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We consider Gedanken experiments to destroy an extremal or near-extremal Banados-Teitelboim-Zanelli
(BTZ) black hole by throwing matter into the horizon. These black holes are vacuum solutions to (2þ 1)-
dimensional gravity theories, and are asymptotically AdS3. Provided the null energy condition for the
falling matter, we prove the following—(i) in a Mielke-Baekler model without ghost fields, when torsion is
present, an extremal BTZ black hole can be overspun and becomes a naked conical singularity; (ii) in three-
dimensional Einstein gravity and chiral gravity, which both live in the torsionless limits of the Mielke-
Baekler model, an extremal BTZ black hole cannot be overspun; and (iii) in both Einstein gravity and chiral
gravity, a near-extremal BTZ black hole cannot be overspun, leaving the weak cosmic censorship
preserved. To obtain these results, we follow the analysis of Sorce andWald on their Gedanken experiments
to destroy a Kerr-Newman black hole, and calculate the second order variation of the black hole mechanics.
Furthermore, Wald’s type of Gedanken experiments provide an operational procedure of proving the third
law of black hole dynamics. Through the AdS=CFT correspondence, our results on BTZ black holes also
indicate that a third law of thermodynamics holds for the holographic conformal field theories dual to three-
dimensional Einstein gravity and chiral gravity.
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I. INTRODUCTION

Weak cosmic censorship conjecture (WCCC) was for-
mulated by Penrose [1] to postulate that a gravitational
singularity should not be naked and should be hidden inside
a black hole horizon. A gravitational singularity is usually
mathematically ill defined due to the divergent spacetime
curvature. Thus, the WCCC helps to avoid seeing such an
unphysical part of the Universe and retains the predicted
power of physical laws. Its philosophical incarnation
was summarized by Hawking: “Nature abhors a naked
singularity” [2]. In this sense, a special case worthy of
consideration is the three-dimensional Banados-Teitelboim-
Zanelli (BTZ) black hole, for which there is no curvature
singularity but a conical one. The conical singularity thus
causes no physical divergence as the curvature one. It is then
interesting to check if the WCCC holds for this case or not,
and partly motivates the study of this paper.
The general proof or demonstration of the WCCC is

notoriously difficult. One way is to find the critical situation

in which a black hole almost turns into a naked singularity
by subjecting it to small perturbations. This is when a
Kerr-Newman black hole is in its near-extremal regime. A
superextremal solution possesses the naked singularity,
thus checking the WCCC is to see if a subextremal black
hole in the near-extremal limit can turn into a superextremal
one by throwing some matter. Along this line of thought, a
Gedanken experiment was first proposed by Wald [3] to
demonstrate the impossibility of destroying an extremal
Kerr-Newman black hole by throwing the matter obeying
the null energy condition. The key ingredient in [3] is the
linear variation of black hole mechanics [4,5], i.e.,

δM −ΩHδJ −ΦHδQ ≥ 0; ð1Þ

where M is the mass of the black hole, J the angular
momentum, Q the charge, and ΩH and ΦH respectively
the angular velocity and chemical potential evaluated on
the horizon. A similar consideration for the near-extremal
Reissner-Nordstrom black hole was examined by Hubeny
[6] and it was found that it can be overcharged to violate the
WCCC by throwing a charged particle. See [7–10] for the
follow-up works.
Recently, it was realized by Sorce and Wald [11] that the

analysis in Hubeny’s type of Gedanken experiments is
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insufficient at the linear order so that the second order
variation must be taken into account to check the WCCC
for near-extremal black holes. Based on an earlier develop-
ment of the second order variation of black hole mechanics
[12], they went beyond the first order analysis in [6] and
derived the following inequality,

δ2M −ΩHδ
2J −ΦHδ

2Q ≥ −THδ
2S; ð2Þ

with TH being the Hawking temperature and SWald’s black
hole entropy [13,14], which is equal to the Bekenstein-
Hawking entropy of area law for the case of Einstein’s theory
of gravity, but receives modifications for non-Einstein
theories of gravity [15] [see (40) for the case of Mielke-
Barkler gravity (MBG)]. Under the situation that the linear
variation is optimally done, i.e., the inequality (1) is
saturated, Sorce and Wald adopted (2) to show that the
WCCC holds for Kerr-Newman black holes in four-dimen-
sional Einstein-Maxwell gravity. In [11] it is assumed that
the near-extremal black hole is linearly stable, so that at very
late time the linear perturbation induced by falling matter
becomes the perturbation towards another Kerr-Newman
black hole. Thus, theWCCC is to prohibit the possibility of a
naked singularity, and can be formally described as the
condition for a one-parameter family of black hole solutions

fðλÞ > 0; for all λ ≥ 0; ð3Þ

with fðλÞ ¼ 0 being the condition for the extremal black

hole. For example, fðλÞ ¼ MðλÞ2 − JðλÞ2
MðλÞ2 −QðλÞ2 for a

Kerr-Newman black hole of massMðλÞ, angular momentum
JðλÞ, and charge QðλÞ, and fðλÞ ¼ MðλÞ2 þ ΛJðλÞ2 for a
BTZ black hole in three-dimensional anti–de Sitter (AdS)
space of cosmological constant Λ < 0. Note that there is no
need in this formulation of examiningWCCC to consider the
self-force effects of the infalling matter as done in [16–20].
In this paper, we check WCCC for a BTZ black hole in

three-dimensional torsional MBG gravity [21–23] with the
general falling matter.1 In some special limits of MBG we
have either Einstein gravity or chiral gravity [26], both
of which have the known dual descriptions by a two-
dimensional conformal field theory (CFT) in the context of
AdS=CFT correspondence [27]. Especially, the extremal
black hole has zero surface gravity, and corresponds to a
dual CFT state at zero temperature. The motivation of our
study is twofold. First, we would like to see if the WCCC
holds even for the naked conical singularity such as the one
in BTZ, and at the same time extend the formulation of [11]
to more general gravity theories. Second, Wald’s type of
Gedanken experiments provide an operational procedure of
proving the third law of black hole dynamics [8,28]: One
cannot turn the nonextremal black hole into an extremal

