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Here we obtain the new four-dimensional black hole solutions to the Einstein-power-Maxwell-dilaton
gravity theory. We solve the coupled scalar, electromagnetic, and gravitational field equations in a static and
spherically symmetric geometry and show that dilatonic potential, as the solution to the scalar field
equation, can be written as a generalized Liouville potential. We obtain three classes of novel charged
dilaton black hole solutions, in the presence of power law nonlinear electrodynamics, which are
asymptotically nonflat and non-anti-de Sitter. Then we calculate the conserved and thermodynamic
quantities from geometrical and thermodynamical approaches, separately. Since the results of these two
alternative approaches are identical, one can argue that the first law of black hole thermodynamics is valid
for all of the new black hole solutions. We study thermodynamic stability or phase transition of the black
holes using the canonical ensemble method. The points of type-1 and type-2 phase transitions and the
ranges at which the black holes remain stable are indicated by considering the heat capacity of the black
hole solutions. The global stability of the black holes is studied through the grand canonical ensemble
method. Regarding the Gibbs free energy of the black holes, we find the points of Hawking-Page phase
transition and ranges of the horizon radii at which the black holes are globally stable.
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I. INTRODUCTION

It seems that, at least at the high-energy regime,
Einstein’s action alone is not sufficient to give to describe
the Universe completely. This action has been modified
by the superstring terms which are scalar tensor in nature.
The low-energy limit of the string theory leads to the
Einstein gravity coupled to a scalar dilaton field [1,2].
Since ever the new string black hole solutions have been
found, there has been strong interest in studying the exact
solutions to the scalar coupled general relativity known as
the Einstein-dilaton gravity theory. In the presence of
dilaton field, the asymptotic behavior of the solutions is
changed to be neither flat nor anti-de Sitter [(A)dS] [3,4].
Although, existence of the dilatonic black holes in the
space-times with negative cosmological constant circum-
vents the no-hair conjecture, which originally stated that a
black hole should be characterized only by its mass,
angular momentum, and electric charge [5,6], it has
been shown by many authors that Einstein’s gravity
theory with a coupled scalar field admits exact hairy black
hole solutions in three-, four-, and higher-dimensional
space-times [7–10].
The studies on the black holes, as the thermodynamic

systems, date back to the most outstanding achievements of
Hawking and Bekenstein in the context of geometrical

physics. According to the laws of black hole thermody-
namics, the black hole temperature and entropy are related
to the geometrical quantities such as black hole horizon
area and surface gravity, respectively. Also, the black hole
entropy and temperature together with the black hole mass
(energy) satisfy the first law of black hole thermodynamics
[11–17].
Besides, thermodynamic stability or phase transition of

the black holes is the other important issue that has attracted
a lot of attention in recent years. There are alternative
approaches for analyzing the thermal stability or thermo-
dynamic phase transition of the black holes. Geometrical
thermodynamics is an interesting way for investigation of
black hole phase transition. In this method, divergence
points of thermodynamical Ricci scalar provide some
information related to thermodynamic phase transition
points (see [18] and references therein). Making use of
the grand canonical ensemble method and noting the
signature of the determinant of the Hessian metrics one
can find some information about the thermodynamic
stability of the physical black holes [9,19,20]. Also, the
canonical ensemble method is an interesting way for
studying the black hole stability which is based on the
behavior of the black hole heat capacity. It is argued that
roots and divergence points of the black hole heat capacity
represent the two types of phase transitions. In addition, the
signature of black hole heat capacity with the black hole
charge as a constant enables one to study the thermal
stability of the black holes [21–23]. In this paper, we want
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to study thermal stability and phase transition in the context
of canonical ensemble method as the more fundamental
theory.
Recent studies on the thermodynamics of black holes

have shown that there is a correspondence between the
gravitating fields in anti-de Sitter (AdS) space-time and
conformal field theory (CFT) living on the boundary
of the AdS space-time. Thus, the thermodynamic properties
of black holes in AdS spaces can be identified based on
the AdS=CFT correspondence in the high temperature
limit [24–26].
Appearance of the infinite electric field and self-energy

for the pointlike charged particles, as the famous challenge
of Maxwell’s theory of classical electrodynamics, was the
initial motivation for introducing the various models of
nonlinear electrodynamics. The first model of nonlinear
electrodynamics, which restricts the electric field of a
point charge to an upper bound, was proposed by Born
and Infeld in 1935 [27,28]. It was shown that Born-Infeld
nonlinear electrodynamics is not the only modification of
the linear Maxwell field which keeps the electric field of a
charged point particle finite at the origin, other types of
nonlinear Lagrangian such as exponential and logarithmic
nonlinear electrodynamics can play the same role [29–32].
Nowadays, the theory of nonlinear electrodynamics has got
a lot of attention and has provided an interesting research
area in the context of geometrical physics and specially in
the study of static and rotational black holes. Utilizing the
Born-Infeld and the other types of nonlinear electrody-
namics, such as logarithmic, exponential, and power law
electrodynamics, lead essentially to some new black hole
solutions with the physical and thermodynamical pro-
perties affected by the model of electrodynamics under
consideration [22,23] and [30–35]. In the four-dimensional
space-times, the Lagrangian of Maxwell’s theory remains
invariant under conformal transformations in the form of
gαβ → Ω2gαβ. Breaking down of the conformal symmetry
in the space-times with the dimensions other than four is the
other challenge of Maxwell’s theory of electrodynamics.
Power law theory of nonlinear electrodynamics is the only
model of electrodynamics which preserves its conformally
invariant property in the space-times with arbitrary dimen-
sions. It has been shown that the Lagrangian of power law
nonlinear electrodynamics is invariant under the conformal
transformations in the three- four- and higher-dimensional
space-times provided that the power is chosen equal to one-
fourth of the space-time dimensions [9,36,37]. Since the
action of Einstein-dilaton gravity theory is related to that of
scalar-tensor gravity theory via conformal transformations,
this conformal symmetry of the power law nonlinear
electrodynamics makes it more interesting to be considered
in the context of geometrical physics and specially in the
framework of Einstein-dilaton gravity theory [38–41].
Our mail aim in this paper is to obtain the new exact

black hole solutions to the Einstein-power-Maxwell-dilaton

gravity theory and to investigate the physical and thermo-
dynamical properties of the solutions. Also, to check the
validity of the thermodynamical first law and to perform a
thermal stability or phase transition analysis for the new
black hole solutions. Indeed, this work can be regarded as
the extension of my previous one presented in Ref. [42],
named as the Einstein-Maxwell-dilaton gravity theory, to
the case of nonlinear electrodynamics by considering the
power law Maxwell field.
Our paper is organized as follows. In Sec. II, we obtain

