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We study the capability of the space-based gravitational wave observatory TianQin to test the no-hair
theorem of general relativity, using the ringdown signal from the coalescence of massive black hole
binaries. We parametrize the ringdown signal by the four strongest quasinormal modes and estimate the
signal to noise ratio for various source parameters. We consider constraints both from single detections and
from all the events combined throughout the lifetime of the observatory, for different astrophysical models.
We find that at the end of the mission, TianQin will have constrained deviations of the frequency and decay
time of the dominant 22 mode from the general relativistic predictions to within 0.2% and 1.5%
respectively, the frequencies of the subleading modes can be also constrained within 0.3%. We also find
that TianQin and LISA are highly complementary, by virtue of their different frequency windows. Indeed,
LISA can best perform ringdown tests for black hole masses in excess of ∼3 × 106 M⊙, while TianQin is
best suited for lower masses.
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I. INTRODUCTION

The detection of gravitational wave (GW) signals from
the coalescence of compact binaries by the LIGO-Virgo-
Collaboration [1–7] has opened up new frontiers in testing
the nature of gravity and black holes [8–15]. One out-
standing fact to be tested is the no-hair theorem [16–18],
which states that within general relativity black holes are
only characterized by mass, spin, and electric charge. Since
black hole electric charges are believed to be extremely
small in realistic astrophysical environments—see, e.g.,
[19–24]—black holes in general relativity are fully deter-
mined by only two parameters, the mass and spin.
GW observations offer an experimental way to test the

no-hair theorem, and thus the validity of general relativity.
After the coalescence of two black holes, the remnant
object quickly transits from a highly perturbed state to a
perfect Kerr black hole, radiating a series of damped

oscillating signals (the quasinormal modes—QNMs—of
the remnant black hole). If the no-hair theorem is correct,
then the oscillation frequency and the damping time of the
QNMs are completely determined by the mass and spin
angular momentum of the remnant Kerr black hole. By
measuring the frequency and damping time of the least
damped QNM, as well as (at least) the frequency or
damping time of one of the subdominant modes, one
can in principle test the no-hair theorem [25–33].
Detweiler [34] first pointed out the observation of QNM

may provide direct evidence of black hole. Indeed, Dreyer
et al. [25] developed a formalism in which they infer the
mass and angular momentum of the black hole from the
strongest (least damped) QNM, and then check consistency
with the no-hair theorem by considering additional sub-
dominant modes. Berti et al. [26,27] investigated the
accuracy of parameter estimation and the capability to
resolve subleading QNMs. They also provided a set of
fitting functions relating the oscillation frequencies and the
quality factors (a combination of frequencies and damping
times) to the mass and angular momentum of the black
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hole, for different QNMs. Kamaretsos et al. [35,36]
introduced a set of fitting functions relating the amplitudes
of several QNMs to the mass ratio and the effective spin of
the progenitor binary black holes. Using this result, Gossan
et al. [37] investigated the capability of eLISA [38] and of
the Einstein Telescope [39] to test the no-hair theorem
varying with the luminosity distance, assuming the pro-
genitor black holes are not spinning.
Although theoretical progress has been made, it is still

difficult to test the no-hair theorem in practice. GW150914
is the first and by far the strongest GW signal from a
merging black hole binary detected [40] whose signal-
to-noise ratio (SNR) is 24. But since the SNR for the
ringdown phase is only 7 [8], so it is quite hard to extract
subdominant QNM frequencies and damping times pre-
cisely for current detections [41–44]. However, more
accurate and precise tests will become possible with future
space-based detectors and the third generation ground-
based detectors [33].
In this paper, we focus on testing the no-hair theorem

with TianQin, a space-based GW observatory to be
launched in the 2030s [45]. In the center of galaxies, there
exist massive black holes (MBHs) with masses ranging
from 104 M⊙ to more than 109 M⊙. The mergers of MBHs
with masses in the lower part of this range (104 M⊙ ∼
107 M⊙) can be detected by TianQin with SNR above 1000
at z≲ 2 [46–48], and offer an excellent opportunity to test
the no-hair theorem.
The paper is organized as follows. In Sec. II, we

introduce all the necessary ingredients needed in the
calculations, including the waveform for the ringdown
signals, the sensitivity curve of TianQin, and the statistical
method. In Sec. III, we present the results obtained,
including the SNR and the accuracy of parameter estima-
tion for the four strongest QNMs, and the combined
constraining power from all the events expected throughout
the lifetime of TianQin. The combined constraining power
obtained by joining the events expected from both TianQin
and LISA [49] is also presented. A brief summary is
presented in Sec. IV.
Throughout this paper we set G ¼ c ¼ 1.

II. METHOD

In this section, we introduce the tools necessary for the
calculations. In Sec. II A, we review the waveform for
ringdown signals. In Sec. II B, we introduce the sensitivity
and response of TianQin to GW signals. In Sec. II C, we
outline the statistical method that will be used.

