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Recent detections by the gravitational wave facilities LIGO and Virgo have opened a window to study
the internal structure of neutron stars through the gravitational waves emitted during their coalescence. In
this work we explore, through numerical simulations, the gravitational radiation produced by the merger of
binary neutron stars with dark matter particles trapped on their interior, focusing on distinguishable
imprints produced by these dark matter cores. Our results reveal the presence of a strongm ¼ 1mode in the
waveforms during the postmerger stage, together with other relevant features. Comparison of our results
with observations might allow us to constrain the amount of dark matter in the interior of a neutron star.
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I. INTRODUCTION

The detections of gravitational waves (GWs) in the last
years by the LIGO and Virgo interferometric observatories,
consistent with the merger of binary black hole systems
[1–6], have opened a new era of GW astronomy leading to
unprecedented discoveries. More recently, GWs from the
inspiral of a binary neutron star (NS) system (GW170817)
have been observed by LIGO and Virgo [7,8], followed by
several electromagnetic (EM) counterparts: a gamma-ray
burst, GRB170817A [9], and a thermal infrared and optical
spectra consistent with a kilonova [10]. These simultaneous
EM and GW observations started a fruitful era of multi-
messenger astronomy, which will inevitably lead to break-
throughs in our understanding of some of the most exciting
objects and phenomena in the Universe. The updated
detectors are expected to unveil more binary NS mergers,
with a couple of candidates already detected in GW only
during the first month of the O3 operations (see the real-
time updated GraceDB database [11]).
On amuch larger scale, there is overwhelming evidence of

the existence of dark matter (DM) in the Universe: the
mismatch between the luminosity-inferred matter and the
rotational curves in galaxies, the inferred mass distributions
in galaxy clusters and in galaxy mergers, and the precise
measurements of the cosmological baryonic fraction [12,13].
Measurements of the matter density and its baryonic com-
ponent imply that the DM represents about 25% of the total
content in the Universe [14,15]. Many theories have been
proposed to account for this nonemittingmatter, but themost
accepted ones describe DM as particles weakly interacting,
with mass ranging from 100 GeV to several TeV [16].
Despite the poor knowledge of the DM-baryon inter-

action (see for instance the experimental upper limit

constraints for weakly interacting massive particles in
[17]), these DM particles have been proposed to cluster
relatively more easily in dense stars. In this scenario, due to
its orbital motion, a star will sweep through the Galactic
DM halo and eventually capture some of the particles on its
way [18]. Despite the surface area of a typical NS being
much smaller than other stars, two properties make it very
efficient in capturing galactic DM particles [19]. First, the
high baryonic density inside a NS provides a much higher
probability for DM particles to interact and lose energy,
compared to other stars. As a matter of fact, for a given
star, the particle will interact if the cross section of the
DM-baryon interaction, σDM, is at least of the order of
the typical projected area occupied by each baryon,
mpR2⋆=M⋆ ∼mp=ρR⋆, which for a NS means σDM ≳
6 × 10−46 cm2 (while for the Sun it is 10 orders of
magnitude larger). Second, the strong gravitational force
prevents most DM particles escaping from a NS once it
loses some of its energy through interactions. Given
enough time (of the order and probably much larger than
105 years [18]), a NS can capture enough DM particles to
affect its observational properties, which may then be used
to constrain the nature of DM.
On one hand, if DM particles are self-annihilating, this

process modifies the thermal evolution of the NS and could
be observed as a bright EM emission of old NS since the
released energy due to the annihilation inside the NS can
increase the temperature beyond its natural value [20]. On
the other hand, if DM particles do not self-annihilate, they
might cluster in a small region at the center of the NS,
increasing its compactness and changing its internal struc-
ture [21]. Ultimately, this clustering could even lead to a
gravitational collapse [22]. Either way, NSs might therefore
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be sensitive to indirect probes of the presence of DM and
can be used to set constraints both on the density and on the
physical properties of DM.
Recently, it was suggested that DMmight leave a distinct

signature on the GW signal radiated during the coalescence
of binary NSs, especially during the postmerger stage [23].
The collision between a NS and a star made of axions, one
of the most popular DM-type candidates [24,25], was also
studied [26], showing that future observations might be
able to detect such mergers and the signals could enhance
our understanding of DM. It has also been suggested that
DM may ignite supernovae by the formation and self-
gravitational collapse of a DM core [27].
Here, we present the first fully relativistic 3D numerical

simulations of the merger of binary NSs with DM particles
trapped on their interior. We describe these systems by
modeling the fermionic component with a perfect fluid and
the bosonic DM with a complex scalar field [28,29]. The
resulting objects, known as fermion-boson stars (FBSs)
[30], allow only a coupling between the boson and the
fermion particles through gravity. Notice that these kinds of
systems have been modeled in different ways in the past.
Possible changes in the structure of the star by the presence
of (non-self-annihilating) DM have also been investigated
using a two-fluid model [31]. However, we find it more
convenient to describe these systems by using FBSs since
the bosonic DM particles might form as a Bose-Einstein
condensate which can be represented with a single complex
scalar field. Notice also that current observations already
set some bounds on the amount of DM particles inside NSs
for different DM models [32]. The effect of weakly
interacting DM on the structure of the star will be stronger
in nonlinear dynamical scenarios like the coalescence of
two NSs. As we will see later, our simulations reveal that
the presence of DM cores leaves a distinct imprint in the
GWs during the postmerger phase. Notice however that, as
it was pointed out in [23], in a standard scenario only a
small amount of weakly interacting massive particle DM
might cluster in the interior of NSs, accounting for a tiny
fraction of the total mass of the star. In this work we will
consider heavier DM cores, with up to 10% of the total
mass, in order to set upper bounds on the possible effects of
these cores on the dynamics.
This work is organized as follows. In Sec. II a brief

introduction of the evolution equations describing FBSs is
presented, followed by the evolution formalism and numeri-
cal implementation. The construction of initial data for
FBSs, either isolated or in binaries, is described extensively
in Sec. III. In Sec. IV, we study the dynamics and the
gravitational radiation produced during the binary FBSs
coalescence. Finally, we discuss our results in Sec. V. We
have chosen geometric units such that G ¼ c ¼ M⊙ ¼ 1,
andwe adopt the conventionwhere roman indices a; b; c;…
denote spacetime components (i.e., from 0 to 3), while
i; j; k;… denote spatial ones.

