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A correspondence between fluctuations of minimally coupled scalar fields and that of an effective
perfect fluid is shown to exist. A similar correspondence between the stress tensors themselves is known
and widely used in literature. Using recent results obtained in semiclassical stochastic gravity for the
fluctuations of the quantum stress tensor, we obtain this correspondence, which is argued to be of
fundamental importance to statistical analysis of systems in curved spacetime. We show that the scalar field
fluctuations are related to covariances of energy density and pressures of the effective perfect fluid. Such a
correspondence between the semiclassical and classical fluctuations therefore, is expected to give insight to
the mesoscopic phenomena for gravitating systems and would further enhance the perturbative analysis for
cosmological spacetimes and astrophysical objects in the decoherence limit. A kinetic theory in curved
spacetime may find useful insights from such correspondences in future work.
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In this paper, inspired by the correspondence between
stress tensor for scalar fields and that for general fluid as in
a hydrodynamic limit [1,2], we attempt to establish a
similar correspondence between the fluctuations of the
two in gravitating bodies. This is an enhanced result that we
obtain by using an exact form of the noise kernel [3,4]
defining fluctuations of a quantum field, and relate it to
those of perfect fluid stress tensor in the classicalized limit.
This is the first attempt to show any such relation between
quantum and classical fluctuations of the two stress tensors.
The semiclassical Einstein-Langevin equation, which sets
the stage for semiclassical stochastic gravity [4,5], is aimed
at studying the induced perturbations of the metric which
are in the low energy limit equivalent to quantum pertur-
bations of the metric as would be obtained in a viable
theory of quantum gravity. This is of significance to very
early universe, where the details of the quantum structure
of spacetime would be of interest. The correspondence
between the noise kernel due to quantum fields and that of a
fluid model in classicalized limit as presented in this paper
is aimed for later stages in the evolution of the universe
and inflationary period, where the classicalized effects
would be of significance for a similar Einstein Langevin
equation. This would lead to statistical analysis of extended
structure of spacetime in the classicalized limit. Thus in this
theme, hydrodynamic approximation of the matter fields
would make the solution of the Einstein Langevin equation
much simpler mathematically, which for the quantum
matter fields is more difficult. The noise kernel in the

hydrodynamic limit then can be used as the central quantity
in a likewise classicalized Einstein Langevin equation and
thus lays foundations for a whole theme to work upon in
cosmology.
Of interest toward possible applications of such a

correspondence would thus be the cosmological and
astrophysical spacetimes and their equilibrium and non-
equilibrium statistical physics in different configurations.
It is known that a stress tensor for a scalar field can be

approximated by a general fluid [1], thus

TabðxÞ ¼ ϕ;aϕ;b −
1

2
gabϕ;cϕ;c −

1

2
gabm2ϕ2

þ ξðgab□ −∇a∇b þ GabÞϕ2 ð1Þ

where the Klein Gordon field ϕ satisfies

ð□þm2 þ ξRÞϕ ¼ 0 ð2Þ

has a correspondence with

TabðxÞ ¼ uaubðϵþ pÞ − gabpþ qaub þ uaqb − πab ð3Þ

where ϵ and p are the energy density and pressure of the
fluid, ua the four-velocity, and qa and πab the heat flux
and anisotropic stress. We in this article restrict to the case
ξ ¼ 0 in Eq. (1) which corresponds to taking qa ¼ 0 and
πab ¼ 0 in (3) so that it reduces to a perfect fluid stress
tensor.
A quantum scalar field similarly can be described by

such a hydrodynamic analogy [6]. Thus for systems whose
fundamental description involves quantum fields, there is a*satin@iisermohali.ac.in
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local thermal equilibrium limit where the system may be
described as a fluid. Also when decoherence of the
quantum states is effective in the quantum to classical
transition of the system such as in stochastic inflation this
hydrodynamic approximation can be seen to be applicable.
Though these correspondences are open to detailed inves-
tigations [7], they form the base of many well established
studies.
Here we go a step further and obtain a correspondence

for the fluctuations of the two stress tensors by using the
exact form of the semiclassical noise kernel as is given in
[2,3] for quantum fields.
The quintessence field for the dark energy is another

example where such a correspondence can be useful for
perturbative studies and a stochastic analysis. This can also
be applicable for studying backreaction on the metric
perturbations during the later stages in inflationary era,
after decoherence effects, due to squeezing of states [6,8]
become important.
We begin with the noise kernel expression as used in

semiclassical stochastic gravity which is defined as

8Nabcdðx; x0Þ ¼ hfT̂abðxÞ; T̂c0d0 ðx0Þgi
− 2hT̂abðxÞihT̂c0d0 ðx0Þi ð4Þ

where T̂ab denotes the quantum stress tensor, obtained by
raising ϕ in (1) to an operator.
The expectation of such a quantum stress tensor hT̂abðxÞi

after regularization is used as the matter content in the
semiclassical Einstein’s equations. A step further, the
fluctuations of the same via a noise kernel (4) form
the central quantity of importance in the theory of semi-
classical stochastic gravity as mentioned earlier. An elabo-
rate procedure using point splitting formalism to deal with
ill-defined operators ϕ̂2 gives explicit expression for the
noise kernel as is given in [2,3]. For mathematical sim-
plicity of the correspondence we consider here the mini-
mally coupled scalar field, thus