one in the finite time interval by throwing into the black
hole the matter satisfying the null energy condition. We can
turn the above third law into the one of black hole
thermodynamics if we adopt Bekenstein and Hawking’s
point of view. Moreover, through the AdS=CFT correspon-
dence, this third law also corresponds to the third law of
thermodynamics for the dual two-dimensional CFT.2 Our
results indicate that such a third law of thermodynamics
holds for the holographic CFTs dual to three-dimensional
Einstein gravity and chiral gravity. Intuitively, the cooling
procedure can be holographically understood as throwing
the coolant, i.e., matter of spin J and energy E with J > E,
into the black hole.
We organize the rest of the paper as follows. In Sec. II we

derive the linear and second order variational identities for
the MB model, with which we can proceed to the consid-
eration of Gedanken experiments for three ghost-free limits
of the MB model, i.e., the Einstein gravity, chiral gravity
and torsional chiral gravity. In Sec. III we consider the
Gedanken experiments for an extremal BTZ black hole by
using the linear variational identity and the null energy
condition. In Sec. IV we check the WCCC for nonextremal
BTZ black holes for the chiral gravity and Einstein gravity.
Finally in Sec. V we summarize our results and conclude
with some discussions on the issue of proving the third law
and its implication to the holographic dual CFTs.

II. BTZ BLACK HOLE AND
VARIATIONAL IDENTITIES

BTZ black holes are topologically nontrival solutions to
the three-dimensional Einstein gravity as well as the
topological massive gravity (TMG) [30–32]. In fact, they
are solutions to a quite general category of gravity theories
with the name Mielke-Baekler (MB) model [21,22], which
also incorporates torsion, with Einstein gravity and TMG
arising as special limits in its parameter space. In this
section, we derive the variational identities and canonical
energy for this model following Wald’s formulation.
In three-dimensional spacetime, it is convenient to

express the gravity theory in the first order formalism.
The Lagrangian of a general chiral gravity with torsion,
namely, the MB model, is as follows:

L ¼ LEC þ LΛ þ LCS þ LT þ LM; ð4Þ

where

LEC ¼ 1

π
ea ∧ Ra; ð5Þ

LΛ ¼ −
Λ
6π

ϵabcea ∧ eb ∧ ec; ð6Þ

1See also recent papers [24,25] for the related discussion for
special falling matter.

2See [29] for the earlier discussion for the AdS5 case in the
context other than the WCCC.
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LCS ¼ −θL

�
ωa ∧ dωa þ

1

3
ϵabcω

a ∧ ωb ∧ ωc

�
; ð7Þ

LT ¼
θT
2π2

ea ∧ Ta; ð8Þ

in which Λ < 0 is the cosmological constant, θL and θT are
coupling constants, LEC is the Einstein-Cartan term, LΛ is
the cosmological constant term, LCS is the CS term for
curvature, LT is a translational Chern-Simons (CS) term,
and LM is the Lagrangian for the matter. Ta is the torsion
2-form defined by Ta ¼ dea þ ωa

b ∧ eb with ea being the
dreibeins. We have also defined the dual spin connection
ωa and the dual curvature 2-form Ra for simplicity,

ωa ¼ 1

2
ϵabcω

bc; Ra ¼ 1

2
ϵabcRbc: ð9Þ

Variations of the Lagrangian (4)–(8) with respect to the
dreibeins ea and the dual spin connections ωa give rise to

the equations of motion EðeÞ
a ¼ 0 and EðωÞ

a ¼ 0, with

EðeÞ
a ¼ 1

π

�
Ra þ

θT
π
Ta −

Λ
2
ϵabceb ∧ ec

�
; ð10Þ

EðωÞ
a ¼ 1

π

�
Ta − 2πθLRa þ

θT
2π

ϵabceb ∧ ec
�
; ð11Þ

for vanishing matter. For the case 1þ 2θTθL ≠ 0, the
equations of motion are solved by

Ta ¼ T
π
ϵabceb ∧ ec; ð12Þ

Ra ¼ −
R
2π2

ϵabceb ∧ ec; ð13Þ

in which

T ≡−θT þ 2π2ΛθL
2þ 4θTθL

; R≡ −
θ2T þ π2Λ
1þ 2θTθL

: ð14Þ

The MB model was originally proposed as a torsional
generalization of TMG. It has a Poincaré gauge theory
description, and there are propagating massive gravitons
just like in TMG. We are especially interested in three
limits.

(i) Einstein gravity (with negative cosmological con-
stant). This could be approached by taking the limit
θL → 0 and θT → 0.

(ii) Chiral gravity. The torsionless branch of the MB
model, which is equivalent to TMG, could be
obtained by setting T ¼ 0 according to (12). It
was pointed out in [26] that TMG is only well
defined at the critical point in which the dual CFT
becomes chiral. In our convention, the critical point

is located at θL ¼ −1=ð2π ffiffiffiffiffiffiffi
−Λ

p Þ. Hence the chiral
gravity is approached by setting T ¼ 0 first and then
taking the limit θL → −1=ð2π ffiffiffiffiffiffiffi

−Λ
p Þ.

(iii) Torsional chiral gravity. For the branch with non-
vanishing torsion, we note from the Lagrangian (4)–
(8) that the torsion field Ta could not be kinematic
since there is no second order derivative of ωa. The
torsion field should just contribute to the interaction
term in the linearized theory, while the propagators
of the gravitons should not be changed compared
with TMG. We then expect that the MB model also
behaves well with no ghost at the critical point
θL → −1=ð2π ffiffiffiffiffiffiffi

−Λ
p Þ. Note that by taking this limit

first, we obtain T → π
ffiffiffiffiffiffiffi
−Λ

p
=2; hence the torsion

field could not be vanishing. This is a different limit
from the case (ii), and we refer it as the torsional
chiral gravity.