II. SETUP

Binary NSs with a fraction of DM on their interiors can
be modeled by using two different matter components: a
perfect fluid for the fermionic matter and a complex scalar
field for effectively describing the bosonic DM. Stationary
compact solutions of such systems are known in the
literature as FBSs [28,30]. In this section, we present the
Einstein-Klein-Gordon-hydrodynamics (EKGH) system of
equations, describing the coupled evolution of the space-
time and the fermionic and bosonic matter components. We
also briefly describe the numerical implementation and the
quantities used for analyzing the dynamics.

A. Evolution equations

The spacetime geometry is described by the Einstein
equations, which can be extended in a convenient way by
using the covariant conformal Z4 formulation (CCZ4)
[33,34], namely,

Rabþ∇aZbþ∇bZa ¼ 8π

�
Tab−

1

2
gabtrT

�

þ κzðnaZbþnbZa−gabncZcÞ; ð1Þ

where Rab is the Ricci tensor associated with the spacetime
metric gab and Tab is the total stress-energy tensor with
trace trT ≡ gabTab. For this particular problem it can be
decomposed as

Tab ¼ TΦ
ab þ TM

ab; ð2Þ

where TΦ
ab is the energy-momentum tensor associated with

a (complex) scalar field and TM
ab corresponds to a perfect

fluid. The Za four-vector measures deviations from
Einstein’s solutions [35,36] (i.e., those satisfying the
constraints). Notice that suitable damping terms, propor-
tional to the parameter κz > 0, have been included in order
to enforce the dynamical decay of the constraint violations
associated with Za [34,37].

1. Bosonic matter

We consider here stable stars (i.e., not collapsing to black
holes) such that only a relatively small amount of DM
dwells in the core of each NS. Each DM core is described
by a complex scalar field ΦðiÞ, and its energy-momentum
tensor is

TðiÞ
ab ¼ ∇aΦðiÞ∇bΦ̄ðiÞ þ∇aΦ̄ðiÞ∇bΦðiÞ

− gab½∇cΦðiÞ∇cΦ̄ðiÞ þ VðiÞðjΦðiÞj2Þ�; ð3Þ

where Φ̄ðiÞ is the complex conjugate of ΦðiÞ, VðiÞðjΦðiÞj2Þ is
the scalar field potential, and the superscript (i) denotes
each star. The total energy-momentum tensor for the
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bosonic components is just the superposition of both stars,
that is,

TΦ
ab ¼ Tð1Þ

ab þ Tð2Þ
ab : ð4Þ

The scalar fields evolve according to the Klein-Gordon
(KG) equations

gab∇a∇bΦðiÞ ¼ dVðiÞ

djΦðiÞj2Φ
ðiÞ: ð5Þ

In this work we will consider the simplest self-potential for
each scalar field, given by

VðjΦðiÞj2Þ ¼ μ2jΦðiÞj2; ð6Þ

where μ is a free parameter related to boson mass and the
jΦj2 dependence ensures the U(1) invariance of the
Lagrangian. This interaction potential, for isolated DM
cores, leads to the well-known mini-boson star (see [38] for
an overview of different kinds of potentials). One can use
the conserved current

JðiÞa ¼ igabðΦ̄ðiÞ∇bΦðiÞ −ΦðiÞ∇bΦ̄ðiÞÞ ð7Þ

to define the conserved Noether charge associated with the
system:

NðiÞ ≡
Z

dx3
ffiffiffiffiffiffi
−g

p
g0aJðiÞa ; ð8Þ

which can be interpreted as the number of bosonic particles
in the star [38].
We consider two extreme cases, modeling very different

behavior of the scalar field cores, to study the diverse
phenomenological dynamics. In the first case, which we
study in depth, each DM core forms an independent Bose-
Einstein condensate and is assumed to interact with the
other DM and with the fermionic component only through
gravity, which seems a rather plausible approximation.
Consequently, the bosonic matter is effectively modeled in
our simulations by using two independent complex scalar
fields, Φð1Þ and Φð2Þ, corresponding to the DM cores inside
each star, which we call the noninteracting scalar field
model (NISF).
The second case, considered mainly for comparison

purposes, allows the bosonic matter to interact not only
through gravity but also by means of scalar field inter-
actions. In this particular case, which we call the interacting
scalar field model (ISF), both DM cores are described by
using the same single complex scalar field, thus directly
coupling the two bosonic components via the KG equation.
Note that the merger of DM cores with no fermionic

matter, so-called boson stars, have been previously studied

both in the NISF [39] and in the ISF cases [34,40]. Here we
focus on FBSs only.

2. Fermionic matter

We describe the fermionic component through the
energy-momentum tensor for a perfect fluid, given by

TM
ab ¼ ½ρð1þ ϵÞ þ P�uaub þ Pgab; ð9Þ

where ρ is the rest mass density of the fluid, ϵ its specific
internal energy, P its pressure, and ua is the velocity four-
vector. The equations of motion are given by

∇aðρuaÞ ¼ 0; ð10Þ

∇aTM
ab ¼ 0; ð11Þ

which ensures the conservation of the rest mass and the
energy-momentum, respectively.

B. Evolution formalism

The EKGH covariant equations can be written as an
evolution formalism by performing the 3þ 1 decomposi-
tion [41,42]. The line element can be decomposed as

ds2 ¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ; ð12Þ

where α is the lapse function, βi is the shift vector, and
γij is the induced metric on each spatial foliation. In this
foliation, the normal to the hypersurfaces can be defined as
na ¼ ð−α; 0Þ and the extrinsic curvature asKij ≡ − 1

2
Lnγij,

where Ln is the Lie derivative along na.
Subsequently, a conformal decomposition is applied to

the evolved fields, which basically consists of performing a
conformal transformation to the metric and the extrinsic
curvature, i.e., γij into γ̃ij with unit determinant andKij into
a trace trK and a traceless part Ãij. This transformation
leads to two new constraints, which can also be enforced
dynamically by including additional damping terms to the
evolution equations [34]. The final set of evolution fields
with the gauge conditions for the lapse and shift can be
found in [34,43].

