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Here we construct approximate analytical forms for the metric coefficients and fields representing the
scalarized Einstein-Maxwell black holes with various couplings of the scalar field, once the parameters of
the system are fixed. By increasing approximation order, one can obtain the analytic representation with
any desired accuracy, what was tested via calculations of shadows for these black holes by using
approximate analytical and accurate numerical metric functions. We share the Mathematica® code
[https://arxiv.org/src/1907.05551/anc] which allows one to find an appropriate analytical form of the metric
for any couplings and values of parameters. Scalarization increases the radius of the black-hole shadow for
all the considered coupling functions.
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I. INTRODUCTION

Black holes in general relativity possess a remarkable
property: they can be fully described by only a few
parameters, such as mass, angular momentum, and electric
charge. Absence of other charges, for example, scalar ones,
is guaranteed by the so-called no-hair theorem [1,2] (see
e.g., [3] for review). A qualitatively different situation
occurs when the scalar field is non-minimally coupled
either to the gravitational sector with higher curvature
corrections [4–8] or to the electromagnetic field [9–12]. In
these cases in some range of parameters of the system, the
black hole acquires a scalar hair [13], which was called
spontaneous scalarization. At the same time the above
scalarized black-hole solutions are asymptotically flat and
represent alternative models for black holes. Current
experiments in the electromagnetic [14–16] and gravita-
tional [17,18] spectra do not allow one to determine the
black-hole geometry with sufficient accuracy in order to
single out the Einstein theory of gravity. Therefore, a broad
parametric freedom remains for alternative theories [19,20],
making the scalarized black holes interesting candidates for
testing the no-hair theorem.
Four dimensional black-hole metrics with scalarization

have been obtained only numerically, what seriously
constrains the variety of tools which can be applied to

study these solutions. In absence of an exact analytical
solution, the analytical approximation for a metric with the
controlled accuracy can remedy the situation. A general
approach based on a convergent procedure for finding such
an analytical approximation was suggested in [21] for
spherical symmetry and further extended in [22] for
arbitrary axially symmetric black holes. The approach
for spherical spacetimes is based on the continued fraction
expansion of the metric near the event horizon in terms of a
compact coordinate and matching this expansion with the
post-Newtonian expansion in the far region. It was shown
that the parametrization, for both spherical and axial
spacetimes, usually converges quickly [23]. As a rule, a
few orders of expansion are sufficient for getting reasonable
approximations for the metrics, so that one can compute
various physical effects (quasinormal modes, particle
motion, Hawking radiation, accretion etc. [24–30]) in the
black-hole background with negligible error due to the
replacement of an accurate numerical black-hole solution
by an approximate analytical one.
Here we will construct an analytical approximation for

spherically symmetric black holes in the Einstein-Maxwell
theory endowed with a scalar field which is nonminimally
coupled to the electromagnetic one. Various couplings of
the scalar field are considered here and once the coupling
and the physical parameters of the black hole are chosen,
the analytical approximation for the metric and scalar and
electromagnetic fields can be constructed. In order to
understand how well the analytical metric at a given order
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of the expansion approximates the accurate numerical
solution we calculate radii of shadows for numerical and
analytical black-hole metrics.
The paper is organized as follows. In Sec. II we give the

basic information on the Einstein-Maxwell-scalar black
holes at various couplings. Section III describes the
numerical solution and range of parameters for the black
holes. Section IV is devoted to application of the general
parametrization [21] to the case of the Einstein-Maxwell-
scalar black holes. In Sec. V we calculate the radii of
shadows for the parametrized black holes and, via com-
parison with those for accurate numerical solutions, make
conclusions on the accuracy of our analytical form at
various orders of the continued fraction expansion. Finally,
in Sec. VI we summarize the obtained results and discuss
some open questions.

