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We study the geometrical and dynamical features of expansion-free dynamical stars in general relativity.
Such stars can exist only if particular physical and geometric conditions are satisfied. First, for trapping to
exist in an expansion-free dynamical star, the star must accelerate and radiate simultaneously. If either is
zero, then the shear (Σ) must be zero throughout the star, in which case the star is static (Θ ¼ Σ ¼ 0).
Second, we prove that with nonzero acceleration and radiation expansion-free dynamical stars must be
conformally flat.
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I. INTRODUCTION

Models of radiating stars in general relativity are
important to describe astrophysical processes and to study
gravitational collapse. Some recent examples of exact
models that are physically reasonable were obtained by
Tewari and Charan [1], Tewari [2], and Ivanov [3–5].
Anisotrophy and dissipative effects have been shown to
influence the collapse rate and temperature profiles in
radiating stars by Reddy et al [6]. It has been demonstrated
that classes of exact solutions exist in general relativity,
referred to as Euclidean stars, which regain Newtonian
stars in the appropriate limit [7–9]. The Lie analysis of
differential equations using symmetry invariance has
proven to be a systematic method to produce general
categories of exact solutions to the boundary condition
of radiating objects [10–12]. An important class of radiat-
ing stars that are expansion free was introduced by Herrera
et al [13]. Expansion-free dynamical models imply the
existence of a cavity or void. Matter distributions with a
vanishing expansion scalar have to be inhomogeneous.
These physical features should have important astrophysi-
cal consequences for spherically symmetric distributions.
Studies containing the description of physical properties of
expansion-free dynamical radiating stars are contained in
several treatments [14–16]. Therefore, it is important to
study the geometrical properties of expansion-free dynami-
cal stars and find general conditions for their existence.
The aim of this paper is to investigate under what

conditions there can be trapping in a relativistic expan-
sion-free dynamical star. This analysis falls in the scope of
stability analysis of self-gravitating systems (some of the

references are given in Refs. [17–22]). We will consider the
conditions on the acceleration and radiation quantities that
allow for trapping in such stars. It is also an interesting
exercise, with all the different quantities acting on such
stars, to determine the geometry as these structures evolve.
We will make use of the equivalent forms of the field
equations from the 1þ 1þ 2 semitetrad covariant formu-
lation of general relativity [23–28]. The semitetrad forma-
lism has been a useful approach in displaying geometrical
features, which are difficult to find using other approaches,
in a transparent fashion.
Various authors have explored expansion-free dynamical

models with different considerations. The central theme of
interest in such models is the possibility that they could
help explain the existence of voids on cosmological scales.
In 2008, Herrera and coauthors [13] studied such models
with nonzero shear and showed that the appearance of a
cavity (see Ref. [29] for more discussion), with matter that
is anisotropic and dissipative, undergoing explosion is
inevitable. The same authors followed this result with
Ref. [30] in 2009, in which they ruled out the Skripkin
expansion-free dynamical model (see Ref. [31]) with
constant energy density and isotropic pressure. Another
study in Ref. [32] involved the study of models collapsing
adiabatically and showed that the instability was indepen-
dent of the star’s stiffness. In particular, it was shown that
the instability is entirely governed by the pressures and the
radial profile of the energy density.
In Sec. II, we give a short overview of the 1þ 1þ 2

semitetrad formulation. In Sec. III, we present the results of
the paper. We conclude with a discussion of the results
in Sec. IV.

II. PRELIMINARIES

We provide some background material in this section,
covering the 1þ 1þ 2 semitetrad covariant formalism as
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well as notes on and calculations of useful quantities,
utilized in this paper.
We start by explicitly defining locally rotationally

symmetric class II spacetimes [33,34].