A. Signals

We focus on the two polarizations of GWs, hþ;×, as
predicted by general relativity (GR). The ringdown signal
from a perturbed black hole can be decomposed into a sum
of QNMs, whose frequencies and decay times can be
calculated by solving the linear perturbation equations with

appropriate boundary conditions (outgoing at spatial infin-
ity and ingoing at the event horizon) [50–56]. The QNMs of
a Kerr black hole are conventionally labeled with three
indices ðl; m; nÞ, where n ¼ 0; 1; 2;… is the overtone
index, and l ¼ 2; 3; 4;… and m ¼ 0;�1;…;�l are the
harmonic indices. The fundamental modes (corresponding
to n ¼ 0) usually have much larger amplitudes and much
longer damping times than the higher overtones n ≥ 1 [26].
For this reason, in the following we will only consider
the fundamental modes and denote them with two
indices, ðl; mÞ.
In our calculations, we will only use the ringdown part of

the waveform, which takes the form

hþ;×ðtÞ ¼
Mz

DL

X
l;m>0

AlmYlmþ;×ðιÞΨþ;×
lm ðtÞ;

Ψþ
lmðtÞ ¼ exp

�
−

t
τlm

�
cosðωlmt −mϕ0Þ;

Ψ×
lmðtÞ ¼ − exp

�
−

t
τlm

�
sinðωlmt −mϕ0Þ; ð1Þ

for t ≥ t0; and hþ;×ðtÞ ¼ 0 for t < t0, where t0 is the
starting point of the ringdown phase. Mz is the redshifted
mass of the source, DL is the luminosity distance to the
source, ι ∈ ½0; π� is the inclination angle of the source, ϕ0 is
the initial phase, and Alm, ωlm, and τlm are the amplitude,
the oscillation frequency and the damping time of the
corresponding QNM, respectively. The functions Ylm

� ðιÞ
can be expressed as sums of −2 weighted spin spherical
harmonics [35]:

Ylmþ ðιÞ ¼ −2Ylmðι; 0Þ þ ð−1Þl−2Yl−mðι; 0Þ;
Ylm
× ðιÞ ¼ −2Ylmðι; 0Þ − ð−1Þl−2Yl−mðι; 0Þ: ð2Þ

One can approximate the ringdown signal with the
combination of the few strongest QNMs. Considering
the (2,2), (3,3), (4,4), and (2,1) modes, one has

Y22þ ðιÞ ¼
ffiffiffiffiffiffi
5

4π

r
1þ cos2ι

2
; Y22

× ðιÞ ¼
ffiffiffiffiffiffi
5

4π

r
cos ι;

Y21þ ðιÞ ¼
ffiffiffiffiffiffi
5

4π

r
sin ι; Y21

× ðιÞ
ffiffiffiffiffiffi
5

4π

r
cos ι sin ι

Y33þ ðιÞ ¼ −
ffiffiffiffiffiffi
21

8π

r
1þ cos2ι

2
sin ι;

Y33
× ðιÞ ¼ −

ffiffiffiffiffiffi
21

8π

r
sin ι cos ι;

Y44þ ðιÞ ¼
ffiffiffiffiffiffiffiffi
63

16π

r
1þ cos2ι

2
sin2ι;

Y44
× ðιÞ ¼

ffiffiffiffiffiffiffiffi
63

16π

r
cos2ιsin2ι: ð3Þ
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By fitting numerical results, phenomenological expressions
for the amplitudes have been obtained by Kamaretsos
et al. [36,57]:

A22ðνÞ ¼ 0.864ν;

A21ðνÞ ¼ 0.43½
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ν

p
− χeff �A22ðνÞ;

A33ðνÞ ¼ 0.44ð1 − 4νÞ0.45A22ðνÞ;
A44ðνÞ ¼ ½5.4ðν − 0.22Þ2 þ 0.04�A22ðνÞ; ð4Þ

where ν ¼ m1m2=ðm1 þm2Þ2 is the symmetric mass ratio,
and

χeff ¼
1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ν

p
χ1 þ

m1χ1 −m2χ2
m1 þm2

�
: ð5Þ

Here ðm1; m2Þ and ðχ1; χ2Þ are the masses and spin
parameters of the progenitor black holes, χi ¼ Ji=m2

i ,
where Ji are the spin angular momentum as we assume
aligned binaries.
It should be noted that there already exist waveform

models for the ringdown with consideration of relative
phases between different modes [58,59], and inspiral-
merger-ringdown waveforms with multiple modes cali-
brated to numerical relativity simulations [43]. Although a
more accurate waveform model is essential to perform a
robust parameter estimation with real data, for this work
whose main objective is to obtain the projected precision,
the model employed here is sufficient.
Berti et al. [26] have provided fitting formulas relating

the oscillation frequencies and damping times to the mass
Mz and spin parameter χf of the remnant Kerr black hole:

ωGR ¼ f1 þ f2ð1 − χfÞf3
Mz

;

τGR ¼ 2ðq1 þ q2ð1 − χfÞq3Þ
ωGR

; ð6Þ

where the coefficients are listed in Table I.
The final mass Mz and spin parameter χf of the remnant

black hole can be computed from the parameters
ðm1; m2; χ1; χ2Þ of the progenitor binary, e.g., via the
formulas of [60–62], which reproduce the results of
numerical relativity simulations.

Following [37,63], we parametrize possible deviations
from GR with a set of dimensionless parameters,
ðδωlm; δτlmÞ, which we assume to be independent of the
other source parameters and which are defined via

ωlm ¼ ωlm;GRð1þ δωlmÞ; ð7Þ

τlm ¼ τlm;GRð1þ δτlmÞ; ð8Þ

where ωlm;GR and τlm;GR denote the GR predictions. A
violation of the no-hair theorem corresponds to at least one
of the δωlm’s and δτlm’s being nonzero.