equation of motions from four-dimensional Einstein
dilatonic action coupled to the power law nonlinear
electrodynamics. Then we solve the equations of the
scalar, electromagnetic, and tensor fields in a static
spherically symmetric geometry and show that the
dilatonic potential can be written as the linear combina-
tion of Liouville-type potentials. Also, three classes of
new black hole solutions of the Einstein-power-Maxwell-
dilaton gravity theory have been constructed out, which
are asymptotically nonflat and non-AdS. In Sec. III, we
study the thermodynamic properties of the novel charged
black hole solutions. We obtain the total charge and mass
of black hole, as well as the entropy and temperature
associated with the black hole horizon. Then we calculate
the electric potential of the black holes, relative to a
reference point located at infinity relative to the horizon.
Moreover, using a Smarr-type mass formula, we obtain
the black hole mass as a function of the extensive
parameters, charge, and entropy. Using thermodynamical
methods, we calculate intensive parameters, temperature,
and electric potential, conjugate to the extensive param-
eters. Compatibility of the results of geometrical and
thermodynamical approaches confirms the validity of
the first law of black hole thermodynamics, for all
classes of the new black hole solutions. In Sec. IV, we
investigate the local stability or phase transition of the
black holes. By considering the canonical ensemble
approach and regarding the black hole heat capacity,
with the black hole charge as a constant, a black hole
stability analysis has been performed and the points of
type-1 and type-2 phase transitions as well as the ranges
at which the black holes are locally stable have been
determined, precisely. A black hole global stability
analysis has been presented in Sec. V. Through the cal-
culation of the black hole Gibbs free energy, the points of
the Hawking-Page phase transition and the ranges at
which our black holes are globally stable have been
characterized. Section VI is devoted to conclusions and
discussions.

II. THE FIELD EQUATIONS AND THE
BLACK HOLE SOLUTIONS

We consider the following action for the four-
dimensional charged black holes in the Einstein gravity
theory coupled to a dilatonic potential [42,43]:
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I ¼ 1

16π

Z ffiffiffiffiffiffi
−g

p
d4x½R−VðϕÞ− 2gμν∇μϕ∇νϕþLðF ;ϕÞ�:

ð2:1Þ

Here, R is the Ricci scalar. ϕ is the scalar field coupled
to itself via the potential term VðϕÞ. The last term is
the coupled scalar-electrodynamic Lagrangian. Using the
power law nonlinear electrodynamics and in terms of
the scalar-electromagnetic coupling constant α, we have
[22,23,44]

LðF ;ϕÞ ¼ ð−Fe−2αϕÞp; ð2:2Þ

where, F ¼ FμνFμν being the Maxwell invariant. In terms
of the electromagnetic potential, Aμ, Fμν is defined as
Fμν ¼ ∂μAν − ∂νAμ and power p is known as the non-
linearity parameter. One expect that in the case p ¼ 1,
the results of this theory reduce to the Einstein-Maxwell-
dilaton gravity theory. By varying the action (2.1), we find
the field equations as follows:

2Rμν ¼ VðϕÞgμν þ 4∇μϕ∇νϕ

þ
�
ð2p − 1Þgμν þ

2p
F

FμαFα
ν

�
LðF ;ϕÞ; ð2:3Þ

∇μ½LF ðF ;ϕÞFμν� ¼ 0; LF ðF ;ϕÞ≡ ∂
∂F LðF ;ϕÞ;

ð2:4Þ

4□ϕ ¼ dVðϕÞ
dϕ

þ 2αpLðF ;ϕÞ; ϕ ¼ ϕðrÞ; ð2:5Þ

for the gravitational, electromagnetic, and scalar field
equations, respectively.
Our ansatz for the four-dimensional spherically sym-

metric solution to the gravitational field equations is as

ds2 ¼ −WðrÞdt2 þ 1

WðrÞ dr
2 þ r2R2ðrÞðdθ2 þ sin2 θdφ2Þ:

ð2:6Þ

Here,WðrÞ and RðrÞ are two unknown functions of r to be
determined.
Noting the fact that the only nonzero component of the

electromagnetic field is Ftr and assuming as a function of r,
we have F ¼ −2ðFtrðrÞÞ2 ¼ −2ð−∂rAtðrÞÞ2. Making use
of (2.6) in (2.3), we arrived at the following explicit form of
the gravitational equations:

rRðrÞW00ðrÞ þ 2½RðrÞ þ rR0ðrÞ�W0ðrÞ
þ rRðrÞð½VðϕÞ − LðF ;ϕÞÞ� ¼ 0; ð2:7Þ

rRðrÞW00ðrÞ þ 2½RðrÞ þ rR0ðrÞ�W0ðrÞ
þ 4½rR00ðrÞ þ 2R0ðrÞ þ rRðrÞϕ02ðrÞ�WðrÞ
þ rRðrÞ½VðϕÞ − LðF ;ϕÞ� ¼ 0; ð2:8Þ

2rRðrÞ½RðrÞ − rR0ðrÞ�W0ðrÞ þ 2½ðRðrÞÞ2 þ r2R00ðrÞRðrÞ
þ 4rR0ðrÞRðrÞ þ r2ðR0ðrÞÞ2�WðrÞ
þ r2R2ðrÞ½VðϕÞ þ ð2p − 1ÞLðF ;ϕÞ� − 2 ¼ 0; ð2:9Þ

for tt, rr, and θθðφφÞ components, respectively. In overall
the paper, prime means derivative with respect to the
argument. Subtracting Eq. (2.7) from Eq. (2.8) results in

rR00ðrÞ þ 2R0ðrÞ þ rRðrÞϕ02ðrÞ ¼ 0: ð2:10Þ

The differential equation (2.10) can be written in the
following form:

2

r
d
dr

lnRðrÞ þ d2

dr2
lnRðrÞ þ

�
d
dr

lnRðrÞ
�

2

þ ϕ02ðrÞ ¼ 0:

ð2:11Þ

From Eq. (2.11), one can argue that RðrÞ must be an
exponential function of ϕðrÞ. So, we can write RðrÞ ¼
eβϕðrÞ in Eq. (2.11), where ϕ ¼ ϕðrÞ satisfies the following
equation:

βϕ00 þ ð1þ β2Þϕ02 þ 2β

r
ϕ0 ¼ 0: ð2:12Þ

The solution of Eq. (2.12), in terms of a positive constant
b, can be written as

ϕðrÞ ¼ γ ln
�
b
r

�
; with γ ¼ βð1þ β2Þ−1: ð2:13Þ

We would like to study the effects of the exponential solu-
tion (i.e., RðrÞ ¼ eβϕðrÞ) with both β ¼ α and β ≠ α cases
on the thermodynamics behavior of the four-dimensional
nonlinearly charged dilatonic black hole solutions. The
cases of β ¼ α and β ≠ α, with Maxwell’s electromagnetic
theory, have been studied in Refs. [7,42,45]. Now we want
to extend this idea to the charged black hole solutions in the
presence of power law nonlinear electrodynamics. For this
aim, we solve the field equations, making use of the scalar
fields given by Eq. (2.13).
Regarding these solutions together with Eq. (2.6), the

solution to the electromagnetic field equation (2.4) is given
by following equations:

�
AtðrÞ ¼ q

B−1 r
1−B;

FtrðrÞ ¼ qr−B;
ð2:14Þ

where B ¼ 2
2p−1 ½1þ γðαp − βÞ� with p ≠ 1

2
and q is an

integration constant related to the total electric charge of the
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black hole. It will be calculated in the following section.
A notable point is that in order to the potential function
AtðrÞ be physically reasonable (i.e., zero at infinity), the
condition B > 1 must be fulfilled. In the absence of dilaton
field (i.e., β ¼ 0 ¼ γ), this condition reduces as 2p−3