II. EINSTEIN-MAXWELL-SCALAR MODEL

We consider spherically symmetric black holes which
appear in a family of Einstein-Maxwell-scalar models,
described by the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ðR − 2gμν∂μϕ∂νϕ − fðϕÞFμνFμνÞ; ð1Þ

where Fμν ¼ ∂μAν − ∂νAμ is the Maxwell tensor and g is
the determinant of the metric tensor gμν.
The electric field is described by the potential

Aμdxμ ¼ VðrÞdr; ð2Þ

and the metric tensor is given by the line element

ds2 ¼ −NðrÞe−2δðrÞdt2 þ dr2

NðrÞ þ r2dσ2: ð3Þ

The line element of a unit sphere is defines as

dσ2 ¼ dθ2 þ sin2 θdφ2:

By substituting this ansatz for the metric tensor and
electric field into the field equations one can see that the
functions NðrÞ, δðrÞ, ϕðrÞ, and VðrÞ satisfy [11]

N0 ¼ 1

r
ð1 − NÞ − Q2

r3fðϕÞ − rðϕ0Þ2N; ð4aÞ

ðr2Nϕ0Þ0 ¼ −
f0ðϕÞQ2

2f2ðϕÞr2 − r3ðϕ0Þ3N; ð4bÞ

δ0 ¼ −rðϕ0Þ2; ð4cÞ

V 0 ¼ Q
fðϕÞr2 e

−δ; ð4dÞ

where Q is a constant of integration corresponding to the
electric charge.
We assume that the asymptotic is Minkowskian and the

time is measured by the coordinate t, so that,

lim
r→∞

N ¼ 1; lim
r→∞

δ ¼ 0: ð5aÞ

We also suppose that

lim
r→∞

ϕ ¼ 0; lim
r→∞

V ¼ 0: ð5bÞ

If f0ð0Þ ¼ 0, Eqs. (4) have the nonscalarized Reissner-
Nordström solution for δ ¼ ϕ ¼ 0,

N ¼ 1 −
2M
r

þ Q2

r2fð0Þ ; V ¼ Q
r2fð0Þ : ð6Þ

Thus, without loss of generality, in order to identify the
arbitrary constant Q with the electric charge, we assume
that fð0Þ ¼ 1.
Further we shall consider only those solutions of Eq. (4),

for which the scalar field is positive-definite (ϕ > 0)
everywhere.1 Hence, for simplicity, we also assume that
the ad hoc function fðϕÞ is monotonously growing for all
allowed positive values of ϕ < ϕmax. This assumption
automatically satisfies the constrains coming from the
Bekenstein-type identities which were discussed in [11].
The above conditions are satisfied for all the coupling types
considered in [11], which are
(1) an exponential coupling, fðϕÞ ¼ e−αϕ

2

, first consid-
ered in this context in [10];

(2) a hyperbolic cosine coupling,

fðϕÞ ¼ coshð
ffiffiffiffiffiffiffiffiffi
−2α

p
ϕÞ;

(3) a power coupling, fðϕÞ ¼ 1 − αϕ2;
(4) a fractional coupling, fðϕÞ ¼ 1

1þαϕ2.
Here α < 0 is a dimensionless constant, so that

fðϕÞ ¼ 1 − αϕ2 þOðϕ4Þ:

In addition, we can consider other coupling types,
satisfying the same condition:

(5) fðϕÞ ¼ e
e−αβ

2ϕ2−1
β2 ;

(6) fðϕÞ ¼ ð1 − α ϕ2

n Þ
n;

(7) fðϕÞ ¼ coshð
ffiffiffiffiffiffiffiffi
− 2α

n

q
ϕÞn; etc.

Now we are in a position to consider the numerical
solutions representing scalarized black holes for the above
couplings of a scalar field.