Definition 1: A locally rotationally symmetric class II
(LRS II) spacetime is an evolving and vorticity-free
(zero rotation) and spatial twist-free spacetime with a
one-dimensional isotropy group of spatial rotations defined
at each point of the spacetime. It is given by the general line
element

ds2¼−A2ðt;χÞþB2ðt;χÞþC2ðt;χÞðdy2þD2ðy;kÞdz2Þ;
ð1Þ

where t, χ are parameters along integral curves of the
timelike vector field ua ¼ A−1δa0 of a timelike congruence
and the preferred spacelike vector ea ¼ B−1δaν, respectively.
The constant k fixes the function Dðy; kÞ (k ¼ −1 corre-
sponds to sinh y, k ¼ 0 corresponds to y, and k ¼ 1
corresponds to sin y) [34].

LRS II spacetimes generalize spherically symmetric space-
times and can be used to study astrophysical bodies such as
stars and their evolution. From the line element in Eq. (1), it
is clear that most physically realistic and interesting space-
times fall within the LRS II class.
Let us next introduce the 1þ 1þ 2 covariant splitting of

spacetime and the resulting field equations for LRS II
spacetimes [27,28].
To start with, let (M; gab) be a spacetime manifold. To

any timelike congruence, we associate a unit vector field ua

tangent to the congruence for which uaua ¼ −1. Given any
4-vector Ua in the spacetime, the projection tensor hab ≡
gab þ uaub projects Ua onto the 3-space as

Ua ¼ Uua þUhai;

where U is the scalar along ua and Uhai is the projected
3-vector [35]. This naturally gives rise to two derivatives:

(i) The covariant time derivative (or simply the dot
derivative) along the observers’ congruence. For any
tensor Sa::bc::d, _Sa::bc::d ≡ ue∇eSa::bc::d.

(ii) Fully orthogonally projected covariant derivative D
with the tensor hab, with the total projection on
all the free indices. For any tensor Sa::bc::d,
DeSa::bc::d≡hafhpc…hbghqdhre∇rSf::gp::q.

This 1þ 3 splitting irreducibly splits the covariant deriva-
tive of ua as

∇aub ¼ −Aaub þ
1

3
habΘþ σab: ð2Þ

In Eq. (2), Aa ¼ _ua is the acceleration vector, Θ≡Daua is
the expansion, and σab ¼ Dhbuai is the shear tensor

(wherever used in this paper, angle brackets will denote
the projected symmetric trace-free part of the tensor).
LRS II spacetimes also have the property that the Weyl
tensor is purely electric as the magnetically part of the Weyl
tensor is identically zero (see Ref. [27] for details).
The splitting also allows for the energy-momentum

tensor to be decomposed as

Tab ¼ ρuaub þ 2qðaubÞ þ phab þ πab; ð3Þ

where ρ≡ Tabuaub is the energy density, qa ¼ −hacTcdud

is the 3-vector defining the heat flux, p≡ ð1=3ÞhabTab is
the isotropic pressure, and πab is the anisotropic stress
tensor.
If there is a preferred unit normal spatial direction ea as is

the case with LRS II spacetimes, the metric gab can be split
into terms along the ua and ea directions (the vector field ea

splits the 3-space), as well as on the 2-surface, i.e.,

gab ¼ Nab − uaub þ eaeb; ð4Þ

where the projection tensor Nab projects any two vectors
orthogonal to ua and ea onto the 2-surface defined by the
sheet Na

a ¼ 2 (uaNab ¼ 0; eaNab ¼ 0) and ea is defined
such that eaea ¼ 1 and uaea ¼ 0. This is referred to as the
1þ 1þ 2 splitting. This splitting of the spacetime addi-
tionally gives rise to the splitting of the covariant deriv-
atives along the ea direction and on the 2-surface:

(i) The hat derivative is the spatial derivative along
the vector ea: for a 3-tensor ψa::b

c::d, ψ̂a::b
c::d≡

efDfψa::b
c::d.