2p−1 < 0 or

equivalently 1
2
< p < 3

2
, which is just the condition encoun-

tered in Refs. [23,46].
Now, Eq. (2.9) can be rewritten as

W0ðrÞ− 1− 2βγ

r
WðrÞ

þ r
2ð1− βγÞ

�
2

r2R2ðrÞ− VðϕÞ− ð2p− 1ÞLðF ;ϕÞ
�
¼ 0:

ð2:15Þ

In order to obtain WðrÞ, we should find potential VðϕðrÞÞ
as a function of the radial coordinate. For this purpose, we
return to the scalar field equation (2.5). It can be written as

dVðϕÞ
dϕ

þ 4γ

r

�
W0ðrÞ − 1− 2βγ

r
WðrÞ

�
þ 2αpLðF ;ϕÞ ¼ 0:

ð2:16Þ

Combination of the coupled differential equations (2.15)
and (2.16) leads to the following first order differential
equation:

dVðϕÞ
dϕ

− 2βVðϕÞ þ 2½αp − βð2p − 1Þ�LðF ;ϕÞ

þ 4β

r2R2ðrÞ ¼ 0: ð2:17Þ

The solution to the differential (2.17) can be written as the
generalized form of the Liouville scalar potential. That is

VðϕÞ ¼
�
2ðΛþ λ1Þe2ϕ þ 2λ2ϕe2ϕ þ 2λ3e2β0ϕ; for β ¼ 1;

2Λe2βϕ þ 2Λ1e2β1ϕ þ 2Λ2e2β2ϕ; for β ≠ 1;

ð2:18Þ

where

β0 ¼ pð2B1 − αÞ; λ1 ¼
pðα − 2Þ þ 1

B1b2pB1
q2p2p−1;

λ2 ¼ −
2

b2
; λ3 ¼ −λ1; B1 ¼

1þ αp
2p − 1

; ð2:19Þ

β1 ¼
1

β
; β2 ¼ p

�
B
γ
− α

�
; Λ1 ¼

β2

b2ðβ2 − 1Þ ;

Λ2 ¼
2p−1γ½αp − βð2p − 1Þ�q2p
b2pB½γðαpþ βÞ − pB� : ð2:20Þ

It is notable that the solution given by Eq. (2.18) is
compatible with the solution obtained in my previous work
[42]. We should note that in the absence of dilatonic field ϕ,
we have Vðϕ ¼ 0Þ ¼ 2Λ ¼ −6l−2 and the action (2.1)
reduces to that of Einstein-Λ-Maxwell theory [47,48].
Now, using Eqs. (2.14), (2.15), and (2.18), the metric

function WðrÞ can be obtained as

WðrÞ ¼

8>>>>><
>>>>>:

− m
r1−2βγ

þ ð1þ β2Þ
h

1
1−β2 ðrbÞ2βγ −

Λb2ð1þβ2Þ
3−β2 ðrbÞ

2γ
β þ q2p2p−1ϒðβÞ

ðB−1Þb2ðpB−1Þ ðbrÞ2η
i
; for β ≠ 1;

ffiffiffi
3

p
;

−mr1=2 − 2
h
ðrbÞ2=3 þ 2Λðb3rÞ12 lnðrLÞ − 2

p
q2pϒðβ¼ ffiffi

3
p Þ

ðB−1Þb2ðpB−1Þ
ðbrÞ2ξ

i
; for β ¼ ffiffiffi

3
p

;

−mþ 2
h
2 − b2ðΛþ λ1Þ þ lnðbrÞ

i
ðrbÞ þ p2pþ1q2p

B1ðB1−1Þb2ðpB1−1Þ ð
b
rÞB1−1; for β ¼ 1;

ð2:21Þ

where m is an integration constant, L is a dimensional constant, and

B ¼ 1þ ffiffiffi
3

p
αp

2ð2p − 1Þ ; η ¼ pB − pαγ − 1; ξ ¼ p

�
B −

α
ffiffiffi
3

p

4

�
− 1; ϒðβÞ ¼ 2p − 1 −

β½αp − βð2p − 1Þ�
pðB − αγÞð1þ β2Þ − β2

: ð2:22Þ

In the case p ¼ 1, the metric function (2.21) is compatible
with that of Ref. [42]. The plots of metric functions WðrÞ,
presented in Eq. (2.21), have been shown in Figs. 1–3 for
β ¼ α and β ≠ α cases, separately. From the curves of
Figs. 1–3, it is understood that, for the suitably fixed para-
meters, the metric functions WðrÞ can produce black holes

with two horizons, extreme black holes and naked singularity
black holes for all of β ≠ 1,

ffiffiffi
3

p
, β ¼ ffiffiffi

3
p

, and β ¼ 1 cases.
In order to investigate the space time singularities, one

needs to calculate the curvature scalars. The Ricci and
Kretschmann scalars, after some algebraic calculations, can
be written in the following forms:
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R ¼ ar2βγ−2 þ b
WðrÞ
r2

þ c
W0ðrÞ
r

−W00ðrÞ; ð2:23Þ

RμνρλRμνρλ ¼
4

r4−4βγ
þ a0

WðrÞ
r4−2βγ

þ a1

�
WðrÞ
r2

�
2

þ a2
WðrÞW0ðrÞ

r3
þ a3

�
W0ðrÞ
r

�
2

þ ðW00Þ2;

ð2:24Þ
where the coefficients a, b, c and a0, a1, a2, and a3 are
functions of dilaton and nonlinearity parameters. Using the

metric function (2.21) in Eqs. (2.23) and (2.24), one can see
that the Ricci and Kretschmann scalars are finite for finite
values of r, and

lim
r→∞

R ¼ 0; and lim
r→0

R ¼ ∞; ð2:25Þ

lim
r→∞

RμνρλRμνρλ ¼ 0; and lim
r→0

RμνρλRμνρλ ¼ ∞: ð2:26Þ

Equations (2.25) and (2.26) show that there is an essential
singularity located at r ¼ 0 and the asymptotic behavior of
the solutions is neither flat nor AdS. It means that inclusion
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FIG. 1. WðrÞ vs r forM ¼ 1, Q ¼ 0.4, Λ ¼ −3, b ¼ 2, and β ≠ 1,
ffiffiffi
3

p
, Eq. (2.21). (a) β ¼ 0.5, p ¼ 0.7, and α ¼ 0.45, 0.7, 0.99, 1.3

for black, blue, red, and brown curves, respectively. (b) α ¼ 0.8, p ¼ 0.7, and β ¼ 0.48, 0.56, 0.645, 0.72 for black, blue, red, and brown
curves, respectively. (c) α ¼ 0.8, β ¼ 0.6, and p ¼ 0.62, 0.666, 0.72, 0.8 for black, blue, red, and brown curves, respectively.
(d) p ¼ 0.623 and α ¼ β ¼ 0.4, 0.5, 0.574, 0.64 for black, blue, red, and brown curves, respectively.
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FIG. 2. WðrÞ vs r for M ¼ 1, Q ¼ 1.5, Λ ¼ −3, b ¼ 1.5, L ¼ 1, and β ¼ ffiffiffi
3

p
, Eq. (2.21). (a) p ¼ 0.8 and α ¼ 0.665, 0.676, 0.688,

0.7 for black, blue, red, and brown curves, respectively. (b) α ¼ 0.58 and p ¼ 0.72, 0.735, 0.748, 0.758 for black, blue, red, and brown
curves, respectively. (c) α ¼ β ¼ ffiffiffi

3
p

and p ¼ 0.62, 0.624, 0.628, 0.633 for black, blue, red, and brown curves, respectively.
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of the scalar field modifies the asymptotic behavior of the
solutions.
It is well known that existence of at least one event

horizon and appearance of the curvature singularities are
two necessary conditions to be satisfied simultaneously, in
order for the solutions to be interpreted as the black holes
[45,49,50]. The plots of Figs. 1–3 and Eqs. (2.25) and
(2.26) show that both of these requirements are fulfilled by
the solutions obtained here. As the result, our new solutions
are really black holes.