1Note, that the solutions, for which ϕ changes its sign, were
proven to be unstable [31].
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III. NUMERICAL SOLUTION FOR
A SCALARIZED BLACK HOLE

Following [10], we search for the numerical black-hole
solution of the Eqs. (4) allowing for the scalar hair, i.e., we
assume that the event horizon is located at r0, so that
Nðr0Þ ¼ 0, and consider ϕðr0Þ ¼ P0 > 0. From (4b) and
(4a) we find that

ϕ0ðr0Þ ¼ −
f0ðP0Þ
2fðP0Þ

Q2

fðP0Þr20 −Q2
≤ 0; ð7Þ

being nonpositive, since fðϕÞ > 0 is monotonously grow-
ing and the Hawking temperature at the horizon can be
expressed as follows:

TH ¼ N0ðr0Þ
4π

e−δðr0Þ ¼ 1

4πr0

�
1 −

Q2

fðP0Þr20

�
e−δ0 > 0:

With these initial conditions at the horizon we search for
the solutions of (4a) and (4b), for which ϕ > 0 for any
r0 ≤ r < ∞ and ϕ ¼ 0 at spatial infinity. Using the shoot-
ing method [32], we determine the corresponding chargeQ
in the interval2

0 < Q < r0
ffiffiffiffiffiffiffiffiffiffiffiffi
fðP0Þ

p
: ð8Þ

Once the parameters P0 andQ are fixed, we can solve the
remaining Eqs. (4c) and (4d) numerically. Since the
solutions of (4c) and (4d) for δðrÞ and VðrÞ differ by an
arbitrary constant, we do not need to shoot for the
parameters δ0 ¼ δðr0Þ and V0 ¼ Vðr0Þ in order to satisfy
the asymptotic conditions (5). For simplicity of the algo-
rithm, we find numerically the shifted functions,

δ̄ðrÞ≡ δðrÞ − δ0; V̄ðrÞ≡ eδ0VðrÞ − V0; ð9Þ

which are equal to zero at the event horizon.
In order to solve the differential equations we rewrite (4)

in terms of the compact coordinate

x ¼ 1 −
r0
r
; 0 ≤ x < 1; ð10Þ

substitute the two equivalent first-order equations instead of
(4b) and use the Livermore Solver for ordinary differential
equations method [33] implemented in Wolfram®
Mathematica for solving the equations in the interval
x0 ≤ x ≤ x1. The initial conditions are imposed at x ¼ x0 >
0 using a Maclaurin series expansion up to the sixth order
for the functions NðxÞ, ϕðxÞ, δðxÞ, and VðxÞ, and the point

x0 ≪ 1 is chosen in order to match the desired numerical
precision. The final point x1 ⪅ 1 is fixed by the standard
stiffness detection of theMathematica® NDSolve function.
In order to determine the asymptotic parameters, we

compare the numerical solution with the asymptotic
expansion

NðrÞ ¼ 1 −
2M
r

þQ2 þ S2

r2
þO

�
1

r3

�
; ð11aÞ

δðrÞ ¼ S2

2r2
þO

�
1

r3

�
; ð11bÞ

ϕðrÞ ¼ S
r
þO

�
1

r2

�
; ð11cÞ

VðrÞ ¼ Q
r
þO

�
1

r2

�
: ð11dÞ

The parameters satisfy the following relation [10],

M2 þ S2 ¼ Q2 þ 4π2r40T
2
H

¼ Q2 þ r20
4

�
1 −

Q2

fðP0Þr20

�
2

e−2δ0 : ð12Þ

We have checked that (12) is satisfied with good accuracy
for the numerically calculated parameters. It turns out
though, that, for given numerical precision, this relation
provides a better accuracy for the asymptotic mass than a
numerical extrapolation of N0ðxÞ at x → 1. That is why we
use (12) to calculate the black-hole mass M.