1. Bosonic matter evolution: Klein-Gordon equations

The KG equations (5) can also be written as a time
evolution system by performing the 3þ 1 decomposition.
First, we define

ΠðiÞ ≡ −
1

α
ð∂t − βk∂kÞΦðiÞ; ð13Þ

as a new evolved field. In terms of the 3þ 1 quantities, the
evolution equations for each complex scalar field can be
written as
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∂tΦðiÞ ¼ βk∂kΦðiÞ − αΠðiÞ; ð14Þ

∂tΠðiÞ ¼ βk∂kΠðiÞ þ α

�
−γij∇i∇jΦðiÞ þ ΠðiÞtrK

þ dVðiÞ

djΦðiÞj2 Φ
ðiÞ
�
− γij∇iΦðiÞ∇jα; ð15Þ

which are still generic for any self-potential.

2. Fermionic matter: General relativistic
hydrodynamics equations

First of all, a 3þ 1 decomposition to the four-velocity
vector ua is applied by writing it down in terms of a parallel
and orthogonal part to the vector na, namely

ua ¼ Wðna þ vaÞ; ð16Þ

where W ¼ −naua is the Lorentz factor and va is the
three-velocity vector, both of them measured by Eulerian
observers.
The general relativistic hydrodynamics (GRHD) evolu-

tion equations are usually written in flux-conservative
form, namely

∂tuþ ∂kFkðuÞ ¼ SðuÞ; ð17Þ

which allows us to use numerical methods to deal with the
inherent shocks appearing due to the nonlinearities of the
equations. Here u is a vector of conserved fields, which will
be defined below. Within this framework, the equation of
continuity (10) and the energy-momentum conservation
(11) read

∂tð ffiffiffi
γ

p
DÞ þ ∂k½ ffiffiffi

γ
p ð−βk þ αvkÞD� ¼ 0; ð18Þ

∂tð ffiffiffi
γ

p
τÞ þ ∂k½ ffiffiffi

γ
p ð−βkτ þ αðSk − τÞÞ�

¼ ffiffiffi
γ

p ðαSijKij − Sj∂jαÞ; ð19Þ

∂tð ffiffiffi
γ

p
SiÞ þ ∂k½ ffiffiffi

γ
p ð−βkSi þ αSki Þ�

¼ ffiffiffi
γ

p ðαΓj
ikS

k
j þ Sj∂iβ

j − ðτ þDÞ∂iαÞ; ð20Þ

where γ ¼ detðγijÞ. The evolved conserved variables u ¼
fD; τ; Sig are proportional to the rest-mass density mea-
sured by Eulerian observers D, the energy density τ (i.e.,
without the mass density) and the momentum density Si,
which are defined as

D ≔ −naρua ¼ ρW; ð21Þ

τ ≔ nanbTM
ab ¼ hW2 − P −D; ð22Þ

Si ≔ −γai nbTM
ab ¼ hW2vi; ð23Þ

where h ¼ ρð1þ ϵÞ þ P is the enthalpy and W ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γijvivj

q
is the Lorentz factor in terms of the

three-velocity vector. Finally, Sij is the spatial projection
of the energy-momentum tensor TM

ab, namely

Sij ≔ γci γ
d
jT

M
cd ¼ hW2vivj þ Pγij: ð24Þ

Furthermore, to recover the physical or primitives fields
ðρ; ϵ; P; viÞ, required to perform the evolution, an equation of
state (EOS) must be imposed. During the evolution we
employ an ideal-gas EOS, P ¼ ðΓ − 1Þρϵ, where Γ is the
adiabatic index, and it is assumed to be a constant, which is
able to capture the fluid heating due to strong shocks
produced in the merger stage [41,44]. The transformation
from conserved to primitive fields involves nonlinear equa-
tions which, in general, need to be solved numerically [45].

C. Numerical setup and analysis

We adopt finite difference schemes, based on the method
of lines [46], on a regular Cartesian grid. A fourth-order-
accurate spatial centered discretization (satisfying the
summation-by-parts rule) is used for Einstein equations
[47]. The relativistic hydrodynamics equations are discre-
tized using the high-resolution-shock-capturing method
based on the Harten-Lax-van Leer-Einfeldt flux formula
[48,49] with piecewise parabolic reconstruction [50–52].
Finally, a third-order-accurate Runge-Kutta scheme is used
to integrate the equations in time [53].
To ensure sufficient resolution, we employ adaptivemesh

refinement (AMR) via the HAD computational infrastructure
that provides distributed, Berger-Oliger style AMR [54,55]
with full subcycling in time, together with an improved
treatment of artificial boundaries [56]. We adopt a Courant
parameter, defined by the ratio between the time step and the
grid size, λc ≈ 0.25 such that Δtl ¼ λcΔxl on each refine-
ment level l to guarantee that the Courant-Friedrichs-Levy
condition is satisfied. Our numerical implementation has
been tested with several benchmark problems dealing with
Einstein-KG equations [34,39,40,57,58] and GRHD equa-
tions [59–61].
Finally, the gravitational radiation can be calculated by

computing the Newman-Penrose scalar Ψ4 and expanding
it in a basis of spin-weighted spherical harmonics (with
spin weight s ¼ −2) [62,63], namely

rΨ4ðt; r; θ;ϕÞ ¼
X
l;m

Ψl;m
4 ðt; rÞ−2Yl;mðθ;ϕÞ; ð25Þ

where Ψl;m
4 ðt; rÞ ¼ R

S2 Ψ4
−2Yl;mdΩ.

III. INITIAL DATA

Here, we explain in detail how to construct initial data for
the equilibrium configuration of nonrotating isolated FBSs
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by using the methodology explained in Ref. [28]. We also
summarize the procedure to construct initial data for
binary FBSs.