8Ñabcdðx; x0Þ ¼ ðG;c0bG;d0a þ G;c0aG;d0bÞ þ 2gabG
p
;c0G;d0p

− gc0d0 ðG;p0bG
p0
;a þm2G;aG;bÞ

þ gabgc0d0
1

2
½G;p0qG;p0q

þm2fG;p0G;p0 þ G;pG;p þm2G2g� ð5Þ

whereG≡ Gðx; x0Þ ¼ hϕ̂ðxÞϕ̂ðx0Þi are theWightman func-
tions for the quantum field.
This noise kernel in the decoherence limit can be written

simply with the quantum stress tensor in (4) replaced by a
classical stress tensor,

8Nabcdðx; x0Þ ¼ 2ðhTabðxÞTc0d0 ðx0Þi − hTabðxÞihTc0d0 ðx0ÞiÞ
¼ 2Cov½TabðxÞTcdðx0Þ� ð6Þ

Here the classicalized field ϕ acts as a random variable
and has a distribution. Thus the averages above in the
classical limit are statistical averages. The stress tensor then
reads

Tab ¼ ϕ;aϕ;b − gabLϕ ð7Þ

where

Lϕ ¼ ϕ;cϕ;c − VðϕÞ

in what follows we consider a specific form of the potential
VðϕÞ ¼ − 1

2
m2ϕ2. However equivalent treatment to other

cases can be given easily. The corresponding effective
perfect fluid stress tensor is then given by

Tab ¼ uaubðpþ ϵÞ − gabp ð8Þ

such that

ϵ ¼ 1

2
ϕ;cϕ

;c þ VðϕÞ

p ¼ 1

2
ϕ;cϕ

;c − VðϕÞ
ua ¼ ½∂cðϕ2Þ∂cðϕ2Þ�−1=2∂aϕ

2 ð9Þ

It is important to realise that, here the randomness to the
stress tensor is not imparted by any classical particles
performing random motion in the fluid, but the fluid model
is fundamentally different than what is proposed in [9].
For the case discussed in this paper, it is the scalar field
distribution, which accounts for the stochastic behavior of
the stress tensor. Further, the effective noise kernel, in terms
of the perfect fluid variables can be obtained by using (8)
in (6) as follows

4Nabcdðx; x0Þ ¼ Cov½TabðxÞTcdðx0Þ� ¼ uaubucudfCov½ϵðxÞϵðx0Þ� þ Cov½ϵðxÞpðx0Þ� þ Cov½pðxÞϵðx0Þ� þ Cov½pðxÞpðx0Þ�g
− uaubgcdfCov½ϵðxÞpðx0Þ� þ Cov½pðxÞpðx0Þ�g − gabucudfCov½pðxÞϵðx0Þ�
þ Cov½pðxÞpðx0Þ�g þ gabgcdCov½pðxÞpðx0Þ�: ð10Þ
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Comparing Eqs. (10) and (5) is straightforward since one can trace the term by term correspondences as below,

G;c0bG;d0a þG;c0aG;d0b → 2ububucudfCov½ϵðxÞϵðx0Þ� þ Cov½ϵðxÞpðx0Þ� þ Cov½pðxÞϵðx0Þ� þ Cov½pðxÞpðx0Þ�g
Gp

;c0G;d0p → −ucudfCov½pðxÞϵðx0Þ� þ Cov½pðxÞpðx0Þ�g
G;p0bG

p0
;a þm2G;aG;b → 2uaubfCov½ϵðxÞpðx0Þ� þ Cov½pðxÞpðx0Þ�g

1

2
½G;p0qG;p0q þm2fG;p0G;p0 þG;pG;p þm2G2g� → 2Cov½pðxÞpðx0Þ�: ð11Þ

We see, that the two point covarainces of pressure and
density capture the microscopic nature of the fluid in a
statistical description which are in turn related to quantum
fluctuations inherently. This is the central feature of the
correspondence that we obtain here.
In addition to being used in the perturbative theory as the

noise source, these fluctuations characterize the micro-
scopic effects in the matter fields coupled to a spacetime of
interest. The significance of these fluctuations also lies in
realising their importance for compact astrophysical objects
which are coupled to say thermal fields as discussed in
[10,11] and are of interest to collapsing clouds, towards
critical phases and end states of collapse.
Our results indicate that, fluctuations of quantum fields

induce mesoscopic classicalized effects in the fluid descrip-
tion of the same model, given by covariances of pressures
and energy density in the background spacetime.
Since the noise kernel Ñabcdðx; x0Þ due to quantum

fluctuations, is also known to be a classical stochastic source
in nature, one can raise a question about the correspondence
worked out here. The importance of what we have shown
here, lies in realizing that the quantum sourced noise can be
captured partially via the fluctuations of classical parameters
of an effective perfect fluid model of matter.

In the future it would be interesting to obtain such a
correspondence for nonminimally coupled fields and
imperfect fluids, thus taking into account heat flux and
dissipation. The usefulness of such a correspondence, that
of noise in the system lies on one hand, in aiding to study
the microscopic structure and its connections with kinetic
theory in curved spacetime [6] which is a developing
area of research, while on the other hand can be used as
a source for perturbative analysis of gravitating systems.
The perturbative analysis using the semiclassical Einstein
Langevin equation is an elaborate approach, however
solutions of the semiclassical Einstein equations pose a
challenge due to the presence of quantum stress tensor and
semiclassical noise kernel. Thus a simplified version of
matter fields in terms of hydrodynamic limit, may be useful
in finding solutions of the same more easily, though these
would put restriction regarding the classicalizing of the
system. The details of this restriction would follow in future
developments. Characterizing noise and dissipation in the
system in the decoherence limit is a first step towards this.
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