B. Detector response

Our main objective is to evaluate the scientific perfor-
mance of TianQin [45], focusing on tests of the no-hair
theorem with ringdown signals.
TianQin will consist of a constellation of three satellites

on a geocentric orbit with radius of about 105 km. The
three satellites are spaced evenly on the orbit to form a
nearly equilateral triangle. Test masses are carried by the
satellites, which are dragfree controlled to suppress non-
gravitational disturbances, so that the test masses can move
along geodesics as much as possible. Laser interferometry
between the test masses is then used to detect GWs.
TianQin adopts a “3 month onþ 3 month off” obser-

vation scheme to cope with the thermal problem faced by
geocentric GW missions. It will be interesting to consider a
scenario in which twin constellations of TianQin are
present, with orbital planes perpendicular to each other
and both nearly perpendicular to the ecliptic. In this case,
the twin constellations can operate in alternation to fill up
the observation gaps. Note that this scheme will not affect
the sensitivity of each detector.
We adopt the following model for noise of TianQin [45]:

SNðfÞ ¼
4Sa

ð2πfÞ4L2
0

�
1þ 10−4 Hz

f

�
þ SxðfÞ

L2
0

ð9Þ

where L0 ¼
ffiffiffi
3

p
× 108 m,

ffiffiffiffiffi
Sa

p ¼ 1 × 10−15 ms−2 Hz−1=2
is the average residual acceleration on a test mass, andffiffiffiffiffi
Sx

p ¼ 1 × 10−12 mHz−1=2 is the total displacement noise
in a single link. Then, the sky averaged sensitivity of
TianQin can be modeled by [45,46,64]:

SSAn ðfÞ ¼ SNðfÞ
R̄ðfÞ ;

R̄ðfÞ ≃ 3

10

�
1þ

�
2fL0

0.41c

�
2
�
−1
; ð10Þ

where c is the speed of light, R̄ is the sky averaged response
function (the factor of 3=10 comes from the angle between
the detector arms, the averaged of sky location angle of the
source and the polarization angle, and the contribution of

TABLE I. Fitting coefficients for Eq. (6). Taken from [26].

ðl; mÞ f1 f2 f3 q1 q2 q3

(2,1) 0.6000 −0.2339 0.4175 −0.3000 2.3561 −0.2277
(2,2) 1.5251 −1.1568 0.1292 0.7000 1.4187 −0.4990
(3,3) 1.8956 −1.3043 0.1818 0.9000 2.3430 −0.4810
(4,4) 2.3000 −1.5056 0.2244 1.1929 3.1191 −0.4825
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two independent Michelson’s interferometers). We adopt a
conservative lower frequency cutoff at 10−4 Hz, i.e., the
upper bound of the redshift mass corresponds about
108 M⊙, for the low frequency behavior of the Tianqin
acceleration noise is not clear at this moment [46].
For completeness, we will also consider a second

detector, LISA [49], now adopted by the European
Space Agency and due to launch in the early 2030s. We
will consider the joint capability of TianQin and LISA to
test the no-hair theorem. For LISA, we will use the
sensitivity curve given in [65], and the frequency bound
of 10−4 Hz is no longer the case. An illustration of
sensitivity curve of TianQin and LISA is given in Fig. 1.

C. Statistical methods

For a pair of frequency domain signals pðfÞ and qðfÞ,
one can define the inner product [66].

ðpjqÞ ¼ 2

Z
fhigh

flow

p�ðfÞqðfÞ þ pðfÞq�ðfÞ
SSAn ðfÞ df; ð11Þ

where the factor of 2 comes from the single side integration
of the frequency. In order to prevent spurious power arising
from the Fourier transformation, flow is taken to be half of
the oscillation frequency for (2,1) mode, and fhigh is taken
to be twice of the oscillation frequency for (4,4) mode,
which follows the choice of [37]. While our results are
sensitive to the choice of flow, choosing this lower limit of
integration is analogous to setting a starting frequency for
the ringdown, which is known to be a delicate problem
[44,67]. Our results are insensitive to the choice of fhigh,
provided that it is taken to be sufficiently large.
Signals in the frequency domain are obtained from the

time domain signals through the Fourier transformation:

hðfÞ ¼
Z þ∞

−∞
hðtÞexp−2πiftdt; ð12Þ

and the SNR for a GW signal is simply defined as

SNR½h� ¼ ρ½h� ¼
ffiffiffiffiffiffiffiffiffiffiffi
ðhjhÞ

p
: ð13Þ

If the sources are isotropically distributed, one can get rid of
the SNR dependence on the sky position by performing an
angular average. The sky averaged SNR can be given by
Eq. (13) with h to be the signal before detector response.
In the case of large SNR signals, the uncertainty in the

parameter estimation is given by

Δϑa ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hδϑaδϑai

p
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΓ−1Þaa

q
; ð14Þ

where ϑa are the waveform parameters to be estimated,
h…i denotes the expectation value, and Γ−1 is the inverse of
the Fisher information matrix [66,68,69],

Γab ¼
� ∂h
∂ϑa j

∂h
∂ϑb

�
: ð15Þ

For the single ringdown signal, we deal with a 16-
dimensional parameter space

ϑ⃗ ¼ fMz; χf; χeff ; ν; DL; ι; t0;ϕ0; δωlm; δτlmg: ð16Þ

Under the assumption that the no-hair theorem violating
parameters δωlm and δτlm are independent of the source,
more stringent constrains can be reached by combining
multiple detections. The incoherent superposition of multi-
ple signals can be expressed as

htotðtÞ ¼
X

hðtÞ: ð17Þ

Each single signal can be regarded as independent,

�∂htot
∂ϑai

���� ∂h
tot

∂ϑbj
�

¼ δi;j

�∂htot
∂ϑai

���� ∂h
tot

∂ϑbi
�
; ð18Þ

with ϑ⃗i ¼ fMzi; χfi; χeff ; νi; DLi; ιi; t0i;ϕ0ig denoting the
parameters related to the source i. In this case, the full
parameter space is

ϑ⃗ ¼ fϑ⃗i; δωlm; δτlmg: ð19Þ

III. RESULTS

In this section, we present preliminary results on
TianQin-based projected tests of the no-hair theorem with
ringdown signals. In Sec. III A, we discuss the case of
individual detections by TianQin alone, and by TianQin
and LISA. In Sec. III B, we consider the case when all
detected events are combined together, considering differ-
ent possible detector configurations.