A. Isolated fermion-boson star

The equilibrium configuration equations for a single
FBS can be obtained by combining the procedures to obtain
isolated NS and boson star solutions [41]. Let us start by
assuming a static metric given by the line element in
Schwarzschild coordinates (polar-areal coordinates [64]):

ds2 ¼ −α2ðr̃Þdt2 þ a2ðr̃Þdr̃2 þ r̃2dΩ2: ð26Þ

We also impose the static fluid condition vi ¼ 0 and a
harmonic time dependence ansatz for the scalar field,

Φðt; r̃Þ ¼ ϕ0ðr̃Þe−iωt; ð27Þ

where ω is a real frequency and ϕ0ðr̃Þ is a real-value spatial
function. Under these conditions, the EKGH system leads
to the following system of ordinary differential equations
(ODE):

∂ r̃a ¼ −
a
2r̃

ða2 − 1Þ þ 4πr̃a3τ; ð28Þ

∂ r̃α ¼ −
α

2r̃
ð1 − a2Þ þ 4πr̃αa2Sr̃r̃; ð29Þ

∂ r̃ϕ0 ¼ ζ; ð30Þ

∂ r̃ζ ¼ −½1þ a2 þ 4πr̃2a2ðSr̃r̃ − τÞ� ζ
r̃

−
��

ω

α

�
2

−
dV
djΦj2

�
a2ϕ0; ð31Þ

∂ r̃P ¼ −ðρð1þ ϵÞ þ PÞ ∂ r̃α

α
; ð32Þ

where

τ ¼
�
ωϕ0

α

�
2

þ
�
ζ

a

�
2

þ VðjΦ2jÞ þ h − P; ð33Þ

Sr̃r̃ ¼
�
ωϕ0

α

�
2

þ
�
ζ

a

�
2

− VðjΦ2jÞ þ P; ð34Þ

Sθθ ¼ −
�
ωϕ0

α

�
2

þ
�
ζ

a

�
2

− VðjΦ2jÞ þ P: ð35Þ

We adopt a polytropic EOS P ¼ κρΓ, which is a reasonable
approximation for cold NSs, considering the general
purpose of our study, combined with the massive potential
given by Eq. (6). The above system can be solved numeri-
cally by using boundary conditions guaranteeing regularity
at the origin and asymptotic flatness, namely

að0Þ ¼ 1; αð0Þ ¼ 1;

ϕ0ð0Þ ¼ ϕc; ζð0Þ ¼ 0; Pð0Þ ¼ κρΓc ;

lim
r̃→∞

ϕ0ðr̃Þ ¼ 0; lim
r̃→∞

αðr̃Þ ¼ 1

aðr̃Þ ; lim
r̃→∞

Pðr̃Þ ¼ 0;

where ϕc is the central value of scalar field and ρc the
central value of rest-mass density. Notice that the final
ODE system constitutes an eigenvalue problem for ω as a
function of fϕc; ρcg. A shooting method can be used in
order to integrate the system (28)–(32) from r̃ ¼ 0 towards
the outer boundary.
In addition, we can add two global conserved quantities

to help on the characterization of solutions, namely the
fermionic rest mass and the bosonic rest mass. The profiles
of these quantities, contained within a radius r̃, for the
equilibrium solutions, are given by the following differ-
ential equations:

∂MB

∂r̃ ¼ 8πμω
ϕ2
0ar̃

2

α
; ð36Þ

∂MF

∂r̃ ¼ 4πρr̃2; ð37Þ

with boundary conditionsMBð0Þ ¼ MFð0Þ ¼ 0. Hereafter,
we will indicate with MF and MB the total fermionic and
bosonic masses.
The radius of the bosonic component, denoted as RB, is

defined as the distance from the center at which 99% of the
bosonic mass is contained. The radius of the fermionic
component, RF, is instead defined as the radius where
pressure vanishes, as usual in standard NSs.
Assuming a spherically symmetric solution, the

Arnowitt-Deser-Misner (ADM) total mass of each FBSs
can be computed as

M ¼ lim
r̃→∞

r̃
2

�
1 −

1

αðr̃Þ2
�
: ð38Þ

Finally, after the equilibrium configuration is found, a
coordinate transformation from polar to isotropic coordi-
nates is performed. Then, the solution can be easily written
in Cartesian coordinates to perform our numerical 3D
simulations [65].
The equilibrium configurations depend on two param-

eters: the central values of the scalar field, ϕc, and of the
rest-mass fermionic density, ρc. By varying these param-
eters, together with the EOS and the potential of the
scalar field, it is possible to find star solutions composed
mostly either of fermions (i.e., MF ≫ MB) or bosons (i.e.,
MB ≫ MF). Solutions can then be characterized by the
boson-to-fermion ratio:
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YB ¼ MB

MF
: ð39Þ

For a fixed value of the total mass of the star, the mass of
bosons MB grows as ϕc (or ρc) increases, reaching a
maximum,which is not shown in our figures, and decreasing
afterwards. The mass of fermions, MF, follows the com-
plementary behavior toMB; i.e., it decreases for increasing
ϕc, reaches a minimum, and then increases. It is worth
stressing that the stability criteria for a FBS is not trivial
since it depends on two parameters, fϕc; ρcg (see [28,66,67]
and references therein).
Here we consider a polytropic EOS with Γ ¼ 2.5 and κ ¼

