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We study the local causality issue via the Shapiro time-delay computations in the on-shell consistent
exotic massive gravity in three dimensions. The theory shows time delay as opposed to time advance
despite having a ghost at the linearized level both for asymptotically flat and anti–de Sitter spacetimes. We
also prove a Birkhoff-like theorem: any solution with a hypersurface orthogonal non-null Killing vector
field is conformally flat; and we find some exact solutions.
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I. INTRODUCTION

Three-dimensional spacetime is poor in massless
gravitons, yet very rich in massive ones: in addition to
the well-known topologically massive gravity (TMG) [1],
new massive gravity (NMG) [2], cubic [3], and Born-Infeld
extensions [4], which are all based on actions that depend
on the metric alone, a new set of theories that lack a purely
metric-based action have been found in [5–7]. The field
equations of these theories are on-shell consistent; namely,
they possess a Bianchi identity for the metrics that solve the
field equations but not for generic off-shell metrics. These
theories are highly restricted [8,9]. Here we are interested in
the more recent theory, the so-called “exotic massive
gravity” (EMG) defined in [10] and extended and elabo-
rated in various aspects [11–14]. One of the main reasons to
search for new theories in 2þ 1 dimensions is to try to
construct a bulk and boundary unitary theory which would
amount to defining a quantum theory of gravity via the AdS/
CFT conjecture. See the summary of the unitarity problem
in three-dimensional massive gravity theories in [15].
Following the discussion of causality of extended gravity

theories in [16,17] using the Shapiro time-delay computa-
tion [18], we study the causality of EMG both in asymp-
totically flat and anti–de Sitter (AdS) spacetimes. It was
realized in [16] that the Einstein-Gauss-Bonnet theory is
not causal even in the regime when the theory is unitary and
moreover the addition of finite number of curvature terms
in the theory does not solve the problem. The problem has a

solution in string theory [16,19] with an infinite tower of
massive intermediate states. This naturally prompted the
question as to whether three-dimensional theories suffer
from causality violation. It was shown in [17] that, unlike
the higher dimensional theories, causality does not bring in
new constraints beyond the unitarity constraints in the then-
known three-dimensional massive gravity theories. Since
that work, the EMG theory has emerged and a similar
computation in this theory is one of the tasks of this work.
As discussed in [17], the usual computation of the

Shapiro time delay of a signal is done for a round trip
in a black hole background for more than three spacetime
dimensions. However, in three dimensions, using the
motion of test particles or fields in a shockwave geometry
[20,21] created by a massless particle is better suited. This
is because we do not know black hole solutions in these
theories other than the Banados-Teitelboim-Zanelli black
hole [22] which is only obtained after identifying points of
AdS3; and therefore it is not suitable for local causality
discussions via the time-delay arguments. Here we show
that even though EMG is known to be ghost-ridden at the
linearized level, it nevertheless yields a time delay, instead
of an advance, for fields and test particles, which is
consistent with causality.
In addition to the causality discussion, we also prove a

theorem which is in some sense analogous to the Birkhoff
theorem in four dimensions: all solutions of EMG that
possess a hypersurface orthogonal non-null Killing vector
field are conformally flat. A similar theorem was proven for
TMG in [23] in a coordinate-independent way and in [24]
with explicit coordinates. Here we provide our proof with
both methods. Hence to get nonconformally flat solutions,
one must introduce twist or rotation. In addition, we briefly
study all solutions of TMG that also solve EMG and give an
explicit example which is the squashed AdS3 metric.
The outline of the paper is as follows: In Secs. II and III

we study the causality of the theory in flat and AdS
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spacetimes, respectively, using the Shapiro time-delay
computations. In Sec. IV we show that all the spacetimes
that possess a hypersurface orthogonal Killing vector are
conformally flat. In Sec. V, we show that the solutions of
TMG are inherited by EMG as long as the coupling
parameters of the theories are related in a prescribed way.

II. CAUSALITY IN EXOTIC MASSIVE GRAVITY

Here we study the local causality issue in exotic massive
gravity via the computation of the Shapiro time delay or
advance. Time advance would yield a noncausal theory,
while time delay would be consistent with a causal one (see
[16] and [17] for more on this). For this purpose, let us
consider the source-coupled field equations of EMG [10],

Gμν þ
1

μ
Cμν −

1

m2
Hμν þ

1

m4
Lμν ¼ ΘμνðTÞ; ð1Þ

where ΘμνðTÞ is a complicated “energy-momentum” tensor
which is on shell covariantly conserved and is given
explicitly as

ΘμνðTÞ ¼
λ

μ
T̂μν −

λ

m2
ϵμ

ρσ∇ρT̂νσ þ
2λ

m4
ϵμ

ρσϵν
λτCρλT̂στ

−
λ2

m4
ϵμ

ρσϵν
λτT̂ρλT̂στ; ð2Þ

here T̂μν ¼ Tμν − 1
2
gμνT and Tμν is covariantly conserved.

