
figure shows that the positive tendicity is transferred from
the white regions of the horizontal plane to the vertical
direction with positive tendicity indicated by a blue color.
The base is presented in more detail in Fig. 10 including
tendexes with negative tendicity. One can see that the plot
of tendexes bears a striking similarity to tendexes of an
oscillating mass quadrupole (see Fig. 15 of [33]), except
for the central region which is smoothed out in our case.
The radial tendicity is strong near the center r ¼ 0 but

diminishes further away from the z axis. The near z-axis
zone contains perpendicular tendex lines of opposite sign,
effectively reproducing the right panel of Fig. 3. As one
moves away from the center, the tendex lines form distorted
closed loops that stay in a single quadrant delimited by
lines y ¼ �x of the displayed plane. Still, there are some
tendexes crossing quadrants near triradius points.
The cylinder in Fig. 9 (including the circular end caps) is

homeomorphic to a sphere; therefore it must have the same
Euler characteristic χ ¼ 2. White regions in Fig. 9 can be
shrunk, tendex lines can be radially extended and the
indices i of all isolated singularities can be calculated. The
Poincaré-Hopf theorem requires that the contributions
coming from indices i corresponding to open loops i ¼
1=2 [Fig. 12(a)], triradii points i ¼ −1=2 [Fig. 12(b)], and
closed loops i ¼ 1 [Fig. 12(c)] (see [36,47]) do sum up to
χ ¼ 2. Let us note that this result must be independent of
the sign of the tendicities of the tendex lines. By counting
the individual contributions of the singular sets lying within
a circle of a given radius in each base of the cylinder, one
can show that they always sum up to zero. In order to
illustrate this fact, Fig. 12(d) exhibits a finite radius circle
with the singularities explicitly marked in the case of
negative tendicity lines for better visual presentation. One
can verify that their indices do sum up to zero. This holds
true even if the radius tends to infinity. Now, only the
singular sets in the side of the cylinder need to be taken care
of. They can be viewed as a continuation of the open loops
on the two bases. It means that we can count each of these
four singular lines as a loop with the index i ¼ 1=2. It
follows that the total sum of the indices is equal to the Euler

FIG. 11. Tendexes in the ðx; yÞ plane for the same parameters as
in Fig. 10 but in the case of l ¼ 3.

FIG. 12. The left column displays sketches of the three basic
singularities together with values of the corresponding indices:
(a) open loop i ¼ 1=2, (b) triradius i ¼ −1=2 and (c) closed
loop i ¼ 1. The right panel (d) is an enlargement of the central
area in Fig. 10 with these singularities explicitly marked in the
case of negative tendicity lines (red, solid) and within a dashed
line circle.
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characteristic χ ¼ 2. Similarly, we can count indices in the
case l ¼ 3 with the tendexes in the ðx; yÞ plane shown in
Fig. 11. This time each base would contribute with the
index i ¼ −1=2 and each of the six singular lines on the
side of the cylinder with the index i ¼ 1=2, summing up to
2 again.
Now, let us briefly turn our attention to vortexes. The

solution is formally the same as for tendexes/vortexes in the
case of l ¼ 1 and small values of r; see Eqs. (16) and (17).
When comparing the vortexes and tendexes, one can easily
verify that the asymptotical behavior for large r, irrespec-
tive of the value of l, is characterized by the fact that the
vortex and tendex lines are locally rotated by π=4.

V. CONCLUSIONS

Motivated by the observation of gravitational waves and
the usefulness of Bessel vortex beams in other fields of
science, we have found a multidimensional Bessel beam
inspired solution to linearized Einstein gravity. The multidi-
mensional solution, presented in this paper for the first time,
fits a broader research program exploring and testing alter-
native general relativitymodels. The four-dimensional reduc-
tion is a generalization of a cylindrical gravitational wave.
We were inspired by electron and photon Bessel vortex