(ii) The delta derivative is the projected spatial
derivative on the 2-sheet by Na

b and projected on
all the free indices: for any 3-tensor ψa::b

c::d,
δeψa::b

c::d ≡ Na
f::Nb

gNh
c::Ni

dNe
jDjψf::g

h::i.
For LRS II spacetimes, the 1þ 1þ 2 covariant scalars

fully describing the LRS II spacetimes are [27]

fA;Θ;ϕ;Σ; E; ρ; p;Π; Qg:

The quantity ϕ≡ δaea is the sheet expansion, Σ≡ σabeaeb

is the scalar associated to the shear tensor σab, E ≡ Eabeaeb

is the scalar associated with the electric part of the Weyl
tensor Eab,Π≡ πabeaeb is the anisotropic stress scalar, and
Q≡ −eaTabub ¼ qaea is the scalar associated to the heat
flux vector qa.
The full covariant derivatives of the vector fields ua and

ea are given by [27]

∇aub¼−Auaebþeaeb

�
1

3
ΘþΣ

�
þNab

�
1

3
Θ−

1

2
Σ
�
; ð5Þ

∇aeb ¼ −Auaub þ
�
1

3
Θþ Σ

�
eaub þ

1

2
ϕNab: ð6Þ
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We also note the useful expression

ûa ¼
�
1

3
Θþ Σ

�
ea: ð7Þ

When acting on a scalar ψ, the dot ( _) and hat (^) derivatives
satisfy the commutation relation [27]

_̂ψ − _̂ψ ¼ −A _ψ þ
�
1

3
Θþ Σ

�
ψ̂ : ð8Þ

This is a useful relation that will be utilized often in our
calculations.
The evolution and propagation equations may be

obtained from using the Ricci identities of the vectors
ua and ea as well as the doubly contracted Bianchi
identities [27,28]. The evolution and propagation equations
are given as follows (for full derivation of the equations,
see Ref. [27]):

(i) Evolution (LRS II):

2

3
_Θ − _Σ ¼ Aϕ − 2

�
1

3
Θ −

1

2
Σ
�

2

−
1

3
ðρþ 3pÞ

þ E −
1

2
Π; ð9Þ

_ϕ ¼
�
2

3
Θ − Σ

��
A −

1

2
ϕ

�
þQ; ð10Þ

_E−
1

3
_ρþ1

2
_Π¼−

3

2

�
2

3
Θ−Σ

�
E−

1

4

�
2

3
Θ−Σ

�
Π

þ1

2
ϕQþ1

2
ðρþpÞ

�
2

3
Θ−Σ

�
: ð11Þ

(ii) Propagation (LRS II):

2

3
Θ̂ − Σ̂ ¼ 3

2
ϕΣþQ; ð12Þ

ϕ̂ ¼
�
1

3
Θþ Σ

��
2

3
Θ − Σ

�
−
1

2
ϕ2

−
2

3
ρ − E −

1

2
Π; ð13Þ

Ê −
1

3
ρ̂þ 1

2
Π̂ ¼ −

3

2
ϕ

�
E þ 1

2
Π
�

−
1

2

�
2

3
Θ − Σ

�
Q: ð14Þ

(iii) Propagation/evolution (LRS II):

Â− _Θ¼−ðAþϕÞAþ1

3
Θ2þ3

2
Σ2þ1

2
ðρþ3pÞ; ð15Þ

Q̂þ _ρ ¼ −Θðρþ pÞ − ðϕþ 2AÞQ −
3

2
ΣΠ; ð16Þ

p̂þ Π̂þ _Q ¼ −
�
3

2
ϕþ A

�
Π −

�
4

3
Θþ Σ

�
Q

− ðρþ pÞA: ð17Þ

The outgoing null expansion, the vanishing of which
necessitates trapping, has been calculated in Refs. [28,36] as

Θk ¼
1ffiffiffi
2

p
�
2

3
Θ − Σþ ϕ

�
: ð18Þ

The equation of the outgoing null expansion scalar here
corresponds to Eq. (32) of Ref. [28], butwe have unitized the
energy function for our choice of the outgoing null normal
vector field ka, the divergence of which gives Θk. It is clear
from Eq. (18) that, even with the vanishing of Θ, it is still
possible to have trapping. This is themain focus of this work
and is investigated in the next section.