FIG. 1. Anticipated sensitivity curve of TianQin and LISA.
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A. Single detections

We start here by considering individual detections. For
simplicity,we consider amildly inclined binarywith ι ¼ π=3,
and without loss of generality we set t0 ¼ 0 and ϕ0 ¼ 0.
Contour plots of the SNR of the four strongest QNMs as

a function of the red-shifted final mass and luminosity
distance are given in Fig. 2. One can see that the (2,2) mode
is the strongest, while the (2,1) and the (3,3) modes are
comparable to one another.
The dependence of the parameter estimation accuracy on

the black hole mass is illustrated in Fig. 3. The observed

total mass affects the parameter estimation in twoways, i.e.,
through the GW amplitude and the GW frequencies. For
Mz ≲ 3 × 106 M⊙, the amplitude effect dominates and the
constraints get worse with smaller mass (since the ampli-
tude scales linearly with the mass). For Mz ≳ 3 × 106 M⊙,
the frequency effect dominates, and the constraints get
worse with larger mass (because the latter leads to lower
GW frequencies, which eventually fall outside the most
sensitive frequency band of TianQin).
Figure 4 illustrates the dependence of the parameter

estimation accuracy on the symmetric mass ratio of the
progenitor binary. The first feature is that the accuracy
becomes worse for smaller mass ratios. This is because the
radiated energy becomes smaller with smaller symmetric
mass ratio, when the total mass is fixed. The second feature
is that the constraint on the (3,3) mode becomes worse as
the binary masses become comparable. This is because the
amplitude of the (3,3) mode becomes zero when ν → 1=4,
as it is obvious from Eq. (4). In that limit, one should use
other parameters, such as δω21 and δω44, to test the no-hair
theorem.
The dependence of the parameter estimation accuracy on

the effective spin is plotted in Fig. 5. The effective spin has
negligible effect on parameter constraints, except for δω21

and δτ21. The divergence of Δδω21 and Δδτ21 appears

FIG. 2. SNR of the four strongest QNMs in the ringdown signal
for an event with χf ¼ 0.76, ν ¼ 2=9, χeff ¼ −0.3. The top left
figure is for the 22 mode, the top right figure is for the 21 mode,
the bottom left figure is for the 33 mode, and the bottom right
figure is for the 44 mode.

FIG. 3. Parameter estimation accuracy as a function of the
observed final black hole mass. Other parameters used for this
plot are DL ¼ 15 Gpc (i.e., redshift z ≈ 2 for ΛCDM model),
χf ¼ 0.76, ν ¼ 2=9, χeff ¼ −0.3.

FIG. 4. Parameter estimation accuracy vs symmetric mass
ratio ν. Other parameters used for this plot are Mz ¼ 106 M⊙,
DL ¼ 15 Gpc, χf ¼ 0.76, χeff ¼ −0.3.

FIG. 5. Parameter estimation accuracy versus effective spin
χeff . Other parameters used for this plot are: Mz ¼ 106 M⊙,
DL ¼ 15 Gpc, χf ¼ 0.76, ν ¼ 2=9.
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because the amplitude of the 21 mode tends to zero when
χeff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ν

p
, as shown in Eq. (4).

The dependence of the parameter estimation accuracy on
the luminosity distance is shown in Fig. 6. The errors are
inversely proportional to DL. This is because the amplitude
of the GW is proportional to 1=DL, and as a result all
components of the covariance matrix are proportional
to 1=D2

L.
Figure 7 shows the parameter estimation accuracy

as a function of the final spin. The radiated GW fre-
quencies become larger for larger spins, and so is the
constraining power.
From the above figures, one can see that δω22, δτ22, and

δω33 are typically the most constrained parameters. We thus
will focus on these parameters in the following.
Since LISA and TianQin should be launched around the

same time, we can also consider a joint detection by the two
missions. The two detectors are most sensitive at different
frequencies, and the frequency of the ringdown signal is
inversely proportional to the mass of the remnant. It is
therefore interesting to investigate the capabilities of the
two instruments (and of the combined observations) as a
function of remnant black hole mass.
An illustration of the ringdown SNR for TianQin, LISA

and a joint detection as a function of the observed final

mass is given in Fig. 8. Around Mz ∼ 106 M⊙, when the
SNRs for both detectors are comparable, a joint detection
can improve the total SNR by a factor of about 1.4 at best.
Figure 9 shows the estimation accuracy of δω22 (black),

δτ22 (blue), and δω33 (red) estimation accuracy for TianQin
(full line), LISA (dot-dash line), and a joint detection (dash
line), as a function of the observed final mass. The
constraint can be improved by a factor of about 1.4 near
Mz ∼ 106 M⊙ with a joint detection.
This nicely shows the complementarity of LISA and

TianQin. The former will dominate the measurement for
Mz > 3 × 106 M⊙ while the latter will provide much better
constraints for Mz < 106 M⊙.

