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The Schwarzschild star is an ultracompact object beyond the Buchdahl limit, which has Schwarzschild
geometry outside its surface and positive pressure in the external layer which vanishes at the surface.
Recently, it has been shown that the Schwarzschild star is stable against spherically symmetric
perturbations. Here we study arbitrary axial nonspherical perturbations and show that the observable quas-
inormal modes can be as close to the Schwarzschild limit as one wishes, what makes the Schwarzschild star
a very good mimicker of a black hole. The decaying time-domain profiles prove that the Schwarzschild star
is stable against nonspherical perturbations as well. Another peculiar feature is the absence of echoes at the
end of the ringdown. Instead we observe a nonoscillating mode which might belong to the class of
algebraically special modes. At asymptotically late times, Schwarzschildian power-law tails dominate in
the signal.
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I. INTRODUCTION

The detection of gravitational waves (GWs) by the LIGO
andVirgoCollaborations [1,2] aswell as recent observations
of black holes in the electromagnetic spectrum [3,4] gave
birth to a new era in the astronomy of astrophysical compact
objects. It is commonly assumed that black holes and
neutron stars are the most popular candidates for current
and future detections of GW. However, some authors found
that the observations could also be interpreted as due to non-
Einsteinian black holes [5,6] or even alternatives to black
holes [2,7–10] or the so-called exotic compact objects
(ECOs) (see [11] for a recent review), which have been
proposed as solutions to clear up the several paradoxes of
classical black holes in the Einstein theory [12].
One of these ECOs is the gravastar proposed by Mazur

and Mottola [13,14], which has attracted considerable
interest in the last decade (see, for instance, [15–24] and
references therein). In its original form a gravastar is a four-
layer configuration which consists of an interior region
with equation of state (EOS) p ¼ −ϵ < 0, described by a
patch of the de Sitter metric, which is matched through a
boundary layer to a shell filled with a stiff ultrarelativistic
fluid with EOS p ¼ ϵ. Likewise, there is a second boundary
layer that matches the shell to the exterior Schwarzschild

geometry. The gravastar is a nonsingular solution without
an event horizon, therefore providing a legitimate alter-
native to black holes.
The issue of stability of gravastars has been thoroughly

investigated. Visser and Wiltshire [25] studied the radial
stability of a simple three-layer gravastar model, and Horvat
et al. [26] considered the stability of a continuous pressure
gravastar. In a seminal paper, Chirenti and Rezzolla [27]
investigated the stability of gravastars against axial pertur-
bations and computed their quasinormal modes (QNMs).
They concluded that the spectrum of axial QNMs of
gravastars is different from those of a Schwarzschild black
hole. Similar conclusionswere drawn byPani et al. [28]who
computed axial and polar oscillations of thin-shell gravas-
tars. Scalar perturbations of gravastars were studied in the
context of the ergoregion instability [18,19]. More recently,
Cardoso et al. [29] studied linear perturbations in the
gravastar spacetime. In [30], it was argued that the gravastars
are discarded by the GW150914 observations, though there
the mass of the gravastar was fixed by that value which
follows from the supposition that the central object under
consideration is the Kerr black hole. After that, a kind of
extrapolation of the nonrotating case was done via adding
terms from quasinormal modes of the slowly rotating
neutron star [30]. This way, a large existing uncertainties
(of tens of percents) in the resultant angular momentum and
mass were not taken into consideration in [30].
More recently, in connection with gravastars, Mazur and

Mottola [31] reconsidered the Schwarzschild interior
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solution [32] or Schwarzschild star, which is an exact
solution of the Einstein’s equations for a spherically
symmetric mass with uniform energy density. It is well
known that when the radius of the Schwarzschild star
reaches the Buchdahl bound R ¼ ð9=4ÞM, the central
pressure diverges. The existence of this limiting configu-
ration is not restricted to the case of constant density stars.
Buchdahl [33] showed that if one assumes a positive energy
density which decreases monotonically with r, then there is
a general upper mass bound M ≤ 4R=9 which is indepen-
dent of the relation between pressure and density. Configu-
rations more compact than those within the Buchdahl limit
were believed to be unstable, as one would have either
assume the existence of the singularity inside the star or
the pressure which is increasing outward. The uniform
density configurations were studied in [34–37]. A model of
black-hole mimicker in the form of a nonlocal star in the
context of ghost-free, infinite derivative gravity was pro-
posed in [38].
Therefore, the existence of the Buchdahl limit together

with the assumption of constant density, considered “unphys-
ical” (see however [39]), has left the Schwarzschild star
unstudied thoroughly (a notable exception can be found in
[15]). Nevertheless, when one does consider the constant
density star below the Buchdahl limit, 2M < R < ð9=4ÞM, a
compelling behavior of the solution can be observed [15,31].
For instance, the pole where the pressure is divergent moves
outward, starting at the center of the star, up to a surface of

radius R0 ¼ 3R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8

9
R
RS

q
< R. Then a new region naturally

emerges in the range 0 < r < R0, characterized by a negative
pressure. In the limit when R0 → R−