III. RESULTS

In this section, we state and prove the results of the paper.

A. Dynamics of expansion-free stars

We state and prove the following theorem.
Theorem 1: An expansion-free dynamical star must

accelerate and radiate simultaneously.
Proof.—We establish this by fixing both the acceleration

and the heat flux to zero and then by fixing either the
acceleration or the heat flux to zero.

1. Case 1

First, suppose A ¼ 0 andQ ¼ 0. From Eq. (15), we have
the algebraic constraint equation

0 ¼ 3

2
Σ2 þ 1

2
ðρþ 3pÞ: ð19Þ

Here, we note that, since Σ2 > 0, Eq. (19) implies that the
strong energy condition must be violated, i.e., ρþ 3p < 0.
For A ¼ Θ ¼ 0, Eq. (8) is simply

_̂ψ − _̂ψ ¼ Σψ̂ : ð20Þ

Taking the hat derivative of Eq. (10) and the dot derivative
of Eq. (13), we obtain, respectively,

_̂ϕ ¼ 1

2
ϕ̂Σþ 1

2
ϕΣ̂

¼ −
�
ϕ2 þ 1

2
Σ2 þ 1

3
ρþ 1

2
E þ 1

4
Π
�
Σ ð21Þ
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and

_̂ϕ ¼ −2Σ _Σ − ϕ _ϕ −
2

3
_ρ − _E −

1

2
_Π

¼ −
�
1

2
ϕ2 þ Σ2 þ 1

6
ρ −

1

2
E þ 3

2
p

�
Σ: ð22Þ

Using the commutation relation on Eqs. (21) and (22), we
obtain

�
1

4
Πþ 3

2
Σ2 þ 1

2
ðρþ 3pÞ

�
Σ ¼ 0: ð23Þ

So, either Σ ¼ 0 or

1

4
Πþ 3

2
Σ2 þ 1

2
ðρþ 3pÞ ¼ 0:

If Σ ¼ 0, then the star must be static (Θ ¼ Σ ¼ 0), so we
assume that Σ ≠ 0 and that

1

4
Πþ 3

2
Σ2 þ 1

2
ðρþ 3pÞ ¼ 0: ð24Þ

From Eq. (19), Eq. (24) implies thatΠ ¼ 0. Now, if we take
the dot derivative of Eq. (19) and substitute for Eqs. (9) and
(16), we obtain the evolution of p:

_p ¼ ðΣ2 þ 2EÞΣ: ð25Þ

Taking the hat derivative of Eq. (25) and the dot derivative
of Eq. (17), we obtain, respectively,

_̂p ¼
�
−
9

2
ϕΣ2 − 6ϕE þ 2

3
ρ̂

�
Σ ð26Þ

and

_̂p ¼ 0: ð27Þ

Using the commutation relation on Eqs. (26) and (27), we
obtain the propagation of ρ,

ρ̂ ¼ 9ϕ

�
3

4
Σ2 þ E

�
: ð28Þ

Now, taking the hat derivative of Eq. (9) and the dot
derivative of Eq. (12), we obtain, respectively,

ˆ̇Σ ¼ ΣΣ̂ − Ê ¼ −
3

2
ϕΣ2 − Ê ð29Þ

and

˙̂Σ ¼ −
3

2
ð _ϕΣþ ϕ _ΣÞ ¼ −

3

2
ϕE: ð30Þ

Using the commutation relation on Eqs. (29) and (30), we
obtain

Ê ¼ 3

2
ϕðΣ2 − EÞ; ð31Þ

and upon substituting in Eq. (14), we obtain

ρ̂ ¼ 9

2
ϕΣ2: ð32Þ

Comparing Eqs. (28) and (32), we get

ϕ

�
E þ 1

4
Σ2

�
¼ 0: ð33Þ

Therefore, we must have either ϕ ¼ 0 or

E ¼ −
1

4
Σ2: ð34Þ

We show that either case yields Σ ¼ 0, in which case the
star is static. First, suppose ϕ ¼ 0. Then, Eq. (13) gives the
constraint equation