B. Combined constraints from all observed events

Massive black hole population models predict that
TianQin can detect from tens to few hundreds of massive
black hole mergers during its five years operation time
[46,47]. In this subsection, we study how TianQin and
LISA can test the no-hair theorem by combining their

FIG. 6. Parameter estimation accuracy vs luminosity distance.
Other parameters for this plot are Mz ¼ 106 M⊙, χf ¼ 0.76,
χeff ¼ −0.3, ν ¼ 2=9.

FIG. 7. Parameter estimation accuracy vs spin of the final
black hole. Other parameters for this plot are Mz ¼ 106 M⊙,
χeff ¼ −0.3, ν ¼ 2=9, DL ¼ 15 Gpc.

FIG. 9. δω22 (black), δτ22 (blue), and δω33 (red) estimation
accuracy for TianQin (full line), LISA (dot-dash line) and a
joint detection (dash line), as a function of the observed final
black hole mass. Other parameters for this plot are χf ¼ 0.76,
χeff ¼ −0.3, ν ¼ 2=9, DL ¼ 15 Gpc.

FIG. 8. Ringdown SNR as a function of the observed black
hole mass for TianQin, LISA and for a joint detection. Other
parameters used for this plot are χf ¼ 0.76, χeff ¼ −0.3, ν ¼ 2=9,
DL ¼ 15 Gpc.
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massive black hole detections. As a comparison, we will
also consider the case for both sigle constellation and a twin
constellation of TianQin running for 5 years (labeled as
“TQ” and “TQ_tc” respectively), LISA running for 4 years
(labeled as “LISA_4y”) and LISA running for 10 years
(labeled as “LISA_10y”).
The number and properties of massive black hole

mergers that can be detected are largely model dependent.
We will use the same three scenarios for the merger history
of massive black holes investigated in [46,70] and gen-
erated according to the semi-analytic model presented in
[71] and successively improved in [72,73]. The three
scenarios are referred to as “popIII,” “Q3_d,” and “Q3_nod,”
corresponding, respectively, to a light seed model [74] and to
two heavy seed models [75–77] with and without time
delays between the mergers of massive black holes and those
of their host galaxies. We refer the readers to [71–73] for a
detailed description of these three models.
For each of the detector scenarios, we produce 1000

mock catalogues of observed events from each of the three
astrophysical models. Each catalogue consists of all the
events that can be detected under the corresponding
detector scenario. We assume a detection threshold of 8
for the SNR of total inspiral-merger-ringdown(IMR) signal
(ρIMR > 8), we also assume a detection threshold of 8 for
the SNR of total ringdown stage (ρRd > 8). For a given
detector scenario, the expected IMR detection number and
ringdown detection number are obtained by averaging over
the 1000 mock catalogues.
Using the criterion provided in [27,33] (see in particular

Eqs. (2) and (3) of [33] for readily usable formulae), i.e.,
ρRd > ρGLRT, where ρGLRT is the SNR for generalized

likelihood ratio test, i.e., requiring that the SNR in the
ringdown alone should be sufficient for the first subleading
mode to be resolvable from the leading one, one can
calculate the number of events that can be used to test the
no-hair theorem. We call these events the “testing events.”
For a given detector scenario, the expected number of
testing events is also obtained by averaging over the mock
catalogues.
The results on expected constraints on the no-hair

theorem violating parameters δω22, δτ22, and δω33 are
presented in Figs. 10, 11, and 12 respectively, and sum-
marized in Table II. Once fixed the detector and the MBH

FIG. 10. Violin plots showing the distribution of uncertainty in
the parameter estimation of δω22 under different detector scenar-
ios and different astrophysical models, as labeled on the x-axis.

FIG. 11. Same as Fig. 10 but for δτ22.

FIG. 12. Same as Fig. 10 but for δω33.

SCIENCE WITH THE TIANQIN OBSERVATORY: PRELIMINARY … PHYS. REV. D 100, 044036 (2019)

044036-7



scenario, each of the 1000 mock catalogs will result in a
different number of testing events with different properties,
and thus in a different constraint on the parameters. The
distribution of these combined constraints over the 1000
mock catalogs is what is shown by means of “violin plots”
in the three figures. Conversely, the table reports the mean
value of the constraints over the 1000 realizations, together
with the standard deviation.
We first notice that GW detectors are more sensitive to

deviations in characteristic frequencies (δω22, and δω33)
rather than damping time δτ22. The former being generally
constrained about five time better than the latter.
Constraints also strongly depend on the assumed MBH
population model. Despite resulting in a comparable
number of testing events, the Q3_d model provides con-
straints that are 2-to-3 times tighter than the popIII one.
This is because GW sources are generally more massive in
the Q3_d model, and the ringdown is detected for almost all
the events at high SNR, which is not the case for the popIII
model. The even stronger constraints provided by the
Q3_nod models are due to the larger number of testing
events. Note, however, that compared to the Q3_nod model
the improvement does not scale with

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NTesting

p
, as one

would naively expect. This is because in the Q3_d model,
the MBH binary dynamics is taken into account, resulting
in long merger timescales that push the distribution of
observed systems at lower redshift compared to the Q3_nod
model. Therefore, there are less events available for testing
purposes, but they have larger SNR on average. Finally,
LISA generally provides a factor 3-to-5 better constraints
then TQ on all parameters. Again, this is partly due to the
larger number of detected systems, but also by the fact that
sources detected by LISA have typically higher SNR than
those seen by TQ (cf. Fig. 9). Focusing on TQ, depending
on the detector configuration and MBH population model,
the decay parameter δτ22 can be constrained to 0.2% to
1.5% accuracy; these numbers become a factor of ≈10

better for the frequency parameters (δω22, and δω33) that
can both be constrained within 0.03% to 0.3%.