8980 (in geometric units), leading to configurations with
fermionic mass and radius in the range of typical NS. The
parameter μ ¼ mbc=ℏ has dimension of inverse of length in
geometric units, wheremb is the bosonmass (see for instance
[68]). We set μ ¼ 1 in our simulations, which allows us to
have the same order of magnitude for RB and RF, and at the
same time construct stable stars dominated by the fermionic
mass but with a non-negligible bosonic component
YB ≲ 0.1. In order to transform μ into cgs units, one needs
to multiply by c2=GM⊙, meaning that μ ¼ 1 is equivalent to
having a boson mass of mb ¼ 8.3 × 10−10 eV=c2.
By considering a fixed ADM mass M ¼ 1.35 M⊙, we

can find a family of equilibrium configurations. The
behavior ofMF andMB explained above, for this particular
family, is shown in the top panel of Fig. 1. In the bottom
panel of Fig. 1, we show the profiles of ϕ0ðrÞ, ρðrÞ, αðrÞ
and ψðrÞ for an illustrative solution obtained for the
choice ϕc ¼ 1.223 × 10−2 and ρc ¼ 5.0244 × 10−4, lead-
ing to a stable equilibrium configuration with YB ¼ 10%,

compactness C ¼ M=RF ¼ 0.12 and RF ¼ 11.2. Note that,
due to the chosen EOS, our stars have larger fermionic radii
than what is expected from standard NSs (and from their
observational constraints), but it is not crucial for studying
the influence of DM on the dynamics at a qualitative level.
In the next section,wewill consider binary FBSs obtained

as a superposition of three different isolated FBS configu-
rations belonging to the stable branch. Such configurations
consist of the same individual ADMmass ofM ¼ 1.35 M⊙
and compactness C ¼ 0.12, but different boson-to-fermion
ratios YB ¼ f0%; 5%; 10%g. These equilibrium configura-
tions are constructed by using a polytropic EOS with
Γ ¼ 2.5, but varying the polytropic constant κ to achieve
solutions with the same ADM mass and compactness. The
radial profiles of the metric components αðrÞ and ψðrÞ, the
scalar field ϕ0ðrÞ and the density ρðrÞ, for these three
configurations, are displayed in Fig. 2. Obviously, the
number of bosons increases with the scalar field.
The stability of the isolated FBS configuration repre-

sented in Fig. 1 can be tested by evolving them, solving the
EKGH equations described above. We set a domain
½−100; 100�3 with radiative boundary conditions, using
120 grid points in each direction and four refinement
levels, such that the finest one has a resolution of
Δx3 ¼ 0.21. The dynamical evolution of some relevant
stability indicators is displayed in Fig. 3. In particular, the
real part of the scalar field at the center ΦRðt; r ¼ 0Þ is
displayed in the top panel and compared to the expected
analytical behavior ϕ0ðr ¼ 0Þ cosðωtÞ, showing a perfect
agreement. The spatial integral of globally conserved
quantities, namely the rest-mass density D and the
Noether charge N, are shown in the second and third
panels. These quantities have been rescaled by their initial
values. Notice that they remain roughly constant during the
evolution, confirming that the initial equilibrium configu-
ration is stable. Finally, the L2 of the Hamiltonian con-
straint is displayed in the bottom panel, showing that the
violation of this constraint remains under control during the
evolution, and it is comparable to its initial value, which is
given mainly by discretization errors.

B. Binary fermion-boson stars

Initial data for binary FBSs can be constructed by a
superposition of two boosted isolated FBS solutions. In a
previous work [34], we have explained in detail how to
boost a static spherically symmetric solution and the scalar
field quantities with a velocity v along the x axis. Here, we
extend this procedure to also include the hydrodynamical
fields. We start by performing a Lorentz transformation to
the four-velocity vector ua, namely

ũa ¼ Λb
aub; ð40Þ

where the matrix related to the transformation has the
following form:

FIG. 1. Initial data of an isolated FBS. (Top) The mass of
fermions MF and bosons MB for the equilibrium configurations
with a fixed total ADM mass M ¼ 1.35, as a function of the
central value of scalar field ϕc (left) and rest-mass density ρc
(right). (Bottom) The metric component radial profiles αðrÞ
and ψðrÞ (left), together with the ones for scalar field ϕ0ðrÞ
and density ρðrÞ (right), for a specific stable equilibrium with
boson-to-fermion ratio YB ¼ 10%.
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Λb
a ¼

0
BBB@

Γ −Γv 0 0

−Γv Γ 0 0

0 0 1 0

0 0 0 1

1
CCCA; ð41Þ

with Γ the general relativistic Lorentz factor related to the
transformation. Therefore, at time t ¼ 0, we obtain

ũt ¼ −Γα; ũx ¼ Γvα; ũy ¼ ũz ¼ 0: ð42Þ

Finally, the final expression for the hydrodynamics fields of
the boosted star, evaluated at t ¼ 0, are

ρ̃ ¼ ρ; ṽx ¼
ũx
W̃

; ṽy ¼ ṽz ¼ 0; ð43Þ

where W̃2 ¼ ũiũi þ 1.
The method to construct initial data for FBS binaries can

be summarized as follows:
(i) The solution of each isolated FBS (i) is written

in Cartesian coordinates: fgðiÞabðx; y; zÞ;ΦðiÞðx; y; zÞ;
ρðiÞðx; y; zÞ; vðiÞj ðx; y; zÞg.

(ii) The spacetime and the hydrodynamics fields of
binary FBSs are obtained by a superposition of
the solution of two identical isolated FBSs, centered
at positions ð0;�yc; 0Þ and with a boost �vx along
the x direction, namely

gab ¼ gð1Þab ðx; y − yc; z;þvxÞ
þ gð2Þab ðx; yþ yc; z;−vxÞ − ηab; ð44Þ

ρ ¼ ρð1Þðx; y − yc; z;þvxÞ
þ ρð2Þðx; yþ yc; z;−vxÞ; ð45Þ

FIG. 2. Initial configuration for each FBS considered in the
binary system. The radial profiles of the metric components αðrÞ
and ψðrÞ (top and second panels), the radial scalar field ϕ0ðrÞ
(third panel) and the radial density profiles (bottom panel),
respectively, for the different boson-to-fermion ratios YB. The
dashed black lines show the Schwarzchild solution with the same
mass of the FBS.

FIG. 3. Evolution of an isolated FBS. (Top) Evolution of the
real part of Φ at r ¼ 0 for the stable configuration with ADM
mass M ¼ 1.35 and YB ¼ 10%. The numerical solution (red
circles) is in very good agreement with its analytically expected
value (solid black), given by ϕ0ðr¼0ÞcosðωtÞ with ω ¼ 1.0878.
(Second and third rows) Evolution of the integrated rest-mass
density D and the Noether charge N, showing that they remain
roughly constant during the evolution, as expected for a stable
configuration. (Bottom) L2 norm of the Hamiltonian H as a
function of time, showing that the constraints are small and
remain under control during the simulation.
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vj ¼ vð1Þj ðx; y − yc; z;þvxÞ
þ vð2Þj ðx; yþ yc; z;−vxÞ; ð46Þ

where ηab is the Minkowski metric in Cartesian
coordinates.