Σ2 ¼ −
2

3
ρ − E; ð35Þ

and comparing Eqs. (19) and (35), we obtain

E ¼ −
1

3
ðρ − 3pÞ: ð36Þ

Taking the dot derivative of Eqs. (36), using Eqs. (11) and
(25), we obtain

Σ
�
Σ2 þ 1

2
ðE þ ρþ pÞ

�
¼ 0: ð37Þ

Again, assuming Σ ≠ 0, we must have

Σ2 ¼ −
1

2
ðE þ ρþ pÞ: ð38Þ

Taking the dot derivative of Eq. (38) and using Eq. (9), we
obtain

_p ¼ Σð4E − 2Σ2Þ; ð39Þ

and upon comparing to Eq. (25), we obtain

Σð2E − 3Σ2Þ ¼ 0: ð40Þ

Since Σ ≠ 0, we have

E ¼ 3

2
Σ2; ð41Þ
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and upon using Eqs. (19) and (36), we obtain

ρ ¼ −
5

3
p: ð42Þ

Taking the dot derivative of Eq. (42), we have _p ¼ 0.
Setting Eq. (25) to zero, while using Eq. (41) to substitute
for E, gives Σ2 ¼ 0, which gives Σ ¼ 0.
Next, assume ϕ ≠ 0 and that Eq. (34) is satisfied. Now,

taking the dot derivative of Eq. (34) and using Eqs. (11),
(9), and (34) to simplify, we obtain

�
3

4
Σ2 þ ρþ p

�
Σ ¼ 0: ð43Þ

Assume Σ ≠ 0. We must have

3

4
Σ2 þ ρþ p ¼ 0: ð44Þ

Using Eq. (19), Eq. (44) simplifies to

ρ ¼ −
14

5
p: ð45Þ

Finally, taking the dot derivative of Eq. (45), we have
_p ¼ 0, and upon comparing to Eq. (25) and substituting for
E using Eq. (34), we obtain Σ2 ¼ 0, which gives Σ ¼ 0.

2. Case 2

Let us next consider the case A ≠ 0 and Q ¼ 0. The
commutation relation (8) now becomes

_̂ψ − _̂ψ ¼ −A _ψ þ Σψ̂ : ð46Þ

Taking the hat derivative of Eq. (11) and the dot derivative
of Eq. (14), we obtain, respectively,

_̂Σ ¼ −Âϕ − Aϕ̂þ ΣΣ̂þ 1

3
ρ̂þ p̂ − Ê þ 1

2
Π̂

¼ A2ϕþ 3

2
Aϕ2 − 3ϕΣ2 −

1

3
Aρ −

3

4
ϕΠ −

1

2
ϕρ

−
3

2
ϕpþ AE −

1

2
AΠ − Apþ 3

2
ϕE ð47Þ

and

_̂Σ ¼ −
3

2
ð _ϕΣþ ϕ _ΣÞ

¼ 3

2
AΣ2 −

3

2
ϕΣ2 þ 3

2
Aϕ2 −

1

2
ϕρ −

3

2
ϕp ð48Þ

þ 3

2
ϕE −

3

4
ϕΠ: ð49Þ

Using the commutation relation on Eqs. (47) and (48), we
obtain

AΣ2 ¼ 0: ð50Þ

Since A ≠ 0, we must have Σ ¼ 0, and thus the star is static.