IV. SUMMARY AND FUTURE WORK

In this paper, we have studied TianQin’s capability to test
the no-hair theorem.
We have modeled the waveform of the ringdown signal

from the merger of a massive black hole binary, by
including the four strongest QNMs of the remnant Kerr
black hole. We then used a set of phenomenological
parameters modifying the frequencies and the damping
times of the QNMs to parametrize the effect of a no-hair
theorem violation. We further assumed that the no-hair
theorem violating parameters are independent of the other
source parameters.
We have used the Fisher information matrix method to

study how these parameters are constrained by a single
detection of a massive black hole merger by TianQin. We
have studied how the constraints on the no-hair theorem
violating parameters vary with the observed mass, lumi-
nosity distance, final spin, symmetric mass ratio and
effective spin of the source.
We have found that δω22, δτ22, and δω33 are the best

constrained parameters in the majority of cases. For a single
detection, we find that TianQin and LISA provide con-
straints on those three parameters in different mass ranges:
although LISA can extract more information from binaries
withMz > 3 × 106 M⊙, TianQin is better suited to test no-
hair theorem using binaries with Mz < 106 M⊙. Joint
detections with TianQin and LISA will further improve
no-hair theorem tests for binaries of about 106 M⊙, where
the performance of the two detectors is comparable. By
combining constraints from all the events expected
throughout the lifetime of TianQin, δω22, δτ22, and δω33

can be constrained to within 0.0004 ∼ 0.002, 0.002 ∼ 0.01,
and 0.0004 ∼ 0.003 respectively, depending on the massive
black hole population model (see Table II).

TABLE II. This table shows the average IMR detection number (NρIMR>8), the ringdown detection number (NρRd>8), the average testing
number (NρRd>ρGLRT ) and the average constraint on δω22, δτ22, and δω33 under different detector scenarios and different astrophysical
models.

Cases NρIMR>8 NρRd>8 NρRd>ρGLRT Δδω22 Δδτ22 Δδω33

popIII TQ 51.7 16.5 12.7 0.0023� 0.0014 0.015� 0.0092 0.0029� 0.0019
popIII TQ_tc 104.0 31.4 24.3 0.0013� 0.00079 0.0085� 0.0051 0.0016� 0.0011
popIII LISA_4y 118.5 28.9 23.0 0.00046� 0.00027 0.0028� 0.0017 0.00051� 0.00031
popIII LISA_10y 296.6 72.9 58.5 0.00021� 0.00012 0.0013� 0.00076 0.00023� 0.00014
Q3_d TQ 17.7 17.2 15.1 0.00080� 0.00041 0.0052� 0.0027 0.0014� 0.00096
Q3_d TQ_tc 35.7 34.3 29.4 0.00052� 0.00023 0.0034� 0.0015 0.00078� 0.00043
Q3_d LISA_4y 29.7 28.8 24.3 0.00032� 0.00014 0.0021� 0.00091 0.00047� 0.00024
Q3_d LISA_10y 75.5 73.6 62.0 0.00016� 0.000061 0.0011� 0.00043 0.00023� 0.00011
Q3_nod TQ 274.9 247.5 162.1 0.00044� 0.00017 0.0027� 0.0011 0.00041� 0.00021
Q3_nod TQ_tc 535.4 486.2 317.8 0.00033� 0.00011 0.0021� 0.00073 0.00031� 0.00014
Q3_nod LISA_4y 441.8 399.7 261.4 0.00014� 0.000051 0.00089� 0.00034 0.00015� 0.000065
Q3_nod LISA_10y 1102.8 997.8 652.1 0.000075� 0.000031 0.00047� 0.00021 0.000074� 0.000036
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For completeness, we have also considered other detec-
tor scenarios, including a twin set of TianQin constellations
running for 5 years, and LISA running for 4 years or
10 years. Running a twin set of TianQin trivially improves
the constrains by about

ffiffiffi
2

p
. LISA, on the other hand, can

detect more massive binaries at higher SNR, thus offering
the possibility of detecting smaller deviations from the
no-hair theorem. Constraints on δτ22 range between 0.003
and 0.0005 depending on the massive black hole popula-
tion model and on the duration of the LISA mission
(cf. Table II).
We note that the present work can be improved in many

directions, for example by including the effect of eccen-
tricity of the progenitor binary, by considering more than
four QNMs and other GW polarizations in the ringdown
signal, and by using more robust parameter estimation
methods than the Fisher information matrix. One should
also consider how to relate the phenomenological param-
eters used in this paper to the parameters of a specific
theory of gravity which predicting violations of the no-hair
theorem. We will provide an explicit example of this latter

point in [78], for the special case of scalar-tensor-vector
gravity.