IV. ANALYTIC REPRESENTATION

Following [21], we represent the black-hole metric as,

ds2 ¼ −
�
1 −

r0
r

�
A

�
1 −

r0
r

�
dt2

þ B2ð1 − r0
r Þdr2

ð1 − r0
r ÞAð1 − r0

r Þ
þ r2dσ2; ð13Þ

where the functions AðxÞ and BðxÞ

AðxÞ ≃ NðxÞ
x

e−2δðxÞ; BðxÞ ≃ e−δðxÞ;

are finite everywhere for 0 ≤ x ≤ 1 and represented as

AðxÞ ¼ 1 − ϵð1 − xÞ þ ða0 − ϵÞð1 − xÞ2 þ ÃðxÞð1 − xÞ3;
BðxÞ ¼ 1þ b0ð1 − xÞ þ B̃ðxÞð1 − xÞ2; ð14Þ

where ÃðxÞ and B̃ðxÞ are given in terms of the continued
fractions, in order to describe the metric near the event
horizon x ¼ 0:

2In principle, it is possible to solve the inverse problem: Using
the shooting method, one could find the value of P0 for any given
Q. However, such an approach would require inverting the
inequality (8), which leads to unnecessary complications.
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ÃðxÞ ¼ a1
1þ a2x

1þ a3x

1þ a4x
1þ…

;

B̃ðxÞ ¼ b1
1þ b2x

1þ b3x

1þ b4x
1þ…

: ð15Þ

The coefficients a0, b0, and ϵ are fixed by comparing
asymptotic expansions (11) and (14) as follows

ϵ ¼ 2M − r0
r0

; a0 ¼
Q2

r20
; b0 ¼ 0: ð16Þ

In a similar manner we introduce the analytic represen-
tation for the fields ϕðxÞ and VðxÞ,

ϕðxÞ ≃ p0ð1 − xÞ þ P̃ðxÞð1 − xÞ2; ð17Þ

VðxÞ ≃ v0ð1 − xÞ þ ṼðxÞð1 − xÞ2; ð18Þ

where p0 and v0 are fixed by comparison with (11c) and
(11d), respectively, as

p0 ¼
S
r0
; v0 ¼

Q
r0
; ð19Þ

and

P̃ðxÞ ¼ p1

1þ p2x
1þ p3x

1þ p4x
1þ…

;

ṼðxÞ ¼ v1
1þ v2x

1þ v3x

1þ v4x
1þ…

: ð20Þ

Expanding (14), (17), and (18) near the event horizon
(x ¼ 0) and substituting into (4) we calculate numerically
the other coefficients a1; a2; a3;…, b1; b2; b3;…,
p1; p2; p3;…, v1; v2; v3;… up to any given order. In
particular,

1þ b1 ¼ Bð0Þ ¼ e−δ0 ; p0 þ p1 ¼ ϕð0Þ ¼ P0: ð21Þ

Since we use (12) to calculate the black hole mass, the
following relation holds

ðϵþ1Þ2¼4Q2−4S2

r20
þ
�
1−

Q2

fðP0Þr20

�
2

e−2δ0

¼4v20−4p2
0þ

�
1−

a0
fðp0þp1Þ

�
2

ð1þb1Þ2: ð22Þ

The hierarchy of the near-horizon coefficients introduced
through the continued fractions (15) and (20) implies that
for finite floating point size of mantissa we are able to
calculate finite number of the meaningful coefficients.

However, by increasing the numerical precision one can
find as many coefficients as needed. We have used the
®Mathematica’s powerful arbitrary precision arithmetics
and built-in precision control for the calculation of the
coefficients.
On Fig. 1 we show convergence of the above procedure.

By increasing order of the continued fraction we are able to
approximate all the functions as good as necessary. One
should note that the approximations of certain orders are
not always possible to obtain in a consistent manner by
setting the higher-order terms equal to zero. The reason is
that the truncated continued fraction can have singular
points outside the horizon (see discussion in Sec. IV of
[22]). For simplicity, we do not consider approximations of
such problematic orders and generate the approximated
functions of the lower orders instead. That is why on Fig. 1
we see that the approximated function for the scalar field
at the third order coincides with the one at the second order.
The higher-order approximations amend the problem and
the sequence of approximations converges.
The Mathematica® package with a numerical code for

the calculation of the coefficients and analytic representa-
tions for all the functions, (14), (17), and (18), and a sample
notebook “SBHDemo.nb” can be found in [34]. In the
Appendix, as examples, we write down the values of the
coefficients of the parametrization for a few fixed couplings
and values of physical parameters of the black hole.