The parameter λ appears as a coupling constant between the
source and the geometry in a nontrivial, nonhomogeneous
way as can be seen in the last term of (2). The tensors on the
left-hand side of (1) are defined as

Cμν ¼ ϵμ
ρσ∇ρSνσ; Hμν ¼ ϵμ

ρσ∇ρCνσ;

Lμν ¼
1

2
ϵμ

ρσϵν
λτCρλCστ; ð3Þ

where Sμν ≔ Rμν − 1
4
gμνR. More explicitly, one has

Hμν ¼ □Sμν −∇μ∇νSþ gμνS2αβ − 3SμαSαν;

Lμν ¼
1

2
gμνCρσCρσ − CμρCρ

ν: ð4Þ

The theory (1), around its flat vacuum, has two massive
spin-2 excitations with different masses, given as

m� ¼ m

 
� m
2μ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2

4μ2

s !
; ð5Þ

reflecting its parity noninvariant nature. In the μ → ∞ limit,
the masses coalesce: m� ¼ m for both helicity þ2 and −2
modes. We shall also study this parity-invariant version of
the theory. To analyze the causality issue in this theory, let

us consider the shockwave metric created by a massless
point particle moving in a fixed direction, say the
x-direction. The shockwave metric written in two null,
one spatial coordinates is

ds2 ¼ −dudvþHðu; yÞdu2 þ dy2; ð6Þ
with the null coordinates defined as u ≔ t − x and v ≔
tþ x and y is the transverse coordinate. Taking the
momentum of the massless source particle to be in
the þx direction, one has pμ ¼ jpjðδμ0 þ δμxÞ. Figure 1
depicts the spacetime region near the source. The energy-
momentum tensor of such a source has only one nonzero
component, given as Tuu ¼ jpjδðyÞδðuÞ. For the shock-
wave ansatz (6), the scalar curvature R vanishes and the
only nonvanishing components of the Ricci, Cotton, and H
tensors are

Ruu ¼ Guu ¼ −
1

2

∂2

∂y2Hðu; yÞ; Cuu ¼
1

2

∂3

∂y3Hðu; yÞ;

Huu ¼ −
1

2

∂4

∂y4Hðu; yÞ; ð7Þ

while the L tensor vanishes identically. Then the EMG field
equations, for the shockwave metric (6), reduce to a single
fourth-order differential equation�

−1þ 1

μ
∂y þ

1

m2
∂y

2

�
∂y

2Hðu; yÞ

¼ 2λjpjδðuÞ
�
δðyÞ
μ

þ δ0ðyÞ
m2

�
; ð8Þ

FIG. 1. Spacetime diagram depicting the shockwave geometry
created by a massless particle with momentum p moving in the
þx direction. Another massless test particle with momentum q
(blue line) propagating through this geometry experiences a time
delay when it crosses the constant u line. The time delay is
denoted as a discontinuous jump Δv in the null v direction. Time
advance would violate causality.
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where a prime denotes derivative with respect to the transverse coordinate y. The general solution of the last equation comes
with four arbitrary functions c1, c2, c3, and c4 of the null coordinate u and reads explicitly as

Hðu;yÞ ¼ λjpjδðuÞθðyÞ
�
ðem−y − 1Þ

�
1

m2
−
þ μþmþ
μ2ðmþ þm−Þ

�

þ ðe−mþy − 1Þ
m2þ

�
1−

m2

μðmþ þm−Þ
�
þ y

�
m− −mþ
m−mþ

−
4μþmþ −m−

ð2μ−m−Þð2μþmþÞ
��

þ 1

m4
ðm2

−e−mþyc1 þm2þem−yc2Þ þ c3 þ c4y: ð9Þ

As noted, this is the most general solution, but one can fix the arbitrary functions by coordinate transformations in such a
way that spacetime is asymptotically flat and given in a Cartesian form far away from the source. But this cannot be done
with a single chart for the whole spacetime, so one can choose the y > 0 part to be asymptotically flat in the Cartesian form.
For more discussion on this issue, see [17,25]. A careful analysis leads to the following metric profile function with all
arbitrary parameters fixed:

Hðu; yÞ ¼ 1

m2þ

�
1 −

m2

μðmþ þm−Þ
�
e−mþyλjpjδðuÞθðyÞ

− yjpjδðuÞ
�
m− −mþ
m−mþ

−
4μþmþ −m−

ð2μ −m−Þð2μþmþÞ
�
θð−yÞ

þ λjpjδðuÞ
�

1

m2
−
þ μþmþ
μ2ðmþ þm−Þ

þ 1

m2þ
−

m2

μðmþ þm−Þm2þ

�
θð−yÞ

− λjpjδðuÞ
�

1

m2
−
þ μþmþ
μ2ðmþ þm−Þ

�
em−yθð−yÞ: ð10Þ

Let us now consider a massless spinless test particle with
momentum q traversing the shockwave created by another
massless spinless particle with momentum p, with an
impact parameter y ¼ b > 0 as shown in the Fig. 1. In
that region, (10) simplifies and the shockwave line element
is given as

ds2 ¼ −du
�
dv −

1

m2þ

�
1 −

mþ −m−

mþ þm−

�
e−mþyλjpjδðuÞdu

�
þ dy2: ð11Þ

Clearly, as expected, the metric has a discontinuity in the
null coordinate u due to the distributional nature of the
source. This discontinuity can be eliminated by redefining a
new null coordinate vnew at the impact parameter b as

vnew ≔ vþ 1

m2þ

�
1 −

mþ −m−

mþ þm−

�
e−mþbλjpjθðuÞ; ð12Þ

which gives rise to a time delay when the particle passes the
u ¼ 0 line as can be explicitly seen from the equivalent
expression:

Δv ¼ 1

m2þ

�
1 −

mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 4μ2

p �
e−mþbλjpj: ð13Þ

Assuming λ > 0, Δv is positive for any value of the
impact parameter. It is also important to note that, due
to the parity-noninvariance of the theory, the test particle
experiences a different time delay depending on whether it
is moving in the þx or −x direction. For the impact
parameter y ¼ b < 0, following the similar steps as above,
one can find the corresponding time delay. So for causality,
the only constraint is λ > 0.
Furthermore, in the μ → ∞ limit and for the choice

of λ ¼ m,1 which corresponds to the parity-invariant
version of EMG theory, the shift in the v coordinate can
be written as2

Δv ¼ 1

m
e−mbjpj; ð15Þ

1For this choice and limit, we have the matter-coupled field
equation [10]

Gμν −
1

m2
Hμν þ

1

m4
Lμν ¼ −

1

m
ϵμ

ρσ∇ρT̂νσ þ
2

m3
ϵμ

ρσϵν
λτCρλT̂στ

−
1

m2
ϵμ

ρσϵν
λτT̂ρλT̂στ: ð14Þ

Note that, in [10], a negative sign was erroneously forgotten in the
first term of the source.

2For more details, see the Appendix.
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which is again positive for m > 0. Note that in the opposite
limit of μ → 0, the theory boils down to pure Cotton or
Chern-Simons theory without a propagating degree of
freedom and the metric is locally conformally flat with
no interesting dynamics.

A. Scalar field in a shockwave

It pays to reproduce and extend the results of the above
computation—done for null geodesics—to fields following
[17]. In particular, the results become more transparent for a
massless scalar field (still a test field with no backreaction)
propagating in the background shockwave. For this pur-
pose, let us consider the Klein-Gordon (KG) equation for a
massless real scalar field,

□ϕ ¼ 0; ð16Þ
with□ ≔ ∇μ∇μ; the equation reduces to a nontrivial partial
differential equation

∂u∂vϕþHðu; yÞ∂2
vϕ −

1

4
∂2
yϕ ¼ 0; ð17Þ

whose general solution seems elusive. But for our purposes,
this is not needed: all we want is the approximate solution
near the shockwave. In that case, the last term is negligible
compared to the others and hence, the massless KG
equation becomes

∂u∂vϕþHðu; yÞ∂2
vϕ ¼ 0; ð18Þ

which is amenable to a v-integration. That integration
brings a constant, which can be chosen to fit the boundary
condition that in the v → �∞ limit, the scalar field
vanishes. This reduces the equation to the following first
order form:

∂uϕþHðu; yÞ∂vϕ ¼ 0; ð19Þ
which admits a solution obtainable by the technique
of separation of variables as ϕðu; v; yÞ ≔ UðuÞVðvÞYðyÞ.
Then the solution with a momentum mode pv reads

ϕðu; v; yÞ ¼ YðyÞUðu0ÞVð0Þeipvðv−
R

u Hðu0;yÞdu0Þ: ð20Þ
From (20), it is clear that when a massless scalar particle/
field crosses the shockwave geometry with an impact
parameter b, it picks up an Aharonov-Bohm type phase as

ϕð0þ; v; bÞ ¼ e−ipv

R
0þ
0−

duHðu;bÞϕð0−; v; bÞ
¼ e−ipvΔvϕð0−; v; bÞ; ð21Þ

here Δv is equivalent to the one given in (13) obtained via
the geodesics computations. Next we extend the discussion
to the anti–de Sitter spacetime.

III. CAUSALITY IN ANTI–DE SITTER SPACE

Let us consider the line element of AdS3 described in
terms of Poincaré coordinates as

ds2 ¼ l2

y2
ð−2dudvþ dy2Þ; ð22Þ

where the null u,v coordinates were defined in the previous
section and take values in the whole real line while y ∈ Rþ.
Once again, consider a massless source particle moving in
the þx direction in this background; then the resulting
shockwave metric in the Brinkmann form can be taken as

ds2 ¼ l2

y2
ð−2dudvþ Fðu; yÞdu2 þ dy2Þ; ð23Þ

with the profile function Fðu; yÞ to be determined below.
The energy-momentum tensor of the point source with the
prescribed motion described above at y0 reads

Tuu ¼ jpj l
y0

δðuÞδðy − y0Þ: ð24Þ

The source-coupled field equations of the parity-invariant
version of EMG take the form3

Gμν −
1

l2
gμν −

1

m2
Hμν þ

1

m4
Lμν ¼ ΘμνðTÞ; ð25Þ

and for the metric ansatz (23), they reduce to a single
equation,

ðy3∂3
y þ 2y2∂2

y þm2l2ð−y∂y þ 1ÞÞ∂yFðu; yÞ

¼ 2ml2jpjδðuÞ
�
yδðy − y0Þ

y0
þ y2δ0ðy − y0Þ

y0

�
; ð26Þ

whose solution is

Fðu; yÞ ¼ l2mδðuÞjpj
l2m2 − 1

��
y
y0

�
−lmþ1

þ
�
y
y0

�
lmþ1

−
�
y
y0

�
2

− 1

�
θðy − y0Þ

þ l2mδðuÞjpj
l2m2 − 1

�
c1

�
y
y0

�
−lmþ1

þ c2

�
y
y0

�
lmþ1

þ c3

�
y
y0

�
2

þ c4

�
; ð27Þ

3One can consider the generalized version by keeping the Cotton tensor, but the resulting equations are cumbersome without
changing the ensuing discussion in a significant way.
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where all ci’s depend on u. They can be fixed by imposing
appropriate boundary conditions and we shall do so after
the following discussion. First let us check the flat space
limit of the solution.

A. The flat spacetime limit

In the flat space limit (l → ∞), the solution (27)
smoothly reduces to the flat space version which we have
reproduced in the Appendix for the sake of completeness.
To take the limit, let us introduce a new coordinate [17],

y ≔ lez=l; ð28Þ

in which the AdS3 metric reads

ds2 ¼ −2e−2z=ldudvþ dz2: ð29Þ

The flat and AdS shockwave profile functions are related as

e−2z=lFðu; zÞ ¼ Hðu; zÞ: ð30Þ

Consequently, in the l → ∞ limit, one obtains

Hðu; zÞ ¼ δðuÞjpj
m

ðe−mðz−z0Þ þ emðz−z0Þ − 2Þθðz − z0Þ

þ δðuÞjpj
m

ðc1e−mðz−z0Þ þ c2emðz−z0Þ þ c3 þ c4Þ;
ð31Þ

which is the same result as the one found in the flat space
analysis.