(iii) As we explained in the previous section, we are
interested in modeling FBS binary systems in two
different scenarios, where each scalar field is directly
coupled (ISF) or not (NISF) to the other. The scalar
fields are then initially given by the equilibrium
solution for an isolated FBS, ΦðisÞ, centered at each
fermion density maximum location:
(a) NISF, i.e., two scalar fields are considered:

Φð1Þ ¼ ΦðisÞðx; y − yc; z;þvxÞ; ð47Þ

Φð2Þ ¼ ΦðisÞðx; yþ yc; z;−vxÞ: ð48Þ

(b) ISF, i.e., one scalar field is considered:

Φ ¼ ΦðisÞðx; y − yc; z;þvxÞ
þΦðisÞðx; yþ yc; z;−vxÞ: ð49Þ

It should be stressed that a fine-tuning of the initial orbital
velocity is required to set the binary in a quasicircular orbit.
Notice that the construction by a mere superposition does
not satisfy the energy and momentum constraints due to the
nonlinear character of Einstein’s equations. Nevertheless,
the CCZ4 formalism used dynamically enforces an expo-
nential decay of these constraint violations; see e.g., Fig. 10
in Ref. [34].
The characteristics of our isolated FBS models, used to

construct the binary systems, are summarized in Table I:
central value of the density ρc, central value of the scalar
field ϕc, polytropic constant κ, angular frequency of the
scalar field phase in the complex plane ω, boson and
fermion radii, and mass of the star. We also include two
quantities related to the coalescence: the merger time,
defined as the time when the maximum of the norm of

Ψ2;2
4 is produced (peak of GWemission), and the frequency

of the dominant peak in the Fourier spectral power
distribution, calculated as the Fourier transform of
ℜðrΨ2;2

4 Þ during the postmerger stage.

IV. COALESCENCE OF FERMION-BOSON STARS

In the present section we study the dynamics of the
coalescence. Our simulations are performed in a domain
½−480; 480�3 with a coarse resolution of Δx0 ¼ 6.8. There
are 6 levels of refinement, the last of which has Δx5 ¼ 0.21
and is designed to cover only the stars before and after the
merger. FBSs are initially centered at ð0;�16; 0Þ and have
a boost velocity vx ¼ �0.173, leading to a binary system in
a tight quasicircular orbit.
We will focus on the dynamics of the cases shown in

Table I: a standard NS, two NISF and one ISF. For
numerical convergence purposes, we have performed
numerical simulation for the case NISF YB ¼ 10% with
higher resolution, finding the same qualitative and quanti-
tative results shown below (both in dynamics and in the
power spectra).
Besides the fermionic and bosonic density distributions,

we will analyze in detail the amplitude and the power
spectral density of the gravitational radiation emitted
during the coalescence, which is encoded in the
Newman-Penrose scalar Ψ4. This scalar is numerically
integrated over a spherical surface at Rext ¼ 120, already
located in the wave zone.

A. Dynamics

The main dynamics can be inferred from the snapshots
on the equatorial plane of the rest-mass and Noether charge
densities for all these cases, at relevant times of the
coalescence, displayed in Fig. 4. In all cases, with the
given initial separation, the stars complete two full orbits
before colliding. During the inspiral stage (leftmost col-
umn), both the fermionic and the bosonic components of
each star follow the same trajectory, roughly maintaining
individually the initial equilibrium structure, except for
some minor oscillations in each star due to the transient

TABLE I. Summary of the binary FBS configurations. The table shows the boson-to-fermion ratio YB, the central value of the scalar
field, the polytropic constant κ, the angular frequency of the phase ofΦ in the complex plane, the bosonic radius (containing 99% of the
Noether charge), the fermionic radius (i.e., the radius where the fluid pressure vanishes), and bosonic and fermionic masses. All models
have ADM massM ¼ 1.35 and compactness C ¼ 0.12. The last two columns are related to the simulation results: merger time, defined
as the one corresponding to the maximum of the norm of the Ψ2;2

4 , and frequency of the dominant peak in the power spectral density of
the Ψ2;2

4 , evaluated during the postmerger stage.

YB Model ρc ϕc κ ω RB RF MB MF tmerger fpeak[kHz]

0 NS 5.0525 × 10−4 0.0 7405 0 0 11.23 0.0 1.44 1650 1.62
5 NISF 5.0989 × 10−4 8.838 × 10−3 8136 0.814704559507 10.37 11.16 0.0721 1.37 1626 1.81
10 NISF 5.0244 × 10−4 1.223 × 10−2 8980 0.811068278806 10.15 11.20 0.1262 1.32 1606 1.87
10 ISF 5.0244 × 10−4 1.223 × 10−2 8980 0.811068278806 10.15 11.20 0.1262 1.32 1616 1.93
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initial data adjustment. We do not believe that these affect
the results, but to be sure one should repeat the simulations
with constraint satisfying initial data in equilibrium. During
this stage, the internal structure of the stars does not play an
important role, and the presence of the bosonic component
has a minor effect, as can be observed from the comparison
with the NS case with the same ADM mass, i.e., YB ¼ 0%.
At contact time t ∼ 1300 from the beginning of the

simulation, the fermionic components of both stars (indi-
cated with colors) first touch (with their centers at a
distance ∼2RF) and start merging into a single remnant

(second column). When there is no bosonic component
(YB ¼ 0%), the newly formed object consists of a differ-
entially rotating massive NS. This rotating remnant, with a
shape dominated by a quadrupolar structure (third column),
produces GWs mostly in the modes l ¼ jmj ¼ 2; see [69]
and references therein. When YB ≠ 0%, the bosonic com-
ponents (indicated with white-to-black contours) are gravi-
tationally bound, but since they represent different scalar
fields they do not merge into a single object (see the second
column). After the contact time, each bosonic core main-
tains roughly its shape while orbiting within the rotating