V. SHADOWS

In order to find out how the found approximation is good,
one needs to compare some observable, gauge invariant
quantity obtained for the approximate and numerical met-
rics. Such a simple and meaningful quantity is the radius of
the black-hole shadow [35–38], which has recently been
studied in a number of works (see e.g., [39–59] and
references therein). For the spherically symmetric black
hole (13) the shadow radius, visible by a remote observer, is

R ¼ rpffiffiffiffiffiffiffiffiffiffiffiffi
FðrpÞ

p ; ð23Þ

where

FðrÞ ¼
�
1 −

r0
r

�
A

�
1 −

r0
r

�
;

and rp is the coordinate of the circular photon orbit,
satisfying,

ds2 ¼ −FðrpÞdt2 þ r2pdσ2 ¼ 0;

d2r ¼
�
−
F0ðrpÞ

2
dt2 þ rpdσ2

�
FðrpÞ

B2ð1 − r0=rpÞ
¼ 0; ð24Þ

or, equivalently,
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rpF0ðrpÞ ¼ 2FðrpÞ:

Hence, the shadow radius is given by the minimal value of
the function hðrÞ,

h2ðrÞ ¼ r2

FðrÞ ¼
r3

ðr − r0ÞAð1 − r0=rÞ
: ð25Þ

The minimum of hðrÞ can be easily calculated numeri-
cally once we have an analytical approximation for the
function AðxÞ in the form of a rational functions. Since
h2ðrÞ is a rational function of r, the corresponding mini-
mum is the smallest real, larger than r0, root of some
polynomial.
First, we compare the result of numerical minimizing of

the function (25) obtained from the numerical integration
with the one obtained using analytical approximations of
various orders. On Fig. 2 we see that convergence is fast for
any charge of the scalarized black hole. We notice that, for
the particular problem, one can find the accurate value of
the shadow size using numerical solution only by mini-
mizing the function (25). That is why the shadow size is a
good test for convergence of our method. However, the

numerical solution is not useful for the tasks, which require
higher derivatives, such as, for example, calculations
of quasinormal modes [60] in the frequency domain.
For instance, the Wentzel–Kramers–Brillouin quasinormal
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FIG. 1. Relative error of the analytical approximation of order (from top to bottom): 2 (cyan), 3 (blue), 4 (green), 5 (orange),
6 (magenta), 7 (red), 8 (purple), 9 (brown) for the scalarized black hole with the coupling fðϕÞ ¼ e10ϕ

2

, P0 ¼ 0.5,
Q ≈ 1.104M, S ≈ 0.748M.

2 4 6 8
order

10 7

10 5

0.001

error

FIG. 2. Semi-logarithmic plot for the relative error for the
shadow radius as a function of the approximation order for the
scalarized black hole with the coupling fðϕÞ ¼ 1þ 1000ϕ2:
P0 ¼ 0.026, Q ≈ 0.105M, S ≈ 0.0417M (blue squares) and
P0 ¼ 0.094, Q ≈ 0.44M, S ≈ 0.365M (red dots).
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frequencies reported in [61] proved to be inaccurate
because of the enormous numerical error accumulated
when taking higher derivatives from the numerically given
metric function. On the contrary, the analytical approxi-
mation used in [27] led to reliable results for the quasi-
normal modes. Therefore, our procedure for construction of
convergent analytical approximations for the metric func-
tions and fields opens a window for such analyses.
Finally, on Fig. 3 we show the shadow of the Reissner-

Nordström black hole with the ones of scalarized black
holes. We see that scalarization increases visible size of
the black hole for all the considered coupling functions.
The faster coupling function grows the larger deviation
from the Reissner-Nordström black hole is and the smaller
charge allows for the scalarized branch to appear.
The Mathematica® notebook with a numerical code for

the calculation of shadows “SBHShadows.nb” can be
found in [34].