S from the interior and
R → Rþ

S from the exterior, the full interior region becomes
one with constant negative pressure with the geometry of a
modified de Sitter spacetime. The interior region is matched
to the vacuum exterior Schwarzschild metric through a
surface layer of transverse stresses endowed with a surface
tension. The pressure in this exterior layer is positive. Thus, in
the ultracompact limit R → RS, the Schwarzschild star
resembles the main features of the gravastar proposed in
[13,14], although one with no thin shell of matter.
The ultracompact Schwarzschild star was extended to

slow rotation in [40]. The main conclusion of that work is
that the moment of inertia and quadrupole moment, or I-Q
relations, for a slowly rotating ultracompact Schwarzschild
star approaches to the corresponding values for the Kerr
metric. Recently, Posada and Chirenti [41] studied the
radial stability of this configuration using the “pulsation”
equation derived by Chandrasekhar [42]. They found that
the ultracompact Schwarzschild star is stable against radial
perturbations. This result indicates, in principle, that the
Schwarzschild star might be a viable model for mimicking
the Schwarzschild black-hole behavior in the limit R → RS,
when the geometry must resemble Schwarzschildian
one up to the very thin layer near the surface of the star.

Apparently, one should expect that for such spacetimes, the
nearly Schwarzschild quasinormal ringing must end up
with a series of echoes, which come from the modification
near the surface [7,8,43].
In the present paper, we have found further evidences

of the viability of the Schwarzschild star. First of all, we
have shown the stability against nonspherical (axial)
perturbations. The remarkable property of the axial spec-
trum of the Schwarzschild star is that the expected nearly
Schwarzschild quasinormal modes end up not with echoes,
but with a new nonoscillating decaying mode, which, in its
turn, goes over into the asymptotic power-law tails. The
latter are identical to the Schwarzschild ones. Thus, the
l > 1 perturbations of the Schwarzschild star are indistin-
guishable from those of the black hole neither at the time
of quasinormal ringing, nor at later times, including the
asymptotic tails.
This paper is organized as follows. In Sec. II, we review

the Schwarzschild star and the emergence of a negative
pressure interior when we consider ultracompact configu-
rations beyond the Buchdahl limit. In Sec. III, we find
quasinormal of axial gravitational perturbations via time-
domain integration. Finally, in the conclusion, we summa-
rize the obtained results and mention some important open
questions.

II. ULTRACOMPACT SCHWARZSCHILD STARS
AND THE GRAVASTAR LIMIT

In this section, we briefly review the Schwarzschild
interior solution [32], or Schwarzschild star, corresponding
to a spherical mass of constant energy density and the
emergence of the interior region with negative pressure
beyond the Buchdahl bound [31]. We begin with a spheri-
cally symmetric spacetime in the standard Schwarzschild
coordinates1

ds2 ¼ −fðrÞdt2 þ dr2

hðrÞ þ r2ðdθ2 þ sin2 θdϕ2Þ; ð1Þ

where the metric functions are given by [39]

fðrÞ ¼ 1

4

�
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − RS

R

r
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − RSr2

R3

�s
; r < R; ð2Þ

fðrÞ ¼
�
1 − RS

r

�
; r ≥ R; ð3Þ

and

1Throughout the paper, we use geometrized units G ¼ c ¼ 1.
We shall measure all quantities in units of the Schwarzschild
radius RS ¼ 2M.
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hðrÞ ¼
�
1 − RSr2

R3

�
; r < R; ð4Þ

hðrÞ ¼
�
1 − RS

r

�
; r ≥ R; ð5Þ

where RS ¼ 2M is the Schwarzschild radius,M denotes the
gravitational mass, and R the radius of the configuration.
The relation for the pressure is

pðrÞ ¼ ϵ ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − RSr2

R3

q
−

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − RS

R

q

3

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − RS

R

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − RSr2

R3

q ; ð6Þ

where ϵ denotes the mass-energy density, which is a
constant,

ϵ ¼
�

3M
4πR3 ¼ 3RS

8πR3 ; r < R;