ACKNOWLEDGMENTS

The authors thank Shun-Jia Huang, Peng-Cheng Li,
Xian-Ji Ye, Yi-Fan Wang, and John Veitch for useful
discussion. We also thank to Gregorio Carullo for kind
comments and suggestions. This work has been sup-
ported by the Natural Science Foundation of China
(Grants No. 11805286, No. 11703098, No. 91636111,
No. 11690022, No. 11475064) and by the European
Union’s Horizon 2020 research and innovation program
under the Marie Sklodowska-Curie grant agreement
No. 690904. This project has received funding (to E.
Barausse) from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and
innovation programme (Grant Agreement No. GRAMS-
815673; project title “GRavity from Astrophysical to
Microscopic Scales”). A. S. is supported by the Royal
Society.

[1] B. P. Abbott et al. (Virgo and LIGO Scientific Collabora-
tions), Phys. Rev. Lett. 116, 061102 (2016).

[2] B. P. Abbott et al. (Virgo and LIGO Scientific Collabora-
tions), Phys. Rev. Lett. 116, 241103 (2016).

[3] B. P. Abbott et al. (Virgo and LIGO Scientific Collabora-
tions), Astrophys. J. 851, L35 (2017).

[4] B. P. Abbott et al. (Virgo and LIGO Scientific Collabora-
tions), Phys. Rev. Lett. 119, 141101 (2017).

[5] B. P. Abbott et al. (Virgo andLIGOScientificCollaborations),
Phys. Rev. Lett. 118, 221101 (2017); 121, 129901(E) (2018).

[6] B. P. Abbott et al. (Virgo and LIGO Scientific Collabora-
tions), Phys. Rev. X 6, 041015 (2016); 8, 039903(E) (2018).

[7] B. P. Abbott et al. (Virgo and LIGO Scientific Collabora-
tions), Phys. Rev. Lett. 119, 161101 (2017).

[8] B. P. Abbott et al. (Virgo and LIGO Scientific Collabora-
tions), Phys. Rev. Lett. 116, 221101 (2016); 121, 129902(E)
(2018).

[9] E. Berti, K. Yagi, and N. Yunes, Gen. Relativ. Gravit. 50, 46
(2018).

[10] E. Berti, K. Yagi, H. Yang, and N. Yunes, Gen. Relativ.
Gravit. 50, 49 (2018).

[11] S. H. Alexander and N. Yunes, Phys. Rev. D 97, 064033
(2018).

[12] K. Chamberlain and N. Yunes, Phys. Rev. D 96, 084039
(2017).

[13] N. Yunes, K. Yagi, and F. Pretorius, Phys. Rev. D 94,
084002 (2016).

[14] E. Barausse, N. Yunes, and K. Chamberlain, Phys. Rev.
Lett. 116, 241104 (2016).

[15] K. Chatziioannou, K. Yagi, A. Klein, N. Cornish, and N.
Yunes, Phys. Rev. D 92, 104008 (2015).

[16] W. Israel, Phys. Rev. 164, 1776 (1967).
[17] W. Israel, Commun. Math. Phys. 8, 245 (1968).
[18] B. Carter, Phys. Rev. Lett. 26, 331 (1971).
[19] G.W. Gibbons, Commun. Math. Phys. 44, 245 (1975).
[20] R. Hanni, Phys. Rev. D 25, 2509 (1982).
[21] P. Goldreich and W. H. Julian, Astrophys. J. 157, 869

(1969).
[22] M. A. Ruderman and P. G. Sutherland, Astrophys. J. 196, 51

(1975).
[23] R. D. Blandford and R. L. Znajek, Mon. Not. R. Astron.

Soc. 179, 433 (1977).
[24] E. Barausse, V. Cardoso, and P. Pani, Phys. Rev. D 89,

104059 (2014).
[25] O. Dreyer, B. J. Kelly, B. Krishnan, L. S. Finn, D. Garrison,

and R. Lopez-Aleman, Classical Quantum Gravity 21, 787
(2004).

[26] E. Berti, V. Cardoso, and C. M. Will, Phys. Rev. D 73,
064030 (2006).

[27] E. Berti, J. Cardoso, V. Cardoso, and M. Cavaglia, Phys.
Rev. D 76, 104044 (2007).

[28] H. Yang, K. Yagi, J. Blackman, L. Lehner, V. Paschalidis,
F. Pretorius, and N. Yunes, Phys. Rev. Lett. 118, 161101
(2017).

[29] H. Yang, V. Paschalidis, K. Yagi, L. Lehner, F. Pretorius,
and N. Yunes, Phys. Rev. D 97, 024049 (2018).

[30] P. V. P. Cunha, E. Berti, and C. A. R. Herdeiro, Phys. Rev.
Lett. 119, 251102 (2017).

[31] L. Barack et al., Classical Quantum Gravity 36, 143001
(2019).

[32] K. Glampedakis, G. Pappas, H. O. Silva, and E. Berti, Phys.
Rev. D 96, 064054 (2017).