An interesting class of solutions to Eqs. (12) and (13) is
the BTZ-like solutions with nonvanishing torsion [33].
They are described by the following dreibeins,

e0 ¼ Ndt; e1 ¼ dr
N

; e2 ¼ rðdϕþ NϕdtÞ; ð15Þ

and the dual spin connections

ωa ¼ ω̃a þ T
π
ea; ð16Þ

with the torsion-free parts

ω̃0 ¼ Ndϕ; ω̃1 ¼ −
Nϕ

N
dr; ω̃2 ¼ −Λeffrdtþ rNϕdϕ;

ð17Þ

in which

N2ðrÞ ¼ −M − Λeffr2 þ
J2

4r2
; NϕðrÞ ¼ −

J
2r2

; ð18Þ

where M and J are constants corresponding to mass and
angular momentum of the BTZ black hole, respectively, for
the case of Einstein’s gravity, and

Λeff ≡ −
T 2 þR

π2
: ð19Þ

Taking the torsion-free limit T → 0, the above solutions
recover the usual BTZ black holes with Λeff ¼ Λ. The
horizons are located at

r2� ¼ 1

2Λeff

�
−M ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ ΛeffJ2

q �
ð20Þ

(note that Λeff < 0 for asymptotic AdS solutions), and the
angular velocity of the outer horizon is
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ΩH ¼ J
2r2þ

¼ r−
rþ

ffiffiffiffiffiffiffiffiffiffiffi
−Λeff

p
: ð21Þ

The black hole temperature is fixed by the vanishing of the
conical singularity of the corresponding Euclidean metric,

TH ¼ −
Λeffðr2þ − r2−Þ

2πrþ
; ð22Þ

and the surface gravity is κH ¼ 2πTH.

A. First order variations

Wald’s Gedanken experiment to destroy a black hole
begins with considering a general off-shell variation of the
fields, which in principle incorporates all kinds of possible
perturbations of a black hole, including throwing matter
into it. From the variational identities one obtains general
constraints obeyed by these perturbations.
The first order variation of the Lagrangian (4)–(8) gives

rise to the equations of motion as well as a surface term,

δL ¼ δea ∧ EðeÞ
a þ δωa ∧ EðωÞ

a þ dΘðϕ; δϕÞ; ð23Þ

in which ϕ ¼ ðea;ωaÞ, and EðeÞ
a and EðωÞ

a are given by (10)
and (11). The surface term Θðϕ; δϕÞ, called the symplectic
potential, is evaluated to be

Θðϕ; δϕÞ ¼ 1

π
δωa ∧ ea þ

θT
2π2

δea ∧ ea − θLδω
a ∧ ωa:

ð24Þ

In Wald’s approach, the space of field configurations is the
phase space of the theory, and the variation δϕ≡
ðdϕ=dλÞjλ¼0 is the phase space flow vector associated with
a one-parameter family of field configurations ϕðλÞ. For a
two-parameter family of field configurations ϕðλ1; λ2Þ, one
could define the symplectic current

Ωðϕ; δ1ϕ; δ2ϕÞ ¼ δ1Θðϕ; δ2ϕÞ − δ2Θðϕ; δ1ϕÞ; ð25Þ

in which δ1, δ2 denote derivatives with respect to param-
eters λ1, λ2,

δ1 ¼
∂
∂λ1

����
λ¼0

; δ2 ¼
∂
∂λ2

����
λ¼0

: ð26Þ

One can show that the symplectic current is conserved
when the linearized equations of motion are satisfied,

dΩ ¼ 0: ð27Þ

The Noether current 2-form associated with a vector field
ξ is defined by

jξ ¼ Θðϕ;LξϕÞ − iξL; ð28Þ

in which iξL represents the interior derivative which
contracts ξμ into the first index of the 3-form L. Then,
jξ could be written in the form

jξ ¼ dQξ þ Cξ; ð29Þ

in which the Noether charge Qξ and the constraints Cξ are
given by

Qξ ¼
1

π
ðiξωaÞ ∧ ea þ

θT
2π2

ðiξeaÞ ∧ ea − θLðiξωaÞ ∧ ωa;

ð30Þ

Cξ ¼ −ðiξeaÞ ∧ EðeÞ
a − ðiξωaÞ ∧ EðωÞ

a : ð31Þ

Suppose the field configuration is a family of asymptotic
AdS spacetime. Variation of Eqs. (28) and (29) gives rise to
the following linear variational identity after integrating
over an achronal hypersurface Σ:

Z
∂Σ

δQξ − iξΘðϕ; δϕÞ ¼
Z
Σ
Ωðϕ; δϕ;LξϕÞ

−
Z
Σ
δCξ −

Z
Σ
iξðEδϕÞ: ð32Þ

The first term on the right-hand side is recognized as the
variation of the Hamiltonian hξ associated with the diffeo-
morphism generated by the vector field ξ,

δhξ ¼
Z
Σ
Ωðϕ; δϕ;LξϕÞ: ð33Þ

Note that δhξ [or the first term on the rhs of (32)] vanishes if
ξ is a Killing field, i.e., Lξϕ ¼ 0. If the ϕ is on shell so that
Ea ¼ 0, then the last two terms on the rhs of (32) also
vanish. This then motivates the following definition of the
conserved ADM quantity Hξ conjugate to the Killing field
ξ for an on-shell ϕ [13,14]:

δHξ ¼
Z
∞
δQξ − iξΘðϕ; δϕÞ; ð34Þ

where
R
∞ is the integration over the circle at spatial infinity.

For a black hole solution, the boundary of Σ contains also
horizon as the “inner boundary” besides the “outer boun-
dary” at spatial infinity; then there will be contribution to
the lhs of (32) from the inner boundary as well (i.e., the area
law term for the Einstein gravity). Combining all the above,
(32) finally yields the first law of black hole mechanics/
thermodynamics.
For the timelike Killing field ∂=∂t and the rotational

Killing field ∂=∂φ, the above integration gives rise to the
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variation of the total mass M and the total angular
momentum J , respectively. For the BTZ-like black holes
(15)–(17), it could be evaluated that [34]

M ¼ M − 2θLðT M þ πΛeffJÞ; ð35Þ

J ¼ J þ 2θLðπM − T JÞ: ð36Þ

For the case that the equations of motion are satisfied and
ξ is a Killing field, the linear variational identity (32) yields

Z
∂Σ

δQξ − iξΘðϕ; δϕÞ ¼ −
Z
Σ
δCξ: ð37Þ

For nonextremal black holes, the boundaries include the
infinity as well as the bifurcation surface B. If ξ is the
horizon Killing field ξa ¼ ∂=∂tþΩH∂=∂φ, the boundary
integral over infinity is given by