FIG. 4. Dynamics of binary FBSs coalescence. Rest-mass densities for the fermionic components are represented in colors, while
Noether charge densities are displayed in white-to-black contours, in the equatorial plane (z ¼ 0), at different representatives times. The
rows correspond to the cases (from top to bottom) NS, NISF with YB ¼ f5%; 10%g, and ISF with YB ¼ 10%. The first column
illustrates a time in the early inspiral, the second one is roughly at merger time, the third one is during the postmerger stage, and the
fourth one is at the end of our simulation.
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remnant, eventually overlapping in space and forming in
space and forming a superposition of two coexisting boson
cores (i.e., a multi-state boson star [70]). During the
postmerger stage, in the case NISF with YB ¼ 10% (third
row of Fig. 4), the presence of different components in the
system (i.e., two fermionic cores and two bosonic cores)
makes the entire system more unstable due to the gravity
coupling, exciting a relatively strong one-armed spiral
instability [71–73] that breaks the quadrupolar structure
of the system.
Figure 5 displays, with more detail, the differences on

the density profile in the equatorial plane (z ¼ 0) between
the cases YB ¼ 0% and NISF with YB ¼ 10% in the
postmerger phase, showing the symmetry breaking of
the quadrupole structure when there is a significant amount
of bosonic component inside the NS. While the fermionic
overdensity appears, the bosonic component clusters in the
same region, too, and the fermionic and the bosonic
component rotate together.
This lack of quadrupolar symmetry is also found in the

case NISF YB ¼ 5% (second row, fourth column of Fig. 4),
although the full development of the jmj ¼ 1 overdensity

cannot be seen as clearly within the time reached by our
simulation. As it was discussed in [73], this instability can
develop gravitational radiation with a significant l ¼ 2,
jmj ¼ 1 component at the orbital frequency of the cores,
i.e., half the frequency of the corresponding l ¼ jmj ¼ 2
mode, as will be discussed in detail in the next section.
The dynamics during the inspiral of the case with ratio

YB ¼ 10% with ISF is similar to the case NISF YB ¼ 10%
(last row of Fig. 4). Differences arise only after the merger,
when the scalar field interactions play an important role by
forming a single, largely perturbed, bosonic core inside the
NS remnant. In this case the two bosonic components
actually merge since they are described by the same scalar
field. Nevertheless, the one-armed spiral instability is seen
anyway, probably because it is triggered by the initial
presence of four components, which are strongly coupled
only two by two (fermionic cores between them, and
bosonic components between them).

B. Gravitational wave radiation

An insight on the dynamics can be obtained by analyzing
the GWs radiated by the system, which are described by the
Newman-Penrose scalar Ψ4, as a function of the time from
merger, t − tmerger. The amplitude (real part) of its main
mode l ¼ m ¼ 2 is displayed in Fig. 6 for the four cases.
The gravitational radiation produced during the inspiral

is roughly the same for all the cases since the dynamics at
this stage does not depend strongly on the inner structure of
the stars, and the ADMmass is the same for all of them. As
we saw above, qualitative and quantitative differences arise
from the merger time on.
In all cases, strong quasiperiodic persistent oscillations

are present soon after the merger, but notably their
amplitude quickly decays in the case with the largest

FIG. 5. Remnant comparison. Rest-mass fermionic densities in
the equatorial plane in the postmerger stage (i.e., roughly at
t − tmerger ≃ 2824) of the YB ¼ 0% (top panel) and NISF with
YB ¼ 10% models. The Noether charge densities are added as
white-to-black contours in the case YB ¼ 10%.

FIG. 6. Gravitational waves. The real part of the main l ¼
m ¼ 2 mode of Ψ4 describing the gravitational emission pro-
duced by binary FBSs coalescence, as a function of time from the
merger, for all models (top to bottom).
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DM cores YB ¼ 10%, both for NISF and ISF models. This
notable qualitative difference could be due to a quick
redistribution of the density profile on the remnant, which
becomes more axisymmetric in a shorter timescale due to
the nonlinear multibody interaction between the two
fermionic and the two DM components. Simultaneously,
energy is transferred from the jmj ¼ 2 to the jmj ¼ 1
modes, probably through the one-arm instability [74]. The
trigger to develop it, in our case, is the interaction between
different components, which are coupled mostly or only by
gravity.
To analyze in detail this symmetry breaking, the ampli-

tudes of the jmj ¼ 1 and jmj ¼ 2 modes (both for l ¼ 2) of
the scalarΨ4 are displayed in Fig. 7 for all cases. As it can be
observed, the amplitude of the mode jmj ¼ 1 has a
similar behavior for all the cases, achieving roughly the
same saturation level after the merger. However, significant
differences arise in the mode jmj ¼ 2: while the strength of
this mode is roughly constant for the cases YB ¼ f0%; 5%g,
the cases with YB ¼ 10% (both NISF and ISF) display an
exponential decay soon after the merger.
In order to check if there is any transfer of energy

through others modes, the strength of the total gravitational
radiation is compared with the main mode l ¼ jmj ¼ 2 in
Fig. 8. Clearly, the predominant radiative contribution
always comes from the main mode. Thus, we can conclude
that the loss of quadrupole symmetry does not induce a
significant additional radiation in other modes with other l
and m.
Finally, we can learn further information about the

properties of the remnant by analyzing the power spectral
density of the Ψ2;jmj

4 modes, calculated by integrating from
the merger time on. The jmj ¼ 2 mode is displayed in

Fig. 9, together with the jmj ¼ 1 one, amplified in
amplitude by a factor of 15 for clarity. The frequency of
the dominant mode corresponds to double the orbital period
at the merger time, and it is associated with a mixture of the
rotational motion and the quadrupolar structure [59,75],
with a weak dependence on the ratio YB [28]. The values of
these peak frequencies are presented in Table I.

FIG. 7. Gravitational waves. The norm of the modes ðl; jmjÞ ¼
ð2; 1Þ and ðl; jmjÞ ¼ ð2; 2Þ of jΨ4j as a function of time from the
merger for the different cases.