III. BLACK HOLE THERMODYNAMICS

Now our purpose is to investigate the validity of the first
law of black hole thermodynamics for all of the new
charged dilatonic black holes obtained in the previous
section. So, we find the conserved and thermodynamic
quantities related to either of the black hole solutions. The
black hole entropy as a pure geometrical quantity can be

obtained from the well-known entropy-area law. According
to this nearly universal law, which is valid in the Einstein-
dilaton gravity theory, the black hole entropy is equal to one
quarter of the black hole surface area and for our new black
hole solutions can be written in the following form [51,52]:

S ¼ A
4
¼ πb2

�
b
rþ

�
2βγ−2

; ð3:1Þ

which reduces to the entropy relation of the Einstein black
holes in the absence of dilatonic parameters (β ¼ 0 ¼ γ).
The other thermodynamical quantity which can be

calculated geometrically is the Hawking temperature asso-
ciated with the black hole horizon r ¼ rþ. In terms of the
surface gravity κ, it can be written as T ¼ κ

2π, with

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− 1

2
ð∇μχνÞð∇μχνÞ

q
¼ 1

2
W0ðrþÞ, and χμ is null killing

vector of the horizon. After some algebraic calculations, we
arrived at [32,52]

T ¼ 1

4πrþ

8>>>>><
>>>>>:

ð1þ β2Þ
h

1
1−β2 ð

rþ
b Þ2βγ − Λb2ð b

rþ
Þ2ðβγ−1Þ − 2p−1q2pϒðβÞ

b2ðpB−1Þ ð brþÞ2η
i
; β ≠

ffiffiffi
3

p
; 1;

−2ð brþÞ−
3
2 − 4Λb2ð brþÞ−

1
2 − 2pþ1q2pϒðβ¼ ffiffi

3
p Þ

b2ðpB−1Þ
ð b
rþ
Þ2ξ; β ¼ ffiffiffi

3
p

;

2rþ
b

h
1 − b2ðΛþ λ1Þ þ lnð b

rþ
Þ − p2pþ2q2p

B1b2ð
pB1−1Þ ð b

rþ
ÞB1

i
; β ¼ 1.

ð3:2Þ

The black hole temperature (3.2) reduces to that of Ref. [42], if one let p ¼ 1. Here we have used the relationWðrþÞ ¼ 0
for eliminating the mass parameterm from the obtained equations. Also, we should mention that extreme black holes occur
if q ¼ qext and rþ ¼ rext be chosen such that T ¼ 0. With this issue in mind and making use of Eq. (3.2), one can show that
the extreme black holes exist if the following equations are satisfied:

1

1 − β2
− Λr2ext

�
b
rext

�
4βγ

−
2p−1q2pextϒðβÞ

b2ðpB−1Þ

�
b
rext

�
2ðηþ1Þ

¼ 0; for β ≠
ffiffiffi
3

p
; 1; ð3:3Þ

1þ 2Λbrext þ
2pq2pextϒðβ ¼ ffiffiffi

3
p Þ

b2ðpB−1Þ

�
b
rext

�
B−2

¼ 0; for β ¼
ffiffiffi
3

p
; ð3:4Þ

1 − b2ðΛþ λ1Þ þ ln

�
b
rext

�
−

p2pþ2q2pext
B1b2ð

pB1−1Þ

�
b
rext

�
B1 ¼ 0; for β ¼ 1: ð3:5Þ
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FIG. 3. WðrÞ vs r forM ¼ 2.5,Q ¼ 0.5, Λ ¼ −3, b ¼ 1.5, and β ¼ 1, Eq. (2.21). (a) p ¼ 0.7 and α ¼ 0.84, 1.0, 1.18, 1.35 for black,
blue, red, and brown curves, respectively. (b) α ¼ 1.3 and p ¼ 0.69, 0.718, 0.75, 0.785 for black, blue, red, and brown curves,
respectively. (c) α ¼ β ¼ 1 and p ¼ 0.65, 0.675, 0.7, 0.73 for black, blue, red, and brown curves, respectively.
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In order to study the effects of dilatonic and nonlinearity
parameters (i.e., α, β and p) on the horizon temperature of
the black holes, the plots of black hole temperature vs
horizon radius have been shown in Figs. 4–6 by consid-
ering the α ¼ β and α ≠ β cases, separately. The plots of
Figs. 4 and 6 show that, in the cases β ≠

ffiffiffi
3

p
; 1 and β ¼ 1,

the extreme black holes can occur for rþ ¼ rext only. Also,
the physical black holes with positive temperature are those
for which rþ > rext and unphysical black holes, having
negative temperature, occur if rþ < rext. Regarding the
plots of Fig. 5 (for black holes with β ¼ ffiffiffi

3
p

), one can argue
that the equation T ¼ 0 has two real roots located at rþ ¼
r1ext and rþ ¼ r1ext, where the extreme black holes can
occur. The black holes are physically acceptable if their
horizon radii be in the range r1ext < rþ < r2ext.
We can find the electric potential Φ of black holes,

measured by an observer located at infinity with respect to
the horizon, using the following relation [46,53–55]:

Φ ¼ Aμχ
μjreference − Aμχ

μjr¼rþ : ð3:6Þ

Here, χ ¼ C∂t is the null generator of the horizon and C is
an arbitrary constant to be determined [43,44]. Using
Eqs. (2.14) and (3.6), one can find the black hole’s electric
potential on the horizon as

Φ ¼ Cq
B − 1

r1−Bþ : ð3:7Þ

By calculating the total electric flux measured by an
observer located at infinity with respect to the horizon
(i.e., r → ∞) [50,56], we can find the conserved electric
charge of the black holes. It can be obtained with the help of
Gauss’s electric law which can be written as [43,57]

Q ¼ 1

4π

Z
r→∞

r2e2βϕðrÞð−F Þp−1e−2pαϕðrÞFμνuμuνdΩ;

ð3:8Þ
where uμ and uν are timelike and spacelike unit vectors
normal to the hypersurface of radius r, respectively.
Making use of Eqs. (2.2), (2.13), and (2.14), after some
simple calculations, we arrived at

Q ¼ 2p−1b2
�
q
bB

�
2p−1

; ð3:9Þ

which is compatible with the results of our previous
work in the case p ¼ 1 [42]. It reduces to the charge of
Reissner-Nordström-A(dS) black holes in the absence of
dilatonic field. Also, a redefinition of the integration
constant q makes this relation consistent with the result
of Refs. [46,57].