Z
∞
δQξ − iξΘðϕ; δϕÞ ¼ δM − ΩHδJ : ð38Þ

For Einstein’s theory of gravity, the boundary contribution
from the bifurcation surface B turns out to be proportional
to the variation of the Bekenstein-Hawking entropy [13,14],

Z
B
δQξ − iξΘðϕ; δϕÞ ¼ THδS; ð39Þ

in which S ¼ AB=4 where AB is the area of the bifurcation
surface.We take the above equation as a rightful definition of
the modified black hole entropy in theMBmodel so that the
first law of the black hole thermaldynamics still holds but
with S Wald’s generalized black hole entropy. It has been
evaluated for the BTZ-like black holes that [34]

S ¼ 4πrþ − 8πθLðT rþ − π
ffiffiffiffiffiffiffiffiffiffiffi
−Λeff

p
r−Þ: ð40Þ

Equation (37) then takes the form

δM −ΩHδJ − THδS ¼ −
Z
Σ
δCξ: ð41Þ

We consider the special situation that the perturbation
vanishes near the internal boundary of the surface Σ; then
Eq. (41) with δS ¼ 0 would hold for both extremal and
nonextremal black holes. Noting (35) and (36) and δS ¼ 0,
(41) turns out to be

ð1 − 2θLT − 2πθLΩHÞðδM −ΩHδJÞ

− 2πθLΛeff

�
r2þ − r2−

r2þ

�
δJ ¼ −

Z
Σ
δCξ: ð42Þ

for BTZ-like black holes in the MB model.

Equations (41) and (42) are derived from the Lagrangian
without matter. It might be puzzling that the vacuum
configuration could be perturbed without matter; however,
this is physically possible since there are gravitational
waves in the MB model with general couplings. In general,
δM and δJ should be understood as variations allowed
mathematically in the parameter space, rather than conse-
quences of certain physical evolutions. On the other hand,
since we did not enforce the linearized equations of motion
to be satisfied, it should be expected that these equations
could also be used for considering perturbed configurations
due to matter contribution.3 The right-hand side of (42)
would be related to the energy-momentum tensor of the
matter. To see this explicitly, we first define the “energy-
momentum 2-form” Σa and “spin current 2-form” τa as
follows:

Σa ≡ δLM

δea
; τa ≡ δLM

δωa : ð43Þ

The equations of motion with matter would be

EðeÞ
a ¼ −Σa; EðωÞ

a ¼ −τa: ð44Þ

Since Σa ¼ τa ¼ 0 in the background spacetime, from (31)
we get

δCξ ¼ ðiξeaÞ ∧ δΣa þ ðiξωaÞ ∧ δτa: ð45Þ

Σa should be related to the conserved canonical energy-
momentum tensor Σa

μ defined by

ffiffiffiffiffiffi
−g

p
Σa

μ ≡ ∂L
∂eaμ ¼ eaμL −

∂L
∂ð∂μψÞ

Daψ ; ð46Þ

in which ψ is the matter field, L is the Lagrangian density
of the matter related to LM by LM ¼ Ld3x, and Da is the
covariant derivative defined by Da ¼ eaμð∂μ þ ωμ

bcfcbÞ
where fab are the representations of the generators of the
Lorentz group associated with ψ . From (46) we obtain

Σa ¼
1

2
ϵμνλΣa

λdxμ ∧ dxν: ð47Þ

Note that

ϵμνλ ¼ −3k½μϵ̂νλ�; ð48Þ

in which kμ is the future-directed normal vector to the
horizon, and ϵ̂ is the volume element on the horizon.

3For the matter field, we impose the Dirichlet condition on
the asymptotic AdS boundary, as conventionally used in the
AdS=CFT dictionary for black holes dual to thermal states in
CFT. This choice will not affect the argument for the WCCC as
we only care about the matter that falls in.
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The first term on the right-hand side of (45) then turns out
to be

ðiξeaÞ ∧ δΣa ¼ −ξμkνδΣμν ffiffiffiffiffiffi
−γ

p
d2x; ð49Þ

as ξμ ∝ kμ; the contribution of this term to the right-hand
side of Eq. (42) is non-negative if and only if the null
energy condition of matter energy-momentum tensor δΣμν

is satisfied,

kμkνδΣμν ≥ 0: ð50Þ

For the second term on the right-hand side of (45), our
spin current 2-form τa is related to the canonical spin
angular momentum tensor τabμ defined by

ffiffiffiffiffiffi
−g

p
τab

μ ≡ ∂L
∂ωμ

ab ¼ −
∂L

∂ð∂μψÞ
fabψ : ð51Þ

Comparing (51) with (43), we obtain

τa ¼ −
1

2
ϵa

bcϵμνλτbc
λdxμ ∧ dxν; ð52Þ

hence the second term on the right-hand side of (45) is
reduced to

ðiξωaÞ ∧ δτa ¼ −ðξσωab
σÞkλδτabλ

ffiffiffiffiffiffi
−γ

p
d2x: ð53Þ

For axially symmetric stationary black holes, in general we
have [34]

iξωajH ¼ −
1

2
κHϵ

a
bcnbc þ iξKajH; ð54Þ

in which nab is the binormal to the horizon and Ka is the
dual contorsion 1-form defined by Ta ¼ ϵabcKb ∧ ec,
satisfying the identity ωa ¼ ω̃a þ Ka. For BTZ-like black
holes, (16) gives

Ka ¼ T
π
ea: ð55Þ

Using (54) and (55), Eq. (53) turns out to be

ðiξωaÞ ∧ δτa ¼
�
κHnμν þ

T
π
ϵμν

σξσ

�
kλδτμνλ

ffiffiffiffiffiffi
−γ

p
d2x:

ð56Þ
The first term on the right-hand side is vanishing for extremal
black holes.Wenote that the sign of the second termcould not
be determined for torsional chiral gravity unless the spin
angular momentum tensor satisfies ϵμν

σkσkλδτμνλ ≥ 0, of
which the physical meaning is not clear yet for us.
Combining all the results above, we obtain the following

linear variational identity for the BTZ-like black holes in
the MB model, with the additional assumption that the
perturbation δϕ vanishes near the internal boundary of Σ,