0; r ≥ R:
ð7Þ

Notice that the pressure vanishes pðRÞ ¼ 0 at the surface
r ¼ R. The Schwarzschild star is matched at the boundary
r ¼ R, with the asymptotically flat exterior Schwarzschild
solution. Note that the central pressure becomes infinite
when the radius of the star reaches the Buchdahl bound
R ¼ ð9=8ÞRS [33]. However, a further analysis shows that
(6) is regular except at some radius R0 where the denom-
inator in (6),

D≡ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

RS

R

r
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

RSr2

R3

r
; ð8Þ

vanishes in the range 0 < r < R. From (2) and (6), it can be
observed that the pressure is divergent at the same point
where fðrÞ ¼ 0. This singular radius can be found directly
from (8) to be

R0 ¼ 3R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

8

9

R
RS

s
; ð9Þ

which is complex for R > ð9=8ÞRS. When the radius of the
star reaches the Buchdahl bound, R0 ¼ 0 which indicates
that the pressure diverges first at the center. If one considers
the Schwarzschild star in the regime, RS < R ≤ 9RS=8, it
can be observed that the divergence in the pressure moves
out from the center to a surface of radius R0 given by (9),
which is defined in the range 0 < R0 < R. Note that in
the regime beyond the Buchdahl bound, the denominator
(8) changes sign; therefore, a new nonsingular solution
with negative pressure emerges naturally in the region
0 ≤ r < R0. On the other hand, the interior metric compo-
nent −gtt ¼ fðrÞ given by (2) is a perfect square; thus, it
remains positive.

From (2) and (4), we note that in the “black-hole” limit
when R ¼ R0 ¼ RS, the complete interior region becomes
a patch of modified de Sitter metric

fðrÞ ¼ 1

4
hðrÞ; hðrÞ ¼ 1 −

�
r
RS

�
2

; r < R ¼ RS;

ð10Þ

with constant negative pressure p ¼ −ϵ corresponding to
the “dark energy” EOS. It is relevant to remark that the
factor 1=4 in the gtt metric component modifies the
standard de Sitter metric, and it is essential for the proper
matching of the Schwarzschild star with the exterior
Schwarzschild metric.
Note that in contrast to the model proposed originally in

[13,14], here the phase transition occurs first at the center,
once the Buchdahl bound is reached. The surface R ¼ RS is
a null surface; however, there is no interior trapped surface
and there is no formation of an event horizon. The
divergence in the pressure at R0 can be integrated through
the Komar formula [44], if one assumes the presence of a
transverse pressure at the hypersurface R0, such that

8π

ffiffiffi
f
h

r
r2ðp⊥ − pÞ ¼ 8πϵ

3
R3
0δðr − R0Þ: ð11Þ

This δ function, associated to a surface layer of transverse
stresses, provides a strict matching at the surface as
required by the Israel junction conditions [44,45] on null
surfaces [46] (see [31] for details).
Note that in contrast with the model proposed in [13,14]

where the authors introduced a thin shell filled with a stiff
fluid p ¼ ϵ, to join the interior de Sitter with the
Schwarzschild exterior, in this new description there is
no thin shell of matter. Instead, the strict matching between
the ultracompact Schwarzschild star and the exterior
Schwarzschild metric can be carried out if one relaxes
the isotropic pressure condition p ¼ p⊥, originally
assumed in [32], and allows the presence of a boundary
layer of transverse stresses p ≠ p⊥ at r ¼ R0, with an
effective zero thickness, endowed with a surface tension
given by [31]

τs ¼
MR0

4πR3
¼ Δκ

8π
; ð12Þ

which is proportional to the difference in magnitude of the
surface gravities

Δκ ¼ κþ − κ− ¼ RSR0

R3
: ð13Þ

This is the assumption which provides the physical
viability of the Schwarzschild star beyond the Buchdahl
limit and the natural emergence of a negative pressure
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interior. It is worthwhile to remark that all these quantities
described above are related to purely mechanical effects
in sharp contrast with the classical analog of black-
hole mechanics and thermodynamics [47,48]. For instance,
surface area is related solely to the surface area of the
configuration and not to entropy; surface gravity is surface
tension and not temperature. Furthermore, this configura-
tion has zero entropy and temperature, indicating a
condensate state. Finally, the Schwarzschild star, near
the Schwarzschild regime R → RS, provides a nonsingular
external surface with no event horizon, which makes
it viable as a black-hole “mimicker.” In the next section,
we will study its stability against axial gravitational
perturbations.