B. Brown-Henneaux conditions
on the AdS3 shockwave

Imposing the Brown-Henneaux (BH) AdS3 boundary
conditions [26] on (27), we can fix the arbitrary functions.
BH boundary conditions prescribe decay conditions (as one
approaches the connected boundary y → 0) for the linear-
ized metric perturbations hμν ¼ gμν − gAdSμν as

huu ≃ huv ≃ hvv ≃ hyy ≃Oðy0Þ; huy ≃ hvy ≃OðyÞ:
ð32Þ

So one demands Fðu; yÞ ∼Oðy2Þ. The discussion bifur-
cates depending on the sign of 1 − lm; for the sake of
concreteness, let us assumem > 1=l. Then it is clear to see
that one must set c1 ¼ 0. Recall that, as one moves to
y → ∞, one approaches the disconnected point boundary
of AdS3, we can choose c2 ¼ −1 and c3 ¼ c4 ¼ 1 to
approach AdS3 on that boundary. Finally, the gauge-fixed
shockwave solution reads

Fðu; yÞ ¼ l2mδðuÞjpj
l2m2 − 1

�
y
y0

�
1−lm

θðy − y0Þ

þ l2mδðuÞjpj
l2m2 − 1

�
−
�
y
y0

�
1þlm

þ
�
y
y0

�
2

þ 1

�
× θðy0 − yÞ: ð33Þ

We can now consider the Shapiro time-delay computa-
tion for a massless scalar field in the AdS shockwave
geometry. In complete analogy with the flat space, one
arrives at an Aharonov-Bohm phase and a time-delay
given as

Δv ¼
Z

0þ

0−
duFðu; yÞ: ð34Þ

Plugging (33) into this integral and going to the
z-coordinates, for z > z0, the time shift can be found to be

Δv ¼ jpjm
m2

g
e−ðz−z0Þðm−1

lÞ; ð35Þ

where mg is the graviton mass given as m2
g ¼ m2 − 1=l2.

Observe that, as was shown in the flat space analysis,
Shapiro time delay is positive and so causality is not
violated in EMG. Note that, if we take the l → ∞ limit, we
recover the flat space result (15) as expected.

IV. BIRKHOFF-LIKE THEOREM IN
EXOTIC MASSIVE GRAVITY

For spacetime dimensions n > 2þ 1, the group of
spherical symmetry SOðn − 1Þ is non-Abelian. This has
a nontrivial consequence on spherically symmetric space-
times. For example, in four-dimensional general relativity,
SOð3Þ symmetry with three Killing vector fields neces-
sitates a fourth Killing vector field and, in particular, Ricci-
flat spherically symmetric metrics are static, which is the
essence of the Birkhoff theorem (or more properly the
Jebsen-Birkhoff theorem [27]). On the other hand, in n ¼
2þ 1 spacetime dimensions, which is our case here, the
group of “spherical symmetry” is SOð2Þ with a single
Killing vector field. This symmetry does not rule out
rotations unlike the higher-dimensional cases; namely, in
the ðt; r;ϕÞ coordinates, gtϕ terms need not be zero. So the
discussion of the 2þ 1-dimensional Birkhoff theorem
needs more refinement compared to the four-dimensional
case. Nevertheless, in topologically massive gravity, a nice
theorem was established in a coordinate-independent way
in [23] and in local coordinates in [24]. The essence of the
theorem is as follows: in TMG without a cosmological
constant, assuming a hypersurface orthogonal Killing
vector field, all solutions are locally flat. Here, we extend
this theorem to the EMG. Unlike the case in TMG, the
scalar curvature is not constant and there are higher
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curvature terms in the equation, so the proof of the
analogous theorem is more complicated.
Theorem: Any 2þ 1-dimensional spacetime with the

cylinder topology (Σ2 × S1) having a non-null hypersurface
orthogonal Killing vector field is conformally flat in exotic
massive gravity.
Proof.—First let us show this with an explicit construc-

tion in local coordinates and later provide the coordinate-
free version which is somewhat more involved. Assume
local light-cone coordinates ðu; v;ϕÞ and take the hyper-
surface orthogonal Killing vector field to be ξ ¼ ∂ϕ; then
the metric, under the assumptions, can be taken as

ds2 ¼ −fðu; vÞdudvþ gðu; vÞ2dϕ2; ð36Þ

here fðu; vÞgðu; vÞ ≥ 0 is assumed to keep the signature
intact. Clearly ξ satisfies the Killing property,