The other conserved quantity to be calculated is the black
hole mass. As mentioned before, it can be obtained in terms
of the mass parameter m. Since the asymptotic behavior of
the metric functions given by Eq. (2.21) is unusual, the
Brown and York quasilocal formalism must be used for
obtaining the quasilocal mass [58,59]. By considering a
metric in the following form (Eq. (2.7) in Ref. [60]):

ds2 ¼ −X2ðρÞdt2 þ dρ2

Y2ðρÞ þ ρ2ðdθ2 þ sin2 θdφ2Þ; ð3:10Þ

provided that the matter field does not contain derivatives of
the metric, the quasilocal black hole mass can be obtained
through the following relation (Eq. (2.8) in Ref. [60]):

M ¼ ρXðρÞ½Y0ðρÞ − YðρÞ�; ð3:11Þ

in which Y0ðρÞ is a background metric function which
determines the zero of the mass.
In order to obtain the analogous Arnowitt-Deser-Misner

(ADM) massM, the limit ρ → ∞must be taken [60]. Now,
we must to write the metric (2.6) in the form of Eq. (3.10).
This can be done by considering the transformation
ρ ¼ rRðrÞ, from which one can show that

dr2 ¼ dρ2

ð1 − βγÞ2R2ðrÞ :

Therefore, in our case, we have

X2ðρÞ ¼ WðrÞ; and Y2ðρÞ ¼ R2ðrÞ
ð1þ β2Þ2WðrÞ;

with r ¼ rðρÞ: ð3:12Þ

By substituting these quantities into Eq. (3.11) and taking
the limit ρ → ∞ or equivalently r → ∞, the total mass of
the charged dilatonic black holes, identified here, is
obtained as (see the Appendix)

M ¼ mb2βγ

2ð1þ β2Þ ; ð3:13Þ

which is compatible with the result of Refs. [37,42,46].
Also, it recovers the mass of Reissner-Nordström-A(dS)
black holes when the dilatonic potential disappears.
Now, we can investigate the consistency of these quan-

tities with the thermodynamical first law. From Eqs. (2.21),
(3.1), (3.9), and (3.13), we can obtain the black hole mass
as the function of extensive parameters S and Q. To do so,
we use the relation WðrþÞ ¼ 0. The Smarr-type mass
formula for the new black holes can be given as
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Mðrþ; qÞ ¼

8>>>>><
>>>>>:

b
2

h
1

1−β2
rþ
b − Λb2ð1þβ2Þ

3−β2 ð brþÞ4βγ−3 þ
2p−1q2pϒðβÞ
ðB−1Þb2ðpB−1Þ ð brþÞ2ηþ2βγ−1

i
; β ≠ 1;

ffiffiffi
3

p
;

− b
4

h
rþ
b þ 2Λb2 lnðrþL Þ − 2pq2pϒðβ¼ ffiffi

3
p Þ

ðB−1Þb2ðpB−1Þ ð brþÞ
1
2
ð ffiffi

3
p

α−1Þ
i
; β ¼ ffiffiffi

3
p

;

b
2

nh
2 − b2ðΛþ λ1Þ þ lnð b

rþ
Þ
i
ðrþb Þ þ p2pq2p

B1ðB1−1Þb2ðpB1−1Þ ð
b
rþ
ÞB1−1

o
; β ¼ 1.

ð3:14Þ

It is a matter of calculation to show that the intensive
parameters T and Φ, conjugate to the black hole entropy
and charge, satisfy the following relations:

�∂M
∂S

�
Q
¼ T; and

�∂M
∂Q

�
S
¼ Φ; ð3:15Þ

provided that C be chosen as [44]

C ¼
8<
:

pð2−ϒ1Þ
1þαp for β ¼ 1;

pϒðβÞ
2p−1 for β ≠ 1.

ð3:16Þ

Note that ϒ1 ¼ ðαp − 2pþ 1Þðαp − 2pþ 2Þð2p − 1Þ−1
and the condition rþ ¼ b has been used for the case
β ¼ 1. Also, Eq. (3.16) reduces to its corresponding value
in the Einstein-Maxwell-dilaton gravity theory [42]. So, we
showed that the first law of black hole thermodynamics is
valid, for all of the new nonlinearly charged dilatonic black
holes, in the following form:

dMðS;QÞ ¼ TdSþΦdQ: ð3:17Þ
Here, S and Q are the thermodynamical extensive param-
eters and T and Φ are intensive parameters conjugate to S
and Q, respectively. From Eq. (3.17), one can argue that
even if the conserved and thermodynamic quantities are
affected by dilaton and nonlinearity parameters, the first
law of black hole thermodynamics remains valid.

IV. BLACK HOLE LOCAL STABILITY

Now, using the canonical ensemble method, we study the
thermal stability or phase transition of our new black hole
solutions. For this purpose, we need to calculate the black
hole heat capacity with the black hole charge as a constant.
It is defined as

CQ ¼ T
�∂S
∂T

�
Q
¼ T

MSS
: ð4:1Þ

The last step in Eq. (4.1) comes from the fact that T ¼
ð∂M=∂SÞQ and we have used the definition MSS ¼
ð∂2M=∂S2ÞQ.
It is well known that the positivity of the black hole heat

capacity CQ or equivalently the positivity of ð∂S=∂TÞQ or
MSS is sufficient to ensure the local stability of the physical
black holes. The unstable black holes undergo phase

transitions to be stabilized. The sign of the black hole heat
capacity changes, from negative to positive, at its vanishing
points. Thus, they signal the existence of a kind of phase
transition. In addition, an unstable black hole undergoes
phase transition at the divergent points of the black hole
heat capacity where the denominator of the heat capacity
vanishes. These two kinds of thermodynamic phase tran-
sitions are called as type-1 and type-2 phase transitions,
respectively [61–63] (see also [45,52,64]). Considering the
abovementioned points, we proceed to perform a thermal
stability or phase transition analysis for all of the new black
hole solutions we just obtained.

A. Black holes with β ≠ 1,
ffiffiffi
3

p

Making use of Eq. (3.14) and noting Eq. (3.1), the
denominator of the black hole heat capacity can be
calculated as

MSS ¼
−ð1þ β2Þ
8π2b3

�
b
rþ

�
1−2βγ

��
b
rþ

�
2−2βγ

þΛb2ð1− β2Þ
�
b
rþ

�
2βγ

−
2p−1q2pϒðβÞ

b2ðpB−1Þ

�
b
rþ

�
2ηþ2

�
:

ð4:2Þ
The real roots of equation MSS ¼ 0 indicate the points of
type-2 phase transition. As it is too difficult to obtain the
real roots of this equation analytically, we have plottedMSS
vs rþ in Fig. 4 for different values of dilaton and non-
linearity parameters. The plots show that, for the properly
fixed parameters,MSS is positive valued everywhere and no
type-2 phase transition can take place. This kind of black
holes undergo type-1 phase transition at the point rþ ¼ rext
where the black hole heat capacity vanishes. The black
holes with the horizon radii in the range rþ > rext are
locally stable.