III. GRAVITATIONAL PERTURBATIONS OF
ULTRACOMPACT SCHWARZSCHILD STARS

The axial gravitational perturbations for a relativistic
mass, with given mass-energy density ϵ and pressure p, are
determined by the master equation

� ∂2

∂t2 −
∂2

∂r2� þ VlðrÞ
�
Ψðr; tÞ ¼ 0; ð14Þ

where the effective potential Vl is given by [49,50]

VlðrÞ ¼ fðrÞ
�
lðlþ 1Þ

r2
− 6

mðrÞ
r3

− 4πpðrÞ þ 4πϵ

�
; ð15Þ

where mðrÞ is the mass enclosed by r,

mðrÞ ¼ 4π

Z
r

0

ϵ · r2dr; ð16Þ

and r� denotes the “tortoise” coordinate defined in the
standard form by

dr� ¼
drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðrÞhðrÞp : ð17Þ

Therefore, r� → ∞ corresponds to spacial infinity and
r� → −∞ when approaching the singular surface r → Rþ

0 .
Note that in the vacuum exterior (r ≥ R) ϵ ¼ 0 and

pðrÞ ¼ 0, hence the perturbation potential (15) reduces to
the Regge-Wheeler [51] form

Vout
l ðrÞ ¼

�
1 −

RS

r

��
lðlþ 1Þ

r2
−
3RS

r3

�
; r ≥ R: ð18Þ

Here RS ¼ 2M ¼ 2mðRÞ, whereM corresponds to the total
mass of the star.
In Fig. 1, we show the behavior of the effective potential

as a function of the tortoise coordinate: at the star’s surface
it has a discontinuity due to discontinuity of ϵ. Since pðrÞ
grows unboundedly as r → R0, the potential has a negative
gap from the righthand side of the peak, approaching 0− as
r� → −∞. As the radius of the star approaches the
Schwarzschild radius, the discontinuity and the negative
gap become smaller and can be neglected, if R is suffi-
ciently close to RS (see Fig. 2).
In order to produce the time-domain profiles, we

integrate the wavelike equation (14) rewritten in terms of
the light-cone variables u ¼ t − r� and v ¼ tþ r�. The
discretization scheme was suggested in [52] and used in a
number of papers (see for instance [53,54] and references
therein) showing very good accuracy. It has the following
form:

ΨðNÞ ¼ ΨðWÞ þΨðEÞ −ΨðSÞ

− Δ2
VðWÞΨðWÞ þ VðEÞΨðEÞ

8
þOðΔ4Þ; ð19Þ

where we have used the following definitions for the points:
N ¼ ðuþ Δ; vþ ΔÞ, W ¼ ðuþ Δ; vÞ, E ¼ ðu; vþ ΔÞ,

35 30 25 20 15 10
r RS

0.002

0.004

0.006

V r RS
2

5 5
r RS

0.1

0.2

0.3

0.4

0.5

0.6

V r RS
2

FIG. 1. Effective potential for the axial gravitational perturbations (l ¼ 2) of Schwarzschild star R ¼ 1.1RS. Left panel: negative gap
when approaching the singular point r → R0. Right panel: discontinuity at r ¼ R.
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and S ¼ ðu; vÞ. The initial data are specified on the two null
surfaces u ¼ u0 and v ¼ v0.
From Fig. 3 we see that the ringdown of Schwarzschild

stars is similar to the quasinormal ringing of the
Schwarzschild black hole and becomes indistinguishable
as the star’s radius approaches the Schwarzschild radius.
For larger Schwarzschild stars (R≲ 9RS=8), the purely
imaginary mode appears at late time. A similar phenome-
non was observed in the Einstein-Gauss-Bonnet theory,
where a purely imaginary nonperturbative mode appears in
the spectrum [55], leading to instability for sufficiently
large coupling [56,57]. Although the effective potential for
the gravitational perturbations of Schwarzschild stars
also has a negative gap, it does not become deeper as l
grows, so that we do not have any indications of the eikonal
instability [58]. In addition, we have observed that
for l > 2 the imaginary mode does not dominate at
late time.