SCIENCE WITH THE TIANQIN OBSERVATORY: PRELIMINARY … PHYS. REV. D 100, 044036 (2019)

044036-9

https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.241103
https://doi.org/10.3847/2041-8213/aa9f0c
https://doi.org/10.1103/PhysRevLett.119.141101
https://doi.org/10.1103/PhysRevLett.118.221101
https://doi.org/10.1103/PhysRevLett.121.129901
https://doi.org/10.1103/PhysRevX.6.041015
https://doi.org/10.1103/PhysRevX.8.039903
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevLett.116.221101
https://doi.org/10.1103/PhysRevLett.121.129902
https://doi.org/10.1103/PhysRevLett.121.129902
https://doi.org/10.1007/s10714-018-2362-8
https://doi.org/10.1007/s10714-018-2362-8
https://doi.org/10.1007/s10714-018-2372-6
https://doi.org/10.1007/s10714-018-2372-6
https://doi.org/10.1103/PhysRevD.97.064033
https://doi.org/10.1103/PhysRevD.97.064033
https://doi.org/10.1103/PhysRevD.96.084039
https://doi.org/10.1103/PhysRevD.96.084039
https://doi.org/10.1103/PhysRevD.94.084002
https://doi.org/10.1103/PhysRevD.94.084002
https://doi.org/10.1103/PhysRevLett.116.241104
https://doi.org/10.1103/PhysRevLett.116.241104
https://doi.org/10.1103/PhysRevD.92.104008
https://doi.org/10.1103/PhysRev.164.1776
https://doi.org/10.1007/BF01645859
https://doi.org/10.1103/PhysRevLett.26.331
https://doi.org/10.1007/BF01609829
https://doi.org/10.1103/PhysRevD.25.2509
https://doi.org/10.1086/150119
https://doi.org/10.1086/150119
https://doi.org/10.1086/153393
https://doi.org/10.1086/153393
https://doi.org/10.1093/mnras/179.3.433
https://doi.org/10.1093/mnras/179.3.433
https://doi.org/10.1103/PhysRevD.89.104059
https://doi.org/10.1103/PhysRevD.89.104059
https://doi.org/10.1088/0264-9381/21/4/003
https://doi.org/10.1088/0264-9381/21/4/003
https://doi.org/10.1103/PhysRevD.73.064030
https://doi.org/10.1103/PhysRevD.73.064030
https://doi.org/10.1103/PhysRevD.76.104044
https://doi.org/10.1103/PhysRevD.76.104044
https://doi.org/10.1103/PhysRevLett.118.161101
https://doi.org/10.1103/PhysRevLett.118.161101
https://doi.org/10.1103/PhysRevD.97.024049
https://doi.org/10.1103/PhysRevLett.119.251102
https://doi.org/10.1103/PhysRevLett.119.251102
https://doi.org/10.1088/1361-6382/ab0587
https://doi.org/10.1088/1361-6382/ab0587
https://doi.org/10.1103/PhysRevD.96.064054
https://doi.org/10.1103/PhysRevD.96.064054


[33] E. Berti, A. Sesana, E. Barausse, V. Cardoso, and K.
Belczynski, Phys. Rev. Lett. 117, 101102 (2016).

[34] S. L. Detweiler, Astrophys. J. 239, 292 (1980).
[35] I. Kamaretsos,M.Hannam, S. Husa, andB. S. Sathyaprakash,

Phys. Rev. D 85, 024018 (2012).
[36] I. Kamaretsos, M. Hannam, and B. Sathyaprakash, Phys.

Rev. Lett. 109, 141102 (2012).
[37] S. Gossan, J. Veitch, and B. S. Sathyaprakash, Phys. Rev. D

85, 124056 (2012).
[38] P. Amaro-Seoane et al., Classical Quantum Gravity 29,

124016 (2012).
[39] M. Punturo et al., Classical Quantum Gravity 27, 194002

(2010).
[40] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-

tions), arXiv:1811.12907.
[41] G. Carullo et al., Phys. Rev. D 98, 104020 (2018).
[42] G. Carullo, W. Del Pozzo, and J. Veitch, Phys. Rev. D 99,

123029 (2019).
[43] R. Brito, A. Buonanno, and V. Raymond, Phys. Rev. D 98,

084038 (2018).
[44] M. Isi, M. Giesler, W.M. Farr, M. A. Scheel, and S. A.

Teukolsky, arXiv:1905.00869 [Phys. Rev. Lett. (to be
published)].

[45] J. Luo et al. (TianQin Collaboration), Classical Quantum
Gravity 33, 035010 (2016).

[46] H.-T. Wang et al., arXiv:1902.04423 [Phys. Rev. D (to be
published)].

[47] W.-F. Feng, H.-T. Wang, X.-C. Hu, Y.-M. Hu, and Y. Wang,
Phys. Rev. D 99, 123002 (2019).

[48] Y.-M. Hu, J. Mei, and J. Luo, Natl. Sci. Rev. 4, 683
(2017)

[49] H. Audley et al. (LISA Collaboration), arXiv:1702.00786.
[50] S. Chandrasekhar, Fundam. Theor. Phys. 9, 5 (1984).
[51] S. Chandrasekhar and S. L. Detweiler, Proc. R. Soc. A 344,

441 (1975).
[52] E.W. Leaver, Proc. R. Soc. A 402, 285 (1985).
[53] H. Onozawa, Phys. Rev. D 55, 3593 (1997).
[54] E. Berti, V. Cardoso, K. D. Kokkotas, and H. Onozawa,

Phys. Rev. D 68, 124018 (2003).
[55] E. Berti and K. D. Kokkotas, Phys. Rev. D 71, 124008

(2005).

[56] K. D. Kokkotas, Nuovo Cimento Soc. Ital. Fis. 108B, 991
(1993).

[57] J. Meidam, M. Agathos, C. Van Den Broeck, J. Veitch, and
B. S. Sathyaprakash, Phys. Rev. D 90, 064009 (2014).

[58] L. London, D. Shoemaker, and J. Healy, Phys. Rev. D 90,
124032 (2014); 94, 069902(E) (2016).

[59] L. T. London, arXiv:1801.08208.
[60] S. Husa, S. Khan, M. Hannam, M. Pürrer, F. Ohme, X. J.
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