waves in looking for a gravitational analog.We employed the
similitude between electromagnetism and gravitation also in
utilization of the general relativity analogs of electric
and magnetic field lines—tendexes and vortexes. We have
applied the tendexes and vortexes to visualize the curvature
of the four-dimensional solution. Thesevisualizations clarify
that the waves’ propagation is not purely radial, axial,
azimuthal or standing, in a general case, but it includes a
rich interplay betweenall of these types ofwave behavior.We
have found and discussed some similarities with the weak
gravity phenomena examined in the series of papers pioneer-
ing these powerful visualization tools. These similarities can
serve as an indication to the experts in numerical relativity to
pinpoint the potential sources of the gravitational Bessel
wave. Possible sources could be oscillating or interacting
cosmic strings as mentioned in the discussion in Sec. IV E.
Also, the optical and/or acoustic resemblance suggests that
such a wave could be produced via scattering of a gravita-
tional plane wave on an appropriate analog of scattering
centers mentioned in the Introduction. Whatever the system
producing the gravitational Bessel waves and its dynamics
may be, we are confident that the presented visualizations
will support physical intuition in analyzing further these
waves and their sources.
We analyzed the solution for different choices of

parameters and also its asymptotical behavior. We dis-
cussed properties of the Weyl scalars for an appropriate
tetrad and for the cylindrical-like case we explored singu-
larities of its tendex line patterns. These singularities have
to develop for such compact surfaces and they show a

fingerprint of the beaming characteristics of the spacetime
currently studied.
We hope that our paper and its findings will both

contribute to and provide inspiration for the rapidly
expanding research of gravitational waves.
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APPENDIX: THE GENERAL DIMENSION
LINEARIZED SOLUTION

1. Conventions and the ansatz

The background metric is expressed in the Minkowski
coordinate system as follows:

ημνdxμdxνjMink ¼ −dt2 þ dl2; dl2 ¼ δuvdxudxv:

In the cylindrical-like one, the spatial part of the metric
becomes

dl2 ¼ ½dr2 þ r2dΩ2
B−1�|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

indices a;b;…

þ δijdxidxj|fflfflfflfflffl{zfflfflfflfflffl}
indices i;j;k;…

; ðA1Þ

where dΩ2
B−1 is a volume element of a unit sphere of

dimensionB − 1. The angular coordinates range as follows:

ϑa ∈ ½0; π�; for a ∈ ½2; B − 1�; φ≡ ϑB ∈ ½0; 2πÞ:
The multidimensional sphere has a nontrivial topology, so
at least two coordinate charts (e.g., using a stereographic
projection) are necessary to cover the entire manifold.
Since we leave these global questions aside, we will work
only with one coordinate patch—with hyperspherical
coordinates, so we can parametrize the hypersphere of
radius r in RB using Cartesian coordinates by

x1 ¼ r sin ϑ2 sinϑ3……… cos ϑB;

x2 ¼ r sin ϑ2 sinϑ3……… sin ϑB;

x3 ¼ r sin ϑ2 sinϑ3… cosϑB−1;

..

.

xB−1 ¼ r sin ϑ2 cosϑ3;

xB ¼ r cosϑ2: ðA2Þ
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The split of the spatial part in (A1) is of the same type as
in [59,60].
The multidimensional ansatz for the perturbation field is

hμν ¼ ℜfAμνfðκrÞeiϕg; ϕ ¼ lφþ k⃗ z⃗−ωt; ðA3Þ

where k⃗ z⃗ ¼ δjkkjzk, f is a function yet to be determined as
is the amplitude matrix Aμν. The parameters of the solution

are ω, κ, k⃗ and l.
We assume that the Aμν are constants in the Minkowski

coordinates and this is the coordinate system we shall
work with.