Note, that the quasinormal spectrumof the Schwarzschild
black hole has also the purely imaginary mode called
algebraically special. However, the algebraically special
mode of the Schwarzschild black hole corresponds to high
imaginary part, so that it does not dominate in the signal and,
consequently, we cannot see it in the time-domain profile.
The algebraically special mode for the Schwarzschild
solution has the form [59]

ωaRS ¼ −i
ðl − 1Þlðlþ 1Þðlþ 2Þ

6RS
; ð20Þ

so that the algebraically special mode for l ¼ 2 is ω ¼
−4i=RS what does not exclude possibility that the purely
imaginary mode may go over into the known algebraically
special mode in the Schwarzschild limit. If so, we should
assume that the purely imaginary mode, which we observe
here for l ¼ 2, exists also for higher l, but it does not
dominate at late times for l > 2 even when R → 9RS=8,
because at higher l the algebraically special mode (20) is
strongly damped.
After the ringdown phase and the transition consisting of

exponential decay, we see the asymptotic power-law tails,
which are identical to those for the Schwarzschild black
hole [60,61],

jΨj ∼ t−2l−3: ð21Þ

We also notice that the ringdown of the Schwarzschild
star above the Buchdahl limit is qualitatively different (see
Table I). The dominant mode has a small imaginary part

1.0 1.5 2.0 2.5

0.1

0.2

0.3

0.4

0.5

0.6

V r RS
2

r RS

FIG. 2. Effective potentials for the axial gravitational pertur-
bations (l ¼ 2) of the Schwarzschild black hole (black) and for
the interior (R0 < r < R) of Schwarzschild stars: R ¼ 1.04RS
(blue, lower), R ¼ 1.08RS (red), R ¼ 1.1RS (magenta, upper).

50 100 150 200 250 300 350

10 12

10 9

10 6

0.001

1

t RS

FIG. 3. Ringdown of the axial gravitational perturbations
(l ¼ 2) for the Schwarzschild black hole (black) and for the
Schwarzschild stars: R ¼ 1.04RS (blue, lower), R ¼ 1.08RS
(red), R ¼ 1.1RS (magenta, upper).

TABLE I. Dominant quasinormal frequencies of axial gravita-
tional perturbations (l ¼ 2) obtained by fitting time-domain
profiles. Initially the ringdown is governed by the oscillating
mode ωi, at late times purely imaginary mode ωl dominates. The
last three lines correspond to dominant frequencies of the
constant density star above the Buchdahl limit, taken from [50].

R=RS ωiRS ωlRS

1.00 0.7474 − 0.1779i
1.01 0.7486 − 0.1818i
1.02 0.7430 − 0.1831i
1.03 0.7398 − 0.1811i
1.04 0.7379 − 0.1777i
1.05 0.737 − 0.175i
1.06 0.737 − 0.173i −0.11i
1.07 0.737 − 0.170i −0.10i
1.08 0.737 − 0.168i −0.08i
1.09 0.737 − 0.167i −0.070i
1.10 0.737 − 0.166i −0.057i
1.11 0.737 − 0.164i −0.042i
1.12 0.737 − 0.163i −0.023i
1.13 0.218055 − 2.4 × 10−9i
1.14 0.371288 − 1.2 × 10−6i
1.15 0.470264 − 2.6 × 10−5i
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and no purely damped modes were found in the spec-
trum [50,62].
Summarizing this section, we can conclude that the

Schwarzschild star can be a very good mimicker of
Schwarzschild black hole, when measuring l > 1 multi-
poles, as not only the ringdown phase is unaffected by
the star interior, but also the expected echoes are absent,
while the asymptotic tails are identical to those for the
Schwarzschild ones.

IV. CONCLUSIONS

We have shown that the Schwarzschild stars are stable
not only against spherical perturbations, but also against
axial nonspherical ones, which is confirmed by the decayed
time-domain profiles for the corresponding perturbation
equations. This is one more step to establishing the
viability of the Schwarzschild star model. At the same
time, the Schwarzschild star can be a very good “mimicker”
of the gravitational wave response of a black hole at l ¼ 2
and higher multipoles, because it can approach the
Schwarzschild spectrum as closely as necessary. The latter
is possible because the internal surface with an infinite
redshift provides the same boundary conditions for quasi-
normal mode problem as a black hole does. Moreover, at
later times, when gravitational echoes should show whether

we have a gravastar or a classical black hole, the purely
imaginary damping mode is dominating, instead of echoes,
which goes over into the usual Schwarzschild asymptotic
power-law tails.
The present study raises a number of interesting ques-

tions. First of all, whether the polar gravitational perturba-
tions are stable as well. In case of complete stability, the
rotating model must be constructed beyond the linear order
in rotation parameter and its stability, quasinormal modes,
and shadows investigated. Another question is whether the
purely imaginary modes which we found belong to the
class of algebraically special modes. The latter can be
checked by numerical calculations of quasinormal modes
in the frequency domain, for example, with the help of the
Frobenius method and accurate extrapolation to the
Schwarzschild limit. Finally, an important question is
whether the lower multipoles (l ¼ 0, 1) could be seen in
the gravitational wave signal we observe nowadays. If so,
then this could be the way to distinguish the Schwarzschild
star from a black hole.
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