∇μξν þ∇νξμ ¼ 0; ð37Þ

and it is also easy to show that it satisfies the hypersurface
orthogonality,

ξμ∇νξσ þ ξν∇σξμ þ ξσ∇μξν ¼ 0: ð38Þ

The field equations of the theory in vacuum are

Eμν ≔ Gμν þ Λgμν þ
1

μ
Cμν −

1

m2
Hμν þ

1

m4
Lμν

¼ Eμν þ
1

μ
Cμν ¼ 0: ð39Þ

In the second line we defined

Eμν ≔ Gμν þ Λgμν −
1

m2
Hμν þ

1

m4
Lμν; ð40Þ

since the crux of the argument is to show that the Cotton
tensor will be orthogonal to this tensor. Observe also that
we have included a cosmological constant. For the metric
(36), one can compute Eμ

ν and Cμ
ν and depict the nonzero

parts as4

Eμ
ν ¼

0
B@

X1 X2 0

X3 X4 0

0 0 X5

1
CA; ð41Þ

and

Cμ
ν ¼

0
B@

0 0 Y1

0 0 Y2

Y3 Y4 0

1
CA; ð42Þ

where Xi and Yi are complicated functions of fðu; vÞ and
gðu; vÞ and their derivatives which we shall not write here
explicitly. The crucial observation is that the matrices Eμ

ν

and Cμ
ν are orthogonal to each other and hence, assuming

the field equations (39), they must separately vanish.
Vanishing of the Cotton tensor is the necessary and
sufficient condition for a 3D metric to be conformally flat.
Therefore, the theorem follows. To obtain conformally
nonflat solutions, one must introduce twist, or the Killing
vector field should not be hypersurface orthogonal.
We can verify the above result in a coordinate-free way

following the computation in the TMG case given in [23].
The hypersurface orthogonal Killing vector field defines a
parallel direction and two perpendicular directions which
yield a natural splitting of the field equations. For this
purpose, let us define the orthogonal projector ⊥ as

⊥μ
ν ≔ δμν −

ξμξν
ξ2

; ð43Þ

where ξ2 ≔ gμνξμξν ≠ 0. So clearly ⊥μ
νξν ¼ 0. In what

follows we shall denote the component of a tensor in
the direction parallel to ξ as Tξ and perpendicular to ξ as
T⊥. Let us first show the following:

Cξ
ξ ¼ 0; Eξ

ξ ≠ 0; ð44Þ

which are the bottom far right corners in (42) and (41). By
definition

Cξ
ξ ¼ Cμ

νξμξ
ν ¼ ξμξ

νημαβ∇α

�
Rβν −

1

4
gβνR

�
¼ ξμξ

νημαβ∇αRβν; ð45Þ

where the scalar curvature term R is dropped due to
symmetry, not due to R being a constant as in TMG. In
fact R is not assumed to be a constant. Pulling out the
covariant derivative, one has

Cξ
ξ ¼ ∇αðξμξνημαβRβνÞ − ημαβRβνðξμ∇αξ

ν þ ξν∇αξμÞ:
ð46Þ

To proceed we need some identities for the assumed ξ
derived in [23]. By taking the derivative ∇ν of (38), one
finds the following identity:

ξμRανξ
ν ¼ ξαRμνξ

ν; ð47Þ

which basically says that ξ can be used to barter an index of
the once-contracted Ricci tensor. This identity kills the first

4It is advantageous to study the (1,1) tensor form of the field
equations instead of the (0,2) tensor form.
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term in (46). For the second part we need the following
identity which can be obtained by contracting (38) with ξμ:

∇μξν ¼
1

2
ðξν∂μ log jξ2j − ξμ∂ν log jξ2jÞ: ð48Þ

Making use of this identity in the second part of (46),
one has

ημαβRβνðξμ∇αξ
ν þ ξν∇αξμÞ ¼

3

2
ημαβRβ

νξμξν∂α log jξ2j;
ð49Þ

which vanishes upon use of (47). Hence for a non-null
hypersurface orthogonal Killing vector, one has Cξ

ξ ≡ 0.
On the other hand, one has

Eξ
ξ ¼ Rμ

νξμξ
ν þ

�
Λ −

R
2

�
ξ2 −

1

m2
Hμ

νξμξ
ν þ 1

m4
Lμ

νξμξ
ν:

ð50Þ

It is not difficult to see that there is no reason for this
expression to vanish identically; for example, one has
Rξ

ξ ¼ −ξμ□ξμ ≠ 0. Therefore (44) is proven.
Let us now prove the following:

Eξ⊥ ≡ 0; Cξ⊥ ≠ 0: ð51Þ

We have, by definition,

Eξ⊥ ¼ Rμ
νξμ⊥ν

α −
1

m2
Hμ

νξμ⊥ν
α þ

1

m4
Lμ

νξμ⊥ν
α: ð52Þ

Let us study this term by term as each term must vanish
independently if the expression is expected to vanish
identically due to the inhomogeneity of the expression in
the mass parameter m. The first term is easy:

Rξ⊥ ≔ Rμ
νξμ⊥ν

α ¼ Rμ
νξμ

�
δνα −

ξνξα
ξ2

�

¼ Rμ
αξμ − Rμνξμ

ξνξα
ξ2

¼ 0; ð53Þ

where we used the index-bartering identity (47) in the
second term. Similarly the second term in (52) reads

Hξ⊥ ≔ Hμ
νξμ⊥ν

α

¼ 1

2
ηνμα∇νðξσCμσÞ −

1

2
ηνμλ

ξλξ
α

ξ2
∇νðξσCμσÞ; ð54Þ

where we used the fact that ξ is a Killing vector, yielding

LξCμν ¼ 0; ð55Þ

which can be used to show the following relation:

ξσHλ
σ ¼

1

2
ηνμλ∇νðξσCμσÞ: ð56Þ

It is clear that the α index in (54) must be ⊥; hence one has

Hξ⊥ ¼ 1

2
ηξ⊥⊥∇ξCξ⊥: ð57Þ

To show that this vanishes, we need to follow ∇μCμ
ν ¼ 0,

which yields ∇ξCξ⊥ ¼ 0 since C⊥⊥ ¼ 0. Let us show in
fact that C⊥⊥ ¼ 0 even when the scalar curvature is not
constant:

C⊥⊥ ≔ Cμ
ν⊥ν

α⊥β
μ

¼ 1

ξ2
ðηβσρ∇σRραξ

μξμ − ημσρ∇σRραξ
βξμ

− ηβσρ∇σRρνξ
νξαÞ

þ ξμ∇σR

4ξ2
ð−ηβσαξμ þ ημσαξ

β þ ηβσμξαÞ: ð58Þ

To see that this vanishes requires a couple of steps and the
use of the three-dimensional identity

ηλναξρ ¼ gλρηβναξβ þ gνρηλβαξβ þ gαρηλνβξβ; ð59Þ

together with the Killing property LξRμν ¼ 0 and (47).
After making use of these, one can show that the first and
second lines of (58) vanish identically separately.
Similarly the third term in (52) reads

Lξ⊥ ≔ Lμ
νξμ⊥ν

α ¼
�
1

2
δμνC2

ρσ − Cμ
σCσ

ν

�
ξμ⊥ν

α

¼ −Cμ
σCσ

νξμ⊥ν
α

¼ −Cξ⊥C⊥
ξ⊥ξ

α ¼ 0; ð60Þ

where we used the fact that Cξ
ξ ¼ 0 and C⊥⊥ ¼ 0. One can

also show that E⊥⊥ ≠ 0; hence the theorem follows and one
must introduce twist to find conformally nonflat solutions.

V. ALL SOLUTIONS OF TMG SOLVING
EXOTIC MASSIVE GRAVITY

Field equations of EMG are highly complicated, but it is
clear that all Einstein metrics solve these equations. To
move beyond Einstein metrics, let us consider all solutions
of TMG that solve EMG. As the solutions of TMG are
compiled in a nice paper [28], we shall not go into an
extended discussion here, but just find the conditions that
are needed to carry the TMG to solutions to the current
theory. Let us assume that the metric gμν solves the TMG
whose topological mass is 1=a; hence it satisfies the
following equations:

Cμν ¼ aR̃μν; R ¼ k; ð61Þ
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where a and k are constant and R̃ is the traceless Ricci
tensor defined as R̃μν ¼ Rμν − 1

3
gμνR. To search for sol-

utions of (39), we assume that (61) also holds. Therefore,
we are searching for constant scalar curvature solutions.
The trace part of the field equations (39) is

−
R
2
þ 3Λþ 1

2m4
CμνCμν ¼ 0; ð62Þ

and the traceless part is

R̃μν þ
1

μ
Cμν −

1

m2
Hμν þ

1

m4
L̃μν ¼ 0; ð63Þ

where L̃μν ¼ 1
3
gμνC2

ρσ − CμρC
ρ
ν. Let us define the following

curvature invariants:

I ¼ R̃μ
νR̃ν

μ; J ¼ R̃μ
αR̃α

βR̃β
μ; ð64Þ

which are relevant to the classification of the solutions (see
[28,29] for more on this). Contracting (63) with R̃μν and
making use of the TMG equation, one arrives at