3. Case 3

Finally, we consider the case A ¼ 0 and Q ≠ 0. From
Eq. (15), we have the constraint equation as Eq. (19). The
commutation relation in this case is Eq. (20). Taking the hat
derivative of Eq. (10) and the dot derivative of Eq. (13), we
obtain, respectively,

_̂ϕ¼ 1

2
Σ̂ϕþ1

2
Σϕ̂

¼−ϕ2Σ−
1

2
ϕQ−

1

2
Σ3−

1

3
Σρ−

1

2
ΣE−

1

4
ΣΠþ Q̂ ð51Þ

and

_̂ϕ ¼ −2Σ _Σ − ϕ _ϕ −
2

3
_ρ −

�
_E þ 1

2
_Π
�

¼ −Σ3 −
1

6
Σρ −

5

4
ΣΠþ 1

2
ΣE þ 1

2
Σp − _ρ: ð52Þ

Using the commutation relation on Eqs. (51) and (52), we
obtain

�
3

2
Σ2 þ 1

2
ðρþ 3pÞ

�
Σ ¼ ϕQ; ð53Þ

which, upon using Eq. (19), reduces to

ϕQ ¼ 0: ð54Þ

Since Q ≠ 0, we must have ϕ ¼ 0. But from Eq. (10), this
gives Q ¼ 0.
From the three cases considered, we therefore must have

A ≠ 0 and Q ≠ 0 to have an expansion-free star that is
evolving. ▪

B. Geometry of expansion-free stars

We state and prove the following theorem on the
geometry of expansion-free dynamical stars.
Theorem 2: An expansion-free dynamical star must be

conformally flat.
Proof.—We prove this by checking for additional con-

straints from the field equations with A ≠ 0 andQ ≠ 0. The
commutation relation in this case is given by Eq. (46).
Taking the hat derivative of Eq. (9), we obtain

_̂Σ¼A2ϕþ3

2
Aϕ2−3ϕΣ2þAΣ2−

1

2
ϕρ−

3

2
ϕp

þ2

3
Aρþ1

2
AΠ−

3

2
ΣQþ3

2
ϕEþ3

4
ϕΠþ p̂þ Π̂; ð55Þ

and taking the dot derivative of Eq. (12), we have
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_̂Σ ¼ 3

2
AΣ2 −

3

2
ϕΣ2 −

3

2
ΣQþ 3

2
Aϕ2 −

1

2
ϕρ

−
1

2
ϕpþ 3

2
ϕE −

3

4
ϕΠ − _Q: ð56Þ

Taking the difference of Eqs. (55) and (56) and employing
the commutation relation (46), we obtain

−A _Σþ ΣΣ̂ ¼ A2ϕ −
3

2
ϕΣ2 −

1

2
AΣ2 þ 3

2
ϕΠ

þ 2

3
Aρþ 1

2
AΠþ _Qþ p̂þ Π̂; ð57Þ

which, upon using Eq. (17) and simplifying, gives

AE ¼ 0: ð58Þ

Since A ≠ 0, we must have E ¼ 0 so that the electric part of
the Weyl tensor is vanishing. Fixing E ¼ 0 in the field
equations for A ≠ 0,Q ≠ 0, all other commutation relations
on pairs of evolution and propagation equations return
identities. ▪

IV. DISCUSSION

The expansion-free condition in general relativity has
received considerable attention in recent years and has been
applied to describe physical features of radiating stars. We

have utilized the 1þ 1þ 2 semitetrad covariant formalism
to study such stars in general in spherical symmetry. The
analysis shows that expansion-free dynamical stars are
severely constrained and can only exist under very par-
ticular conditions. From the set of field equations, we have
explicitly shown that a necessary condition for a star with
zero expansion to evolve is that the star has nonzero
radiation and acceleration. With further analysis of the
field equations with A ≠ 0 and Q ≠ 0, it is shown that the
star is necessarily conformally flat. Proving these results
amounts to the analysis of the field equation via commu-
tation relations, through which we obtain additional con-
straints, which further give us additional evolution
equations that can be matched against the original set of
equations. These results add to the literature on expansion-
free dynamical stars, which have been developed over the
last decade and half, most notably through works of
Herrera and coauthors.
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