δM −ΩHδJ ¼ ð1 − 2θLT − 2πθLΩHÞðδM −ΩHδJÞ − 2πθLΛeff

�
r2þ − r2−

r2þ

�
δJ

¼
Z
Σ
d2x

ffiffiffiffiffiffi
−γ

p �
ξμkνδΣμν −

�
κHnμν þ

T
π
ϵμν

σξσ

�
kλδτμνλ

	
: ð57Þ

For extremal BTZ black holes with κH ¼ 0 and rþ ¼ r−, the above identity takes the following simpler form:

δM −ΩHδJ ¼ ð1 − 2θLT − 2πθL

ffiffiffiffiffiffiffiffiffiffiffi
−Λeff

p
ÞðδM −

ffiffiffiffiffiffiffiffiffiffiffi
−Λeff

p
δJÞ

¼
Z
Σ
d2x

ffiffiffiffiffiffi
−γ

p �
ξμkνδΣμν −

T
π
ϵμν

σξσkλδτμνλ
	
: ð58Þ

B. Second order variations

As pointed out in [11], for near-extremal black holes it is in general not sufficient to consider just the linear order variation
due to Hubeny-type violations. We therefore construct further the second order variational identity. A second variation of
Eq. (32) gives rise to

EΣðϕ; δϕÞ ¼
Z
∂Σ

½δ2Qξ − iξδΘðϕ; δϕÞ� þ
Z
Σ
δ2Cξ þ

Z
Σ
iξðδE ∧ δϕÞ; ð59Þ

in which

EΣðϕ; δϕÞ≡
Z
Σ
Ωðϕ; δϕ;LξδϕÞ ð60Þ
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is Wald’s canonical energy of the off-shell perturbation δϕ
on Σ. For the case that the background ϕ is a stationary
black hole solution and ξ is the horizon Killing field, the
boundary contribution from infinity is simply

Z
∞
δ2Qξ − iξδΘðϕ; δϕÞ ¼ δ2M − ΩHδ

2J ð61Þ

according to (38). The contribution from interior boundary
would be vanishing if there is no perturbation in its
neighborhood, as supposed before. Then Eq. (59) turns
out to be

δ2M −ΩHδ
2J ¼ EΣðϕ; δϕÞ −

Z
Σ
iξðδE ∧ δϕÞ −

Z
Σ
δ2Cξ:

ð62Þ
Noting (44), (47), and (52), the integrand of the second

term on the right-hand side is evaluated to be

iξðδE ∧ δϕÞ≡ iξðδEðeÞ
a ∧ δea þ δEðωÞ

a ∧ δωaÞ
¼ ξτΞ½μντ�dxμ ∧ dxν; ð63Þ

in which

Ξμντ ¼ −
3

2
ϵμνλðδΣa

λδeaτ þ δτab
λδωab

τÞ: ð64Þ

Since ξ is tangent to the horizon, the pullback of (63) to the
horizon vanishes; hence this term gives no contribution.
From (31), it turns out that

δ2Cξ ¼ δ2
�
−d2x

ffiffiffiffiffiffi
−γ

p 

ξμkνΣμν

−
�
κHnμν þ

T
π
ϵμν

σξσ

�
kλτμνλ

�	
: ð65Þ

Substituting the above expression into (62) leads to the
following identity for the second order variation:

δ2M −ΩHδ
2J ¼ EΣðϕ; δϕÞ þ δ2

Z
Σ
d2x

ffiffiffiffiffiffi
−γ

p �
ξμkνΣμν

−
�
κHnμν þ

T
π
ϵμν

σξσ

�
kλτμνλ

	
: ð66Þ

III. GEDANKEN EXPERIMENT TO
DESTROY AN EXTREMAL BTZ

We now consider our Gedanken experiment to destroy a
BTZ black hole along the line of Wald’s proposals [3,11].
In this section, we deal with an extremal BTZ black hole
with mass parameter M and angular momentum parameter
J. We wish to see if a naked singularity can be made via
throwing matter into the extremal black hole. Without
losing generality, we take our gravity theory as the MB

model, and then discuss its three limits, torsional chiral
gravity, chiral gravity, and three-dimensional Einstein
gravity.
Considering a one-parameter family of solutions ϕðλÞ,

ϕ0 ¼ ϕð0Þ is an extremal BTZ black hole, which is a
vacuum solution in the MB model. The existence of event
horizon is determined by a function,

fðλÞ ¼ MðλÞ2 þ ΛeffJðλÞ2: ð67Þ

If fðλÞ ≥ 0, the spacetime is a BTZ black hole. If fðλÞ < 0,
it is a naked conical singularity and the WCCC is violated.
We now consider perturbations to the extremal black hole
ϕ0. Then, to the first order in λ, we have

fðλÞ ¼ 2λ
ffiffiffiffiffiffiffiffiffiffiffi
−Λeff

p
jJjðδM −

ffiffiffiffiffiffiffiffiffiffiffi
−Λeff

p
δJÞ þOðλ2Þ; ð68Þ

where we have used the extremal conditionM ¼ ffiffiffiffiffiffiffiffiffiffiffi
−Λeff

p jJj
to eliminate M. It is then evident that if δM <

ffiffiffiffiffiffiffiffiffiffiffi
−Λeff

p
δJ,

fðλÞ can be negative.
We would like to see whether this sort of violation of the

WCCC is possible if we throw matter into the BTZ black
hole in a certain way. Let Σ0 be an asymptotically AdS
hypersurface which extends from the future horizon to the
spatial infinity. We consider a perturbation δϕ whose initial
data for both fields δea and δωa on Σ0 vanish in the
neighborhood of the intersection between Σ0 and the
horizon. We assume that the initial data for the matter
sources δΣμν and δτμνλ also vanish in this neighborhood,
and only exist in a compact region of Σ0. That is, we
consider perturbations whose effects at sufficiently early
times are negligibly small. To simplify the discussion, we
only consider the case where, as we evolve the perturbation,
all of the matter will fall through the horizon. Therefore, the
whole evolutions of the matter source δΣμν and δτμνλ stay in
a shaded region as shown in Fig. 1. As matter falls in, we
further define a hypersurface Σ in the following way—it
starts on the future horizon in the region where the
perturbation vanishes and extends along the future horizon
till all matter falls into the horizon; then it becomes
spacelike, approaches the spatial infinity and becomes
asymptotically AdS. We denote the horizon portion of Σ
as H, and the spatial portion as Σ1.
We now use the linear variational identity with vanishing