B. Black holes with β =
ffiffiffi
3

p

The numerator of these black holes is given by Eq. (3.2).
Also, it is a matter of calculation to show that its
denominator is given by the following equation:

MSS ¼
−1

2π2b3

�
1 − 2Λb2

�
b
rþ

�

−
2pq2pð2B − 1Þϒðβ ¼ ffiffiffi

3
p Þ

b2ðpB−1Þ

�
b
rþ

�
B
�
: ð4:3Þ
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The plots of denominator together with the numerator of
the black hole heat capacity are shown in Fig. 5 for different
values of nonlinearity and dilaton parameters. Regarding
the plots of Fig. 5, it is easily understood that there are
two points of type-1 phase transition located at the points
rþ ¼ r1ext and rþ ¼ r2ext with r1ext < r2ext. The black hole
heat capacity diverges at the real root of MSS¼0, which
appears at the point rþ¼ r0 with r0<r1ext. Also, the
physical black holes, those having positive temperature,
are unstable everywhere. Because their horizon radius is in

the range r1ext < rþ < r2ext and they have negative heat
capacity in this range.

C. Black holes with β = 1

Starting from Eq. (3.14) and using Eq. (3.1), one can
calculate the denominator of the black hole heat capacity.
It can be written in the following form:

MSS ¼
−1

2π2b2rþ

�
1 −

p2pq2p

b2ðpB1−1Þ

�
b
rþ

�
B1

�
: ð4:4Þ
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FIG. 4. T and MSS vs rþ for Q ¼ 0.4, Λ ¼ −3, b ¼ 2, and β ≠ 1,
ffiffiffi
3

p
, Eqs. (3.2) and (4.2). (a) β ¼ 0.6, p ¼ 0.7 and

½T∶ α ¼ 0.7ðblackÞ; 1.0ðblueÞ� and ½2MSS∶ α ¼ 0.7ðredÞ; 1.0ðbrownÞ�: (b) α ¼ 0.7, p ¼ 0.6 and ½T∶ β ¼ 0.6ðblackÞ; 0.7ðblueÞ�
and ½2MSS∶ α ¼ 0.6ðredÞ; 0.7ðbrownÞ�: (c) α ¼ 0.8, β ¼ 0.6 and ½T∶ p ¼ 0.6ðblackÞ; 0.65ðblueÞ� and ½2MSS∶ p ¼ 0.6ðredÞ;
0.65ðbrownÞ�: (d) α ¼ β ¼ 0.7 and ½T∶ p ¼ 0.6ðblackÞ; 0.65ðblueÞ� and ½2MSS∶ p ¼ 0.6ðredÞ; 0.65ðbrownÞ�.

0 5 10 15 20
3

2

1

0

1

2

3

4

0 5 10 15 20

2

1

0

1

2

3

4

0 5 10 15 20
�3
�2
�1

0

1

2

3

4

(a) (b) (c)

FIG. 5. T and MSS vs rþ for Q ¼ 2.5, Λ ¼ −3, b ¼ 1.5, and β ¼ ffiffiffi
3

p
, Eqs. (3.2) and (4.3). (a) p ¼ 0.8 and ½10T∶ α ¼

0.8ðblackÞ; 0.9ðblueÞ� and ½20MSS∶ α ¼ 0.8ðredÞ; 0.9ðbrownÞ�: (b) α ¼ 0.8 and ½10T∶ p ¼ 0.75ðblackÞ; 0.8ðblueÞ� and ½20MSS∶ p ¼
0.75ðredÞ; 0.8ðbrownÞ�: (c) α ¼ β ¼ ffiffiffi

3
p

and ½5T∶ p ¼ 0.6ðblackÞ; 0.8ðblueÞ� and ½10MSS∶ p ¼ 0.6ðredÞ; 0.8ðbrownÞ�.
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In order to investigate the points of type-1 and type-2
phase transitions and to determine the ranges at which
the black hole heat capacity is positive valued, we have
plotted the numerator and denominator of the black hole
heat capacity in Fig. 6. The plots show that there is a
point of type-1 phase transition located at rþ ¼ rext,
where the black hole heat capacity vanishes. The black
hole heat capacity diverges at rþ ¼ r1 and it is point of
type-2 phase transition. This kind of black holes are locally
stable provided that the condition rext < rþ < r1 is
fulfilled.

V. BLACK HOLE GLOBAL STABILITY

Study of the black hole global stability was initially
proposed by Hawking and Page, as the pioneers of this
idea [65]. Based on this proposal, one can investigate
the global stability of black holes by studying the corres-
ponding Gibbs free energy. The Gibbs free energy of the
charged black holes in the grand canonical ensemble is
given by [66]

G ¼ M − TS −QΦ: ð5:1Þ

The Gibbs free energy is required to be positive to
ensure global stability of the black holes with positive
temperature. The Hawking-Page phase transition can
occur at the points where the Gibbs free energy vanishes.
The black hole temperature at which the Hawking-Page
phase transition takes place is dubbed as the critical
temperature (TH). At this temperature, Hawking-Page
phase transition between black hole and thermal state
(radiation) occurs [65–67]. In the following subsections,
we calculate the Gibbs free energy of our new black holes
and, regarding the abovementioned points, analyze their
global stability.

A. Black holes with β ≠ 1,
ffiffiffi
3

p

Noting Eqs. (3.1), (3.2), (3.7), (3.9), (3.14), and (5.1),
after some algebraic calculations, we arrive the Gibbs free
energy as follows:

G ¼ rþ
4
þ Λb3ð1 − β4Þ

4ð3 − β2Þ
�
b
rþ

�
4βγ−3

−
2p−1q2pϒðβÞrþ
ðB − 1Þb2ðpB−1Þ

�
p

2p − 1

�
b
rþ

�
B

−
1

4
f1 − β2 þ Bð1þ β2Þg

�
b
rþ

�
2ηþ2βγ

�
: ð5:2Þ

We need the real roots of equation GðrþÞ ¼ 0, but this is a
difficult task analytically. Sowe plot the curves ofG in terms
of rþ. They are shown in Fig. 7. It is seen from Fig. 7 that
at the vanishing point of Gibbs free energy labeled by
rþ ¼ rc, the Hawking-Page phase transition occurs. For
rext < rþ < rc, where both the Gibbs free energy and
temperature are positive, the black hole is globally stable.
In rþ ¼ rext, the temperature is zero (extremal black hole)
but in rþ ¼ rc temperature is equal to TH at which the
Gibbs free energy vanishes. We should mention that in the
range rext < rþ < Rc the Gibbs free energy is a decreasing
function of rþ. So the larger black holes aremore stable ones.