2. Wave equations

The wave equations for the trace-reversed perturbation
h̄μν ¼ Āμνfeiϕ given by hμν ¼ h̄μν þ 1

2−D h̄ημν yield

0 ¼
�
ω2 − k⃗2 þ f00κ2 þ f0κrðB − 1Þ

r2f
−
l2

r22

�
h̄μν; ðA4Þ

where f0ðuÞ ¼ df
du and r2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1Þ2 þ ðx2Þ2

p
. The equation

can be satisfied only if the last two terms (fractions) add up
to a constant; we shall write it as −κ2C which has a correct
physical/quantity-dimension. Of course, C may depend on
both B and l, i.e. C ¼ CðB;lÞ. Consequently, vanishing of
the square bracket term in Eq. (A4) leads to an equation for
the radial function and a dispersion relation ωðκ; k⃗Þ. The
equation depends on xa through r only in the following two
subcases. In the first, B ¼ 2, and then r≡ r2. In the second,
l ¼ 0 and B is arbitrary; then any angular dependence
(present in the r2) drops out from the term enclosed in
brackets in Eq. (A4).
In these two cases only, we can rewrite the radial-

function part of Eq. (A4) using a dimensionless variable
u ¼ κr,

f00 þ B − 1

u
f0 þ

�
C −

l2

u2

�
f ¼ 0; f0 ¼ dfðuÞ

du
;

and one can see that this is a redressed form of the relation
8.491-3 from [61] (with α ¼ 0 and β ¼ γ ¼ 1) leading to
Bessel functions Zν which can be written as a linear
combination of the Bessel functions of the first and of
the second kind for ν ∈ Z. The solution is given by

fðuÞ ¼ u1−B=2Zνð
ffiffiffi
C

p
uÞ; ν2 ¼ l2 þ ð1−B=2Þ2: ðA5Þ

Since the constant C is “arbitrary” as long as Eq. (A4) is
satisfied, we can set it to be equal to 1. This is merely
equivalent to rescaling the parameter κ in both f and the
dispersion relation for ω.

3. The Lorenz gauge conditions

The Lorenz gauge condition 0 ¼ h̄τμ;τ implies

0 ¼ iωĀμ0 þ iĀμmkm þ
XB
b¼3

Āμb
κf0xb

rf

þ
�
Āμ1

κf0

rf
þ Āμ2

il
r2

�
x1 þ

�
Āμ2

κf0

rf
− Āμ1

il
r2

�
x2:

To analyze the equations, we shall use the parametrization
(A2). Let us first deal with the explicitly appearing xa

coordinates. The last line in the above equations contains
only two terms that depend on φ, x1 ∝ cosφ and
x2 ∝ sinφ. The equations are to be satisfied for all possible
values of φ and other angular variables; hence both
mentioned terms must vanish independently. Because they
vanish, the b ¼ 3 term from the sum is the only one that
contains ϑB−2; thus it must vanish as well, implying
Āμ3 ¼ 0. The process is similar for the b ¼ 4 term and
so on for the whole range of the sum.
Let us discuss the vanishing of terms at x1 and x2. We

split the analysis to the same subcases as in the case of the
wave equations. The first case, B ¼ 2, gives either that both
Āμ1 and Āμ2 vanish or that

Āμ2 ¼ �iĀμ1 ≠ 0; f ¼ KðκrÞ�l;

where K is a constant. Equation (A4) implies that C ¼ 0.
The second case, l ¼ 0, yields either that both Āμ1 and Āμ2

vanish or that f0 ¼ 0; i.e. f is a constant. The above-
mentioned implications for radial functions f are very
restrictive and do not allow us to find a solution with f
being a Bessel function. Therefore, we shall ignore these
restrictive solutions in the following; i.e. we consider only
the case of Āμ1 ¼ Āμ2 ¼ 0.
There is a natural way to construct the Ā0m and Ānm

components using the vector k⃗ as follows:

Ā0m ¼ c̃
km
k2

; Ānm ¼ ã
knkm
k2

þ b̃

�
knkm
k2

− δnm

�
; ðA6Þ

i.e. projecting along the vector k⃗ (terms with c̃ and ã) and
perpendicular to it (terms with b̃). Continuing the analysis
with the ansatz (A6), we obtain Ā00 ¼ −c̃=ω and
ã ¼ −c̃ω=k2.
Thus we have found a solution for the amplitudes Āμν of

the metric perturbation h̄μν. We need to transform back to
hμν by subtracting the appropriate multiple of the trace. The
result is presented in Sec. II, Eq. (6).
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