inner boundary contributions (58) for this choice of Σ. As
we show later, this identity constrains the sign of fðλÞ. We
notice that in Eq. (58), the integral in the second line is not
positive definite due to the spin angular momentum term
and its coupling to torsion. That is, in torsional chiral
gravity, whether the WCCC can hold depends on an
additional relation between the spin angular momentum
and the torsion. The physical origin of this additional
information needed is unclear, and is beyond the scope of
this paper. We leave it to a future work. In the torsionless
limit T → 0, however, this integral would be non-negative
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as long as the null energy condition is satisfied. From now
on, we focus on this limit, and assume the falling matter
satisfies the null energy condition. Then fðλÞ is non-
negative only if the constant factor on the rhs of the first
line of Eq. (58) is non-negative,

1 − 2θLT − 2πθL
ffiffiffiffiffiffiffiffiffiffiffi
−Λeff

p
≥ 0: ð69Þ

For chiral gravity, we choose θL ¼ −1=ð2π ffiffiffiffiffiffiffi
−Λ

p Þ, and
send T → 0. The inequality (69) is then satisfied. Therefore
the extremal BTZ black hole in chiral gravity cannot be
destroyed in our experiment, and the WCCC is preserved.
For three-dimensional Einstein gravity with a negative

cosmological constant, both the torsion and Chern-Simons
interaction vanish; thus we set θL → 0 and θT → 0. The
inequality (69) is then satisfied. Consequently, extremal
BTZ black hole in three-dimensional Einstein gravity
cannot be destroyed, leaving the WCCC preserved.

IV. GEDANKEN EXPERIMENT TO DESTORY
A NEAR-EXTREMAL BTZ

For extremal BTZ black holes, we have found that the
WCCC can be violated in the presence of torsion. With

torsion being turned off, we have seen that the WCCC is
preserved in both chiral gravity and three-dimensional
Einstein gravity, provided that the matter obeys the null
energy condition. In four-dimensional Einstein gravity,
Hubeny [6] proposed that violations of the WCCC might
be possible if one threw matter into a near-extremal black
hole in an appropriate manner. In order to examine whether
Hubeny-type violations can truly happen, one has to cal-
culate the energy and momentum of the matter beyond the
linear order. In this section, we examine the Hubeny-type
violations for a near-extremal BTZ black hole in chiral gra-
vity and three-dimensional Einstein gravity, respectively.
As shown in Fig. 2, we make similar choices of Σ0 and Σ

like those for the extremal BTZ case. The only difference is
that the two hypersurfaces now terminate at the bifurcation
surface B. We further assume that the second order
perturbation δ2ϕ for both fields δea and δωa also vanishes
in a neighborhood of B. Again, we simplify our discussions
by restricting to the case where all matter falls into the black
hole. We also make the following additional assumption:

Assumption: The nonextremal BTZ black hole is linearly
stable to perturbations, i.e., any source-free linear

FIG. 2. Carter-Penrose diagram of a near-extremal BTZ black
hole. The shaded region consists of the falling matter which all
goes into the black hole. The perturbation δϕ and δ2ϕ vanishes in
a neighborhood of B.

FIG. 1. Carter-Penrose diagram of an extremal BTZ black hole.
The shaded region consists of the falling matter which all goes
into the black hole. The perturbation δϕ vanishes in a neighbor-
hood of Σ0 ∩ H.
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perturbation δϕ approaches a perturbation δϕBTZ

towards another BTZ black hole at sufficiently late
times.

Although our perturbations are not source-free in gen-
eral, we only apply the above assumption on the late-time
spatial surface Σ1 long after all of the matter has fallen in
the black hole. We emphasize that this linear stability
assumption does not indicate the WCCC, which we wish to
prove. This is because a finite perturbation is needed to
overspin a nonextremal black hole, while a linear pertur-
bation can always be scaled down to an infinite small one.
Hence the linear instability of a nonextremal BTZ black
hole should be independent of the instability associated
with overspinning; i.e., a linearly stable nonextremal BTZ
black hole could possibly be overspun by a finite pertur-
bation, just like the situation for the Kerr-Newman black
hole in [11].

A. Chiral gravity

We now consider our thought experiment to destroy a
near-extremal BTZ black hole ðM; JÞ in chiral gravity for
which T ¼ 0 and θL ¼ − 1

2π
ffiffiffiffiffi
−Λ

p . Thus, using (35) and (36)

it is straightforward to see

δM −ΩHδJ ¼
�
1þ ΩHffiffiffiffiffiffiffi

−Λ
p

�
ðδM −

ffiffiffiffiffiffiffi
−Λ

p
δJÞ; ð70Þ

and the first law of black hole thermodynamics yields

THδS ¼ δM −ΩHδJ ; ð71Þ

where the black hole entropy is given by [34]

S ¼ 4πðrþ − r−Þ: ð72Þ

Recall (57); the null energy condition for the falling
matter yields the first order relation that

δM ≥
ffiffiffiffiffiffiffi
−Λ

p
δJ; ð73Þ

assuming the first order perturbation has been optimally
done, i.e., δS ¼ 0, such that

δM ¼
ffiffiffiffiffiffiffi
−Λ

p
δJ: ð74Þ

For some constant entropy S, we can then plot the line of
constant entropy in the parameter space of BTZ black
holes, which is shown in Fig. 3.
We are now ready to discuss our experiment to destroy

the near-extremal BTZ black hole. Starting from a point
ðM0; J0Þ in the parameter space, after a perturbation of the
spacetime as induced by falling matter, we always arrive at
another point ðM1; J1Þ. At the linear order, the change from
one point to another corresponds to a tangent vector in the

parameter space. For any S, the line of constant entropy is
given by

M ¼ ð
ffiffiffiffiffiffiffi
−Λ

p
ÞJ − Λ

16π2
S2: ð75Þ

The slope of the constant entropy line is then equal to that
of the line representing extremal BTZ black holes. Since
the tangent to the constant entropy line is a lower bound to
all physically realizable perturbations, a nonextremal BTZ
black hole will at most be perturbed to another BTZ black
hole with the same entropy. There is no Hubeny-type
violation of weak cosmic censorship for the BTZ black hole
in three-dimensional chiral gravity; thus the WCCC is
preserved.