B. Black holes with β =
ffiffiffi
3

p

By use of the expressions presented in Eqs. (3.1), (3.2),
(3.7), (3.9), and (3.14) into Eq. (5.1), we obtain the Gibbs
free energy of the black holes correspond to the case
β ¼ ffiffiffi

3
p

. That is

G ¼ rþ
4
þ Λb3

�
1 −

1

2
ln

�
rþ
L

��

þ 2p−2q2pϒðβ ¼ ffiffiffi
3

p Þ
ðB − 1Þb2ðpB−1Þ rþ

��
b
rþ

�1
2
ð ffiffi

3
p

αþ1Þ

þ 2ðB − 1Þ
�
b
rþ

�
2ξþ3

2

−
2p

2p − 1

�
b
rþ

�
B
�
: ð5:3Þ

As it is difficult to solve the equationGðrþÞ ¼ 0 and obtain
its real roots analytically, we have shown the plots of G and
T vs rþ in Fig. 8.
The plots of Fig. 8 show that the Gibbs free energy

of this class of black holes vanishes at rþ ¼ rc1, and black
holes with horizon radius equal to rc1 experience Hawking-
Page phase transition. The black holes with horizon radius
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FIG. 6. T andMSS vs rþ forQ ¼ 0.4, Λ ¼ −3, b ¼ 2, and β ¼ 1, Eqs. (3.2) and (4.4). (a) p ¼ 0.7 and ½T∶ α ¼ 0.7ðblackÞ; 1.5ðblueÞ�
and ½10MSS∶ α ¼ 0.7ðredÞ; 1.5ðbrownÞ�: (b) α ¼ 0.7 and ½T∶ p ¼ 0.7ðblackÞ; 0.8ðblueÞ� and ½10MSS∶ p ¼ 0.7ðredÞ; 0.8ðbrownÞ�:
(c) α ¼ β ¼ 1 and ½T∶ p ¼ 0.7ðblackÞ; 0.8ðblueÞ� and ½10MSS∶ p ¼ 0.7ðredÞ; 0.8ðbrownÞ�.
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in the range rc1 < rþ < r2ext are globally stable. Since the
Gibbs free energy is an increasing function of rþ, the
smaller black holes with the horizon radius in this range are
more stable. For the black holes with the horizon radius
smaller than rc1, the thermal/or radiation state is preferred.

C. Black holes with β = 1

Through combination of Eqs. (3.1), (3.2), (3.7), (3.9),
(3.14), and (5.1), one is able to show that the Gibbs free
energy of this kind of black holes, as the function of black
hole horizon radius, can be written in the following form:

G ¼ rþ
2
þ p2p−1q2prþ
B1ðB1 − 1Þb2ðpB1−1Þ

×

�
4B1 − 3 −

ð2 −ϒ1ÞB1

ð1þ αpÞ
��

b
rþ

�
B1

: ð5:4Þ

For the purpose of global stability analysis of the black
holes, we have plotted G and T vs rþ in Fig. 9.
The plots of Fig. 9 show that there is a critical radius at

which Gibbs free energy vanishes which we label by rc2.
The black holes with horizon radius equal to rc2 undergo
Hawking-Page phase transition. This kind of black holes
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FIG. 8. T and G vs rþ for q ¼ 1.2, Λ ¼ −3, b ¼ 1.2, and β ¼ ffiffiffi
3

p
, Eqs. (3.2) and (5.3). (a) p ¼ 0.75 and ½10T∶ α ¼

0.6ðblackÞ; 1.0ðblueÞ� and ½G∶ α ¼ 0.6ðredÞ; 1.0ðbrownÞ�: (b) α ¼ 0.7 and ½10T∶ p ¼ 0.65ðblackÞ; 0.8ðblueÞ� and ½G∶ p ¼
0.65ðredÞ; 0.8ðbrownÞ�: (c) α ¼ β ¼ ffiffiffi

3
p

and ½10T∶ p ¼ 1.0ðblackÞ; 1.2ðblueÞ� and ½G∶ p ¼ 1ðredÞ; 1.2ðbrownÞ�.
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FIG. 7. T and G vs rþ for q ¼ 1, Λ ¼ −3, b ¼ 2, and β ≠ 1,
ffiffiffi
3

p
, Eqs. (3.2) and (5.2). (a) β ¼ 0.6, p ¼ 0.6 and ½5T∶ α ¼

0.4ðblackÞ; 1.2ðblueÞ� and ½G∶ α ¼ 0.4ðredÞ; 1.2ðbrownÞ�: (b) α ¼ 0.8, p ¼ 0.6 and ½5T∶ β ¼ 0.6ðblackÞ; 0.8ðblueÞ� and ½G∶ β ¼
0.6ðredÞ; 0.8ðbrownÞ�: (c) α ¼ 0.8, β ¼ 0.6 and ½5T∶p ¼ 0.6ðblackÞ; 0.7ðblueÞ� and ½G∶p ¼ 0.6ðredÞ; 0.7ðbrownÞ�: (d) α ¼ β ¼ 0.6
and ½5T∶p ¼ 0.6ðblackÞ; 0.65ðblueÞ� and ½G∶ p ¼ 0.6ðredÞ; 0.65ðbrownÞ�.

DILATON BLACK HOLES WITH POWER LAW ELECTRODYNAMICS PHYS. REV. D 100, 044022 (2019)

044022-11



with the horizon radius greater than rc2 are globally stable.
The Gibbs free energy is an increasing function of rþ;
therefore, the black holes with smaller horizon radius are
more stable. In addition, the black holes with the horizon
radius in the range rext < rþ < rc2 prefer the thermal state.

VI. CONCLUSION

In this work, we have studied thermodynamic properties
of the new nonlinearly charged dilatonic four-dimensional
black holes, as the exact solutions to the field equations of
the Einstein-power-Maxwell-dilaton gravity theory. The
explicit form of the coupled scalar, electromagnetic, and
gravitational field equations has been obtained by varying
the action of Einstein-dilaton gravity coupled to power-
Maxwell invariant as the matter field. By introducing a
static and spherically symmetric geometry, we found that
the solution of the scalar field equation can be written in the
form of a generalized Liouville dilatonic potential. Also,
three new classes of charged dilaton black hole solutions
have been obtained in the presence of the power law
nonlinear electrodynamics. By considering Ricci and
Kretschmann scalars, we found that there is a point of
essential singularity located at the origin. Also, the asymp-
totic behavior of the solutions is neither flat nor AdS. The
existence of the real roots of the metric functions together
with the singular Ricci and Kretschmann scalars is suffi-
cient to interpret the solutions as black hole. Plots of
Figs. 1–4, show that the new black hole solutions can
provide two horizon, extreme and naked singularity black
holes for the suitably fixed parameters.
Then, we studied the thermodynamics of the new black

hole solutions. We have obtained the conserved charge and
mass of the black holes. Using the geometrical approaches,
we have calculated the temperature, entropy, and electric
potential for all of the new black hole solutions. We showed
that for the black hole solutions with β ≠ 1,

ffiffiffi
3

p
, and β ¼ 1

the extreme, physical, and unphysical black holes can occur
if rþ ¼ rext, rþ > rext, and rþ < rext, respectively, while
for those with β ¼ ffiffiffi

3
p

the extreme black holes occur at the
points rþ ¼ r1ext and rþ ¼ r2ext. The radii of physical

black holes are in the range r1ext < rþ < r2ext and unphys-
ical black holes are in the ranges rþ < r1ext and rþ > r2ext.
Using a Smarr-type mass formula, we have found the black
hole mass as the function of the thermodynamical extensive
parameters S and Q, from which we have obtained the
intensive parameters T and Φ. Compatibility of the results
obtained from thermodynamical and geometrical methods
proves the validity of the thermodynamical first law for all
of the new black hole solutions.
Then, from the canonical ensemble point of view, we

have studied the thermal stability or phase transition of the
new black hole solutions. Regarding the signature of the
black hole heat capacity with the black hole charge as a
constant, we obtained that the following possibilities are
considerable. (i) For the heat capacity of the black holes
with β ≠ 1,

ffiffiffi
3

p
, there is no divergent point and no type-2

phase transition occur. Type-1 phase transition takes place
at the point rþ ¼ rext where the black hole heat capacity
vanishes. This class of black holes remain stable for the
horizon radii in the range rþ > rext (Fig. 4). (ii) The black
holes corresponding to β ¼ ffiffiffi