FIG. 8. Gravitational waves. The norm of the total gravitational
radiation emitted during the coalescence and the norm of the
l ¼ jmj ¼ 2 dominant modes, as a function of time from merger,
for the different cases. They basically overlap, showing that the
main contribution to GW emission always comes from the
l ¼ jmj ¼ 2 mode.

FIG. 9. Gravitational waves. Fourier transform of the real part
of Ψ4, considering from the merger time on, for the models NS
and NISF with YB ¼ f5%; 10%g. We show the ðl ¼ 2; jmj ¼ 1Þ
mode, amplified by a factor 15 for visualization purposes, and the
dominant ðl ¼ 2; jmj ¼ 2Þ mode. The dominant radiation mode
after the merger is given by ðl ¼ 2; jmj ¼ 2Þ, achieving peaks at
frequencies fpeak ¼ f1.62; 1.81; 1.87g kHz, respectively. The
only significant ðl ¼ 2; jmj ¼ 1Þ mode corresponds to the case
YB ¼ 10%, with a peak at fm¼1 ¼ 0.935 kHz, at half the
frequency of the jmj ¼ 2 one.
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The peak in the frequency spectrum for the jmj ¼ 1mode
is more than 1 order of magnitude weaker than the jmj ¼ 2
mode. However, as already noted for unequal binary NS
mergers [73,76], for themodel withYB ¼ 10%, in which the
one-arm instability fully develops, the peak of the jmj ¼ 1
mode is at half the frequency of the one corresponding to the
jmj ¼ 2 mode. Quantitatively, for that case we obtain
fm¼1 ¼ 0.935 kHz and fm¼2 ¼ 1.87 kHz, when the one-
arm instability fully develops. The exact value depends on
the chosen EOS, and for a realistic one, the typical values of
fm¼2 are found to be in the range ∼½2 − 3.5� kHz; see
Refs. [59,76]. Regardless of the specific value, for frequen-
cies corresponding to the jmj ¼ 1 mode, the Earth-based
detectors are more sensitive and might be able to distinguish
these features, for close enough events. In particular, finding
a peak with f ∼ 1 kHz in equal-mass low-spinning binaries
could be a signature of DM presence.

V. DISCUSSION

In this work, we have studied, by using full 3D numerical
simulations, the dynamics and gravitational radiation
emitted during the coalescence of binary NSs with DM
clustered in their interior. These objects have been modeled
by using FBSs, i.e., compact stellar objects made with a
mixture of a perfect fluid and a complex scalar field. In our
model, we have considered that in each star, the fermionic
matter interacts with the bosonic matter cores only through
gravity. In particular, we have considered binaries formed
for stars with the same individual ADM mass M ¼
1.35 M⊙ and compactness C ¼ 0.12, but with three differ-
ent boson-to-fermion ratios YB ¼ f0%; 5%; 10%g, to study
the dependence on the amount of DM in the stars.
We have found that, during the late inspiral, both the

dynamics and the GWs radiated in these three cases are
roughly the same, making it very difficult to distinguish
differences with respect to a canonical binary NS with
YB ¼ 0%. At the merger stage differences arise in the
dynamics for the cases YB ¼ 5% and YB ¼ 10%: while the
NSs merge and form a rotating remnant, the boson
components keep orbiting, maintaining individual shapes
for longer times. In the late postmerger differences grow
larger with respect to the case YB ¼ 0%, where the
dynamics is governed by a massive NS which rotates
differentially with a dominant quadrupolar shape, and
producing GWs in the l ¼ jmj ¼ 2 modes. In the case
YB ¼ 10%, the dark bosonic cores cause a redistribution of
the fermionic matter, breaking the quadrupolar symmetry
of the remnant and forming an jmj ¼ 1 overdensity through
the one-arm instability, which is excited by the asymmetries
introduced by the three-body interaction (i.e., fermionic
matter plus two bosonic cores coupled only through
gravity). In this case, the dominant GW mode l¼jmj¼2
decays exponentially much faster than for YB ¼ 0%. For
comparison purposes, we have also considered a binary
where the bosonic DM interacts through both gravity and

scalar field interactions, obtaining roughly the same results
as before. This seems to indicate that the one-arm spiral
instability develops generically in the merger of NSs with
DM cores due to the many-body interaction after the
merger. Note that this instability is able to break the
even-mode symmetry in the density distributions, appear-
ing qualitatively similar to the standing accretion shock
instability observed in 3D supernova simulations [77,78].
Let us stress the differences of our results with respect to

the ones obtained in Ref. [23], where they introduce a
Lagrangian with four coupled objects (i.e., two NSs and
two DM cores) to describe the postmerger dynamics. They
pointed out the presence of supplementary peaks at higher
frequencies than the jmj ¼ 2 mode in the postmerger
spectrum of NS mergers but could not anticipate the lower
frequency peak due to the one-arm instability.
As it was also noticed in [73], although the jmj ¼ 1

mode strength in our case is at least 15 times smaller, it
becomes more relevant as a contributor to the postmerger
GW signal since it occurs at half the frequency of the
dominant mode jmj ¼ 2, where the GW detectors are more
sensitive. Notice, however, that there is some degeneracy
since this instability has also been observed to happen in
several binary NS merger simulations [79], especially with
spin and/or eccentricity [71,74] and for unequal mass stars
[73,76]. There are two distinct features of our case with
respect to those ones. First, the one-arm instability strongly
develops even for equal mass nonspinning objects.
Therefore, the waveform before the merger might contain
enough information (i.e., the masses of the stars) to
partially break the degeneracy and discard some of the
asymmetries which could produce a strong one-arm insta-
bility. Second, although the exponential decay affecting the
jmj ¼ 2 mode also occurs in unequal mass or highly
spinning binaries, it shows a faster attenuation in our cases.
Therefore, possible detection of these modes with current
or future detectors, combined with a detailed analysis of the
signal during the inspiral, could constrain the presence of
DM cores inside NSs and enhance our understanding of its
nature.
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