VI. CONCLUSIONS

Here we have found analytical approximations for the
black hole metric in the Einstein-Maxwell-scalar theory,
once the coupling of the scalar field and physical parameters
of the system are chosen. In the general case, when none of
the parameters are fixed, the fitting of the parametrization to
the numerical solution is a time consuming problem which,
in principle, could be solved in the future. The obtained
analytical approximations are applied here for calculation of
shadows cast by scalarized black holes. It has been found
that the scalarization increases the radius of the shadow for
every coupling under consideration. The continued fraction
expansion, which we used for finding the analytical form of
the metric, converges quickly, showing reasonable accuracy
already at the second order. We share with readers the
Mathematica® codes which makes it possible both to find
analytical forms of the approximate metric functions for any
desired values of the parameters as well as to calculate radii
of shadows for each case. The analytical approximations
generated by our method are ready to use for further study
of the Einstein-Maxwell-scalar black holes and phenomena
in their vicinity, such as particle motion, quasinormal
ringing, stability etc.
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APPENDIX: COEFFICIENTS OF THE
ANALYTIC REPRESENTATION

In Tables I and II we give a few examples of values of
parametrization coefficients for some fixed couplings.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Q M4.0

4.2

4.4

4.6

4.8

5.0

5.2

R M

FIG. 3. Shadow size for the charged Reissner-Nordström black
hole (black, bottom) and scalarized black holes with various
couplings (from bottom to top): fðϕÞ ¼ e10ϕ

2

(magenta), fðϕÞ ¼
ee

10ϕ2−1 (red), fðϕÞ ¼ 1þ 100ϕ2 (green), fðϕÞ ¼ ð1þ 100ϕ2Þ2
(cyan), and fðϕÞ ¼ 1þ 1000ϕ2 (blue, top).

TABLE I. List of coefficients of the parametrization for the polynomial coupling fðϕÞ ¼ 1þ 1000ϕ2.

P0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

r0=M 1.996783 1.995736 1.993844 1.990967 1.986978 1.981777 1.975285 1.967446 1.958222 1.947591
Q=M 0.080199 0.093082 0.114516 0.144319 0.182262 0.228122 0.281678 0.342699 0.410931 0.486093
S=M 0.013038 0.029333 0.051210 0.079943 0.116111 0.159910 0.211336 0.270269 0.336509 0.409803
ϵ 0.001611 0.002137 0.003088 0.004537 0.006554 0.009195 0.012512 0.016546 0.021335 0.026909
a0 0.001613 0.002175 0.003299 0.005254 0.008414 0.013250 0.020335 0.030340 0.044037 0.062296
a1 0.000015 0.000089 0.000236 0.000361 0.000240 −0.000477 −0.002260 −0.005695 −0.011477 −0.020411
a2 0.381378 −0.097074 −0.651319 −1.332591 −3.652014 2.221766 0.275885 −0.171688 −0.383614 −0.510693
a3 −0.532212 2.473512 0.509826 0.684250 2.635464 −3.715004 −3.562145 2.006467 0.428381 0.176736
a4 0.386404 −2.748436 −0.610322 −0.282888 −0.106041 0.199664 1.856321 −3.373555 −1.674276 −1.376034
b1 −0.000064 −0.000228 −0.000453 −0.000721 −0.001028 −0.001374 −0.001759 −0.002185 −0.002652 −0.003160
b2 0.802289 0.169424 −0.335728 −0.654802 −0.84816 −0.967782 −1.044447 −1.095293 −1.130015 −1.154292

(Table continued)
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