B. Einstein gravity

The discussions above can be applied to the BTZ black
holes in three-dimensional Einstein gravity as well, for
which we turn off both torsion and Chern-Simons inter-
actions in the MB model. In this theory, the linear
variational identity is given by

δM − ΩHδJ ¼ δM − ΩHδJ: ð76Þ

Given the material null energy condition, we similarly
find that

δM −ΩHδJ ≥ 0: ð77Þ

FIG. 3. The parameter space of BTZ black holes in chiral
gravity. The black solid line corresponds to extremal BTZ black
holes. Any point above this line corresponds to a nonextremal
BTZ black hole, while any point below the line is a naked conical
singularity. The orange dashed line is one of the lines of constant
entropy, which is parallel to the line for extremal BTZ black
holes. Starting with some point on the constant entropy line, any
tangent vector will always be parallel to the extremal BTZ line.
That is, there is no Hubeny-type violation that can overspin a
near-extremal BTZ black hole in chiral gravity.
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Once a first order perturbation is optimally done by
choosing δM ¼ ΩHδJ, according to the first law of black
hole thermodynamics, we also find a lower bound for all
perturbations given by δS ¼ 0. In Einstein gravity, the
entropy of the BTZ black hole is S ¼ 4πrþ, and the curve
of constant entropy is given by

M ¼ 4π2

S2
J2 −

Λ
16π2

S2: ð78Þ

We plot one such curve in Fig. 4.
As shown in Fig. 4, if the initial spacetime is an extremal

BTZ black hole, a tangent vector at this point is also tangent
to the line representing extremal BTZ solutions. Therefore
given extremality, the best one can do is to deform the black
hole to another extremal BTZ black hole. WCCC is then
preserved and no naked singularities will form. However, if
one starts at a slightly nonextremal BTZ black hole, the
tangent to the curve of constant entropy is possible to move
the original point to another point located in the region
representing naked conical singularities. This type of
violation of the WCCC is exactly the Hubeny-type
violation, which can be found at the linear order for
near-extremal black holes. As we see in the following
discussions, a conclusive answer to whether this type of
perturbations truly leads to a violation of the WCCC
requires calculations to the second order.
Now we consider a one-parameter family of solutions

ϕðλÞ; ϕ0 ¼ ϕð0Þ is a nearly extremal BTZ black hole in

three-dimensional Einstein gravity. We then expand fðλÞ in
Eq. (67) to second order in λ,

fðλÞ ¼ ðM2 − α2J2Þ þ 2λðMδM − α2JδJÞ
þ λ2½ðδMÞ2 − α2ðδJÞ2 þMδ2M − α2Jδ2J� þOðλ3Þ;

ð79Þ

where we have introduced a parameter α ¼ ffiffiffiffiffiffiffi
−Λ

p
. For

convenience we also introduce a parameter ϵ according to

ϵ ¼ r2þ − r2þ;extremal

r2þ;extremal

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − α2J2

p

M
: ð80Þ

The background spacetime corresponds to ϵ ≪ 1, and
ϵ → 0 is the extremal limit. The null energy condition
for the matter fields yields δM −ΩHδJ ≥ 0, which is
equivalent to the statement that black hole entropy always
increases. If we only consider perturbations to first order in
λ, that entropy always increases will constrain fðλÞ by

fðλÞ ≥ M2ϵ2 − 2λϵðα2JδJÞ þOðλ2Þ: ð81Þ

It is then evident from this inequality that, when δJ ∼
ϵM=α, it is possible to make fðλÞ < 0 by some careful
choice of δJ. This is exactly the Hubeny-type violation of
the WCCC. The problem is that when δJ ∼ ϵM=α, the
violation of fðλÞ ≥ 0 is of order M2ϵ2 ∼ α2ðδJÞ2, which is
not fully captured to first order in λ. Therefore to determine
whether there is a true violation of the WCCC, one needs to
calculate all quantities in Eq. (81) to the appropriate order.
We now consider the second order variations in order to

give a bound for fðλÞ. Given the null energy conditions for
the falling matter, we can obtain the following relation from
the second order variational identity with no inner boun-
dary contributions (66),

δ2M −ΩHδ
2J ≥ EΣðϕ; δϕÞ; ð82Þ

where the canonical energy EΣ is given by

EΣðϕ; δϕÞ ¼ EHðϕ; δϕÞ þ EΣ1
ðϕ; δϕÞ

¼
Z
H
Ωðϕ; δϕ;LξδϕÞ þ

Z
Σ1

Ωðϕ; δϕ;LξδϕÞ:

ð83Þ

In (3þ 1)-dimension, the term EHðϕ; δϕÞ is identified as
the total flux of gravitational wave energy into the black
hole [12]. In (2þ 1)-dimensional Einstein gravity, how-
ever, there is no propagating degree of freedom in the
bulk; i.e., there is no gravitational wave solution. Thus
EHðϕ; δϕÞ ¼ 0. A more rigorous way to see this can be
done by following the calculation of the canonical energy
as in [12], and we similarly find that

FIG. 4. The parameter space of BTZ solutions in the three-
dimensional Einstein gravity. The black solid line corresponds to
extremal BTZ black holes. Any point above this line corresponds
to a nonextremal BTZ black hole, while any point below the line
is a naked conical singularity. The orange dashed curve is one of
the curves of constant entropy, which meets the extremal BTZ
line tangentially. The tangent vector at the point of an extremal
BTZ black hole will always bring it to another extremal BTZ
black hole. However, starting from a slightly nonextremal BTZ
black hole, to linear order, the tangent vector can perturb the
spacetime to become a naked conical singularity.
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Z
H
Ωðϕ; δϕ;LξδϕÞ ¼