I

�
1þ a

μ
−

a2

m2

�
−

a2

m4
J ¼ 0; ð65Þ

where I ¼ 2m4

a2 ðR
2
− 3ΛÞ, which comes from (62). Then

plugging this into the previous equation, one has

J ¼ 2m8

a4

�
1þ a

μ
−

a2

m2

��
R
2
− 3Λ

�
: ð66Þ

So the solutions of TMG also solve EMG as long as these I
and J equations are satisfied. Let us give an explicit
example, which is called the timelike squashed AdS3,

ds2 ¼ λ2 − 4

2R
ð−λ2ðdτ þ cosh θdϕÞ2 þ dθ2 þ sinh2 θdϕ2Þ;

ð67Þ

with the squashing parameter λ (not to be confused with the
coupling constant of the earlier sections), and the constant
scalar curvature of this metric is R. The metric (67) is
a solution to EMG if λ and R have real solutions in terms
of μ, Λ, and m as given in the following equations:

μ ¼
ffiffiffiffiffiffiffiffi
18R

p ðλ2 − 4Þ3=2m4λ

2ðλ2 − 4Þ2m4 − 9λ2ðλ2 − 4Þm2Rþ 12λ2ðλ2 − 1ÞR2
;

Λ ¼ Rððλ2 − 4Þ3m4 − 24λ2ðλ2 − 1Þ2R2Þ
6ðλ2 − 4Þ3m4

: ð68Þ

To search for solutions which are more general than the
ones that solve TMG, one can resort to the method
developed in [30].

VI. CONCLUSIONS

In [16], rather unexpectedly, the Einstein-Gauss-Bonnet
theory was shown to violate causality for any sign of the
Gauss-Bonnet coupling constant. That seems to be a major
blow for effective gravity theories. But luckily, string
theory with an infinite tower of intermediate states can
solve the problem [19]. Interestingly, despite having their
own problems, various three-dimensional massive gravity
theories were shown to not suffer from the causality
violations, since a detailed study shows that the conditions
coming from causality are not in conflict with the ones
coming from unitarity. These theories were discussed in
[17] save the recently constructed EMG theory which has
not been hitherto studied along these lines. Here we
discussed the issue of local causality in EMG in asymp-
totically flat and AdS spacetimes using the Shapiro time-
delay computation for massless test particles and scalar
fields in a shockwave geometry created by a massless
source. Despite having a ghost, there is a time delay for any
impact parameter between the source and the test field
instead of a time advance; hence causality is not violated. In
addition, we have studied some exact solutions in the
theory and proved that all solutions with a hypersurface
orthogonal Killing vector field are conformally flat. To
go beyond conformally flat solutions, rotation must be
introduced.

APPENDIX: SOME DETAILS OF CAUSALITY IN
THE PARITY-INVARIANT VERSION OF EMG

The field equations of parity-invariant version of EMG
are [10]

Gμν −
1

m2
Hμν þ

1

m4
Lμν ¼ ΘμνðTÞ; ðA1Þ

where ΘμνðTÞ is the energy-momentum tensor and it is
given as

ΘμνðTÞ ¼ −
1

m
ϵμ

ρσ∇ρT̂νσ þ
2

m3
ϵμ

ρσϵν
λτCρλT̂στ

−
1

m2
ϵμ

ρσϵν
λτT̂ρλT̂στ; ðA2Þ

here T̂μν ¼ Tμν − 1
2
gμνT. For the shockwave metric, field

equations (A1) reduce to a single equation,�
−1þ 1

m2
∂y

2

�
∂y

2Hðu; yÞ ¼ 2jpjδðyÞδðuÞ; ðA3Þ

whose general solution can be found to be

Hðu; yÞ ¼ jpjδðuÞ
m

ðe−my þ emy − 2ÞθðyÞ

þ 1

m
ðc1emy − c2e−myÞ þ c3; ðA4Þ
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with ci’s that depend on the null coordinate u. By gauge
fixing as was done in the text for the more general theory,
the solution takes the following form:

Hðu; yÞ ¼ jpjδðuÞ
m

e−myθðyÞ þ jpjδðuÞ
m

ð−emy þ 2Þθð−yÞ:
ðA5Þ

Finally, using the discontinuity in this profile function, one
can calculate the time delay of a signal passing at an impact
parameter b as

△v ¼ jpj
m

e−mjbj; ðA6Þ

which is positive and matches (15) for m > 0.
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