3
p

have two points of type-1
phase transition labeled by rþ ¼ r1ext and rþ ¼ r1ext
which are the real roots of T ¼ 0. There is a point of
type-2 phase transition located at rþ ¼ r0, at which the
black hole heat capacity diverges. The physical black holes
with positive temperature are unstable (Fig. 5). (iii) As it is
shown in Fig. 6, the black holes with β ¼ 1 undergo type-2
phase transition at the divergent point of black hole heat
capacity labeled by rþ ¼ r1. There is point of type-1 phase
transition located at rþ ¼ rext where the black hole heat
capacity vanishes. This class on new black hole solutions
is stable provided that their horizon radii be in the
range rext < rþ < r1.
Finally, making use of the grand canonical ensemble and

noting the Gibbs free energy of the black holes, we analyzed
the global stability of the new black holes obtained here. We
determined the points at which the black holes experience
Hawking-Page phase transition. Also we showed that there
are some specific intervals for the horizon radii in such a way
that the black holes with the horizon radius in this intervals
are globally stable (Figs. 7–9).
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FIG. 9. T and G vs rþ for q ¼ 0.4, Λ ¼ −3, b ¼ 1, and β ¼ 1, Eqs. (3.2) and (5.4). (a) p ¼ 0.75 and ½2T∶ α ¼ 0.5ðblackÞ; 0.9ðblueÞ�
and ½G∶ α ¼ 0.5ðredÞ; 0.9ðbrownÞ�: (b) α ¼ 0.7 and ½2T∶ p ¼ 0.7ðblackÞ; 0.85ðblueÞ� and ½G∶ p ¼ 0.7ðredÞ; 0.85ðbrownÞ�:
(c) α ¼ β ¼ 1 and ½2T∶ p ¼ 0.8ðblackÞ; 0.95ðblueÞ� and ½G∶ p ¼ 0.8ðredÞ; 0.95ðbrownÞ�.
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APPENDIX: DETAILED DERIVATION
OF EQ. (3.13)

With the purpose of finding the black hole mass for ththis
terme spherically symmetric black holes, with the nonflat

and non-AdS asymptotic behavior identified in this work,
we start by substituting the metric function WðrÞ into
Eqs. (3.11) and (3.12). To do this, we consider the cases
corresponding to the β ≠ 1,

ffiffiffi
3

p
, β ¼ ffiffiffi

3
p

, and β ¼ 1,
separately.

1. The case β ≠ 1,
ffiffiffi
3

p

In this case, the quasilocal black hole mass can be
obtained as follows:

M ¼ r

�
b
r

�
2βγ

ð1 − βγÞ½f½−mr2βγ−1 þ uðrÞ�uðrÞg1=2 þmr2βγ−1 − uðrÞ�; ðA1Þ

in which

uðrÞ ¼ 1þ β2

1 − β2

�
r
b

�
2βγ

−
Λb2ð1þ β2Þ2

3 − β2

�
r
b

�2γ
β þ q2p2p−1ð1þ β2ÞϒðβÞ

ðB − 1Þb2ðpB−1Þ
�
b
r

�
2η

: ðA2Þ

Now, Eq. (A1) can be rewritten as

M ¼ ð1 − βγÞb2βγr1−2βγ
�
uðrÞ

�
1 −

mr2βγ−1

uðrÞ
�

1=2

þmr2βγ−1 − uðrÞ
�
;

¼ b2βγ

1þ β2
r1−2βγ

�
uðrÞ

�
1 −

mr2βγ−1

2uðrÞ −
1

8

�
mr2βγ−1

uðrÞ
�

2

þO
�
r2βγ−1

uðrÞ
�

3
�
þmr2βγ−1 − uðrÞ

�
;

¼ b2βγ

1þ β2
r1−2βγ

�
uðrÞ −mr2βγ−1

2
−
uðrÞ
8

�
mr2βγ−1

uðrÞ
�

2

þ r2βγ−1O
�
r2βγ−1

uðrÞ
�

2

þmr2βγ−1 − uðrÞ
�
;

¼ b2βγ

1þ β2

�
m
2
−
m2

8

�
r2βγ−1

uðrÞ
�
þO

�
r2βγ−1

uðrÞ
�

2
�
: ðA3Þ

Thus, the black hole mass can be calculated as

M ¼ lim
r→∞

M ¼ lim
r→∞

b2βγ

1þ β2

�
m
2
−
m2

8

�
r2βγ−1

uðrÞ
�
þO

�
r2βγ−1

uðrÞ
�

2
�
: ðA4Þ

It is easily shown that limr→∞ðr2βγ−1uðrÞ Þ and its higher powers

are equal to zero. As the result, one obtains

M ¼ b2βγ

1þ β2
m
2
: ðA5Þ

2. The case β =
ffiffiffi
3

p

In this case, regarding Eqs. (2.21) and (3.11), the black
hole quasilocal mass is obtained as

M ¼ 1

4
b

3
2r−

1
2½f½−mr

1
2 þ u3ðrÞ�u3ðrÞg1=2 þmr

1
2 − u3ðrÞ�;

ðA6Þ

u3ðrÞ ¼ −2
�
r
b

�
2=3

− 4Λðb3rÞ12 ln
�
r
L

�

þ 2pþ1q2pϒðβ ¼ ffiffiffi
3

p Þ
ðB − 1Þb2ðpB−1Þ

�
b
r

�
2ξ

: ðA7Þ

Making use of the binomial expansion relation, after some
algebraic simplifications, we arrive at

M ¼ b
3
2

8
−
m2b

3
2

32

�
r
1
2

u3ðrÞ
�
þO

�
r
1
2

u3ðrÞ
�2

: ðA8Þ

Taking limit r → ∞, results in

M ¼ mb
3
2

8
: ðA9Þ
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3. The case β= 1

Noting Eq. (3.11) the quasilocal mass of the black holes,
with the metric function given by Eq. (2.21), can be written
in the following form:

M ¼ b
2

�
u1ðrÞ

�
1 −

m
u1ðrÞ

�
1=2

þm − u1ðrÞ
�
; ðA10Þ

with

u1ðrÞ ¼ 2

�
2 − b2ðΛþ λ1Þ þ ln

�
b
r

���
r
b

�

þ p2pþ1q2p

B1ðB1 − 1Þb2ðpB1−1Þ

�
b
r

�
B1−1

: ðA11Þ

After some algebraic simplifications, the quasilocal mass
M can be written as

M ¼ mb
4

þm2b
8

1

u1ðrÞ
þO

�
1

u1ðrÞ
�

2

; ðA12Þ

and by taking limit r → ∞, we obtain

M ¼ mb
4

: ðA13Þ

By summarizing Eqs. (A5), (A9), and (A13), the analogous
ADM black hole mass can be written in the general form
given by Eq. (3.13).
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