1

4π

Z
H
ðκuÞδσabδσabϵ̂

þ 1

16π

Z
H∩Σ1

ðκuÞδgabδσabϵ̂; ð84Þ

where κ is the surface gravity, u is an affine parameter on
the future horizon, δσab is the perturbed shear of the
horizon generators, and ϵ̂ is the volume element. In three
dimensions, it is found that every null geodesic congruence
is shear free [35], i.e., σab ¼ 0; therefore δσab ¼ 0 on H
and the canonical energy on H vanishes.
Then we only need to calculate the canonical energy on

Σ1. According to our assumption, the perturbation δϕ, as
induced by the falling matter, approaches a perturbation
δϕBTZ towards another BTZ black hole on Σ1. Also since
δϕBTZ has no gravitational wave energy throughH, we may
replace Σ1 by Σ and obtain that

EΣ1
ðϕ; δϕÞ ¼ EΣðϕ; δϕBTZÞ: ð85Þ

We use the general second order variational identity (59) on
this Σ. As before, we consider a one-parameter family of
BTZ black holes, ϕBTZðβÞ. The black hole mass and
angular momentum are given by MðβÞ ¼ M þ βδMBTZ

and JðβÞ ¼ J þ βδJBTZ, where δMBTZ and δJBTZ are fixed
by the first order perturbation for ϕðλÞ. Therefore for this
family of solutions, we have δ2M ¼ δ2J ¼ δE ¼ δ2C ¼ 0.
In Eq. (59), the only nonvanishing contribution in the
evaluation of the canonical energy EΣðϕ; δϕBTZÞ then
comes from the integral over the bifurcation surface B,
which yields

EΣ1
ðϕ; δϕÞ ¼ −THδ

2SBTZ: ð86Þ

Here, the minus sign is due to the fact that the bifurcation
surface is the inner boundary of Σ.
With the canonical energy being calculated, (82) now

reads

δ2M − ΩHδ
2J ≥ −THδ

2SBTZ: ð87Þ

Here the temperature of the BTZ black hole is given by

TH ¼ −
Λðr2þ − r2−Þ

2πrþ
¼ αMϵ

π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Mð1þ ϵÞp : ð88Þ

The second order variation of the black hole entropy is
calculated as

δ2SBTZ ¼ ðδJÞ2
�
−
παM½α2J2ð3ϵþ 2Þ þ 2M2ϵ2ðϵþ 1Þ�ffiffiffi

2
p

ϵ3½M3ðϵþ 1Þ�3=2
�

þ ðδJδMÞ
�

π
ffiffiffi
2

p
αJðϵþ 2Þ

Mϵ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M3ðϵþ 1Þ

p
�

þ ðδMÞ2
�

πðϵ − 2Þðϵþ 1Þffiffiffi
2

p
αϵ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M3ðϵþ 1Þ

p
�
; ð89Þ

where we have used the relation that for this family of
solutions, δ2M ¼ δ2J ¼ 0. We assume that the first order
perturbation is optimally done, i.e., δM ¼ ΩHδJ, and we
use the inequality (87) to constrain fðλÞ in Eq. (79). We
obtain that

fðλÞ ≥ M2ϵ2 − 2λϵðα2JδJÞ þ λ2
α4J2ðδJÞ2

M2

þOðλ3; ϵλ2; ϵ2λ; ϵ3Þ; ð90Þ

which can be further written as

fðλÞ ≥
�
Mϵ − λ

α2JδJ
M

�
2

þOðλ3; ϵλ2; ϵ2λ; ϵ3Þ: ð91Þ

Consequently, fðλÞ ≥ 0 when second order variations in λ
are also taken into account. Our Gedanken experiment
cannot destroy a near-extremal BTZ black hole in three-
dimensional Einstein gravity; thus the WCCC is preserved.

V. CONCLUSIONS AND DISCUSSIONS

Along the line of Wald’s proposals [3,11] for 4D Einstein
gravity, in this paper we have considered the Gedanken
experiments of destroying a BTZ black hole for three
different limits of MB model of 3D gravity. They are
(i) Einstein gravity, (ii) chiral gravity and (iii) torsional
chiral gravity. All three limits are free of perturbative ghosts
and show different behaviors in the Gedanken experiments.
We find that there are Hubeny-type violations for Einstein
gravity but none for chiral gravity when trying to destroy a
nonextremal BTZ black hole. However, in these two
theories, the WCCC holds for both extremal and nonex-
tremal BTZ black holes if the falling matter obeys the null
energy condition. It is philosophically interesting to see that
the WCCC prevails here even though the BTZ singularity is
just a conical one.
On the other hand, for the torsional chiral gravity there is

an additional contribution to the null energy condition from
the spin angular momentum tensor even at the linear order
of variations. Thus, that the WCCC will hold or not
depends on the imposition of an additional null energy-
like condition for the spin angular momentum tensor. If the
WCCC does not hold for the first order variations, one
needs to check the second order variation to see if there is
Hubeny-type violation. However, the full formalism of
deriving the second order variational identity for MBmodel
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is out of the scope of this paper, and it deserves a
future work.
The third law of black hole dynamics was first proposed

by Israel and a sketchy proof was also given [28], which
states that one cannot turn a nonextremal black hole into an
extremal one by throwing the matter in a finite time
interval. Later, the detailed proof was given by Sorce
and Wald [11] as described and adopted in this paper. In the
context of AdS=CFT correspondence, the temperature of
the boundary CFT is the same as the Hawking temperature
of the black hole in the bulk. Thus, our results in this paper
can serve as an operational proof of the thermodynamic
third law by holographically mapping our Gedanken
experiments around a near-extremal BTZ black hole into
the cooling processes of the boundary CFT toward zero
temperature. Our generalization to BTZ black holes though
seems straightforward; its implication to the third law of
thermodynamics for holographic condensed matter systems
is nontrivial and deserves further study. Especially, the
generalization to the higher dimensional AdS black holes
for more general gravity theories will give holographic tests
of the third law of thermodynamics for the more realistic
systems. We plan to attack this problem in the near future.

Before ending the paper, we comment on one more point
about the proof of the third law by noticing that the equality
of (91) holds for one particular choice of parameter λ. This
implies that one can reach the extremal black hole at the
second order for this particular case. To pin down the issue,
one needs to check the third order of variation for this
particular λ value. This is too involved to carry out just for a
measure-zero possibility. However, it is still an interesting
issue for future work.
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